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Abstract 

 

Background: Food reward and cue reactivity have been linked prospectively to problematic 

eating behaviours and excess weight gain in adults and children. However, evidence to date in 

support of an association between degree of adiposity and food reward is tenuous. A non-5 

linear relationship between reward sensitivity and obesity degree has been previously 

proposed, suggesting a peak is reached in mild obesity and decreases in more severe obesity 

in a quadratic fashion. 

Objective: To investigate and characterise in detail the relationship between obesity severity, 

body composition, and explicit and implicit food reward in adolescents with obesity. 10 

Methods: Data from seven clinical trials in adolescents with obesity were aggregated and 

analysed in an independent participant data meta-analysis. Linear and curvilinear 

relationships between degree of obesity and explicit and implicit reward for sweet and high-

fat foods were tested in fasted and fed states with BMI-z as a continuous and discrete 

predictor using clinically recognised partitions. 15 

Results: Although positive associations between obesity severity and preference for high fat 

(i.e., energy-dense) foods were observed when fasted, none reached significance in either 

analysis. Conversely, adiposity was reliably associated with lower reward for sweet, 

particularly when measured as implicit wanting (p = .012, ηp2 = .06), independent of 

metabolic state. However, this significant association was only observed in the linear model. 20 

Fat distribution was consistently associated with explicit and implicit preference for high fat 

foods.  

Conclusions: A limited relationship was demonstrated between obesity severity and food 

reward in adolescents, although a lower preference for sweet could be a signal of severe 

obesity in a linear trend. Obesity is likely a heterogenous condition associated with multiple 25 

potential phenotypes, which metrics of body composition may help define. 
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1. Background 

 Given the alarming rise in prevalence of paediatric obesity over recent years, the 

importance of this formative stage has been a salient focus for public health research [1]. 

Obesity severity in youth has been associated with a greater risk of obesity in adulthood along 30 

with salient comorbidities such as cardiovascular disease, certain types of cancer, and type 2 

diabetes [2]. Importantly, the extant studies investigating these links may be underestimating 

the disease burden suffered by youth with severe obesity due to the general treatment of this 

cohort as a homogenous group [2]. Therefore, there is an increasing acknowledgement of 

obesity as a heterogenous condition, which likely requires greater precision or personalisation 35 

when discerning aetiologies and appropriate clinical management strategies [3,4]. 

Consideration of all individuals with overweight/obesity as a homogenous group may also be 

inappropriate given the rise in more severe degrees of obesity, also referred to as morbid 

obesity, in recent decades, even in children 

A potential aetiological pathway explored in youth is the role of hedonic appetite with 40 

concomitant impairments in executive function [5]. Hedonic, or reward-related, appetite is 

considered to be separable from the physiological drive for preserving energy and nutrient 

homeostasis under certain conditions, and is directly modulated by both intrinsic (i.e., the 

properties of a food) and extrinsic (i.e., environmental) cues [6,7]. For example, this could be 

a food’s palatability or mere exposure to food cues, respectively. Systematic reviews and 45 

meta-analyses have demonstrated that exposure and reactivity to palatable food cues, 

especially visual cues, positively predict food intake and weight gain in adolescents [8-11]. 

Moreover, impulsive dietary behaviours and adiposity in adolescents have been linked to 

adaptations in subcortical volume and functional connectivity within, and hyperactivation of, 

brain regions implicated in reward processing such as the Striatum and Nucleus Accumbens 50 

[12-14]. Children with obesity or at risk for obesity also tend to differ in sensitivity to such 
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that they tend to rate the same food items associated with a definitive gustatory feature as less 

sweet or salty, for example, on average than their lean peers  [15,16]. Therefore, heightened 

hedonic appetite has been considered a risk factor for obesity and weight gain in childhood 

and subsequently a credible target for preventative interventions [17].  55 

Current evidence in support of the link between obesity and food reward may 

necessitate more nuance. A meta-analysis of 13 studies by Morys and colleagues [18] could 

not find a consistent association between weight status and greater visual food cue reactivity. 

However, age was found to significantly moderate this relationship such that differences in 

food cue reactivity between weight status groups was more pronounced in youth and 60 

decreased with age. The method to assess anthropometry may also contribute to mixed 

findings with methods ranging from self-report to advanced body composition assessment 

such as dual-energy X-ray absorptiometry (DXA). Likewise, a meta-analysis of 45 studies by 

Boswell and Kober [8] did not find either weight status or age to independently moderate the 

effect of food cue reactivity on food intake or weight gain, although an interaction between 65 

them was not investigated. In a study by Hofmann et al. [19] examining a sample of 

adolescents with a wide range of adiposity, weight status was only associated with higher 

liking and intake of energy dense food in a subgroup characterised by higher trait food 

craving. Dalton, Blundell, and Finlayson [20] demonstrated that young adults with obesity 

characterised as a binge eating phenotype expressed a higher implicit wanting for, and 70 

consumed more, high fat sweet food than their non-binge eating counterparts. It is also 

important to note that neural activity in reward-related brain regions may correlate more 

precisely with central or visceral obesity (i.e., waist circumference, android fat distribution) 

[21], or fat free mass (FFM) [22], rather than obesity as defined by body mass index (BMI) 

alone, thus warranting investigations of alternatives when as potential risk factors for reward-75 

driven eating behaviours. 
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 Related to neurocognitive profiles, a review by Horstmann and colleagues [23] 

suggests that adiposity may have a quadratic relationship with dopaminergic tone1 (i.e., 

dopamine availability), which consequently has an inverse relationship with reward 

sensitivity. In their proposed model, dopaminergic tone initially decreases from lean to 80 

overweight, reaching a trough in mild obesity, then increases in more severe degrees of 

obesity. This elevation in more severe adiposity may be facilitated in part by the onset of 

leptin resistance, which in turn affects the rate of dopamine release in the limbic system. 

A recently submitted inpatient feeding study in young adults ranging from 20 to 44kg/m2 in 

BMI has aimed to test the suitability of this quadratic model whilst utilising two different 85 

radiotracers for evaluating dopamine receptor binding potential, namely [18F]fallypride and 

[11C]raclopride [24]. Whilst correlated, only when measured with the latter was BMI 

significantly and negatively associated with dopamine receptor binding potential, albeit in a 

linear manner. Moreover, associations with BMI and fat mass (FM) observed from these 

methods were significantly different, highlighting the role of methodology when interpreting 90 

mixed evidence from the literature. Relatedly, a recent meta-analysis by Pak and 

Nummenmaa [25] also found that the radiotracer method used significantly moderated the 

relationship between dopaminergic activity and obesity severity with a particular emphasis on 

contrasts in their interactions with dopamine availability. Whilst this emerging evidence is 

insightful for reconciling discrepancies in previously literature as it pertains to dopamine 95 

action and adiposity specifically, it is mainly pertinent to adults, and behavioural assessment 

of food reward sensitivity was not addressed. It may then be of interest to investigate how the 

degree of obesity is related to reward responses to food in youth specifically, given the 

relative paucity of evidence in this vulnerable population that are still developing key neural 

pathways involved in reward processing [26]. 100 

                                                             
1 Note that dopaminergic tone and binding potential are inversely related 
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In consideration of the challenges with recruiting large clinical samples of children 

and adolescents, which may be required to detect arguably modest effects associated with 

reward sensitivity, an individual participant data (IDP) meta-analysis was conducted to 

investigate the relationship between degree of obesity, body composition, and food reward in 

adolescents with obesity when in both fasted and postprandial states, which enabled an 105 

analysis of satiety in response to a meal. Consistent with the novel model proposed by 

Horstmann et al. [23], it was hypothesised that obesity severity would be negatively and 

curvilinearly associated with explicit and implicit reward for energy-dense and sweet foods in 

a fasted state (Hypothesis 1A), and physiological state would moderate this association such 

that differences between fasted and fed responses would be greatest in more severe obesity 110 

(1B). Additionally, we hypothesised that body composition metrics such as FM and FFM 

would have stronger associations with food reward than weight and BMI (Hypothesis 2).  

2. Methods 

2.1. Design and Participants 

The relationship between degree of obesity and food reward was investigated by 115 

pooling and analysing primary data from seven distinct clinical intervention studies involving 

N = 133 adolescents with obesity conducted between 2016 and 2022. The primary data were 

derived from participants enrolled in short and long-term multidisciplinary interventions at 

baseline prior to any involvement in the clinical protocol. Importantly, all studies were 

conducted by the same research team and therefore were subject to the same protocols, 120 

methodology, setting, and time frame. A pooled analysis increased the available sample size 

and consequently broadened the heterogeneity in obesity degree and, relatedly, the statistical 

power to detect modest variations in food reward that may not be feasible for a single study to 

achieve. A detailed flow chart illustrating the study selection and analytic process can be 

found in the supplementary materials (Figure 1). 125 
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The pooled sample comprised of adolescents with obesity collected at two paediatric 

obesity centres in France (Children Medical Centre for Adolescents with Obesity, La 

Bourboule, France, and Paediatric Medical Centre, Romagnat, France). The following inclusion 

criteria were applied in all included studies: aged between 10 and 16 years; BMI > 95th 

percentile according to the international cut-off points [1]; Tanner stage between 3 and 5; for 130 

females, regular menstruations; not taking any medications, oral contraceptives, hormone 

replacement therapy, tobacco, or alcohol; not experiencing major orthopaedic problems; weight 

stable and no diet within the last 6 months; and no regular physical activity as defined by less 

than 10 metabolic equivalent of task hours/week and measured with the International Physical 

Activity Questionnaire [27]. 135 

2.2. Measures 

2.2.1. Anthropometrics and Body Composition 

Body weight to the nearest 0.1kg and height to the nearest 0.5cm was measured using a 

digital scale and a standard wall-mounted stadiometer, respectively, while wearing light clothes 

without footwear. BMI-z and BMI-percentile scores were calculated using the Centers for 140 

Disease Control (CDC) age- and sex-specific extended growth charts based on modified 

distributions that enable more precise tracking of severe levels of paediatric obesity [28,29]. 

Clinical classes of paediatric obesity were categorised according to guidelines suggested by the 

American Academy of Pediatrics as follows: Obesity defined as between 100% and 120% of 

the 95th BMI-percentile; Class 2 Obesity defined as between 120% and 140% of the 95th BMI-145 

percentile; Class 3 Obesity defined as greater than 140% of the 95th BMI-percentile [30]. FM, 

including android and gynoid distributions, and FFM were assessed by DXA following a 

standardised procedure when the participant was in a fasted state (QDR4500A scanner, 

Hologic, Waltham, MA, USA). 

 150 
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2.2.2. Lunch Test Meals 

All studies measured energy intake using a similar validated methodology with the same 

meal type (i.e., lunch) served with similar foods items within in a similar location, condition, 

and time frame (i.e., laboratory-based). Briefly, meal content was based on participants’ food 

preferences and eating habits in accordance with a validation study conducted in a 155 

demographically and anthropometrically similar population [31]. Top rated foods as well as 

those disliked or not frequently consumed were excluded to avoid opportunistic, under-, and 

overconsumption. For all studies, the menu was typically composed of beef steaks, pasta, 

mustard, cheese, yoghurt, apple sauce, fruits, and bread. Although the methodological approach 

to meal composition were the same across studies, the meal sizes varied due to the provision of 160 

either fixed (n = 2) or ad libitum (n = 5) test meals in accordance with relevant study aims. For 

a more detailed description of the test meal methodology, see the study by Miguet and 

colleagues [32].  

2.2.3. Food Reward 

The French version of the Leeds Food Preference Questionnaire (LFPQ-fr) was used to 165 

assess adolescents’ hedonic responses to foods. This questionnaire was developed and validated 

to measure two distinct  components of food reward, namely liking (i.e., palatability) and 

wanting (relative motivation to eat) [33]. Participants were presented with images of 16 food 

images belonging to one of four discrete categories based on fat content and taste: i) savoury 

and high-fat; ii) savoury and low-fat; iii) sweet and high-fat; and iv) sweet and low-fat. The 170 

LFPQ-fr consists of two separate tasks designed to assess these reward-related constructs. The 

first task measures explicit liking and wanting for every image in the food matrix by requiring 

the user to answer the following: i) “How pleasant would it be to taste this food now?” (i.e., 

explicit liking) and ii) “How much do you want to eat this food now?” (i.e., explicit wanting) 

by 100-milimetre (mm) visual analogue scale (VAS). The second task utilises a forced choice 175 
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paradigm to assess implicit wanting and frequency of choice by requiring the user to rapidly 

and accurately select between two food images presented simultaneously and in quick 

succession. Reaction times were covertly recorded for every selection and standardised to 

calculate the implicit wanting score.  

The primary outcomes of interested derived from this task were fat bias and sweet bias 180 

for each aforementioned food reward component. The fat bias score (relative preference for 

high fat foods) was calculated by subtracting mean ratings of low-fat foods from those of high 

fat and the sweet bias score (relative preference for sweet food) was obtained by subtracting 

mean ratings of all savoury foods from those of sweet. Therefore, positive scores indicate a 

preference for high-fat and sweet foods relative to low-fat and savoury foods, respectively [34]. 185 

The LFPQ-fr was developed and validated following a recommended procedure to 

appropriately adapt the task to culturally diverse populations, and has demonstrated high 

agreement in both fasted and fed states [35]. 

2.3. Procedure 

The following procedure was similar across all studies. Participants had to complete a 190 

full medical examination and Tanner staging conducted by a paediatrician to confirm their 

eligibility, then their body composition was assessed by DXA. On the test day, adolescents 

were provided with a calibrated fixed breakfast of 500kcal in accordance with nutritional 

recommendations for their age and sex at 8:00am after an overnight fast [36]. As part of the 

control condition, participants were prohibited from engaging in any moderate-to-vigorous 195 

physical activity for the entire morning and asked to remain quietly and comfortably seated or 

in a semi-supine position from 11:00am to 11:30am. Afterwards, food reward was assessed 

using the LFPQ-fr task approximately 15 minutes prior provision of the afore described lunch 

test meal. The LFPQ-fr task was then completed again 15 minutes after their consumption of 

the lunch test meal. Informed consent was obtained from all participants as well as their legal 200 
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representatives prior to any study involvement. Data were extracted from clinical trials that 

received ethical approval from a local ethics committee (AU-1248; 2017-A00817-46; 2018-

A02160-55; 2019-A00507-50; 2019-A00530-57; 2018-A02160-55; 2021-A02867-34), 

conducted in accordance with the principles outlined in the Declaration of Helsinki, and 

prospectively registered (NCT02925572, NCT03807609, NCT03742622, NCT03967782, 205 

NCT03968458, NCT04739189, NCT05365685). 
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Figure 1. Flowchart illustrating the study selection process for the independent participant data meta-

analyses. All studies from our laboratory with the appropriate data, population, and eligibility criteria 

were included in analyses and completed between 2016 and 2022. Data extracted from these studies 210 

were collected at baseline prior to commencement of any intervention. Categorical analyses were 

based on partitioning the grand sample into tertiles based on extended BMI-z scores [28] and 

paediatric obesity class based on extended BMI percentile scores updated in 2022 [30]. 

 

 215 

Acute Intervention Trials (k = 4; n = 71)

-TIMEX 2 (n = 17)

-TIMEX 3(n = 18)

-IDEX 1 (n = 20)

-NEXT (n = 16)

Longitudinal Intervention Trials (k = 3; n = 62)

-TEXTOO (n = 34)

-TIMEX 1(n = 14)

-ENERGYREP (n =14)

Grand sample included in analyses (K = 7; N = 133)

Paediatric Obesity Class

Class 1 (n = 49)

Class 2 (n = 49)

Class 3 (n = 35)

BMI-z Tertile

Tertile 1 (n = 33)

Tertile 2 (n = 67)

Tertile 3 (n = 33)

Clinical Intervention Trials (K = 10; N = 230)

Studies excluded 

(k = 3; n = 97)

- No food reward data before 

or after lunch test meal

No data for FM(kg),

Android%, and Gynoid%

(k = 2; n = 36)
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2.4. Statistical Analysis 

 This study utilised a one-stage approach to an IDP meta-analysis [37] of primary data 

extracted from seven studies in adolescents with obesity. Thus, all IDP was pooled in linear 

mixed effects models with ‘Study’ included as a random effect to account for participant 

clustering within studies. In line with recommendations from Legha and colleagues [38], a 220 

restricted maximum likelihood method of model estimation was applied with the Satterthwaite 

method of degrees of freedom estimation that better accounts for uncertainty of variance 

between studies and provides more conservative estimates of fixed effects. To comprehensively 

investigate the relationship between degree of obesity and food reward, models were 

constructed including BMI-z as a continuous and categorical predictor. For the latter, 225 

participants were split into tertiles  by initially partitioning participants into quartiles by 

extended BMI-z score and combining the two middle quartiles, and the clinical obesity classes 

aforementioned. In the former analyses, curvilinear associations were also tested by including 

a quadratic term for BMI-z score.  

Distinct models were tested with fasted and fed ratings of food reward by using baseline 230 

values alone and both pre- and post-meal scores, respectively. With regard to the latter, ‘State’ 

(fasted versus fed) was added as a fixed effect factor and ‘Subject’ as an additional random 

effect to account for the repeated measures within subject. All models were adjusted for sex 

and age. Significant main effects of obesity severity were probed using unstandardised 

regression coefficients and planned post hoc pairwise contrasts between partitions of the BMI-235 

z term for fasted models and the ‘State’ by BMI-z interaction term in fed models in continuous 

and discrete analyses, respectively. Furthermore, FM (%) and FFM (kg) were entered into 

mixed effects models as sensitivity analyses to test whether the relationship between BMI-z 

score and food reward are moderated by key body composition metrics. Finally, exploratory 

partial correlations between food reward in fasted and fed states and key anthropometrics 240 
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without an alpha correction were extracted from linear mixed models, thus were adjusted for 

sex and age as fixed effects, and ‘Study’ as a random effect. 

Checks for normal distribution of dependent variables and model-based residuals were 

undertaken using the Shapiro-Wilk test and visual inspection of histograms and QQ-plots. 

Outliers beyond 3 SDs from the mean were winsorised. If necessary, log transformations of 245 

dependent variables were undertaken to ensure a normal distribution. Descriptive statistics were 

expressed as estimated marginal means and their standard errors or medians and interquartile 

ranges depending on statistical distribution. Along with descriptive and inferential statistics 

from the mixed models, tables included the intraclass correlation coefficient, indicating 

between-study variance contributed to the model, and the marginal coefficient of determination 250 

(R2), or the explanatory power of the fixed effects specifically, according to the method from 

Nakagawa and colleagues [39]. P-values were two-tailed and an alpha of 5% was used to 

determine statistical significance. Partial η2 and Cohen’s d were used as estimates of effect size 

for omnibus fixed effects and pairwise contrasts, respectively, the latter being interpreted as a 

negligible (0.2 or less), small (0.2 – 0.5), medium (0.5 – 0.8), or large effect (0.8 and greater) 255 

[40]. The Sidak method was applied to all pairwise comparisons to adjust for multiple tests. 

Analyses were conducted in the R environment [41]. 

3. Results 

3.1. Participants 

 Pooled baseline data were available for N = 133 adolescents with obesity aged 260 

between 10 and 15 years (Mdn = 13.00, interquartile range [IQR] = 2.00, 74 female). The 

sample size of the included studies ranged from 14 to 34 participants (Mdn = 17.00, IQR = 

4.00). The pooled sample had a median extended BMI-z score of 2.51 (IQR = 1.01) with 79% 

of participants having a BMI-z score of 2 or greater, a level considered to determine 

paediatric obesity [42]. Nearly all participants (N = 130) had a BMI at or above the 95th 265 
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percentile based on sex- and age-specific growth reference curves (Min = 93.26), another 

clinical cutoff indicating paediatric obesity (M = 98.77, SD = 1.48), and approximately three-

fourths of the sample were considered to have severe obesity with a BMI at 120% or greater 

of the 95th percentile. In the present sample, 35, 49 and 49 participants were defined as having 

class 1, class 2, and class 3 obesity, respectively. Apropos of body composition, participants 270 

had a median FM of 39.50% (IQR = 6.90), also indicative of severe obesity, and a median 

FFM of 51.27 kilograms (IQR = 19.80). Furthermore, participants had an approximately 

equal percentage of Android (M = 40.87, SD = 5.03) and Gynoid (M = 39.52, SD = 4.79) FM. 

Anthropometric and body composition information by BMI-z tertile and paediatric obesity 

class are detailed in Tables S1 and S2, respectively (see the supplementary materials). 275 
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3.2. Fasted Food Reward and Obesity Severity 276 

 Descriptive and inferential statistics of fasted food reward in analyses with BMI-z as a 277 

continuous predictor are summarized in Table S3 and by extended BMI-z tertile and 278 

paediatric obesity class in Tables S4 and S5, respectively (see supplementary materials). 279 

Explicit and implicit reward for fat tended to be positively associated BMI-z score when 280 

designated as a continuous or discrete predictor (Figure 2A; 2C). However, mixed effects 281 

analyses did not yield any statistically significant effects of BMI-z score nor differences 282 

between BMI-z tertiles or paediatric obesity classes after alpha corrections. Moreover, the 283 

curvilinear relationships between fasted fat bias scores and BMI-z score were also non-284 

significant.  285 

However, there was only a statistically significant, negative association between BMI-286 

z score and implicit wanting sweet bias, such that a higher BMI-z score was associated with a 287 

lower bias for sweet foods when measured implicitly (B = -9.69 FWA units [-17.23, -2.15], p 288 

= .012, ηp2 = .06; Figure 2B). Importantly, the corresponding curvilinear association did not 289 

reach statistical significance, indicating that this relationship may be more appropriately 290 

characterised as linear (B = -4.55 FWA units [-9.24, 0.13], p = .056, ηp2 = .03). Whilst 291 

negative associations were observed for all other explicit and implicit sweet biases, these did 292 

not reach statistical significance. Conversely, no discernable dose-response pattern was 293 

revealed in bias for sweet in categorical analyses, and no significant differences between 294 

salient obesity degree categories were detected (all ps > .25). Overall, curvilinear models did 295 

not explain a significantly greater proportion of variance than linear models. Additionally, it 296 

is worth nothing that results for fasted food reward were not materially different whether 297 

obesity severity was demarcated based on either BMI-z tertile (Figure S1) or paediatric 298 

obesity class (Figure 3). 299 
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 300 
Fig. 2 Illustrations of fitted linear (red lines) and curvilinear (blue lines) associations between extended BMI-z score and Implicit Wanting Fat Bias (A), Implicit 

Wanting Sweet Bias (B), Explicit Liking Fat Bias (C), and Explicit Liking Sweet Bias (D) in a fasted state. Predicted values were derived from marginal (fixed) 

effects of the linear mixed models. Confidence bands indicate the 95% confidence interval. The dotted line represents a value of 0 indicating no preference. A 

positive value indicates preference for sweet (sweet bias) and high fat (fat bias) foods, and a negative value indicates preference for savoury (sweet bias) and low 

fat (fat bias) foods. Implicit wanting is expressed in frequency-weighted algorithmic (FWA) units and explicit liking in millimetres (mm), respectively. 

*Significant at p < .05.  
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Fig. 3 Differences in Implicit Wanting Fat Bias (A) and Implicit Wanting Sweet Bias (B) in frequency-weighted algorithmic units, and 

Explicit Liking Fat Bias (C) and Explicit Wanting Sweet Bias (D) in millimetres between extended paediatric obesity classes when 

fasted. Paediatric obesity classes were based on the categorisations proposed by the American Academy of Pediatrics based on 

relativity to the 95% BMI percentile [30]. Sample sizes for Class 1, Class 2 and Class 3 are n = 35, n = 49, and n = 49, respectively. 

The dotted line represents a value of 0 indicating no preference. A positive value indicates preference for sweet (sweet bias) and high 

fat (fat bias) foods, and a negative value indicates preference for savoury (sweet bias) and low fat (fat bias) foods. 
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3.3. Fed Food Reward and Obesity Severity 302 

With regard to fat bias scores, there appeared to be divergent, albeit weak, trends 303 

depending on metabolic state such that BMI-z score was positively associated with explicit 304 

liking and implicit wanting fat bias scores when fasted, but negatively associated after a test 305 

meal. However, the state by BMI-z interactions terms did not reach statistical significance 306 

(Figure 4A; 4C). Indeed, metabolic state did not interact with any linear or curvilinear BMI-z 307 

terms to predict explicit or implicit bias for high fat foods (Table S6). In categorical analyses, 308 

it was observed that implicit wanting and choice frequency for high fat foods increased after 309 

meal consumption in the lowest obesity degree, but decreased in the other categories 310 

associated with more severe obesity on average (Figure 5A; also see Tables S7 and S8 in the 311 

supplementary materials). Moreover, these trends were observed independent of repartition 312 

method (i.e., BMI-z tertiles or paediatric obesity class). However, differences between tertiles 313 

were not statistically significant after applying alpha corrections (ps > .10). By contrast, 314 

explicit preference for high fat uniformly decreased in all BMI-z tertiles after a meal as 315 

apparent from main effects of time in analyses of liking (F(1, 105.89) = 4.81, p =.030, ηp2 = 316 

.04; Figure S2C) and wanting (F(1, 101.00) = 10.43, p = .002, ηp2 = .09). Only the main time 317 

effect for explicit wanting was statistically significant in analyses with clinical obesity classes 318 

(F(1, 100.25) = 8.34, p = .005, ηp2 = .08), and no interactions with obesity degree were 319 

significant (all ps > .20).  320 

Whilst no state by BMI-z interaction terms were significant for sweet bias scores as 321 

well, it is interesting to observe that, unlike trends observed for fat bias scores, similar trends 322 

were observed independent of metabolic state. Indeed, BMI-z remained significantly and 323 

negatively associated with implicit wanting for sweet foods in the linear model incorporating 324 

fed scores (B = -9.90 FWA units [-18.07, -1.74], p = .018, ηp2 = .03), but not the curvilinear 325 

model (B = -4.38 FWA units [-9.54, 0.77], p = .095, ηp2 = .02; Figure 4B; 4D). In line with 326 
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these trends, categorical analyses revealed that, whilst choice frequency for sweet foods 327 

invariably increased across BMI-z tertiles (F(1, 110.63) = 4.93, p = .028, ηp2 = .04), explicit 328 

wanting for sweet foods uniformly decreased post-meal (F(1, 103.16) = 5.87, p = .017, ηp2 = 329 

.05). A similar discordance in trends was observed between explicit liking and implicit 330 

wanting sweet bias, but the corresponding time effects were not statistically significant. 331 

Overall, these trends were also apparent in analyses of paediatric obesity classes specifically. 332 

As observed in analyses of continuous BMI-z, no significant state by obesity degree 333 

interactions were present in analyses of BMI-z tertiles and clinical obesity classes. 334 

 335 

 336 
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Fig. 4 Illustrations of fitted linear (solid lines) and curvilinear (dashed lines) associations between extended BMI-z score and Implicit Wanting Fat Bias (A), 

Implicit Wanting Sweet Bias (B), Explicit Liking Fat Bias (C), and Explicit Liking Sweet Bias (D) in fasted (blue lines) and fed (orange lines) states. 

Predicted values were derived from marginal (fixed) effects of the linear mixed models. Confidence bands for linear (darker) and curvilinear (lighter) trends 

indicate the 95% confidence interval. Regression coefficient estimates represent the BMIz*state interaction term. The dotted line represents a value of 0 

indicating no preference. A positive value indicates preference for sweet (sweet bias) and high fat (fat bias) foods, and a negative value indicates preference 

for savoury (sweet bias) and low fat (fat bias) foods. Implicit wanting is expressed in frequency-weighted algorithmic (FWA) units and explicit liking in 

millimetres (mm), respectively. 
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Fig. 5 Changes in differences in Implicit Wanting Fat Bias (A) and Implicit Wanting Sweet Bias (B) in frequency-weighted 

algorithmic units, and Explicit Liking Fat Bias (C) and Explicit Liking Sweet Bias (D) in millimetres by extended paediatric 

obesity classes after a test meal. Paediatric obesity classes were based on the categorisations proposed by the American Academy 

of Pediatrics based on relativity to the 95% BMI percentile [30]. Sample sizes for Class 1, Class 2 and Class 3 are n = 35, n = 49, 

and n = 49, respectively. The dotted line represents a value of 0 indicating no preference. A positive value indicates preference for 

sweet (sweet bias) and high fat (fat bias) foods, and a negative value indicates preference for savoury (sweet bias) and low fat (fat 

bias) foods.  *p < .05.

* 
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3.4. Sensitivity Analyses: Fat Mass and Fat-free Mass 339 

 In sensitivity analyses with BMI-z included as a continuous predictor, the association 340 

of implicit wanting sweet bias when fasted and BMI-z was no longer statistically significant 341 

after the addition of FFM (kg) as a covariate. Rather, the independent association with FFM 342 

approached statistical significance (B = 1.41 FWA units [-0.09, 2.90], p = .065, ηp2 = .03). 343 

Moreover, the FFM*BMI-z interaction term was statistically significant (B = -0.52 FWA 344 

units [-1.00, -0.04], p = .036, ηp2 = .04), suggesting that the direction of the association 345 

between implicit wanting sweet bias and BMI-z was dependent on the level of FFM (i.e., 346 

becoming negative with higher FFM). Whilst this interaction did not maintain significance 347 

independent of metabolic state in the analysis of implicit wanting sweet bias (B = -0.50 FWA 348 

units [-1.03, 0.03], p = .064, ηp2 = .02), an interaction independent of state was present in the 349 

model assessing choice frequency for sweet foods (B = -0.16 N [-0.32, 0.00], p = .047, ηp2 = 350 

.03). FM and FFM did not significantly moderate any other associations between BMI-z and 351 

food reward.2 352 

3.5. Exploratory Correlations: Body Composition and Food Reward 353 

 Heatmaps of partial correlations between key body composition and food reward 354 

metrics are displayed in Figure 6. With regard to food reward when fasted, percent Android 355 

FM was positively and significantly associated with both implicit wanting (r(74) = .26, 95% 356 

CI: .03, .45) and explicit liking fat bias (r(68) = .34, 95% CI: .11, .52), although percent 357 

Gynoid was only significantly associated with explicit liking fat bias (r(68) = .30, 95% CI: 358 

.07, .49). Interestingly, absolute (in kg) but not relative FM was also positively correlated 359 

with implicit wanting (r(75) = .25, 95% CI: .02, .44) and explicit liking (r(69) = .24, 95% CI: 360 

.00, .44) fat bias scores. Conversely, FFM (kg; r(108) = -.20, 95% CI: -.37, -.01), BMI (r(108) 361 

                                                             
2 For sensitivity analyses involving models with BMI-z as a categorical predictor, see section S1 of the 

supplementary materials. 



  

   

23 

      

 
= -.22, 95% CI: -.38, -.03), and BMI-z (r(108) = -.24, 95% CI: -.40, -.05) was negatively 362 

associated with implicit wanting for sweet. No other notable associations with fasted reward 363 

measures were evident (see Tables S9 and S10 for complete correlation matrices with fasted 364 

and fed food reward, respectively).  365 

 Contrary to results when fasted, a negative association was detected between percent 366 

FM and implicit wanting fat bias after a test meal (r(105) = -.20, 95% CI: -.37, -.01). This 367 

association was similarly reflected with absolute FM and percent Android FM, but these fell 368 

below the significance threshold. Interestingly, association of similar magnitude and direction 369 

were not observed in explicit liking fat bias scores. Although explicitly and implicitly 370 

assessed bias for sweet remained negatively associated with anthropometric characteristics 371 

when in a fed state, only the association between choice frequency sweet bias and BMI-z 372 

could be considered statistically significant (r(108) = -.20, 95% CI: -.37, -.01). 373 
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Fig. 6 Heatmaps of exploratory correlations between anthropometric measures and food reward in a fasted state (left) and after a lunch test meal 

(right). Partial correlations were extracted from linear mixed models, thus were adjusted for age and sex as fixed effects, and study as a random 

effect. The darker the colour, the stronger the relationship. Significance thresholds based on unadjusted familywise error rates for multiple 

comparisons. BMI = body mass index. FM = fat mass. FFM = fat free mass. Kg = kilograms. M = metres. *p < .05; **p < .01.
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4. Discussion 374 

 The primary aim of the present IDP meta-analysis was to examine several cohorts of 375 

adolescents with varying degrees of obesity severity on their explicit and implicit responsivity 376 

to palatable, energy-rich food cues in fasted and fed metabolic states. The potential 377 

implications of this investigation are three-fold. First, the associations between hedonic 378 

appetite and different degrees of obesity severity in children could be simultaneously 379 

characterised. Second, if there was heterogenous expression of food (cue) reactivity, this may 380 

be of importance for guiding more precise or nuanced strategies for the clinical management 381 

and prevention of obesity. Finally, the association between food reward and adiposity may be 382 

more robustly and comprehensively explored through alternative approaches to metabolically 383 

phenotyping individuals that extend beyond BMI, such as through salient body composition 384 

metrics (i.e., FM, FFM, visceral fat, fat distribution) [43]. In the present study, the expected 385 

negative associations with adiposity were only observed with sweet bias outcomes when 386 

fasted, particularly when measured as implicit wanting, in partial support of Hypothesis 1A. 387 

Contrary to Hypotheses 1B, metabolic state did not significantly moderate the relationship 388 

between food reward and obesity degree, with obesity degree significantly predicting implicit 389 

wanting for sweet foods independent of state. Overall, these findings provided tentative 390 

support for a linear  and negative relationship between food reward and obesity severity when 391 

measured as implicit wanting for sweet foods. Rather, fat mass and its distribution may have a 392 

more prominent role in the strength of both explicit and implicit preference for high fat (i.e., 393 

energy-dense) foods (Hypothesis 2). 394 

Methodological approaches to measuring reward-related cognition and appetite must 395 

be considered when interpreting these results. As in the present study, different approaches 396 

are typically taken to operationalise reward-based constructs such as liking and wanting in the 397 

literature, which limits a definitive synthesis of findings across studies [7]. Results from 398 
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analyses of fed food reward in this study may be relevant to the discussion of how to measure 399 

reward and under what contexts [44]. Specifically, the trends in preference for sweet after a 400 

test meal severity appeared to depend on whether food reward was measured implicitly or 401 

explicitly. Implicit wanting, but not explicit liking or wanting, for sweet food cues was 402 

negatively associated with adiposity. Moreover, stronger exploratory associations were 403 

mainly detected between adiposity and implicit, but not explicit, preference for sweet foods. 404 

Similarly, fasted preference for sweet appeared to be inversely related to FFM, but only when 405 

assessed implicitly. When considering these findings, it is important to note that previous 406 

studies have found behavioural and neural responses to food cues can be associated with 407 

weight independent of the expression of liking [45]. An exploratory study by Fearnbach and 408 

colleagues [22] found an association between food reward and FFM in children when utilising 409 

neuroimaging techniques to measure food cue sensitivity. Similarly, FFM moderated the 410 

association between sweet bias and obesity degree in the present study, but only when 411 

measured implicitly. It is also important to note that measures of explicit liking and implicit 412 

wanting, albeit related, may be associated with different effect sizes, thus a lack of detection 413 

in the former may be due to an insufficient sample size. Taken together, it is important for 414 

researchers and clinicians to account for the choice of pertinent reward-related construct and 415 

the corresponding measurement method when investigating associations between obesity and 416 

food reward in this population, and designing appropriate studies to do so.  417 

Food cue reactivity, a construct putatively targeted in the present study, is a 418 

behavioural manifestation denoting food reward that may be associated with other salient 419 

traits or characteristics in addition to obesity. Indeed, other constructs, such as binge eating, 420 

disinhibited eating, or dietary restraint, have been measured by myriad questionnaires and 421 

other assessment tools with varying degrees of association with energy intake and BMI [46]. 422 

Thus, although the relationship between food reward and obesity severity appears to be 423 
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limited in this study, this does not necessarily preclude the potential usefulness of applying 424 

other dietary constructs or traits when phenotyping youth with, or at risk for, obesity. Indeed, 425 

certain dietary traits may mediate the relationship between food reward and obesity severity 426 

(or body composition), which was not tested in the present study. As demonstrated by 427 

previous studies, the complexity of obesity and its aetiologies becomes evident through 428 

mediation models that highlight interactions between obesity and dietary restraint [47,48], or 429 

trait binge eating [20], or trait food cravings [19] when attempting to predict food reward 430 

responses via behavioural metrics or neuroimaging techniques. Such a model is indicative of 431 

the hypothesis that certain predispositions, perhaps genetically or epigenetically derived, 432 

likely interact with a multitude of environmental factors to facilitate or impede a pathway to 433 

obesity development, and such interactions are likely dynamic over time rather than 434 

monotonic [49]. Such a multitude of variation in circumstances related to dietary behaviour 435 

represents substantial noise from which detect independent associations, thus more complex 436 

models are likely warranted when statistical power permits.  437 

 It is critical to acknowledge the lack of lean and overweight comparator cohorts when 438 

interpreting the present results. Indeed, all adolescents analysed in the present study were near 439 

or above both established clinical thresholds indicating obesity. Therefore, it is plausible to 440 

hypothesise that disparities in food reward responsivity may become more pronounced when 441 

comparing low (lean), moderate (overweight) and  high (obesity) adiposity levels. Findings 442 

from the meta-analysis by Morys and colleagues [18] did detect differences in neural activity 443 

to food cue presentation between healthy weight children and those with obesity, and another 444 

recent study by Darcey et al. [24] found a negative and linear relationship between dopamine 445 

binding potential and BMI with the inclusion healthy- and over-weight participants. In the 446 

present study, the main effect of obesity degree independent of metabolic state in predicting 447 

implicit wanting for sweet foods partially supports such a linear model. Yet, it remains 448 
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unclear how the trends observed in the current study may have differed with comparator 449 

groups representing lower levels of adiposity, thus neither a linear nor a quadratic model can 450 

be conclusively supported when considering a complete spectrum of adiposity. Relatedly, 451 

whilst Horstmann and collaborators [23] provide a useful model by which to understand the 452 

adaptations of dopaminergic activity along the spectrum of obesity severity (i.e., none, mild, 453 

and severe), the aggregated evidence presented pertains specifically to adults, and the lack of 454 

adolescents without obesity in our analysis impede appropriate comparisons. Indeed, the 455 

salient differences in food cue reactivity between adults and children [e.g., 8,18] limit the 456 

extrapolation of such models to a young population undergoing significant neurobiological 457 

change [50]. Nevertheless, it is interesting to consider potential physiological mechanisms 458 

that may facilitate alterations in dopaminergic tone and reward-related behaviours in both 459 

youth and adults. Horstmann and colleagues [23] suggest that the onset of leptin and/or 460 

insulin resistance, which also occurs in youth, may facilitate changes in dopamine availability 461 

due to their modulatory effects on dopamine release in reward-related brain regions. 462 

Ultimately, the inclusion of healthy- and overweight cohorts would expand the present 463 

analysis to form a full spectrum of adiposity by which to detect potential linear or curvilinear 464 

associations with food reward.   465 

 Finally, it is worth pointing out the contrast in findings from analyses of sweet and fat 466 

biases in this study. Notable associations between the latter and body composition was limited 467 

to exploratory positive correlations with FM and its distribution. The present results, taken 468 

together, appear to challenge the conclusions by Cox and colleagues [15] that found a 469 

relationship between weight status and fat hedonics, but not sweet hedonics, in children. 470 

However, there was evidence to suggest a stronger preference for salty tastes in children with 471 

obesity relative to their lean peers, which could be consistent with the reduction in bias for 472 

sweet (i.e., elevated bias for savoury) as a function of adiposity observed presently, but the 473 
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absence of a lean cohort in the present study limits such a synthesis. Alternatively, Overberg 474 

et al. [16] observed the diminution of sensitivity to tastes, including sweet, in adolescents and 475 

children with obesity relative to their lean peers, which could be related to the effects on 476 

implicit wanting sweet bias observed here. In support of this hypothesis, previous work has 477 

demonstrated positive associations between sensitivity to sweetness and neural activation of 478 

hedonic hotspots in response to odours from, and preference for, sweet foods [51]. Therefore, 479 

at least in a paediatric population, predilection for sweet, rather than high fat, may represent a 480 

stronger reward-related signal that was detectable given the sample size of the present study, 481 

although both were found to be relatively modest. Conversely, an exploratory study by 482 

Hardikar and colleagues [52] observed that adults with obesity were more sensitive to sweet 483 

and salty tastes than lean adults. Whilst these results appear to contradict the Overberg et al. 484 

[16] study, this could further indicate that distinctions ought to be considered on the basis of 485 

age when examining relationships between reward and adiposity. Moreover, it is important to 486 

note that the present study does not challenge the existence of a relationship between 487 

adiposity and bias for high fat or energy-dense foods. Indeed, the positive associations 488 

between FM and explicit and implicit bias for high fat may provide tentative evidence to be 489 

further explored, and underscore the importance of including measures of body composition 490 

and adiposity beyond BMI. Therefore, it would be of great interest to reproduce the present 491 

analysis with a non-obese cohort to precisely track the evolution of different reward-related 492 

mechanisms along a full spectrum of adiposity in children. 493 

4.1. Strengths and Limitations 494 

 One strength of the present analysis is the application of the current extended age- and 495 

sex-specific BMI growth charts recently released by the CDC [28] to calculate BMI-z scores 496 

and BMI percentiles, and repartitioning of the sample into tertiles and established clinical 497 

thresholds based on both. However, we observed no significant differences in results based on 498 
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approach to repartition method. Another strength was the homogeneity of methods used in the 499 

included studies that limited error variance from extraneous factors and thus improved the 500 

power to detect a potential effect. For example, all studies employed similar approaches to 501 

recruitment and experimental procedures, were conducted by the same investigators at a 502 

similar time of year, and all adolescents were in the initial clinical stage prior to treatment. 503 

This was borne out statistically by the relatively low intraclass correlations associated with 504 

the study factor in all analysis. 505 

However, there were notable limitations. Primarily, studies included in this meta-506 

analysis were derived from the same laboratory and not a systematic review of the literature. 507 

Therefore, the observations detailed in this study may not be representative of those from the 508 

wider literature. Another limitation apropos of the analyses of fed food reward was the 509 

provision of either fixed or ad libitum test meals across studies, which may have influenced 510 

the mean food volume consumed by participants in each study. Although this may be 511 

considered a potential confounder, our lab has recently shown that food reward may not be 512 

significantly influenced by the caloric volume of similarly composed meals when protein 513 

content is held constant [53]. With regard to outcomes related to fat distribution (i.e., 514 

Android/Gynoid), data was only available for five of the seven studies included in this 515 

analysis, which resulted in a much smaller percentage of available data relative to the entire 516 

sample. Thus, comparisons of analyses with these outcomes and other anthropometrics with 517 

more complete data (i.e., FM, FFM) should be treated with particular caution. Importantly, 518 

the studies included in the present analysis were not designed and powered a priori for this 519 

specific research question. Relatedly, the strength of associations observed may have been 520 

diminished due to the exclusive focus of adolescents with obesity, thus could signal a type 2 521 

error. Finally, no type 1 error correction was applied to the correlation analyses, thus 522 

indications of statistical significance should be interpreted with caution. However, those 523 
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analyses were exploratory in nature and intended to provide an indication or description of 524 

potential relationships that may be investigated further in future research.  525 

4.2. Conclusions 526 

 The present study utilised an IDP meta-analytic approach to a secondary analysis of 527 

seven individual trials involving adolescents with obesity, a challenging demographic to 528 

recruit for scientific investigations. The associations between obesity severity (i.e., mild to 529 

severe), body composition, and both explicit and implicit reward responsivity to high fat and 530 

sweet food cues were examined in distinct physiological states (i.e., fasted and fed). Overall, 531 

relationships between obesity severity and food reward in this demographic was modest in 532 

size and limited. Although the trends in food reward for high fat observed when fasted by 533 

obesity degree were in the expected direction, associations did not reach significance. Rather, 534 

FM, and the distribution thereof, may play a more significant role in the strength of bias for 535 

energy-dense or high fat foods, but conclusions should be drawn with caution due to the 536 

relatively smaller samples with availability of these data. Contrary to expectations, sweet bias 537 

was negatively associated with adiposity, and the linear relationship was modest, but 538 

significant for implicit wanting, suggesting that desensitisation of sweet tastes and a 539 

concomitant reduction in bias for them may be consequences of severe adiposity in youth. 540 

Moreover, FFM could have a role in determining this effect on sweet bias, but more suitably 541 

designed research is needed to clarify the nature of this role. Whilst bias for sweet appeared to 542 

better fit the model by Horstmann et al. [23], inclusions of a lean comparator cohort and other 543 

neuroimaging and tonic-oriented measures are needed to adequately test a quadratic model of 544 

reward and adiposity. Obesity may be more appropriately described as a heterogenous 545 

condition with varying aetiologies and contributing factors, an acknowledgement that could 546 

benefit clinical, personalised approach to treatment. 547 

 548 
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