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Abstract

This paper considers estimation of non smooth possibly overidentified nonparametric

estimating equations models with weakly dependent data. The estimators are based on a

kernel smoothed version of the generalized empirical likelihood and the generalized method

of moments approaches. The paper derives the asymptotic normality of both estimators

and shows that the proposed local generalized empirical likelihood estimator is more ef-

ficient than the local generalized moment estimator unless a two-step procedure is used.

The paper also proposes novel tests for the correct specification of the considered model

that are shown to have power against local alternatives and are consistent against fixed

alternatives. Monte Carlo simulations and an empirical application illustrate the finite

sample properties and applicability of the proposed estimators and test statistics.
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1 Introduction

Estimating equations (EE) models (often called moment conditions models in the econometric

literature) arise naturally in economics, finance and statistics: For example, many dynamic

stochastic general equilibrium models used in macroeconomics, many treatment effects models

used in microeconomics, many assets pricing models under the no arbitrage condition used in

finance, and generalized estimating equations (GEE) for longitudinal data used in statistics, all

give rise to a set of (possibly overidentified) estimating equations. Estimation of the unknown

parameters in such models is typically carried out using Hansen’s (1982) generalized method of

moments (GMM) - see also Qu, Lindsay and Li (2000) for GEE models, or, alternatively, Newey

and Smith’s (2004) generalized empirical likelihood (GEL). When the unknown parameters are

finite dimensional, the asymptotic properties of GEL and GMM estimators are well understood.

Extensions to EE models with infinite dimensional parameters, which we call nonparametric EE

(NPEE) models have been proposed in the literature: Severini and Staniswalis (1994) considered

a nonparametric quasi-likelihood model, Cai (2003), Lewbel (2007) and Bravo (2022) considered

different specifications of NPEE models, Cai and Li (2008) (see also Bravo (2016)) considered

a nonparametric dynamic panel data model, Fang, Ren and Yuan (2011) of Cai, Ren and Sun

(2015) considered a nonparametric stochastic discount factor model, among others.

All of the above papers are based on smooth (that is differentiable) EE; in this paper, we con-

sider non smooth EE. Non smooth statistical models are theoretically interesting and empirically

relevant, as they include least absolute deviations and more generally quantile regression models

(Koenker and Bassett 1978), rank regression models (Cuzik 1988), copula models (Patton 2012)

and receiver operating characteristic (ROC) curves models (Pepe 1997), all of which give rise to

a set of non smooth EE.

This paper contributes to the literature on estimating non smooth EE models by consid-

ering GEL and GMM estimation of non smooth NPEE models. The estimators are based on

local smoothing, hence we call them local GEL (LGEL) and local GMM (LGMM), respectively.

It should be noted that local smoothing has been used before in the case of non smooth EE

models both with unknown finite and infinite dimensional parameters. For the former, Chen

and Hall (1993), Horowitz (1998), Whang (2006) and Otsu (2008) applied smoothing directly to

the EE themselves, so that the asymptotic normality of the related unknown finite dimensional

parameters estimators can be derived by direct (standard) methods. For the latter, Fan, Hu and

Truong (1994), Yu and Jones (1998) and Cai and Xu (2008) (among others) used smoothing

to directly estimate the unknown infinite dimensional parameters, however the asymptotic nor-

mality of the resulting estimators relies heavily on the structure of the underlying model. The

main contribution of this paper is to derive the asymptotic normality of the proposed LGEL and

LGMM estimators that does not rely on any particular structure of the underlying NPEE model.

To obtain this result, we assume smoothness (local differentiability) of the expectation of the
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NPEE model and use a stochastic equicontinuity argument. Stochastic equicontinuity1 is the

natural technical tool to use in the context of non smooth EE models, see for example Pakes and

Pollard (1989) for parametric EE models under random sampling, however the assumed weakly

dependent structure of the observations and the nonparametric nature of the model considered

here create some additional technical challenges, which are addressed first under a set of high

level conditions (see Section 3), and then under a set of more primitive conditions (see Section

4). As far as we are aware of, this is the first paper that addresses the issue of estimating general

non smooth NPEE models with weakly dependent observations.

The main contributions of the paper are as follows:

First, it considers weakly dependent observations, and specify the dependency of the obser-

vations as β (or absolutely regular) mixing (Volkonskii and Rozanov 1959). Many commonly

used time series models can be shown to be β mixing: examples include various GARCH and

stochastic volatility models (Carrasco and Chen 2002), and, more generally, Markov chains

models under the Harris recurrence condition, see for example Davydov (1973) and Mokkadem

(1990). The assumption of β mixing (rather than the weaker α mixing) dependency seems the

natural one in the context of this paper, because of the stochastc equicontinuity argument used

in the proofs of Theorems 1 and 2, which would require more stringent assumptions on the

summability of the mixing coefficient and the complexity of the underlying (functional) param-

eter space under α mixing, see for example Andrews and Pollard (1994), than those assumed in

this paper - see the discussion of Assumptions A1-A8 in Section 3 for more details about this

important point.

Second, we consider overidentified NPEE models, that is models where the dimension of the EE

can be larger than the dimension of the unknown infinite dimensional parameters, and allow for

possible endogeneity, that is possible correlation between some or all of the variables which, if

not accounted for, would result in a misspecified NPEE model.

Third, we obtain the asymptotic distributions of the LGEL and LGMM estimators and show

that the former is always characterized by a smaller asymptotic covariance matrix than the

latter, unless a two step procedure is used, see Remark 2 in Section 3 for more details.

Fourth, we propose new LGMM and LGEL based overidentification test statistics that can be

used to test for the correct specificification of nonsmooth NPEE models, and are in the same

spirit of those proposed by Hansen (1982) and Newey and Smith (2004) for finite dimensional

overidentified smooth EE models. We show that under the null hypothesis the proposed statis-

tics are characterized by a nonstandard asymptotic distribution which is asymptotically pivotal,

hence easy to simulate; we also show that the proposed statistics have power against local Pit-

man alternative hypotheses and are consistent against any fixed alternatives.

Fifth, we provide simulations evidence about the finite sample properties of two examples of

1See the Appendix for a formal definition of stochastic equicontinuity.
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the LGEL estimator (namely the local empirical likelihood (LEL) defined in (5) and the local

exponential tilting (LET) defined in (6) estimators) and the two step LGMM estimator, which

seems to suggest that, as for the case of finite dimensional overidentified smooth EE models,

both LGEL estimators and their related test statistics are characterized by better (as measured

by the mean squared error criterion, and size and power, respectively) finite sample properties

compared to the two step LGMM estimator and related test statistic. In addition, the simula-

tions seem to confirm that in the important case of NPEE models with instrumental variables

- see Section 4 for an example - the mean squared error of the LEL estimator does not seem

to increase with the number of instruments, a fact shown analytically by Newey and Smith

(2004) and Bravo (2022) for parametric and nonparametric overidentified smooth EE models,

respectively.

Finally, we consider an empirical application, which illustrates the applicability of the proposed

estimators and test statistics.

The rest of the paper is organized as follows: next section introduces the model, presents a

simple illustrative example and describes the estimators. Section 3 presents the main results;

Section 4 illustrates how the results of Section 3 can be verified for an instrumental variables

varying coefficients quantile regression model under more primitive conditions. Sections 5 and 6

contain, respectively, the results of the Monte Carlo simulation study and the empirical applica-

tion. Section 7 contains some concluding remarks. An Appendix contains the formal definitions

of the most technical concepts used in the paper; a supplemental Appendix contains all the

proofs, some additional Monte Carlo simulations results and the UK data used in the empirical

application.

The following notation is used throughout the paper: “⊤” indicates transpose, for any vector

v, v⊗2 = vv⊤ and ||.|| denotes the Euclidean norm for both vectors and matrices (also known as

the Frobenious norm for the latter).

2 The model and estimators

Let
{(

Z⊤
t , Ut

)⊤
, t ∈ Z

}
denote a strictly stationary sequence of random vectors taking values

in Z ⊆ R
dZ , where dZ is the dimension of Z, U ⊆ R, and let h ∈ H = H1×H2× ...×Hk denote

a k dimensional vector of unknown functions, where each Hj (j = 1, ..., k) is a pseudo-metric

space of functions. The model we consider is

E [m (Zt, h (Ut)) |Ut] = 0 a.s. for a unique h = h0, (1)

where m : Z × U ×H → R
l is a vector of known functions with l ≥ k.

The following example provides a simple illustration of the type of models (1) encompasses; a

more general example is given in (9) and in Section 4.
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Example Consider the following varying coefficients median regression model:

Yt = X⊤
t h0 (Ut) + εt,

where Xt is an R
k- valued random vector of covariates and the unobservable error term εt

satisfies the conditional median restriction Pr (εt ≤ 0|Xt, Ut) = 1/2 a.s., which is equivalent to

E
(
sign1/2 (εt) |Xt, Ut

)
= 0 a.s., where sign1/2 (εt) = 1/2 − I (εt ≤ 0) . By iterated expectations,

the conditional median restriction is equivalent to

E
(
g (Xt) sign1/2 (εt) |Ut

)
= 0,

where g is an R
l− valued vector of known functions, which corresponds to (1) with Zt ={(

Yt, X
⊤
t

)⊤
, t ∈ Z

}
, m (Zt, h (Ut)) = g (Xt) sign1/2

(
Yt −X⊤

t h (Ut)
)

and the non smoothness in

the EE m (.) comes from the presence of the indicator function in the definition of the function

sign1/2 (.).

Given the conditional nature of (1), we propose to estimate h0 locally, that is for Ut in a

neighborhood of u we assume that h0 (Ut) = h0 (u) := a, which implies that

E [m (Zt, a) |Ut] ≈ 0 (2)

and base the estimators on the sample local NPEE

1

Tb

T∑

t=1

m (Zt, a)K

(
Ut − u

b

)
,

where K : U →R is a kernel function with bandwidth b =: b (T ).

To define the LGMM estimator, let Ŵ (u) denote a, possibly random, positive semidefinite

R
l×R

l -valued matrix; then the LGMM estimator is the approximate solution of the minimiza-

tion problem

â ≤ inf
a∈A

1

Tb

T∑

t=1

m (Zt, a)
⊤ K

(
Ut − u

b

)
Ŵ (u)

1

Tb

T∑

s=1

m (Zs, a)K

(
Us − u

b

)
+ op

(
1

Tb

)
, (3)

where A ⊇ H is the space a is assumed to belong to (the relationship between A and H is

discussed after Assumptions A1-A8 in Section 3). Note that the definition of the approximate

minimizer â is standard in the non smooth EE literature, see for example Pakes and Pollard

(1989, Theorem 3.1 (i)) and Newey and McFadden (1994, Theorem 7.2).

To define the LGEL estimator, let

ρ

(
λ (u)⊤ m (Zt, a)K

(
Ut − u

b

))
:= ρ (st,K (u, λ, a)) ,
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where ρ is a concave function in λ on its domain, an open set Λ0 containing 0, and the auxiliary

parameter λ (u) can be thought of as an R
l- valued vector of unknown Lagrange multipliers

associated with the local constraint (2), that is

T∑

t=1

πt (u, λ, a)m (Zt, a)K

(
Ut − u

b

)
≈ 0,

with

πt (u, λ, a) =
∂ρ (st,K (u, λ, a)) /∂st∑T
t=1 ∂ρ (st,K (u, λ, a)) /∂st

playing the role of the “implied probabilities”. The LGEL estimator is then defined as

âρ (u) ≤ inf
a∈A

sup
λ∈ΛT (a)

1

Tb

T∑

t=1

ρ (st,K (u, λ, a)) + op

(
1

Tb

)
, (4)

where ΛT (a) = {λ (u) : st,K (u, λ, a) ∈ Λ0, t = 1, ..., T}. For example, the local version of empir-

ical likelihood (LEL) is

âel (u) ≤ inf
a∈A

sup
λ∈ΛT (a)

1

Tb

T∑

t=1

log (1− st,K (u, λ, a)) + op

(
1

Tb

)
, (5)

whereas the local version of exponential tilting (LET) is

âet (u) ≤ inf
a∈A

sup
λ∈ΛT (a)

− 1

Tb

T∑

t=1

exp (st,K (u, λ, a)) + op

(
1

Tb

)
. (6)

3 Asymptotic results

Let m (Zt, h) := mt (h) and define

G (u) =
∂

∂h⊤
E [mt (h0) |Ut = u] f (u) , (7)

Ω (u) = E
[
mt (h0)

⊗2 |Ut = u
]
f (u)

∫
K2 (v) dv,

Σ (u)W = G (u)⊤ W (u)G (u) ,

Σ (u) = G (u)⊤ Ω (u)−1 G (u) .

Remark 1 It is important to note that the “derivative” matrix G (u) should be interpreted as

a linear approximation of E (mt (h) |Ut = u) f (u) at h0 (u) in the sense that for all h evaluated

at u the following holds:

lim||h(u)−h0(u)||→ 0
∥E (mt (h0) |Ut = u) f (u)−G (u) (h (u)− h0 (u)) ||

||h (u)− h0 (u) ||
= 0. (8)

Section 4 provides an example of how to calculate G (u) in practice.
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In what follows, let mt,K (., .) := mt (., .)K ((Ut − .) /b), where the first dot can be either

a or h and the second dot can be either u or v in a neighborhood of u ∈ U , so for example

mt,K (a, v) := mt (a (v))K ((Ut − v) /b). Assume that:

A1 The sequence {
(
Z⊤

t , Ut

)⊤
, t ∈ Z} is strictly stationary β mixing with mixing coefficient

β (t) = O (t−c) for some c > 0.

A2 (i) The LGMM and LGEL estimators â and âρ exist (with probability approaching 1),

(ii) there exists a unique h0 such that E [mt (h0) |Ut = u] f (u) = 0, (iii) for all v in a

neighborhood of u ∈ U and for each ϵ > 0

inf
a∈A

∥a(v)−a∥≥ϵ

∥∥∥∥E
(mt,K (a, v))

b

∥∥∥∥ > 0,

(iv) h0 is twice continuously differentiable.

A3 (i) mt (h, u) is continuous for each h ∈ H, a.s.2, (ii) for all v in a neighborhood of u ∈ U ,
the classes of functions

MK
1 = {mt,K (a, v) , v ∈ U , a ∈ A, } ,

MK
2 =

{
(mt,K (a, v))⊗2 , v ∈ U , a ∈ A,

}

are Glivenko-Cantelli3.

A4 (i) The matrices G (u) and Ω (u) are continuous in u ∈ U , with rank (G (v)) = k and

Ω (v) positive definite for all v in a neighborhood of u ∈ U , (ii) Σ (u) is nonsingular, (iii)

E (mt (h) |Ut = v) is differentiable in the sense of (8) at h0 for all v in a neighborhood of

u ∈ U with derivative G (v), (iv)

(Tb)1/2
(

1

Tb

T∑

t=1

mt,K (h0, u)− E

(
mt,K (h0, u)

b

))
d→ N (0,Ω (u)) .

A5 The empirical process vKTb (h) =
∑T

t=1 (mt,K (h, u)− Emt,K (h, u)) / (Tb) satisfies

sup
∥h−h0∥≤δTb

∣∣∣(Tb)1/2
(
vKTb (h)− vKTb (h0)

)∣∣∣ = op (1)

for all δTb → 0 as Tb → ∞.

A6 (i) ρ (st (u, λ, .)) is twice continuously differentiable in st in a neighborhood of 0, with

ρj = −1 (j = 1, 2) and ρj = ∂jγ (st (u, λ, .)) /∂s
j
t |λ=0.

2That is, for a generic fixed (localized) h∗ (u), lim||h(u)−h∗(u)||→0 mt (h, u) = mt (h∗, u) for all Zt such that

Pr (Zt ∈ Z1) = 1, where the set Z1 can be a proper subset of the support Z.
3See the Appendix for a formal definition of a Glivenko-Cantelli class of functions.
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A7 (i) The kernel function K : U → R is symmetric and has a compact support, say [−1, 1], (ii)

the marginal density f of Ut is continuously differentiable and strictly positive at Ut = u,

(iii) the joint density f1,2 of U1 and U2 is Lipschitz continuous at u ∈ U , (iv) Tb5 → 0.

A8 (i) For all v in a neighborhood of u ∈ U and a random Ŵ ,
∥∥∥Ŵ (v)−W (v)

∥∥∥ = op (1), where

W (v) is a positive semidefinite matrix, (ii) Σ (u)W is nonsingular.

Assumption A1 excludes deterministic and stochastic trends and specifies the dependence

structure of the sequence {
(
Z⊤

t , Ut

)⊤
, t ∈ Z} as β mixing with a polynomial rate c that is left

unspecified because it is typically related to a moment condition on mt (h) for a central limit

theorem to apply, and more generally to the complexity of the function space H, as measured

by its entropy4 for a uniform central limit theorem to apply (which in turn is related to the

stochastic equicontinuity assumption A5). For example, for a central limit theorem to apply, a

sufficient condition is that
∑∞

t=1 t
2/(δ−2)β (t) < ∞, with ∥E (mt,K (h0))∥δ < ∞ for some δ > 2,

which is satisfied for c > δ/ (δ − 2). On the other hand, for a uniform central limit theorem to

hold, the rate c crucially depends on the assumed structure and/or the (finite) entropy dimension

of H. For example, Doukhan, Massart and Rio (1995) showed that for α mixing (and hence β

mixing) sequences a sufficient condition is that c = 32d + 3, where d is the entropy dimension

of H. By contrast, Arcones and Yu (1994) showed that if H is a Vapnick-Chervonenkis (V-C

henceforth) subgraph class of functions (see Van der Vaart and Wellner (1996, Section 2.6.2) for a

definition), then, a sufficient condition is that c satisfies tδ/(δ−2 log(t)2(δ−1)/(δ−2)β(t) → 0, which is

only slightly stronger than the rate given above for the central limit theorem to hold. Assumption

A2(i) requires a suitable restriction on A, such as assuming directly that it is a compact set.

Given the local nature of the proposed estimation, recall that a = h0 (u), the assumption of

compactness is fairly natural; in fact, since Wong and Severini (1991, Theorem 1), it has been

used extensively in the nonparametric and semiparametric literature, see for example Carroll,

Fan, Gijbels and Wand (1997, Lemma A.1) and Fan and Zhang (2004, Section 5.1) among many

others. Alternatively, compactness can be deduced indirectly, using various compact embedding

results5 - see Nickl and Potscher (2007) for some general statistical applications and Freyberger

and Masten (2019) for more econometric oriented applications of such results. For example,

assume for simplicity that h : U → R and U is bounded. Let Cm (U) denote the space of m times

continuously differentiable functions h on U , let Cm,∞ = {h ∈ Cm (U) : ∥|h||m,∞ < ∞}, where
||.||m,∞ is the Sobolev sup norm max0≤λ≤m supu∈U ∥dλh/duλ∥ and assume that H = Cm+m0,∞ for

some m0 ≥ 1. Then the embedding Cm+m0,∞ →֒ Cm,∞ is compact (Freyberger and Masten 2019,

4See the Appendix for a formal definition of entropy.
5A normed space (X , ||.||X ) is said to be embedded into the normed space (Y, ||.||Y) if X is a linear subspace

of Y and the identity map id : X → Y is continuous; such embedding is denoted as (X , ||.||X ) →֒ (Y, ||.||Y). An

embedding is said to be compact if the image (under the embedding operator) of the unit ball of X is totally

bounded in Y.
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Theorem 1), hence we can take A as Cm,∞. Assumptions A2(ii)-(iii) are standard identification

conditions that can be often verified by imposing more primitive conditions on mt (h) and/or

some of the components of the random vector Zt. In particular A2(iii) implies that when a (v)

(the coefficient of the approximation of the true h0 for v in a neighborhood of u ∈ U) the local EE
is bounded away from 0. A similar assumption can be found for example in Zhang and Gjibels

(2003, Assumption N.7) and Fan and Zhang (2004, Assumption A.10). Assumption A3(i) does

not require mt (h, u) to be continuous at all h ∈ H for all Zt, so it applies to possibly non smooth

EE such as those defined in (9). Assumption A3(ii) is a high level assumption implying that a

uniform law of large numbers applies. Given the continuity assumption on mt (h, u) in A3(i),

A3(ii) will follow by a suitable restriction on A (and possibly on U). For example, under the

additional assumptions that A and U are compact sets, a finite envelope condition on mt (h)

is sufficient for A3(ii) to hold - see the proof of Proposition 2 for an example of how to verify

A3(ii). A2(ii)-(iii) and A3(ii) are used to establish the consistency of both the LGMM â and the

LGEL âρ estimators, see the proofs of Theorems 1 and 2 in the Supplemental Appendix for more

details; we note here that the assumption on the class of functions MK
2 in A3(ii) is not necessary

for the consistency of â unless we consider the two step LGMM estimator defined in Remark 2.

Assumptions A2(iv), A4(i)-(ii) are standard in the nonparametric estimation literature, see for

example Cai, Fan and Yao (2000, Condition A.1) and Fan and Zhang (2004, Assumption A.9)

among many others; note that the differentiability of h0 assumed in A2(iv) implicitly imposes

a restriction on the function space H, such as that it is a Sobolev or Holder function space.

Assumption A4(iii) is a smoothness assumption at h0 with “derivative” G being of full rank,

that is typically assumed in the non smooth EE literature, see for example Pakes and Pollard

(1989, Theorem 3.3, (ii)) for parametric EE models, and Chen, Linton and van Keilegom (2003,

Theorem 2, (2.2)) for semiparametric EE models. Note that this condition is on the expectation

of mt (h), that is the EE needs not to be smooth in h, although its expectation must be locally

differentiable in the sense described in Remark 1. Since expectations involve integrals, hence they

smooth out functions, it is frequently the case that E[mt (h)] is differentiable even though mt (h)

is not. This is the case for the varying coefficients median regression model considered in the

example of Section 2 and the more general specification ofmt (h) given in (9) below. Assumption

A4(iv) requires a central limit theorem to hold for (Tb)1/2 vKTb (h0), which, as mentioned before,

depends on the summability of the β-mixing rate of A1 and on the undersmoothing condition

A7(iv) - Assumption E1 in Section 4 provides an example of such rate. We note here that

in the proof of Proposition 2, we provide a general method to obtain the required asymptotic

normality, which can be used for many other NPEE models. A5 is another high level assumption,

as it implies the stochastic equicontinuity of the empirical process (Tb)1/2 vKTb (h). As previously

mentioned, stochastic equicontinuity has been used in the context of non smooth parametric

EE models, see for example Pakes and Pollard (1989, Theorem 3.3, (iii)), and non smooth
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semiparametric EE models, see for example Chen et al. (2003, Theorem 2, (2.5)), but, as far as

we are aware of, not in the context of the type of non smooth NPEE models considered in this

paper. In order to verify A5, one has typically to make further assumptions on both mt (h) and

H. For example, for non smooth varying coefficients models, the following

mt (h) = Ψ1

(
Yt −X⊤

t h (Ut)
)
Ψ2 (Zt, h (Ut))Xt, (9)

provides a fairly general specification of the possible forms that mt (h) can take; for exam-

ple, for Ψ1 (.) = signθ (.) with 0 < θ < 1 and Ψ2 (.) = 1 one obtains a varying coeffi-

cients quantile regression model (an extension of which is considered in Section 4), whereas

for Ψ2 (.) = I
(
X⊤

t h (Ut) ≥ 0
)
one obtains a varying coefficients extension to the censored quan-

tile regression model proposed by Powell (1986). As another example, for Ψ1 (.) = |signθ (.) |
and Ψ2 (.) = Yt −X⊤

t h (Ut) one obtains a varying coefficients extension to the asymmetric least

squares estimator of Newey and Powell (1987). Next, we provide some examples of possible re-

strictions on H. Recall that the differentiability condition A2(iv) implies that H must be a space

of sufficiently smooth functions such as a Sobolev or a Holder space. For such function spaces

various entropy results are available in the probability literature; for example, for h : U → R

with U bounded, assume that h ∈ HH
C,λ (U), that is for some λ being the largest integer smaller

than λ, h is such that ||h||∞,λ ≤ C for some finite positive C, with

||h||∞,λ = max
0≤λ≤λ

sup
u∈U

|Dλh (u) |+max
λ=λ

sup
u ̸=u′∈U

|Dλh (u)−Dλh (u′) |
|u− u′|λ−λ

,

where Dλ (h) = dλh/duλ. For this Holder function space, its entropy H
(
δ,HH

C,λ (U) , ||.||∞
)
is

bounded by a constant×δ−1/λ, which implies that the entropy integral
∫∞

0

(
H
(
δ,HH

C,λ (U) , ||.||∞
))1/2

dδ <

∞. A similar result holds for the Sobolev function space HS
C,λ (U), that is for ||h||∞ ≤ C1,

||h||p,λ ≤ C2 for some positive constants Cj, (j = 1, 2), with ||h||p,λ =
(∫

|Dλh (u) |pdu
)1/p

(1 ≤ p < ∞) ,

the bracketing entropy H[]

(
δ,HS

C,λ (U) , ||.||∞
)
is bounded by a constant×δ−1/λ, so that the

bracketing entropy integral
∫ 1

0

(
H[]

(
δ,HS

C,λ (U) , ||.||∞
))1/2

dδ < ∞. Under i.i.d. sampling, the

finiteness of these entropy integrals, combined with an appropriate envelope condition on mt (h)

would imply the stochastic equicontinuity of the related empirical processes (Tb)1/2 vKTb (h). How-

ever, the assumed weakly dependent structure of the observations requires some additional as-

sumptions on the dependency structure and on H. For β-mixing sequences, one such restriction

relates the β-mixing coefficient to the tail behavior of h. To be specific let Qh (u) denote the

quantile function of h and let ⌊v⌋ denote the largest integer smaller or equal to v and define

β−1 (u) = inf{u : β (⌊v⌋) ≤ u}. Then, Doukhan et al. (1995) showed that a sufficient condition

for A5 to hold is that the bracketing entropy integral
∫ 1

0

(
H[] (δ,H, ||.||2,β)

)1/2
dδ is finite, where

||h||2,β =
(∫ 1

0
β−1 (u)Q2

h (u) du
)1/2

. In Section 4 we show how to verify the finiteness of the

latter bracketing entropy integral under an appropriate restriction on the β-mixing coefficient.

10



Assumption A6 is standard in the GEL literature, see Newey and Smith (2004, Section 2);

Assumptions A7(i)-(iii) are also standard in the nonparametric estimation literature, see for

example Cai et al. (2000, Condition A.1); the undersmoothing condition A7(iv) is required for

A4(iv) and A5 to hold. Note that the asymptotic bias of the kernel estimation is of the stan-

dard order O (b2), see Proposition 4 in the supplemental Appendix for more details. Finally,

Assumption A8 is a standard regularity condition for GMM estimation.

The following two theorems establish the asymptotic normality of the LGMM and LGEL

estimators.

Theorem 1 Under the regularity conditions A1-A5 and A7-A8,

(Tb)1/2 (â (u)− h0 (u))
d→ N

(
0,Σ (u)−1

W G (u)⊤ W (u) Ω (u)W (u)G (u) Σ (u)−1
W

)
;

Theorem 2 Under the regularity conditions A1-A7,

(Tb)1/2 (âρ (u)− h0 (u))
d→ N

(
0,Σ (u)−1) .

Remark 2 It is easy to see that the asymptotic covariance of the LGMM estimator is larger

than that of the LGEL estimator (that is the difference between the two asymptotic covariances is

a positive semidefinite matrix), unless W (u) = Ω (u)−1, which requires a 2 step local estimation

procedure, where the first step is used to obtain a consistent consistent estimator of Ω (u)−1, say

Ω̃ (u)−1, which is then used in the second step to obtain the so-called efficient LGMM (ELGMM)

estimator with Ω̃ (u)−1 replacing Ŵ (u) in (3). It is important to note that this two step LGMM

estimation procedure has two disadvantages compared to LGEL estimation: first, it requires

computing the bandwidth b twice, which can be time consuming for large data sets. Second,

(and perhaps more importantly) it might result in additional (higher order) bias, a fact noted by

Newey and Smith (2004) (for parametric overidentified smooth EE models) and by Bravo (2022)

(for nonparametric overidentified smooth EE models).

We conclude this section by proposing two novel overidentification test statistics that can be

used to test the correct specification of (1). Let {uj}mj=1 denote a set of local points such that

(2) holds.

Proposition 1 Under the assumptions of Theorem 2,

(i) under the alternative local hypothesis

Ha : E [mt (h0 (uj)) |Ut = uj] = δTb (uj)

11



for some bounded function δTb (whose form will depend on the specification of mt (h), see (12)

below for an example) such that (Tb)1/2 δTb → C > 0 as Tb → ∞

max
j=1,...,m

(Tb)
1

Tb

T∑

t=1

mt,K (â (uj))
⊤ Ω̂ (uj)

−1 1

Tb

T∑

s=1

ms,K (â (uj)) (10)

d→ max
j=1,...,m

χ2
j (κj, l − k) ,

max
j=1,...,m

(2Tb)

(
1

Tb

T∑

t=1

ρ
(
st,K

(
uj, λ̂, â

ρ (uj)
))

− ρ0
b

)
d→ max

j=1,...,m
χ2
j (κj, l − k) ,

where Ω̂ (uj) =
∑T

t=1

(
mt (â (uj))K

(
Ut−uj

b

))⊗2

/Tb, and χ2
j (κj, l − k) are independent noncen-

tral chi-squared variates with l − k degrees of freedom and noncentrality parameter

κj = δ (uj)
⊤ Ω (uj)

−1/2
(
I − Ω (uj)

−1/2 G (uj) Σ (uj)
−1 G (uj)

⊤ Ω (uj)
−1/2

)
Ω (uj)

−1/2 δ (uj) ;

(ii) under the alternative global hypothesis Ha such that (Tb)1/2 δTb → ∞ as Tb → ∞

max
j=1,...,m

(Tb)
1

Tb

T∑

t=1

mt,K (â (uj))
⊤ Ω̂ (uj)

−1 1

Tb

T∑

s=1

ms,K (â (uj))
p→ ∞,

max
j=1,...,m

(2Tb)

(
1

Tb

T∑

t=1

ρ
(
st,K

(
uj, λ̂, â

ρ (uj)
))

− ρ0
b

)
p→ ∞.

4 Instrumental variables varying coefficients quantile re-

gression

In this section, we extend the Example of Section 2 to an instrumental variables varying coeffi-

cients quantile regression model and illustrate how some of the regularity conditions A1-A8 can

be verified under more primitive conditions. Let

Yt = X⊤
t h0 (Ut) + εt,

where the unobservable error term εt does not satisfy the θ-th conditional quantile restriction

Pr (εt ≤ 0|Xt, Ut) = θ a.s. because of the possible endogeneity of some of the covariates Xt,

which implies that E
(
Xt

(
signθ

(
Yt −X⊤

t h0 (Ut)
))

|Ut

)
̸= 0 a.s. Suppose, however, that there

exists an Rl- valued (l > k) vector of instruments {Vt, t ∈ Z} such that Pr (εt ≤ 0|Vt, Ut) = θ

a.s. Then the NPEE model is

E
[
Vt

(
signθ

(
Yt −X⊤

t h0 (Ut)
))

|Ut

]
= 0 a.s.,

and the LGMM and LGEL (quantile) estimators are based on

mq
t,K (h) = Vt

(
signθ

(
Yt −X⊤

t h (u)
))

K

(
Ut − u

b

)
.

12



Let

G (u) = E[fεt|Xt,Vt
(0)VtX

⊤
t |Ut = u]f (u) , (11)

Ω (u) = E
[
θ (1− θ)V ⊗2

t |Ut = u
] ∫

K2 (v) dvf (u) ,

where fεt|Xt,Vt
(0) is the conditional density of εt.

6

Assume that:

E1 The sequence
{(

Yt, X
⊤
t , V

⊤
t , Ut

)⊤
, t ∈ Z

}
, is strictly stationary β mixing with mixing coef-

ficient β (t) = O (t−c), with c = (2 + δ) (1 + δ) /δ and δ specified in E3(ii) below.

E2 (i) Pr
(
Yt −X⊤

t h0 (Ut) ≤ 0|Vt, Ut

)
= θ a.s. and E

(
V ⊗2
t |Ut

)
is positive definite a.s., (ii)

the parameter space A is a compact set, (iii) U is a compact set, (iv) for j = 1, ...k

hj ∈ HS
C,λ (U) for λ > 2, (v) Assumption A2(iv) holds.

E3 For all v in a neighborhood of u ∈ U , (i) E ∥Vt (1− θ)K (v)∥j < ∞ (j = 1, 2), (ii)

E

(
sup
a∈A

∥∥[Vt

(
signθ

(
Yt −X⊤

t a
))]∥∥2(1+δ) |Ut = v

)
f (v) < ∞,

for some δ > 0, (iii) for t ≥ 2

E
[(∥∥V1

(
signθ

(
Y1 −X⊤

1 h0

))∥∥2 +
∥∥Vt

(
signθ

(
Yt −X⊤

t h0

))∥∥2
)
|U1 = u1, Ut = u2

]
< ∞,

for u1 and u2 ∈ U , (iv) for all v in a neighborhood of u ∈ U , rank (G (v)) = k, with

G (v) = E[fεt|Xt,Vt

(
X⊤

t h0 (v)
)
VtX

⊤
t |Ut = v]f (v) and Ω (v) is positive definite with Ω (v)

given in (11), (v) Σ (u) is nonsingular.

E4 Assumptions A6-A8 hold.

Assumption E1 assumes a mixing rate that is slightly stronger than the minimal condition

on the summability of the mixing coefficients
∑∞

t=1 t
2/(2−δ)α (t) < ∞ for a central limit theorem

for α mixing random variables (and hence β mixing) to hold (see for example Doukhan (1994)),

however it is sufficient to verify the stochastic equicontinuity Assumption A5. Assumption

E2(i) implies the identification conditions A2(ii)-(iii) by standard arguments, see the proof

6Note that by iterated expectations and a standard kernel calculation

∂

∂h⊤
E[

1

b
m

q
t,K (h)] =

∂

∂h⊤
E[

Vt

b
(θ − FYt|Xt,Vt

(
Yt −X⊤

t h (Ut)
)
|Ut = u]K

(Ut − u)

b
|h=h0

=

∫
E
(
fεt|Xt,Vt

(0)VtX
⊤
t |Ut = u+ vb

)
K (v) f (u+ bv) dv := G (u) .

13



of Proposition 2 in the supplemental Appendix for more details; Assumption E2(ii) can be

deduced by the compact embedding HS
C,λ (U) →֒ HS

C,2 (U) := A; E2(iii) is often assumed in the

nonparametric and semiparametric estimation literature, see for example Carroll et al. (1997)

and Masry (1996), to obtain the uniform consistency and more generally the convergence rates

of the nonparametric estimators. Here it is used (in combination with E2(ii)) to verify the

Glivenko-Cantelli assumption A3(ii), but we note that it could be relaxed at the cost of lengthier

proofs based on a truncation argument and additional regularity conditions on the kernel used

in the estimation, see for example Hansen (2008). Assumption E2(iv) requires that h belongs

to a Sobolev function space; it implies the differentiability assumption A2(iv) on h0 and is

used to verify the stochastic equicontinuity A5 for the empirical process (Tb)1/2 vKTb (h) based on

mq
t,K (h). Assumption E3(i) gives the envelopes for the function classes

QK
1 =

{
Vt

(
signθ

(
Yt −X⊤

t a
))

K

(
Ut − v

b

)
, v ∈ U , a ∈ A,

}
and

QK
2 =

{(
Vt

(
signθ

(
Yt −X⊤

t a
))

K

(
Ut − v

b

))⊗2

, v ∈ U , a ∈ A,

}
.

E3(iii) is used to prove the central limit theorem for (Tb)1/2 vKTb (h0). The rest of the assumptions

are standard, see the discussion of the corresponding assumptions in Section 3.

Proposition 2 Under assumptions E1- E4 the conclusions of Theorems 1 and 2 hold with G (u)

and Ω (u) given in (11) .

We conclude this section by showing how the overidentifying restriction test statistics of

Proposition 1 specializes to this example. In this case the local alternative hypothesis is

Ha : E

[
Vt

(
signθ

(
Yt −X⊤

t

(
h0 (Ut)−

δ (Ut)

(Tb)1/2

)))
|Ut = u

]
= 0,

for some bounded function δ, which, by iterated expectations and a standard Taylor expansion,

can be written as

Ha : E
[
Vt

(
signθ

(
Yt −X⊤

t h0 (Ut)
))

|Ut = u
]
= E

(
fεt|Xt,Vt

(0)VtX
⊤
t |Ut = u

) δ (u)

(Tb)1/2
:= δTb (u) .

(12)

5 Simulations results

The results of Theorems 1 and 2 require undersmoothing, hence least squares cross validation

or other bandwidth selection methods cannot be used directly to automatically choose the

14



bandwidth b. In this paper we consider a bandwidth selection procedure that is similar to the

ad-hoc cross validation method of Otsu, Xu and Matsushita (2015) but is less computationally

intensive. Specifically, we consider a two fold cross validation procedure, which consists of

computing for a random subset of the sample, the training set Sv with 0 < v < 1 , and a pilot

bandwidth bp

âp = argmin
a∈A

1

Tvbp

∑

t∈Sv

mt (a)
⊤ K

(
Ut − u

bp

)
Ω̂ (u)−1 1

Tvbp

∑

s∈Sv

ms (a)K

(
Us − u

bp

)
,

âρp = argmin
a∈A

1

Tvbp

∑

t∈Sv

ρ
(
st,K

(
u, λ̂, a

))
,

and then using the remaining part of the sample, the validation set S1−v, to select the bandwidth

as

b̂ = argmin
b∈B

1

T1−vb

∑

t∈S1−v

mt,K (âp)
⊤ Ω̂ (u)−1 1

T1−vb

∑

s∈S1−v

ms,K (âp)

b̂ρ = argmin
b∈B

1

T1−vb

∑

t∈S1−v

ρ
(
st,K

(
u, λ̂, âρp

))
, (13)

where B is a grid of possible values of b, and âp and âρp are the estimators based on the pilot

bandwidth bp. In the simulations we use v = 0.8, which seems a commonly used value in

the literature as it corresponds to the so-called Pareto principle7, with 80% of the observations

randomly chosen from the sample for the training set Sv and the remaining 20% for the validation

set S1−v. Finally, as in Otsu et al. (2015), â and âρ are multiplied by T−c, where c > 0 is a value

consistent with undersmoothing. In the simulations below we use the value c = 0.3, however

to assess the sensitivity of the estimators to such choice, we also consider c = [0.2, 0.4, 0.6],

see Tables 7-10 in Section B of the supplemental Appendix for the results and some additional

comments.

We consider a varying coefficients quantile regression model with an endogenous regressor

Yt = h10 (Ut) +X1th20 (Ut) + εt,

X1t = 0.4X2t + ηt,

where h10 (Ut) = sin (πUt/2) , h20 = cos (πUt/3), X2t = ρX2t−1 + ζt with ζt ∼ N (0, 1) indepen-

dent of [
εt

ηt

]
∼ N

([
0

0

]
,

[
1 0.5

0.5 1

])
,

and Ut is either Ut ∼ U (0, 1) or Ut ∼ Φ
(
(aξt + bξt−1) /

√
a2 + b2

)
, where Φ is the cumulative

standard normal distribution, ξt ∼ N (0, 1), a = 0.9 and b = 0.1, which implies that Ut is

7The Pareto principle states that 80% of outputs comes from 20% of inputs; it is often used in fields such as

Computer Science, Economics, Engineering and Quality Control.

15



a 1-dependent process. In the simulations, we use the Epanechnikov kernel, i.e. K (u) =

(3/4) (1− u2) for |u| ≤ 1, the vector of instruments Vt is specified as either [1, X2t, X
2
2t]

⊤
or

[1, X2t, ..., X
6
2t]

⊤
, the autoregressive coefficient ρ is either 0.4 or 0.9, the bandwidths b̂ and b̂ρ are

chosen using the two fold cross validation method (13) with sample sizes T = 200 and T = 400.

We consider three estimators, LEL âel defined in (5), LET âet defined in (6) and ELGMM â

defined in (3) with a preliminary consistent Ω̃ (u)−1 replacing Ŵ (u) and use the combined mean

squared error (MSE)

MSE (â◦) =
2∑

j=1

1

T

T∑

t=1

(
â◦j (Ut)− h◦

j (Ut)
)2

,

where â◦j is any of the three local estimators LEL, LET and ELGMM for the unknown functional

parameters hj0, to evaluate their finite sample performance for θ = [0.25, 0.50, 0.75].

Tables 1-4 approximately here

The results of Tables 1-4 can be summarized as follows: when the dimension of the instruments

Vt (dim (Vt)) is 3 (that is the degree of overidentification is 1) the MSE of the proposed esti-

mators are broadly comparable, regardless of the degree of persistence of the instrument X2t

and the error specification and are decreasing with the sample size, which is consistent with

the asymptotic theory of Section 3. However, when dim (Vt) = 7, the MSE of the ELGMM

estimator is considerably worse than that of both the LEL and LET estimators, especially that

of the LEL estimator, which seems to confirm the findings of Newey and Smith (2004) and

Bravo (2022) that for ordinary (parametric) and local (nonparametric) GMM estimators their

bias (and hence MSE) is increasing with the dimension of the instruments. Figures 1-2 show the

estimated varying coefficients for θ = [0.25, 0.50, 0.75], Ut ∼ Φ
(
(aξt + bξt−1) /

√
a2 + b2

)
, ρ = 0.9

with T = 200, when dim (Vt) = 3 and dim (Vt) = 7, respectively. Figure 2 clearly shows a

significant bias in the ELGMM estimator.

Figures 1-2 approximately here.

Next, we investigate the finite sample properties of the test statistics (10) of Proposition 1,

using the same three estimators. The null hypothesis is

E [Vtsignθ (Yt − h10 (uj)−X1t (h20 (uj))− δ (uj)) |Ut = uj] = 0

where h10 and h20 are as above, δ (uj) = δ cos (πuj/3) with δ = [0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8] and

j = 20 (equally spaced over the Ut’s). Tables 5-6 report, respectively, the finite sample sizes

(corresponding to δ = 0) for Ut ∼ U (0, 1) or Ut ∼ Φ ((aξt + bξt−1) /0.9), ρ = 0.9 and T = 200.

The simulated critical values at the [0.10, 0.05] nominal level (based on 105 simulations) for the

test statistics are [3.351, 4.803] when the degree of overidentification is 1, and [10.298, 12.507]
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when the degree of overidentification is 5.

Tables 5-6 approximately here.

Tables 5-6 show a similar pattern to that of Tables 1-4, in the sense that, when dim (Vt) = 3, the

three test statistics (10) have similar finite sample sizes, however, when dim (Vt) = 7, the finite

sample size of the ELGMM based test statistic is considerably worse compared to that of the

other two LGEL based statistics. Figures 3-4 show the size adjusted finite sample power of the

three test statistics (10) for θ = [0.25, 0.50, 0.75], Ut ∼ Φ
(
(aξt + bξt−1) /

√
a2 + b2

)
, ρ = 0.9 and

T = 200, when dim (Vt) = 3 and dim (Vt) = 7, respectively. Again, it is clear that the degree

of overidentification has a significant negative effect on the finite sample power of the ELGMM

based test statistic.

6 Empirical application

We consider a varying coefficients extension of the log-linearized version of the quantile based

consumption capital assets pricing model (C-CAPM) of de Castro, Galvao, Kaplan and Liu

(2019) and de Castro and Galvao (2019). To be specific, let Zt = [Ct, Rt, Inft, NRt, PDt]
⊤,

where, respectively, Ct is real total per capita consumption, Rt is the real interest rate - deflated

by the consumer price index, Inft is the inflation rate, NRt is the nominal interest rate and

PDt is the price dividend ratio for equities, all at time t. Then

mq
t (h) =




1

log Ct−2

Ct−3

NRt−2

logPDt−2




(
signθ

(
log

Ct

Ct−1

− h1 (u)− h2 (u) log (1 +Rt)

))
K

(
Inft−2 − u

b

)
,

(14)

is the corresponding instrumental variables varying coefficients quantile regression model, which

relates consumption growth to the real interest rate using the inflation rate as the varying

coefficient and the twice lagged consumption growth, nominal interest rate and log dividend

ratio as instruments. We use United Kingdom (UK) data originally from Campbell (2003),

which consists of aggregate level quarterly data for the period 1970Q3–1999Q1. Figure 5 shows

the consumption growth, inflation rate and log (1 +Rt).

Figure 5 approximately here.

Figures 6 and 7 show, respectively, the LEL and ELGMM estimated quantile varying coefficients

at the θ = [0.25, 0.50, 0.75] quantiles with bandwidths calculated using the two fold procedures

described in Section 5.

Figures 6-7 approximately here
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The left panel of Figure 6 shows the first varying coefficient plotted versus the consumption

growth; as expected, it shows that consumption growth is overall negatively affected by the

inflation rate, albeit in a rather nonlinear way, which reflects the high volatility of the inflation

rate especially in the Seventies, early Eighties and early Nineties. The right panel of Figure 6

shows the second estimated varying coefficient overlaid on the plot of the consumption growth

versus log (1 +Rt) - the interaction variable in (14). In this case, following the consumption

growth negative shock of 1979, it is first increasing in the inflation rate when the real interest

rate goes from negative to positive, which can be explained by the fact that the nominal interest

rate grew more than the inflation rate (a fact known as the Fisher effect in economic theory),

for then showing a more variable pattern reflecting the volatility of the the inflation and real

interest rate. Figure 7 shows a similar pattern as that of Figure 6, but with a visible bias in

terms of the fitting of the two estimated varying coefficients over the plots of the actual data.

Finally, we test for the correct specification of (14) using the test statistics (10). We use j = 15,

which, with the degree of overidentification equaling 2, gives simulated critical values at the

[0.10, 0.05, 0.01] nominal level (based on 105 simulations) of [5.506, 7.310, 11.536]. The sample

values of the LEL and ELGMM statistics are, respectively, 10.992 and 6.865 with corresponding

p-values of 0.0166 and 0.08637, which suggests that the null hypothesis of correct specification

of (14) cannot be rejected at the 0.05 level for the LEL statistic and at the 0.01 level for the

ELGMM statistic. As a matter of comparison, the standard Hansen’s (1982) overidentifying

test statistic for the correct specification of the parametric quantile C-CAPM model used by

de Castro et al. (2019) has a p-value of 0.003.

7 Conclusions

In this paper we consider local versions of GMM (LGMM) and GEL (LGEL) estimators for non

smooth overidentified NPEE models with weakly dependent observations. We show that the

proposed estimators are asymptotically normal under a β mixing and a set of relatively high

level assumptions, and provide an example where we show how these high level assumptions can

be verified under more primitive conditions. We also propose new LGEL and ELGMM based

tests for the correct specification of NPEE models that are characterized by a nonstandard but

asymptotically pivotal distribution and can detect local (at the nonparametric rate) alternatives

and are consistent. Monte Carlo simulations show that LGEL estimators perform better than

ELGMM estimators and related specification tests, in particular for models with larger degrees

of overidentification. An empirical application, where a varying coefficients specification of a

quantile C-CAPM is estimated, illustrates the applicability and usefulness of the local estimation

method proposed in this paper.
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Appendix

This Appendix presents formal definitions of some of the most technical concepts used in the

paper. They are based on modern empirical process theory, see for example Van der Vaart and

Wellner (1996).

Let (F , ||.||F) denote a metric space of real valued functions f : X → R.

Definition 1 (Covering number) The covering number N (δ,F , ||.||F) is the minimal number

N for which there exist δ balls {g : ||g − fj||F ≤ δ ||.||F , j = 1, ..., N} to cover F .

Definition 2 (Covering number with bracketing) The covering number with brackets N[] (δ,F , ||.||F)
is the minimal number of N for which there exist δ brackets {[lj, uj] : ||lj − uj||F ≤ δ, ||lj||F <

∞, ||uj||F < ∞, j = 1, ...N} to cover F .

Definition 3 (Entropy) (i) The (metric) entropy of F is H (δ,F , ||.||F) = logN (δ,F , ||.||F);
(ii) the entropy with bracketing of F is H[] (δ,F , ||.||F) = logN[] (δ,F , ||.||F).

Definition 4 (Glivenko-Cantelli class of functions) If either (i) supf∈F N (δ,F ,  L1 (Q)) <

∞ and E||f ||F < ∞, or (ii) N[] (δ,F , L1 (P )) < ∞, then F is a Glivenko-Cantelli class. As a

result, for f̂ =
∑T

t=1 ft/T ,

||f̂ − E (ft) ||F = op (1) .
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Definition 5 (Stochastic equicontinuity) Let vT (f) =
∑T

t (ft − E (tt)) /T
1/2; if either (i)∫ 1

0
supQ (H (δ||F ||Q,2,F , L2 (Q)))1/2 dδ < ∞, or (ii)

∫ 1

0

(
H[] (δ,F , L2 (P ))

)1/2
dδ < ∞, then for

f, g ∈ F and δT → 0

sup
ρ(f,g)≤δT

|vT (f)− vT (g) | = op (1)

for the semi-metric ρ (f, g) = V ar (f − g) .

Figures and Tables

Table 1. Combined MSE of the local estimators

with Ut ∼ U (0, 1) , dim (Vt) = 3.
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Table 2. Combined MSE of the local estimators

with Ut ∼
Φ (0.9ξt + 0.1ξt−1)

0.9
, dim (Vt) = 3.
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Table 3. Combined MSE of the local estimators

with Ut ∼ U (0, 1) , dim (Vt) = 7.
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Table 4. Combined MSE of the local estimators

with Ut ∼
Φ (0.9ξt + 0.1ξt−1)

0.9
, dim (Vt) = 7.

âel âet â
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Table 5. Finite sample size of the test statistics (10) for Ut ∼ U [0, 1] .
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a 0.10 nominal level, b 0.05 nominal level.
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Table 6. Finite sample size of the test statistics (10) for Ut ∼
Φ (0.9ξt + 0.1ξt−1)
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.

âel âet â
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a 0.10 nominal level, b 0.05 nominal level.
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Figure 1: Estimated [0.25, 0.50, 0.75] varying coefficients quantiles with dim (Vt) = 3. The solid

line is the true varying coefficient.
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Figure 2: Estimated [0.25, 0.50, 075] varying coefficients quantiles with dim (Vt) = 7. The solid

line is the true varying coefficient.
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Figure 3: Finite sample power of (10) with dim (Vt) = 3.
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Figure 4: Finite sample power of (10) with dim (Vt) = 7.
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Figure 5: Plots of consumption growth, inflation and log (1 +Rt)
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Figure 6: Estimated LEL [0.25, 0.50, 0.75] varying coefficient quantiles.
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Figure 7: Estimated ELGMM [0.25, 0.50, 0.75] varying coefficient quantiles.
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