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a b s t r a c t

The brainecomputer interface (BCI) plays an important role in neural restoration. Current BCI systems
generally require complex experimental preparation to perform well, but this time-consuming process
may hinder their use in clinical applications. To explore the feasibility of simplifying the BCI system
setup, a wearable BCI system based on the steady-state visual evoked potential (SSVEP) was developed
and evaluated. Fifteen healthy participants were recruited to test the fast-setup system using dry and wet
electrodes in a real-life scenario. In this study, the average system setup time for the dry electrode was
38.40 seconds and that for the wet electrode was 103.40 seconds, which are times appreciably shorter
than those in previous BCI experiments, enabling a rapid setup of the BCI system. Although the elec-
troencephalogram (EEG) signal quality was low in this fast-setup BCI experiment, the BCI system ach-
ieved an information transfer rate of 138.89 bits/min with an eight-channel wet electrode and an
information transfer rate of 70.59 bits/min with an eight-channel dry electrode, showing that the overall
performance was close to that in traditional experiments. In addition, the results suggest that the so-
lutions of a multi-channel dry electrode or few-channel wet electrode may be suitable for the fast-setup
SSEVP-BCI. This fast-setup SSVEP-BCI has the advantages of simple preparation and stable performance
and is thus conducive to promoting the use of the BCI in clinical practice.
© 2024 The Authors. Published by Elsevier Ltd on behalf of Tsinghua University Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A brainecomputer interface (BCI) is designed to establish
communication between the brain and external environment
without relying on peripheral nerves and muscles.1,2 The BCI has
great application potential in various fields, especially in the
healthcare and the medical fields. For example, the BCI has become
an established means of reestablishing communication in severely
paralyzed patients.3,4 It is clear that for these patients, the use of a
BCI is a process of learning a new task and is therefore related to the
plasticity of the central nervous system.5 In addition, neural reha-
bilitation or neurorehabilitation is an important aspect of BCI
application that aims to promote recovery and functional
enhancement in patients with neurological diseases.6 So far,
er Ltd on behalf of Tsinghua Unive
various BCI-based approaches and treatments have been proposed
as neuromodulation interventions to improve the restoration of
motor or cognitive functions after neurological injury.7,8 Further-
more, it has been found that even the short-time use of BCI induces
modulations in the structural and functional magnetic resonance
imaging of the brain,9 indicating that the BCI has rapid effects on
the brain structure and function through neurofeedback. Overall,
the BCI has a positive effect on neural restoration and is a useful tool
for neurorestoratology. Among various BCI paradigms, the use of
the steady-state visual evoked potential (SSVEP) has advantages in
terms of the information transfer rate (ITR) and the amount of
training required before use,10,11 making it user friendly and readily
accepted in practical use. The SSVEP-BCI has been found to be
available to patients with neurological disorders, such as stroke,12

amyotrophic lateral sclerosis13 and Duchenne muscular dystro-
phy.14 Moreover, compared with conventional treatment, the use of
the SSVEP-BCI can more effectively improve the impaired motor
function of stroke patients.15 The visual stimulation of the SSVEP-
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BCI has been found to change the distribution of cortico-muscular
coherence in the primary motor somatosensory cortex and
contralateral motor cortex, promoting neuroplasticity after
stroke.16 This indicates that the SSVEP-BCI is useful for neural
restoration.

Although the BCI has beenwidely used in clinical applications, it
has shortcomings, especially in terms of user experience. A limi-
tation of the BCI is the system setup as it is a key factor affecting
practicality. In most BCI experiments or applications, regardless of
the paradigm adopted, the system setup is a necessary but labo-
rious task. The setup generally includes skin preparation, electrode
placement, and ensuring that the signal quality is acceptable.17

Huggins et al found that although patients with neurological in-
juries have a strong interest in using a BCI, they consider the setup
time an important factor when considering using a BCI and find a
preparation time of less than 10 minutes to be acceptable.18,19

Several studies in which the system setup time or electrode prep-
aration time was measured in BCI experiments are listed in
Table 1.20e26 Obviously, the use of a dry electrode contributes to the
rapid setup of the BCI system, as it reduces the preparation time
and need for cleaning. However, the use of a dry electrode generally
results in poor signal quality. In the current clinical application of a
BCI, a wet electrode, especially a gel-based electrode, is the first
choice because of its low impedance and high signal quality.27 In
fact, in most BCI experiments, whether using a dry or wet electrode,
the electrode impedance needs to be adjusted to a certain range
before the experiment to ensure signal quality. However, reducing
the electrode impedance to an acceptable value is a time-
consuming task, often accounting for a large part of the setup
time.26,28 Therefore, if the efficiency of the BCI setup can be raised
by simplifying the monitoring of the electrode impedance, the
patients’ acceptance of a BCI will undoubtedly be improved.

The BCI performance is another factor important to patients
considering using a BCI. Simplifying the processing of the electrode
impedance during the system setup may degrade the signal quality
and therefore the BCI performance. As the decoding algorithm
directly dictates the BCI performance, it is crucial to determine a
suitable algorithmwhile simplifying the BCI setup. Benefiting from
the characteristics of the SSVEP and the development of decoding
algorithms, the SSVEP-BCI has natural advantages in accuracy.
Numerous decoding algorithms, including canonical correlation
analysis (CCA) and its various optimizations29 and task-related
component analysis and its variants,30 have been developed.
With the development of artificial intelligence, many deep learning
models, such as the convolutional neural network (CNN)31 and
EEGNet,32 have recently been used in electroencephalogram (EEG)
analysis. Compared with traditional methods, these methods ach-
ieve higher accuracy but have a longer analysis time and require
training data. Owing to the difficulty in collecting a large volume of
EEG data in practical applications, complex algorithms may
encounter obstacles. Conversely, training-free or calibration-free
algorithms that do not require calibration data from participants
Table 1
Comparison of system setup times in different BCI experiments.

BCI experiment Participant Sy

W

Gargiulo et al.20 healthy 2e
Zander et al.21 healthy e

Grant et al.22 patients with altered mental status 12
Chen et al.23 healthy 34
di Fronso et al.24 healthy 39
Hinrichs et al.25 healthy 6.
Zhao et al.26 healthy e

*: mean ± SD (standard deviation).
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are more acceptable in clinical applications. Moreover, compared
with healthy people, patients have higher requirements for the
usability and practicability of a BCI. Undoubtedly, if a training-free
algorithm can achieve good performance even with low-quality
signals, the appeal of an BCI to novices, especially patients with
neurological impairments, will be greatly enhanced. To make the
SSVEP-BCI more applicable in daily use and clinical practice, the BCI
system needs to perform reliably and stably while having improved
efficiency in system preparation.

It is clear that the BCI has great potential in neurorestoratology,
but many issues need to be solved to bring the BCI out of the lab-
oratory and into clinical practice. Among them, enhancing the
practicality and performance of the BCI is a priority. This study
examines the effect of a rapid system setup strategy for the SSVEP-
BCI. To this end, a wearable SSVEP-BCI system, which comprises
wireless EEG collection, multi-target stimulation, and online signal
analysis, was developed. Participants who had never used a BCI
were recruited to evaluate the BCI performance in a real-life sce-
nario and thus the usefulness of the system.

2. Design of the online SSVEP-BCI system

2.1. Data acquisition

An ESPW308 eight-channel wireless EEG acquisition system
(BlueBCI Ltd. Beijing, China) was used to collect the EEG signal in
this study. The system is mainly used for scientific activities and is
equipped with a small amplifier and a wet-electrode cap. The
sampling rate of the amplifier was 1000 Hz. With the wet electrode
cap, eight-channel EEG signals (POz, PO3, PO4, PO5, PO6, Oz, O1,
and O2) were recorded while the reference and ground electrodes
were placed on the forehead. In addition, an elastic eight-channel
EEG headband was made using commercial dry electrodes (Open-
BCI Inc. NY, USA). When using the dry electrodes, the reference and
ground electrodes were placed on the left and right ear lobes,
respectively. The headset (including an amplifier, electrode cap or
band, and battery) was lightweight and did not apply a large load to
the user, as shown in Fig. 1. Specifically, the total weight of the
headset was 121 g when using wet electrodes and 98 g when using
dry electrodes.

2.2. Stimulus presentation

To achieve multi-target stimulation, the SSVEP-BCI system was
designed for a spelling task. The visual stimulation interface was a
4 � 10 matrix, as shown in Fig. 2. The interface was presented on a
24.5-inch liquid crystal display monitor with a refresh rate of 280
Hz and a resolution of 1920 � 1080 pixels. Each stimulus was a
165� 165-pixel squaremarkedwith a character, flickering between
white and black. The flickers were coded using a joint frequency
and phase modulation method.33 The frequency and phase are
calculated for each stimulus as
stem setup time

et electrode Dry electrode

3 min per electrode 10 s per electrode
5 min (3 electrodes)

± 2 * min (21 electrodes) e

min (31 electrodes) 2 min (16 electrodes)
± 18 * min (64 electrodes) 13 ± 3 * min (64 electrodes)

36 ± 1.18 * min (19 electrodes) 4.02 ± 0.70 * min (19 electrodes)
5.66 min (8 semi-dry electrodes)



Fig. 1. EEG headset, including an eight-channel wireless amplifier with a (A) wet
electrode cap and (B) dry electrode headband.

Fig. 2. Visual stimulation interface of 4 � 10 flickers. The gray characters at the top of
the interface are targets, the white characters are the correct output, and the red
characters are the spelling errors.
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�
f ði; jÞ ¼ f0 þ Df � ½ði� 1Þ � 10þ ðj� 1Þ�
4ði; jÞ ¼ D4� ½ði� 1Þ � 10þ ðj� 1Þ� (1)

where ði; jÞ represents the flicker located in the i-th row and j-th
column (i ¼ 1;2;3;4 and j ¼ 1;2;/;10), f0 is 8 Hz, Df is 0.2 Hz, and
D4 is 0.5p. The space above the matrix was used to display the
spelling results for online feedback. The stimulation was presented
using Psychtoolbox (PTB) in MATLAB.
2.3. Data processing

The EEG signalwas collected andamplified through the amplifier
and then transmitted to a computer through Wi-Fi. To improve the
analysis efficiency of the online system, the data segment received
by the computer was downsampled to 250 Hz. The signal was then
preprocessed to reduce noise. Specifically, a 50-Hz notch filter was
used to eliminate power noise, and a bandpass filter was used to
extract the effective EEG signal. The upper and lower cutoff fre-
quencies of the bandpass filter were 90 and 5 Hz respectively.

In this SSVEP-BCI system, an online adaptive canonical correla-
tion analysis (OACCA) algorithm, which is a recent and state-of-the-
art training-free algorithm proposed byWong et al.,34 was adopted.
OACCA achieved excellent performance at the World Robot Contest
3

2022.35 In fact, OACCA is an integrated algorithm that combines the
filter bank CCA (FBCCA) proposed by Chen et al.,36 prototype spatial
filter (PSF) proposed by Lao et al.,37 and online multi-stimulus CCA
(OMSCCA) proposed by Wong et al..38

The multi-channel EEG signal in the n-th trial Xn is first
decomposed into Nband sub-band signals adopting the filter bank

technique. For the j-th sub-band EEG signal in the n-th trial Xsubj;n,

the coefficient of correlation between Xsubj;n and reference signal
Yk is calculated through CCA as

n
rsubj;nk ;usubj;n

k ;vsubj;nk

o
¼argmax

u;v

uT
�
Xsubj;n

�T
Ykvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT
�
Xsubj;n

�T
Xsubj;nu,vTYT

kYkv

r

¼CCA
�
Xsubj;n;Yk

�
(2)

where usubj;n
k and vsubj;nk are the spatial filters for Xsubj;n and Yk,

respectively, and rsubj;nk is the coefficient of correlation between

Xsubj;nusubj;n
k and Ykv

subj;n
k .

In FBCCA, ðn� 1Þ,Nband spatial filters (~usub1;1
; ~usub1;2

; /;

~usubNband;n�1) are obtained after the determination of n� 1 trials. As
PSF is defined as the spatial filter with the greatest similarity to all
filters from previous trials, the PSF of the j-th sub band in the n-th
trial is calculated as

usubj;n
0 ¼ argmax

u

uT Pn�1

m¼1
~usubj;m

�
~usubj;m

�T
u

uTu
¼ argmax

u

uTSsubj;n�1u
uTu

(3)

where Ssubj;n�1 is obtained through continuous iteration as

Ssubj;n�1 ¼ Ssubj;n�2 þ ~usubj;t�1
�
~usubj;t�1

�T
(4)

OMSCCA aims to learn a common spatial filter from the user's
multi-stimulus SSVEP templates. Similar to Equation (2), OMSCCA
corresponding to the j-th sub-band EEG signal in the n-th trial is
described by

n
wsubj;n

x ;wsubj;n
y

o
¼ argmax

u;v

uT Pn�1

m¼1

�
Xsubj;m

�T
Y
k̂
mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT
Pn�1

m¼1

�
Xsubj;m

�T
Xsubj;mu,vTv

s

¼ argmax
u;v

uTCsubj;n�1
XY vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uTCsubj;n�1
XX u,vTv

q
(5)

where wsubj;n
x and wsubj;n

y are the OMSCCA spatial filters (OMSCCA-

SFs) of the j-th sub-band signal, and Csubj;n�1
XX and Csubj;n�1

XY are the
sum of covariance matrices from existing trials obtained as

8>><
>>:

Csubj;n�1
XX ¼ Csubj;n�2

XX þ
�
Xsubj;n�1

�T
Xsubj;n�1

Csubj;n�1
XY ¼ Csubj;n�2

XY þ
�
Xsubj;n�1

�T
Y
k̂
n�1

(6)

The correlation coefficients of the FBCCA, PSF, and OMSCCA for
the sub-band signals are then calculated as
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8>>>>>><
>>>>>>:

rsubj;nk ¼ CCA
�
Xsubj;n;Yk

�
_rsubj;nk ¼ CCA

�
Xsubj;nusubj;n

0 ;Yk

�
€rsubj;nk ¼ corr

�
Xsubj;nwsubj;n

x ;Ykw
subj;n
y

� (7)

where CCAðÞ is the calculation of the similarity of two matrices and
corrðÞ is the calculation of the correlation between two vectors. The
results of all sub-band signals in the n-th trial are combined ac-
cording to

~rnk ¼
XNband

j¼1

�
j�a þ b

�
,

�
rsubj;nk þ _rsubj;nk þ €rsubj;nk

	
(8)

where a is 1.25 and b is 0.25 according to Chen et al.’s study.36 The
label corresponding to themaximum ~rnk is thus the result of the n-th
trial in OACCA. In this study, Nband for online SSVEP identification is
set at 5 to achieve better classification, whereas other parameters
are consistent with those of the original OACCA.

3. Experimental design

3.1. Participants

Fifteen healthy participants (seven men and eight women with
an average age± standard deviation (SD) of 27.07± 5.82 years) who
had normal (or corrected-to-normal) vision were recruited in this
study. None of the participants had used an SSVEP-BCI before.
Before the experiment, all participants understood the experi-
mental content and procedure and provided written informed
consent. The study was approved by the Institutional Review Board
of the University of Hong Kong/Hospital Authority Hong KongWest
Cluster.

3.2. System setup

The SSVEP-BCI systemwas tested in a quiet, naturally lit room to
simulate a usage scenario in real life. The participants did not
perform any skin preparation or hair cleaning before the experi-
ment. To ensure a rapid system setup, the preparation time (from
putting on the EEG acquisition device to starting the experiment)
was specified. In the experiment using wet electrodes, the prepa-
ration time was required to be no more than 3 minutes. The re-
searchers injected a small amount of conductive gel into the gap
between the scalp and electrodes and stirred the hair until the
participant felt the gel on the scalp, and they then asked the
participant to blink and clench their teeth. In the experiment using
dry electrodes, the preparation time was required to be no more
than 2 minutes. The researchers moved the participant's hair to
allow the dry electrodes to make contact with the scalp and then
asked the participant to clench their teeth. In this study, we did not
monitor the electrode impedance whether using wet or dry elec-
trodes. The EEG acquisition system was deemed to be working
properly when obvious artifacts caused by blinking or teeth
clenching were observed in the real-time signal, and the experi-
ment then began. The overall setup time from the electrode
placement until the beginning of experiment was recorded.

3.3. Protocol

Each participant completed 10 blocks of the online SSVEP-BCI
experiment with a cue-guided spelling task, where dry electrodes
4

were used in the first five blocks and wet electrodes were used in
the second five blocks. Each block comprised 40 trials corre-
sponding to 40 stimulus targets. The trial began with a 1-second
cue. During this period, the BCI system randomly selected a
target, and the character corresponding to the target appeared in a
red box. The participant moved the sight to the target character as
quickly as possible. All characters then flickered for 3 seconds, and
the target character remained cued by the red box. The trial ended
with a 1-second rest, during which the target character was iden-
tified by the online algorithm and displayed on the interface for
visual feedback. During the flickering process, the participant was
asked to avoid making head movements and blinking. The duration
of each block was approximately 4 minutes, with a 3-minute in-
terval to allow the participant to rest. After completing the five dry-
electrode blocks, the participant rested for 30 minutes before
starting the wet-electrode blocks. After completing all the blocks,
the participant was required to answer a question on wearing
comfort (Question: Which electrode do you think is more
comfortable? A. The wet electrode, B. The dry electrode, C. The two
electrodes are similar in comfort).

3.4. Metrics

As the experiment was conducted with a fast BCI system setup,
the signal quality may differ from that in other studies. In the
present study, awide-band signal-to-noise ratio (SNR) was adopted
to evaluate the quality of the SSVEP data. Compared with the
conventional narrow-band SNR, the wide-band SNR is considered
to characterize better both the wide-band noise and the contribu-
tion of harmonics to the signal.39 The wide-band SNR is calculated
as

SNR ¼ 10 log10

PNh

k¼1
Pðk,f Þ

Pfs=2
f¼0

Pðf Þ � PNh

k¼1
Pðk,f Þ

(9)

where Nh is the number of harmonics, fs is the sampling frequency,
and Pðf Þ is the power spectrum at frequency f . In the adoption of
the wide-band SNR, the sum of the power spectrum of multiple
harmonics is considered as the desired signal. Nh was set at 5 in this
study.

The classification accuracy and ITR were used to evaluate the
performance of the SSVEP-BCI system. Accuracy is expressed as the
ratio of the number of trials in which the BCI system output a
correct target to the total number of trials. ITR is ametric commonly
used to evaluate the BCI performance and comprehensively con-
siders the accuracy, number of targets, and target selection time.
The ITR is calculated as

ITR ¼
�
log2 K þ P log2 P þ ð1� PÞlog2

�
1� P
K � 1

		
,60



T

(10)

where K is the number of targets, P is the classification accuracy, and
T is the average time required for the BCI system to complete a target
selection, including the gaze time (typically the data length of the
SSVEP signal) and gaze shift time. In the online experiment, T ,
including the cue time, gaze time and feedback time, was fixed at 5
seconds. Inoffline analysis, in addition to thedata lengthof the SSVEP
signal, a gaze shift time of 0.55 seconds was included in the calcu-
lationof the ITR36 to simulate actual practice.Moreover, in addition to
eight-channel EEG signals, a three-channel signal (Oz, O1, and O2)
and a one-channel signal (Oz) were used in offline analysis.



Fig. 3. EEG signal and amplitude spectrum of a participant in a trial with a stimulation frequency of 10 Hz: (A) signal recorded by the wet electrode, (B) signal recorded by the dry
electrode, (C) amplitude spectrum of the average signal in (A), and (D) amplitude spectrum of the average signal in (B).

Fig. 4. Wide-band SNR corresponding to 40 stimulus frequencies (from 8 to 15.8 Hz at
intervals of 0.2 Hz) for the data of wet and dry electrodes in this study and the
benchmark dataset. The shaded areas represent the standard deviation (SD).
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4. Results

4.1. Setup time and signal quality

The average setup time for the 15 participants when using the
dry electrode was 38.40 ± 9.85 s whereas the average setup time
when using the wet electrode was 103.40 ± 20.57 s. A paired t-test
indicated a significant difference in the setup time between the two
types of electrode (p < 0.001). Regarding thewearing comfort of the
electrodes, 10 of the 15 participants thought that the wet electrodes
were more comfortable in this study (proportion: 67%), five par-
ticipants thought that the two electrodes were similar in comfort
(proportion: 33%), and none of the participants that the dry elec-
trodes were more comfortable (proportion: 0%).

Fig. 3 presents an example of eight-channel EEG signals of a
participant recorded by wet and dry electrodes after band-pass
filtering. Clearly, in the fast-setup BCI experiments, the similarity
of EEG signals was high across different channels, whether the
signals were collected by wet or dry electrodes. In addition, there
was appreciable noise in the EEG signals for both types of electrode.
The eight-channel signals in each trial were averaged to calculate
the frequency spectrum. The results are shown in Fig. 3. In the two
trials, the SSVEP responses of the wet electrode signal and dry
electrode signal were strong at the fundamental frequency and the
second harmonic frequency, but the response at higher harmonics
was overwhelmed by noise.

The wide-band SNR in each trial was calculated from the SSVEP
spectra and then averaged across all blocks and participants. The
average SNRs of thewet electrode signal and dry electrode signal are
shown in Fig. 4. The data collected in this study were compared with
5

a benchmark dataset collected by a research-grade EEG systemwith
wet electrodes.40 The stimulus frequency used in the benchmark
dataset is consistent with that used in this study, and the layout of
the stimulation interface is similar to that used in this study. In
contrast with this study, the benchmark dataset was collected in a
dimly lit soundproof room, with the electrode impedances below 10
kU. To make a valid comparison, 3-second EEG segments after the
onset of stimulation in the benchmark database were selected, and
the same eight channels used in the fast-setup systemwere selected
for analysis. As shown in Fig. 4, the wide-band SNRs of the wet
electrode signal and dry electrode signal in this study are similar,
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both being much lower than the SNR in the benchmark dataset. In
addition, the relationship between the SNR and stimulus frequency
is illustrated in Fig. 4. Both the two electrode signals in this study and
the benchmark dataset showed a general declining tendency of the
wide-band SNR with the stimulus frequency, which is consistent
with the results of Liu et al..39 In general, the SNR-based analysis
confirms that thewearable EEG acquisition systemused in this study
effectively captured EEG signals with simplified preparation. How-
ever, there is no doubt that the quality of our signals is much worse
than that of datasets acquired under laboratory conditions.
Fig. 5. Relationship between the SNR and classification accuracy. The dashed lines are
linearly fitted on the data.
4.2. Online experiment

Table 2 presents the classification accuracy and ITR of the 15
participants in the online BCI experiment. Although the SNRs of the
wet and dry electrode signals were similar, the BCI performance
based on single-trial classification differed greatly between the wet
and dry electrodes. The average classification accuracy of the wet
electrode exceeded 90% and was 20% higher than that of the dry
electrode. The ITR of the wet electrode was 18 bits/min higher than
that of the dry electrode. The results of paired t-tests indicate that
the differences betweenwet and dry electrodes in accuracy and ITR
were significant (both p < 0.01). In addition, there were strong
individual differences between the wet and day electrodes. There
were eight participants for whom the accuracy difference between
wet and dry electrodes was less than 10% (proportion: 53%)
whereas there were four participants for whom the accuracy dif-
ference was 50% or greater (proportion: 27%).

The relationship between the SNR and classification accuracy for
the present fast-setup SSVEP-BCI system is exploredusing the results
presented in Fig. 4 and Table 1. The relationship is shown in Fig. 5,
which is a scatter plot of the SNR versus the ITR for the wet and dry
electrodes. Although the scatter distribution for the wet electrode is
different fromthat for thedryelectrode, theirfitted lines indicate that
theaccuracyof the twoelectrodeswasgenerally positivelycorrelated
with the SNR. For the wet electrode, the Pearson correlation coeffi-
cient between the SNR and accuracy is r ¼ 0.501 with p ¼ 0.057,
indicating an insignificant positive correlation between them.
However, there is significant positive correlation between the SNR
and accuracy for the dry electrode (r ¼ 0.738, p ¼ 0.002). Further-
more, the relationship between the SNR difference and accuracy
difference of the two electrode signals for each participant is shown
in Fig. 6. In this fast-setup BCI, the SNR of the dry electrode signal is
even better than that of the wet electrode signal for some
Table 2
Accuracy and ITR of the 15 participants in the online BCI experiment.

Participant Wet electrode Dry electrode

Accuracy (%) ITR (bits/min) Accuracy (%) ITR (bits/min)

S1 99.50 63.14 96.50 59.53
S2 91.00 53.11 74.50 38.22
S3 99.50 63.14 23.00 5.86
S4 99.50 63.14 96.00 58.67
S5 100.00 63.86 95.00 57.55
S6 92.00 54.63 36.50 12.47
S7 95.50 57.90 62.50 29.03
S8 97.00 59.78 97.00 60.03
S9 100.00 63.86 96.50 59.43
S10 99.00 62.42 97.00 59.82
S11 86.00 48.18 36.00 12.03
S12 96.00 58.50 87.50 49.67
S13 88.00 49.70 82.00 44.35
S14 81.00 43.66 24.00 6.30
S15 61.00 27.64 30.00 9.02

Mean ± SD 92.33 ± 10.46 55.51 ± 10.02 71.71 ± 29.42 37.46 ± 22.60

Fig. 6. Relationship between the SNR difference and accuracy difference between wet
and dry electrode signals for each participant. The SNR difference is the SNR of the wet
electrode signal minus that of the dry electrode signal, and the accuracy difference is
the classification accuracy of the wet electrode signal minus that of the dry electrode
signal.
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participants. However, the accuracy of the wet electrode signal ex-
ceeds that of the dry electrode signal for almost all participants. The
Pearson correlation coefficient between the SNR difference and the
accuracy difference is r ¼ 0.312 with p ¼ 0.258, indicating that the
two variables have low correlation without significance.
4.3. Offline analysis

To further determine the capability of the fast-setup SSVEP-BCI
system, the classification performance of OACCA was evaluated in
offline analysis. FBCCA, which is a commonly used training-free
algorithm for SSVEP identification, was adopted for comparison.



Fig. 7. Classification accuracy of the OACCA and FBCCA across all participants on different channels with different data lengths (from 0.6 to 3 s with intervals of 0.2 s) for (A) wet
electrodes and (B) dry electrodes. The error bars denote the SD.
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Fig. 7 presents the average accuracy of these two algorithms on the
wet and dry electrode data and Fig. 8 presents the ITR. As the data
length increases, the algorithm accuracy increases, reaching a
maximumvalue at 3 s (wet: OACCA/eight channels: 92.33%, OACCA/
three channels: 83.77%, OACCA/one channel: 54.23%, FBCCA/eight
channels: 86.93%, FBCCA/three channels: 70.70%, OACCA/one
channel: 43.17%; dry: OACCA/eight channels: 71.71%, OACCA/three
channels: 54.30%, OACCA/one channel: 39.73%, FBCCA/eight chan-
nels: 65.97%, FBCCA/three channels: 43.07%, OACCA/one channel:
30.87%). The highest ITR in different cases is achieved at different
data lengths (wet: OACCA/eight channels: 138.89 bits/min at 1.0 s,
OACCA/three channels: 81.78 bits/min at 1.8 s, OACCA/one channel:
39.22 bits/min at 2.8 s, FBCCA/eight channels: 78.25 bits/min at 1.8
s, FBCCA/three channels: 53.21 bits/min at 2.8 s, FBCCA/one chan-
nel: 27.53 bits/min at 3.0 s; dry: OACCA/eight channels: 70.59 bits/
min at 1.2 s, OACCA/three channels: 40.65 bits/min at 1.8 s, OACCA/
one channel: 25.38 bits/min at 2.8 s, FBCCA/eight channels: 47.54
bits/min at 3.0 s, FBCCA/three channels: 26.21 bits/min at 3.0 s,
FBCCA/one channel: 16.74 bits/min at 3.0 s). It is impressive that
OACCA outperforms FBCCA under all conditions.

Undoubtedly, as the number of channels decreases, the perfor-
mance of SSVEP decoding algorithms generally becomes worse. An
interesting finding from Figs. 7 and 8 is that for the wet electrode,
the performance of OACCA on three channels is almost the same as
Fig. 8. ITR of the OACCA and FBCCA across all participants on different channels with differ
electrodes. A gaze shift time of 0.55 s was included in the calculation of ITR. The error bar
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that of FBCCA on eight channels. For dry electrodes, the perfor-
mances of OACCA on three channels and FBCCA on eight channels
are similar, as are OACCA on one channel and FBCCA on three
channels. Clearly, compared with the adoption of FBCCA, the
adoption of OACCA helps to reduce the number of electrodes used
in the BCI system, thereby enhancing system practicability.

Fig. 8 shows that the fast-setup system has a maximum ITR at
1.0 s with the eight-channel wet electrode after averaging across
the 15 participants, but this value may not represent the potential
optimal performance of the system, as the data length corre-
sponding to the highest ITR is different for each participant. To
explore the optimal performance of this BCI system, the highest ITR
of each participant was selected by averaging the ITR values by
block. The highest ITR was then averaged across all participants. A
paired t-test was conducted to evaluate the pairwise difference
among different electrode configurations (the type of electrode and
the number of channel). The result is shown in Fig. 9. It is clear that
the eight-channel wet electrode performs best, far outperforming
other solutions. The second-best solution is the three-channel wet
electrode. The average best ITR of the three-channel wet electrode
seems to be larger than that of the eight-channel dry electrode, but
the t-test shows that the difference is not significant. Another
comparison without a significant difference is that between the
one-channel wet electrode and the three-channel dry electrode.
ent data lengths (from 0.6 to 3 s in intervals of 0.2 s) for (A) wet electrodes and (B) dry
s denote the SD.



Fig. 9. Average of the highest ITR for 15 participants under different electrode con-
figurations. The significance of the difference between two configurations is marked by
ns (p � 0.05), * (p < 0.05), ** (p < 0.01), or *** (p < 0.001).
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Therefore, fewer wet electrodes than dry electrodes are required for
the same or similar classification performance of the BCI system.
5. Discussion

This study presented a fast-setup SSVEP-BCI, which was
equipped with a miniature, wireless EEG device and an advanced
decoding algorithm to achievemulti-target identification. The basis
for the rapid BCI setup was a portable EEG device. Consumer-grade
EEG collectors have been used to simplify operation and reduce
costs in previous studies. Compared with Liu et al.’s study,41 in
which Emotive EPOC was used, and Dilshad et al.’s study,42 in
which an OpenBCI device was used, the present study has an
overwhelming advantage in terms of ITR, which may be due to the
fact that the signal quality and decoding algorithm in other studies
were not as good as those in the present study. When consumer-
grade devices are set up normally and work with low electrode
impedance, the waveforms they collect can be close to those of
research-grade devices.43,44 However, in terms of system setup,
they generally take several minutes or even longer than 10 minutes
to set up.45,46 In addition, these devices are sensitive to environ-
mental interference,46 making them less suitable for quick setup, as
this operation likely leads to unstable connections and thus
experimental failure. In this study, such failures did not occur,
indicating that all components of the BCI system worked normally
during the experiment.

Compared with conventional BCI experiments, the system setup
time in this study was substantially reduced. In particular, taking
the results of Gargiulo et al.’s study20 as a reference, the preparation
time was shortened, especially when using the wet electrode. Ac-
cording to Huggins et al.’s survey, the ideal setup time for a BCI for
clinical use was less than 10 minutes, but when the setup time was
greater than 20 minutes, the proportion of respondents willing to
use a BCI dropped to 74%.18 It is clear that simplicity of the system
setup is an important factor of user willingness to use a system in
clinical BCI applications. There is no doubt that when using the fast-
setup BCI, the system setup is no longer a factor affecting the pa-
tient willingness to use the BCI.

In this study, the BCI setup was accelerated by eliminating elec-
trode impedance monitoring. Consequently, the signal quality was
worse than that obtained under normal experimental procedures.
Thewide-band SNRs of thewet and dry electrodes were comparable
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in this study (wet: �16.12 ± 0.74 dB; dry: �16.13 ± 0.90 dB), both
being significantly lower than the SNR of the benchmark dataset
(�12.19 ± 0.64 dB). It is noted that the SNR of the benchmark
database calculated in this study is slightly different from the value
given by Liu et al.,39 owing to the difference in the calculation details
in the two studies. In addition, a large standard deviation of the SNR
demonstrates an appreciable fluctuation in the signal quality in this
study, whichmay be due to large inter-individual differences caused
by unstable and non-robust contact between the electrodes and
scalp under fast-setup operation. Nonetheless, with an advanced
decoding algorithm, this system still has good BCI performance. The
results show that OACCA outperforms the classic FBCCA in this
study. InWong et al.’s study,34 OACCA outperformed FBCCA on three
datasets collected under normal conditions. The present study
confirmed that OACCA performs well even for lower signal quality.
The performance of the fast-setup BCI system in this study (40 tar-
gets, eight channels) is even better than that of FBCCA on the BETA
dataset (40 targets, nine channels)39 and that of FBCCA on a
benchmark dataset (40 targets, nine channels),40 where wet elec-
trodes were used to collect data for each dataset. This confirms that
the advantage of the algorithm covers the shortcoming of poor
signals to a certain extent and thus enables a quickly setup BCI
system to perform similarly to conventionally setup BCI systems,
enhancing the usability of the quickly setup BCI system in real-life
applications. In surveys conducted for patients with neurological
injuries, all patients were satisfied when the BCI achieved an output
of 25 letters per minute.18,19 In the present study, the accuracy of
OACCA on the eight-channel wet electrode signal with a length of 1 s
was 72.53%. Considering the gaze time of 0.55 s, it is inferred that the
spelling system based on the fast-setup BCI correctly outputs 28
characters in 1 minute, which exceeds the expectation of patients.
Therefore, this SSVEP-BCI system would be well accepted and have
high application potential in clinical practice. A study that only
focused on thewearing comfort of EEG electrodeswithout analyzing
signal quality found that there was no significant difference in
preparation time between experienced therapists and inexperi-
enced relatives in helping stroke patients put on the electrode
headset.47 The time required for patients to put on the headset in
that study was close to the system setup time in this study. We
believe that the current BCI system will work well when used at
home by patients, as long as there is a relative or caregiver to help
with mounting the headset. Overall, the fast-setup SSVEP-BCI meets
the needs of patients in terms of both system setup and BCI
performance.

Both dry and wet electrodes were evaluated in the rapid setup
BCI. A dry electrode has clear advantages in system setup, whereas
a wet electrode seems to be more popular in terms of comfort. In
this study, although the wide-band SNR of the wet electrode signal
was numerically close to that of the dry electrode signal, the ac-
curacy of the wet electrode signal was better than that of the dry
electrode signal. A positive correlation is generally observed be-
tween the SNR and classification accuracy of an SSVEP-BCI.48

Similarly, there was a positive correlation between the SNR and
accuracy for both thewet and dry electrodes in this study. However,
the correlation was not necessarily significant, which is similar to
the results of Jiang et al.49 The significant relationship between the
SNR and accuracy may depend on the data collected. The results
indicate that, for the same electrode, higher accuracy generally
corresponds to a higher SNR. However, for different electrodes,
there seems to be no strong correlation between the SNR and ac-
curacy. This may be due to the different characteristics of the sig-
nals from different electrodes caused by non-robust contact
between the electrodes and scalp under a fast setup. In fact, even
though the EEG signals collected by some portable devices are close
in shape to those collected by professional devices, the
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classification results are worse.43 In the case of the fast-setup BCI,
the signals collected by both dry and wet electrodes are mixed with
a lot of noise, making their SNR values similar. However, the dis-
tribution of noise in signals may differ for different electrodes,
leading to differences in classification accuracy. Therefore, the SNR
is found not to strongly relate to the accuracy of the fast-setup BCI.

In real-life applications, a reasonable electrode configuration
can help improve the practicality of the BCI. In this study, among
the six electrode configurations involving the type and number, the
eight-channel wet electrode naturally performed best. It is known
that the BCI performance of a wet electrode is generally better than
that of a dry electrode, and the BCI performance is positively related
to the number of channels. It was found in this study that there was
no significant difference in the highest ITR between the three-
channel wet electrode and the eight-channel dry electrode or be-
tween the one-channel wet electrode and the three-channel dry
electrode. It seems that, when using dry electrodes for EEG acqui-
sition, the difference in signal quality between dry and wet elec-
trodes is compensated to a certain extent by increasing the number
of electrodes. Moreover, for a 40-target BCI, accurate discrimination
based on few-channel electrodes (one or three channels) may be
hard to achieve, especially when using dry electrodes. However,
when using a BCI to control external devices, it is appropriate to use
three-channel or single-channel electrodes owing to the relatively
small number of commands required for output. The use of fewer
electrodes means a shorter system preparation time. Moreover,
reducing the number of channels lowers the requirements for
amplifier channels and reduces the hardware cost. Taking into ac-
count experimental preparation, system performance and user
experience, the solutions of few-channel wet electrodes and multi-
channel dry electrodes are suitable for an SSVEP-BCI in real appli-
cation. It is believed that this electrode configuration strategy,
combinedwith simplified system operation, canmake the BCImore
readily accepted and used by patients.

A number of clinical studies have provided evidence that a BCI
helps patients with neural rehabilitation and communication with
the outside world. In the SSVEP paradigm, the BCI is frequently
developed as a communication tool owing to its high ITR and sup-
port for rich command output. The BCI is of great help to patients
who cannot communicate normally. A BCI allows them to express
their thoughts independently, thereby improving their quality of
life. Furthermore, the repeated use of a BCI improves the damaged
neurological function to a certain extent.6 In neural rehabilitation, an
SSVEP-BCI enhances the ability of impaired extremities by inducing
neural plasticity and repairing the motor nerve pathway.50 Com-
bined with the use of an SSVEP-BCI, conventional treatments, such
as the adoption of rehabilitation robots and functional electrical
stimulation, can be developed into a more effective neural rehabil-
itation for severe neurological injuries. Obviously, if patients use a
BCI daily, there will be a positive effect on their recovery of body
functions. As the fast-setup BCI in this study helps reduce barriers
that currently hinder patients fromusing a BCI, we believe that it can
play a role in facilitating neural restoration in patients.

There are limitations to the present study. Although the quick
setup in this study can reduce the preparation time for BCI exper-
iments, hair must be cleaned afterward when a wet electrode is
used, which takes some time. Moreover, several participants re-
ported that the comfort of the dry electrodes was not as good as
that of the wet electrodes as the dry electrodes used in this study
had a hard body with fingers that pushed apart the hair to make
contact with the scalp. Complaints about the discomfort of this dry
electrode was also made by stroke patients in Jochumsen et al.’s
study.47 With the development of materials and manufacturing
technology, various dry electrodes have been developed.51 Among
them, some products, such as a dry electrode fabricated from
9

flexible conductive polymer52 and a semi-dry electrode comprising
an Ag/AgCl base and hydrogel probe,53 would have advantages in
terms of comfort. It is claimed that these electrodes perform well
under normal preparationprocedures, but their performance under
a simplified setup is unclear. Our future work will be to test other
dry electrodes in evaluating their suitability for a fast-setup BCI
based in terms of BCI performance and wearing comfort.

6. Conclusions

In this study, a wearable SSVEP-BCI system with a lightweight
headset andhigh-performance training-freedecoding algorithmwas
proposed, and the effect of simplifying the system setup on the
performance of thiswearable SSVEP-BCIwas investigated. Compared
with preparation times in conventional BCI experiments, the prep-
aration time of the fast-setup BCI was greatly shortened. Although
the EEG signal quality declined, the BCI achieved good classification
owing to the use of the advanced OACCA algorithm. The fast-setup
BCI had a performance similar to that of a BCI in conventional ex-
periments and thusmeets the needs of patients. The performances of
wet and dry electrodes in the fast-setup BCI were compared in this
study. It is believed that the solutions of a multi-channel dry elec-
trode and a few-channel wet electrode are suitable for the fast-setup
SSEVP-BCI, in terms of the simplicity of operation and BCI perfor-
mance. Overall, the fast-setup BCI system has the advantages of
strong wearability, simple preparation, and stable performance and
is thus conducive to improving the neurological function and quality
of life of patients using a BCI in clinical practice and daily life.
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