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P2P trading of heat and power via a continuous double auction 
Timothy D. Hutty , Solomon Brown * 

Department of Chemical and Biological Engineering, University of Sheffield, UK   

H I G H L I G H T S  

• Simulation of peer-to-peer (P2P) energy trading via a continuous double auction 
• Heat and power both considered, with fuel cells and heat pumps coupling these 
• Auction format allows flexible devices to plan schedules in advance 
• With electricity trading, higher load factor for fuel cells, cuts reliance on grid 
• Heat trading brings extra technical benefits though cost savings are not certain  

A R T I C L E  I N F O   
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A B S T R A C T   

Peer-to-peer (P2P) energy trading, whereby customers can trade energy with one another rather than the energy 
supplier only, has the potential to save money for consumers whilst also incentivising more efficient and envi-
ronmentally beneficial behaviour. Many existing models for P2P only consider a real-time or hour-ahead market, 
which does not allow proper scope for the planning of flexible demand or for energy storage. Accordingly, in this 
model we employ a day-ahead continuous double auction (CDA), in which all the upcoming timeslots are 
simultaneously open for trading. This allows schedules for device dispatch to be developed properly. We consider 
the flexibility and interdependence of bidding across different timeslots and develop strategies to address this. 
Furthermore, we consider the trade of heat as well as power, via a low temperature heat network. Heat and 
power trading interact due to the use of air source heat pumps (ASHPs) as well as reversible solid oxide cells 
(rSOCs), which can provide combined heat and power, or alternatively produce hydrogen via water electrolysis. 
In our case study, the P2P market is simulated with 25 houses participating, for two week-long periods in 
different climate conditions. P2P electricity trading is found to bring a marked reduction in reliance on grid 
electricity, and a reduction in peak grid load. This is brought about mainly by the incentive for rSOCs to generate 
at a higher average load factor, and the average house makes savings of ca. £10 / week in winter weather. Heat 
trading brings a further decrease in reliance on grid electricity, and largely eliminates the use of inefficient 
resistive heat. However, the heat trading may not be financially worthwhile in all conditions.   

1. Introduction 

As the world seeks to decarbonise its energy systems, some of the 
changes will be seen at a local and household level. These changes will 
be felt across the key sectors of power, transport and heat. They include 
the growth of embedded generation, both solar PV and combined heat 
and power (CHP) systems [1], the proliferation of electric vehicles (EVs) 
[2], and the decarbonisation of heating systems. Peer-to-peer (P2P) 
energy trading, whereby consumers are able to trade energy with one 
another, rather than the energy supplier only, can help to incentivise the 

efficient use of these new technologies [3,4]. For instance, P2P can 
incentivise the synchronisation of flexible loads with surpluses in 
renewable generation; a simple example of this is the scheduling of EV 
charging to make use of a peer’s surplus solar power. The net effect is 
increased local self-sufficiency in energy, decreased environmental 
impact and a reduction in bills [4]. Although market regulations in many 
countries do not yet support P2P trading, interest is growing, with 
companies including Centrica and EDF carrying out trial schemes in 
recent years [5,6]. 

A continuous double auction (CDA) is a particularly interesting 
structure for a P2P market, since it closely resembles the continuous 
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trading that takes place, for instance, in stock and currency markets - as 
well as wholesale electricity markets such as the UK intraday markets. In 
a CDA, buyers and sellers are both in direct competition, and this 
competition drives the variation in the energy price. Previous work on 
CDA has generally assumed, with only rare exceptions [7,8], that only a 
single timeslot of energy exchange is open for trading at any one time, 
for instance in an hour-ahead fashion. A more versatile model allows 
trading in all future timeslots up to a certain horizon; this allows 
scheduling of flexible devices and energy stores to be developed, since 
P2P bids for these devices introduce interdependence between the 
timeslots of the market. In this work, we introduce a day-ahead CDA 
where energy trading proceeds in all 24 upcoming timeslots simulta-
neously, and we present an agent-based model for such a market. 

Decarbonisation of heat, which is often neglected in studies of P2P 
trading, can lead to additional motivations to trade energy [9,10]. For 
instance, air source heat pumps (ASHPs) can make use of peer’s surplus 
electricity generation, storing heat either in the fabric of buildings or in 
dedicated thermal storage. Meanwhile, CHP systems which typically 
produce heat and power in a fixed ratio [11], can benefit by exporting 
surplus power to peers while tracking heat demand. The possibility of 
local trading in heat between peers, rather than power only, has received 
a limited amount of attention in the literature. Such trading requires 
connection to a heat network, likely operating at a moderate tempera-
ture [10]. In theory, this enables the extra flexibility to procure heat 

from different sources, depending on what is most cost-effective at a 
given time, achieving additional savings. Accordingly, the CDA model 
introduced in this work allows for trading in heat as well as electricity. 

2. Literature review 

2.1. P2P trading and double auctions 

By enabling peers to trade with one another, rather than the energy 
supplier, P2P trading can be advantageous for both consumers and 
generators (often termed ‘prosumers’); for electricity, trades agreed at 
prices between the grid retail cost and the feed-in tariff (if any) are 
profitable to both parties [12]. Even in the absence of flexible demand, 
generation or energy storage, P2P can be profitable, as it simply provides 
fairer recompense for energy that would be physically shared anyway – 

as in [13]. The real power of P2P, however, lies in its ability to incen-
tivise smart coordination of flexible devices between peers, where these 
incentives do not exist under the traditional market paradigm. For 
instance, this can include the scheduling of a flexible load, or energy 
storage, to absorb surplus solar generation from a peer [3,14]. It is this 
aspect of P2P which can bring technical and environmental benefits, 
rather than financial only [4]. 

P2P energy trading can encompass a range of market designs. It is 
important to note that P2P can encompass markets where trading is fully 

Nomenclature and terminology. 

Acronyms 
ASHP Air source heat pump 
CDA Continuous double auction 
CHP Combined heat and power 
COP Coefficient of performance (of heat pump) 
EV Electric vehicle 
G_ONLY Market paradigm where only grid trade of electricity is 

available. 
LHV Lower heating value 
MILP Mixed integer linear programming 
P2P Peer-to-peer 
P2P_P Peer-to-peer market allowing trading of electrical power 

only 
P2P_H_P Peer-to-peer market allowing trading of both heat and 

power 
rSOC Reversible solid oxide cell 
SOEC Solid oxide electrolyser cell [mode of rSOC] 
SOFC Solid oxide fuel cell [mode of rSOC] 
TES Thermal energy storage 
TR Truthful [bidder] 
V2X; V2H; V2G Vehicle to anything; vehicle to house; vehicle to grid 
ZI[P] Zero intelligence [plus] 
Symbols 
Symbol (Unit) Description 
t (–) Timeslot, typically in {1…24} 
tlast (–) Final timeslot, typically 24. 
Δt (s) Duration of a timeslot. 
b (–) Binary variable 
vV2X (£/kWh) Estimated financial benefit of 1 kWh charged to the 

EV battery for V2X. 
C (kWh/K) Heat capacity 
CEV (kWh) Capacity of EV battery 
cV2X (£/kWh) Estimated cost of discharging 1 kWh from the EV 

battery for V2X. 
crapid (£/kWh) Cost of rapid charging. 

D Set of devices owned by auction participant 
p (£/kWh £/kg) Price; £ / kWh for energy, £ / kg for H2. 
pcl (£/kWh) Clearing price for double auction 
H (kWh) Thermal energy 
H2 (kg) Hydrogen 
K (kW/K) Thermal transfer coefficient 
E (kWh) Electrical energy 
Emin final (kWh) Minimum kWh for the final storage state of the EV 

battery. 
P (kW) Power 
PEN (£) Penalty term in objective function 
T (◦C) Temperature 
VAL (£) Valuation of a device’s stored energy 
ηinv Efficiency of inverter 
ηSOFC (kWh/kgH2) For rSOC in SOFC mode, kWh electricity 

generated per kg H2. 
ηSOFCth (kWhth/kgH2) For rSOC in SOFC mode, kWh heat generated 

per kg H2. 
ηSOEC (kWh/kgH2) For rSOC in SOEC mode, kWh electricity 

consumed per kg H2. 
Subscripts 
buy Energy to buy via future trades 
sell Energy to sell via future trades 
bought Energy already bought via successful offers 
sold Energy already sold via successful asks 
imp Imported 
exp Exported 
cl Cleared in auction 
P2P peer-to-peer 
res reserve price 
rh resistive heat 
st energy storage 
tes Thermal energy storage 
grid_retail Grid retail tariff for electricity import 
grid_FI Grid feed-in tariff for electricity export  
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bilateral between peers, and also markets where peers trade via a cen-
tralised market mechanism. For instance, real-life schemes such as the 
Brooklyn microgrid have employed auction markets similar to utility 
power markets [15]; whereas pilot P2P projects such as those by EDF 
and Centrica have employed Blockchain or similar technologies to 
enable the market to be processed in a distributed fashion [5,6]. Some 
schemes have taken a very simple pricing approach with a constant P2P 
tariff for trading, e.g. [16]; these schemes are designed predominantly 
for the sale of PV power and may not be suitable for a future scenario 
with a more complex mix of generation and flexibility. 

Existing literature on P2P includes both a variety of market struc-
tures, and a variety of approaches to their simulation and study. In some 
cases, flexible devices and energy sharing transactions are optimised 
centrally [17–19] although for real-world implementations this would 
often be unviable, due to the computational burden as well as concerns 
surrounding the privacy and autonomy of peers [8]. Central optimisa-
tion methods can be re-posed as distributed optimisation problems, with 
the alternating method of mixed multipliers (ADMM) a popular 
approach, as in [20]. Game theoretic approaches are frequently seen, as 
in [21–25]; and many researchers have considered various forms of 
iterative market, where peers repeatedly adjust their strategies on the 
basis of feedback from the previous iteration, until convergence is 
achieved [3,4,26,27]. 

In this work the focus is on a double auction as the basis of the P2P 
market; this is an auction where buyers and sellers of a commodity are 
simultaneously in competition. One of the merits of this approach is the 
analogy with the operation of utility scale markets [28], as well as 
existing P2P schemes like the Brooklyn microgrid [13]. Participants 
submit bids to buy or sell consisting of a volume of energy and a reserve 
price; an equilibrium price is established and as many trades are cleared 
as possible. There is a symmetry between buyers and sellers which is 
absent from single-sided auctions or fixed price schemes. The clearing of 
the market may be one-off, as in [21], or may happen on a rolling basis 
as in [29,30]; the latter case is termed a continuous double auction 
(CDA). CDA has the advantage of avoiding the need for sophisticated 
price forecasting, as prices can be discovered in real time as the auction 
proceeds; small quantities of energy can be traded initially to elicit in-
formation from other traders [31,32]. 

There is a reasonable amount of previous work on double auctions 
for P2P energy trading, covering such issues as secure, distributed 
implementation [33], use of Blockchain [30], and comparison of price 
setting strategies [13]. Chen et al. [34] used a data-driven machine 
learning method to integrate price predictions with the strategy for-
mation of auction participants in a CDA electricity market; the focus 
here was on the benefits to the single prosumer using the machine 
learning method, rather than the benefits of the market overall. Thakur 
et al. [35] consider a novel distributed double auction market in which 
any peer can act as the auctioneer; the focus here is on the reduction of 
computational overhead via use of the distributed algorithm, and flex-
ible load / generation appears not to have been considered. Haggi et al. 
[36] consider a hierarchical double auction, with nodal, zonal and dis-
tribution network stages. The auction mechanism is able to ensure that 
physical network constraints are not violated; again, flexible load / 
generation is not considered, and only one timeslot is settled at a time. 
Zhang et al. [31] present an iterated double auction wherein agents may 
adjust their prices to increase profits with successive rounds; again, 
flexible loads and forward trading are not considered. 

2.2. Flexible devices 

The inclusion of flexible devices / energy storage in P2P markets 
brings particular challenges, owing to the coupling that these devices 
introduce between different timeslots. For instance, a battery may seek 
to buy additional energy at 12 pm, contingent on being able to sell this 
energy at 7 pm; an EV may prefer to charge at 6 pm unless cheaper en-
ergy will be available at 11 pm. El-Baz et al. [8] note that these issues 

mean that the real-time or hour-ahead trading most commonly seen in 
literature is not adequate when flexible devices and energy storage are 
involved. It is important that multiple timeslots of an upcoming day are 
simultaneously available for trading. 

For a one-off, sealed-bid auction (such as the day-ahead utility scale 
markets for electricity) some of these issues can be addressed by sub-
mitting details of flexibility to the market operator. Zhang et al. [37] use 
such an approach, with shiftable / adjustable loads (including EVs) 
sending information on flexibility to the market operator, which then 
matches loads to PV generation. Similarly, utility day-ahead markets can 
allow for complex bids which encode flexibility information: these 
include linked block orders, flexible hourly orders and exclusive block 
orders [28]. In this case, the complex task of scheduling flexible loads is 
passed to the market operator, and the auction-clearing mechanism 
(which runs only once) may have to be rather complex, and may 
resemble global optimisation of the system. 

By contrast, continuous trading cannot typically allow for complex 
bids, as only a few bids are typically being matched at one time, and the 
auction clearing mechanism must run many times. Instead, the problems 
of flexibility and interdependence between bids at different times must 
be addressed by the strategies of bidders as they engage in trading. 
Typically, bidders will acquire (or sell) energy gradually over the 
duration of the auction, and may revise strategies repeatedly in response 
to the evolving situation on the market. As noted in [32], the incre-
mental trading of small quantities of energy can assist with discovering 
prices and forming strategies. Whilst the majority of auction models for 
P2P energy trading have energy traded in only one timeslot at a time (e. 
g. [10,20,24,25,31,34]–[36,38]) El-Baz et al. [8] present a rare double 
auction model in which agents can engage in forward trading in any of 
the upcoming timeslots, up to gate closure. The model in this present 
work is constructed on a similar basis. An important addition in this 
work is the allowance for arbitrage and consideration of arbitrage bid-
ding strategies (whereas in [8] energy storage devices are used only to 
buffer the demand, or as a backup to ensure the trading position can be 
met). The addition of a second energy vector (heat) in the model adds 
further complexity to bidding strategies owing to interdependence be-
tween the desired quantity and price for heat and power bids. 

2.3. Heat and power 

The consideration of heat in studies of P2P energy trading can take 
two forms. Firstly, without actual trading of heat, but with consideration 
of household devices that couple electricity and heat demand: that is, 
principally heat pumps or CHP. Secondly, with P2P trading of heat as 
well as power. In the first category, Gan et al. [39] considered P2P 
electricity trading between multiple energy ‘hubs’ equipped with 200 
kW CHP generators; an increase in profits of up to 19% was obtained. 
Zhu et al. [9] studied synergies between power, heat and hydrogen 
energy flows, with only power traded; P2P trading and hydrogen storage 
were both found to be important in cutting costs. The work of Nguyen 
et al. [20] is particularly relevant to the present work, as it involves P2P 
power trading between fuel cells providing CHP. The motivation to trade 
stemmed partly from the variable efficiency of the fuel cell at different 
partial loads. Heat from the fuel cells was used for DHW tanks – this 
system was the sole flexible device involved in the trading. Detailed 
consideration of bill savings was not included. 

Trading of heat in DHNs has received somewhat less attention than 
the equivalent for electricity. One reason for this is that heat networks in 
many countries are vertically integrated, with the network itself owned 
by the same entity as the main heat generation; these networks thus form 
natural monopolies, and competitive markets have no applicability 
[40]. Government regulation is typically needed in order to ensure that 
consumers are not exploited by the monopoly owner [41]. Conversely, 
liberalisation of market regulation requires that there is competition on 
the heat side of the market, as demonstrated by experience in Sweden 
[41]. 4th generation DHNs operating at lower flow temperatures may 
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help to diversify the supply side and help to motivate new market 
structures [42]. 

In the second category, Davoudi et al. [7] considered a trading of 
both heat and power, albeit with the price for heat assumed to be fixed 
and constant. An iterative approach was employed where peers had the 
ability to form both fixed-price and variable-price contracts. The P2P 
market was found to be profitable with respect to grid trading. Shi et al. 
[43] studied an integrated energy system with trading in heat, power 
and hydrogen. ADMM was used to optimise transactions between peers, 
and it was found that P2P together with a demand response programme 
was more profitable than either in isolation. Jing et al. [44] considered 
the trading of heat and power between commercial and residential 
prosumers, with an emphasis on finding fair prices for transactions – 

although they do not appear to have allowed the P2P prices to vary 
across timeslots. Daryan et al. [45] consider trading of heat and power 
between Smart Energy Hubs; the settlement of trading is broken down 
into optimisation of the trades which should take place, followed by 
identification of fair prices to incentivise these trades; the total social 
cost sees a 14% reduction. Block et al. [46] contrived a two-dimensional 
auction for heat and power, allowing for dependency between bids in 
the two energy types. Finally, Wang et al. [10] employed coalition game 
theory to study a double auction market for heat and power. Trading 
was motivated by slightly undersized heat pumps in dwellings, the 
varying COPs of these, and varying willingness to compromise on 
comfort. 

2.4. Contribution of this work 

In this work, we consider a CDA for P2P trading of both power and 
heat in a small residential community. The CDA is chosen as one of the 
most simple, generic and flexible forms of market [34], and because of 
its resemblance to utility scale markets. A separate double auction is 
provided for each timeslot of the upcoming day, and trading takes place 
in all timeslots simultaneously. This is in contrast to the majority of 
comparable literature on double auction for P2P: for instance references 
[10,20,24,25,31,34]–[36,38] all have auctions that operate one timeslot 

at a time, to the exclusion of forward trading (see Table 1). Of all extant 
work, the CDA markets proposed by El-Baz et al. [8] and Davoudi et al. 
[7] resemble the current work most closely; this work differs in certain 
important ways: the inclusion of strategies for arbitrage, and the inclu-
sion of multiple energy markets (heat and power). In particular, this 
work addresses the interdependence between bids in the market, for 
instance to charge and discharge storage, as well as the flexibility to 
spread bids across more timeslots than ultimately required, aspects 
which are not included in [8] [7]. Furthermore, pricing in this model is 
fully competitive, contrasting the fixed heat prices of [7]. 

Our approach is fundamentally an agent-based one, with the bidders 
in the market being the main agents. As noted by Schimeczek et al. [47], 
agent-based models provide an approach to the analysis of energy 
markets which is less idealised (than optimisation models, for instance) 
and can capture sub-optimal markets with sub-optimal behaviours and 
inhomogeneity between bidders. 

In summary, the present work addresses the following gaps:  

• A double auction model wherein energy is traded simultaneously in 
all upcoming timeslots, allowing flexible devices and energy storage 
to engage in forward trading to develop schedules ahead of time.  

• Strategies for agents to address the flexibility of their bidding, and 
the potential interdependence between bids, including for arbitrage 
applications.  

• CDA markets for both heat and power, interacting via ASHP and 
reversible solid oxide cell (rSOC) devices. 

The remainder of this document is structured as follows. In Section 3, 
the P2P CDA model is presented, including details of the proposed 
market mechanism, as well as the simulated bidding strategies of peers. 
In Section 4, results from the model are presented, showcasing the 
impact of the market on energy flows and techno-economic metrics. 
Discussion of the results may be found in Section 5 along with proposals 
for future work, and conclusions are drawn in Section 6. 

Table 1 
Summary of related literature.   

Market Modelling approach Features 
Reference P2P 

market 
Single- 
sided 
auction 

Double 
auction 

ABM Central 
optimisation 

Distributed 
optimisation 

Game 
theory 

Flexible 
devices 

Energy 
storage 

Forward 
trading 

Heat 
demand 

Heat 
trading 

Pricing 
strategy 

[45] ✓    ✓   ✓ ✓  ✓ ✓ optimised 
for fairness 

[43] ✓     ✓  ✓ ✓  ✓ ✓ fixed 
proportion 
of retail 
price 

[24] ✓      ✓  ✓    mid-market 
rate 

[22] ✓      ✓ ✓ ✓    (custom) 
[38] ✓      ✓ ✓ ✓  ✓   

[39] ✓      ✓ ✓ ✓  ✓   

[10] ✓   ✓    ✓   ✓ ✓  

[30] ✓  ✓ ✓          

[33] ✓  ✓ ✓         adaptive 
aggressive 

[35] ✓  ✓ ✓         fixed 
[36] ✓  ✓ ✓         ‘random’ 

[31] ✓  ✓ ✓         (custom) 
[34] ✓  ✓ ✓    ✓ ✓    ZI, bid-as- 

predicted 
[37] ✓ ✓   ✓   ✓ ✓  ✓  (custom) 
[8] ✓  ✓ ✓    ✓ ✓ ✓ ✓  (custom) 
[7] ✓   ✓    ✓ ✓ ✓ ✓ ✓ constant 

heat price 
current 

work 
✓  ✓ ✓    ✓ ✓ ✓ ✓ ✓ ZIP, truthful  

T.D. Hutty and S. Brown                                                                                                                                                                                                                      



Applied Energy 369 (2024) 123556

5

3. Method 

3.1. Overview 

The P2P energy market consists of a CDA for each timeslot of the 
upcoming day, and where applicable each energy type (electricity and 
heat). Fig. 1 gives a high-level overview of this, and a simplified view of 
household strategy. Trading takes place simultaneously for all upcoming 
timeslots, so that schedules for flexible devices and energy stores can be 
planned effectively. 

In principle, bidders could use arbitrary strategies to engage with the 
market. Here, bidding strategies are developed using a combination of 
(1) MILP optimisation, and (2) various rules that determine the prices 
submitted, and generate alternative bids or address possible interde-
pendence between bids. Strategies may be revised repeatedly as the 
rounds of the market continue, responding to changing price profiles 
and to the success/failure of trading so far. Essential issues that need to 
be considered include the following:  

• flexibility of bids in time  
• interdependence of bids between energy types (e.g. sale of both heat 

and power from the rSOC)  
• interdependence of bids between timeslots (as for energy storage 

charge and discharge) 

The CDA market structure does not allow ‘complex’ bids with 
inherent interdependence or flexibility in time, and so here, these issues 
have to be handled by the strategies of the bidders. To facilitate this, it is 
enforced that the auctions for different timeslots and energy types never 
clear simultaneously; thus, participants always have the opportunity to 
respond to their success or failure in a particular auction by adjusting 
bids in other auctions. 

The following conventions are adopted for terminology: Bid – any 
order whether to buy or sell energy. Offer – a bid to buy energy. Ask – a 
bid to sell energy. Timeslot – A future time period during which power 
is traded, typically half an hour or one hour in duration. Round – an 
iteration of the market wherein CDA’s are cleared for every timeslot for 
both heat and power. We define D to be the set of devices available to an 
auction participant. ‘Device’ is to be interpreted broadly, as for instance 
the inflexible electrical load of a house and the space heating demand 
are both regarded as ‘devices’. 

MILP optimisations are carried out using Pyomo [48] with the GLPK 
solver [49]; all other aspects of the market simulation are modelled in 
AnyLogic software [50]. 

3.2. Markets 

Offers and asks are not submitted to the auctions in truly continuous 
time, but rather in a sequence of rounds, similar to the markets in El-Baz 
et al. [8,51]. Multiple bids will typically arrive at each auction every 
round, after which the auction is cleared. The separate auctions for 
different timeslots clear in chronological order every round, with the 
auction for heat following the auction for power, for each timeslot, 
where applicable. Auction clearing entails ordering the offers in 
descending order of the submitted price, and the asks in ascending order. 
Offers are matched to asks until either the current ask price exceeds the 
current offer price, or there are no more asks to process, or there are no 
more offers to process. The clearing price pcl is midway between the 
price of the final ask and offer to be cleared. Typically, either the final 
offer or final ask is only partially fulfilled. The auctions implement a 
‘pay-as-cleared’ rule, meaning that all the cleared trades are transacted 
at the same price pcl. Fig. 2 illustrates how the auction is cleared, 
showing the supply / demand curves as a function of price, with the 
intersection of these curves giving the clearing price. 

3.3. Determination of bidding strategy 

A bidding strategy is defined as the full set of asks and offers that a 

Fig. 1. A simplified overview of the market structure and household strategisation process.  

Fig. 2. Illustrates how the clearing price is found when a double auction is 
resolved. Note that each vertical step corresponds to a bid. 
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participant wishes to submit, across all timeslots of the auction, incor-
porating both the quantities to trade and the reserve prices. Participants 
may theoretically update strategies at any time; for the purposes of this 
work, full strategy updates only take place between rounds, and in 
general only every few rounds. Smaller adjustments may be made more 
frequently; these adjustments typically arise from the interdependence 
of bids (see Section 3.3.4) – and could involve the activation / deacti-
vation / cancelling of bids, as well as adjustments to reserve prices. 

When the final round of auctions is completed, all households opti-
mise their devices one final time, with respect to the trades they have 
successfully closed. Grid prices are available for further trade of power; 
further trade of heat is not allowed, as a ‘utility’ heat provider is not 
considered. 

3.3.1. Categories of bid 
Bids are categorised according to the device that generated the bid 

and the intended use of the energy; categories are shown in Table 2. 

3.3.2. Price prediction 
For simplicity, the initial price prediction 
at the start of trading is equal to the mid-market rate halfway be-

tween grid retail and feed-in price. Initial heat price predictions are 
£0.10 / kWh or £0.08 / kWh, dependent on season, where this is based 
on experience running the model. A truer picture of prices emerges after 
a few rounds of bidding. Subsequent price predictions at each timeslot 
are the mean of the two most recent clearing prices. If no trading is 
occurring for the timeslot in question, the price predictions start to 
‘decay’ exponentially towards limiting prices given by top-of-book pri-
ces, if outstanding bids exist, or otherwise the utility prices. A decay 
constant of 0.22 is used based on experience. Note that in the absence of 
trading, price predictions can still improve if top-of-book prices 
improve. The price of hydrogen is considered fixed, at least over the one- 
day time horizon of an auction. 

3.3.3. Optimisation and internal auction 
A full update to bidding strategy employs MILP optimisation of a 

household’s energy flow, combined with rules to generate additional 
back-up bids. Decision variables for the MILP describe the load points for 
flexible devices and energy storage, as well as temperatures in the 
building and the TES; see the Appendix. 

Electricity purchased to charge the EV battery may be required either 
for essential travel, or for V2H / V2G, and this affects the valuation per 
kWh. To enable these bids to be separated, the optimiser runs twice, 
with V2X disabled the first time. 

For each timeslot t the MILP optimisation receives information on the 
energy that has already been traded, i.e. Ebought,t , Esold,t , Hbought,t, and 
Hsold,t , as well as the latest price forecasts for each timeslot. The opti-
miser calculates schedules for all devices and the amount of energy to be 
imported / exported. At each timeslot, the net energy required by the 
devices must balance with the energy already bought / sold, and the 
energy to be bought / sold in the future, as expressed in Eqs. 1–2. 
Esold,t − Ebought,t = −Esell,t +Ebuy,t +

∑

d∈D

(Egen,d,t − Econs,d,t
) (n. 1)  

Hsold,t −Hbought,t = −Hsell,t +Hbuy,t +
∑

d∈D

(Hgen,d,t −Hcons,d,t
) (n. 2) 

Note that the left-hand side of each equation consists of fixed pa-
rameters, whereas the right-hand side consists of non-negative decision 
variables. 

For simplicity, P2P trades that have previously been made are not 
reversed: i.e. participants do not sell / buy back energy that they have 
previously bought / sold. Thus, participants will never have both asks 
and offers agreed for the same energy type at the same timeslot. The 
exception is at the very end of the trading, when trade with the utility 
electricity supplier, at retail tariff, may be used to reverse P2P trades if 
wished. Accordingly, the following constraints apply: 
{ Ebought,t > 0 : Esell,t = 0

Esold,t > 0 : Ebuy,t = 0 3  

{Hbought,t > 0 : Hsell,t = 0
Hsold,t > 0 : Hbuy,t = 0 4. 

The objective function for the household optimisation is given as the 
net earnings, with the value attached to any energy stored at the close of 
the day, minus any penalty terms arising from individual device models. 
Note that this is expressed as a maximisation problem: 

obj =
∑

t

(
Esell,t • ppower,exp,t − Ebuy,t • ppower,imp,t

)

+
∑

t

(
Hsell,t • pheat,exp,t − Hbuy,t • pheat,imp,t

)

+pH2,exp
∑

t
H2sell,t − pH2,imp

∑

t
H2buy,t

+
∑

d∈D

VALd,tlast −
∑

d∈D

∑

t
PENd,t

5. 

The variables, constraints and penalty terms that describe the spe-
cific behaviour of each device d ∈ D are given in the Appendix. In 
practice, two sub-models give rise to penalty terms; the rSOC model 
introduces a penalty term for switching between modes, and the space 
heating model introduces penalties for any infringement of thermostat 
settings. 

The optimisation model is expressed in terms of net energy genera-
tion / consumption; thus it does not explicitly specify which devices in a 
house share energy with each other, nor which devices are assigned to 
use (supply) energy previously bought (sold) on the P2P market. How-
ever, for the assignment of reserve prices in the P2P market, it is 
necessary to allocate each P2P bid to a device, since the reserve prices 
for devices differ as shown in Table 3. Therefore, before bids are sub-
mitted to the P2P auctions, the devices in each household participate in 
an internal auction. Each device places offers for the amounts Econs,d,t and 
asks for the amounts Egen,d,t; these may be broken down into separate 
bids with differing reserve price. Prices submitted to the internal auction 
are always truthful (see Table 3). Additionally, the amounts Ebought,t and 
Esold,t enter the internal auction respectively as asks and offers; they are 
assigned respectively very low and very high prices, to ensure that they 
are cleared. The internal auctions are cleared in identical fashion to the 
P2P auction (see Section 3.2). Bids cleared in the internal auction are 
stamped with a nominal valuation that corresponds either to the current 
predicted P2P price (when the bid has been matched with another 

Table 2 
Categories of bids.  

Name Description 
Offers (power) 
INFLEXIBLE_LOAD Standard electrical load of the house, assumed inflexible 
EV_ESSENTIAL EV charging that is essential for travel. 
EV_ARBITRAGE EV charging for V2X, or to carry energy into the next day. 
ASHP_BUY Power required for the ASHP to meet the heat demand 
ASHP_FOR_TES Power required for the ASHP to charge thermal storage. 
ASHP_FOR_EXPORT Power required for the ASHP to export heat (P2P_H_P only) 
RESISTIVE_BUY Power for resistive heat 
RSOC_BUY Power required to run SOEC mode of the rSOC 
Asks (power) 
PV_EXPORT Exported solar PV power 
EV_V2X Power exported from the EV battery 
RSOC_SELL Power from SOFC mode of the rSOC 
Offers (heat) 
HEAT_DEMAND Heat required to meet household demand 
HEAT_FOR_TES Heat to charge thermal storage 
Asks (heat) 
HEAT_FROM_RSOC Heat from the rSOC 
HEAT_FROM_ASHP Heat from the ASHP 
HEAT_FROM_RH Heat from the resistive heater  
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household device) or, if matched with a previously successful P2P bid, 
the traded price of this bid. Bids not cleared in the internal auction 
proceed to the P2P auction. 

3.3.4. Interdependence of bids 
As has been already mentioned, bids to buy and sell energy can be 

interdependent in two ways. Firstly, in the heat and power market, there 
is interdependence between bids for the two types of energy. For the 
rSOC (in SOFC mode) to export both heat and power at a particular 
timeslot, it is fundamentally required that: 
ηSOFC • ηinv • ppower + ηSOFCth • pheat ≥ pH2 (n. 6) 

Where heat (power) from the rSOC is matched in the internal auc-
tion, the corresponding power (heat) can immediately be assigned a 
reserve price and sent to the P2P market. The P2P reserve price in this 
case is obtained by substituting the valuation assigned by the internal 
auction into Eq. 6. Where neither heat nor power are matched in the 
internal auction, so that both are to be sold to peers, the following 
approach is taken:  

1. The bulk of the energy for export is assigned a reserve price that 
guarantees a profit, i.e. pH2/ηSOFCth for heat and pH2/ηSOFC for power.  

2. Incremental amounts of heat / power corresponding to 10% of the 
rSOC capacity are assigned more aggressive reserve prices that still 
mutually satisfy Eq. 6.  

3. Whenever a P2P bid to sell rSOC heat or power is matched, the 
corresponding quantity of power / heat receives a new price ob-
tained by substituting the clearing price into Eq. 6.  

4. When the aggressively priced incremental amounts are matched, 
they are replaced, until there is no more capacity to sell, or the 
auction ends. 

For the ASHP to import power in order to export heat, it is required 
that: 
COP • pheat ≥ ppower (n. 7) 

This is addressed in a similar manner to the rSOC. Where power is to 
be imported in order to export heat, only 10% of the ASHP capacity is 
entered into the P2P electricity auction at one time. This is priced at 
COP • p̃heat where p̃heat is the predicted price to sell heat. 100% of the 
ASHP thermal capacity can be entered into the P2P heat market with a 
price of pgrid retail/COP, as the grid retail price is guaranteed to be avail-
able. If a bid to buy power is matched, the price of the corresponding 
heat can be updated as pcl/COP. Note that the incremental bidding of 
10% capacity prevents excessive purchase of electricity when the sale of 
corresponding heat may not be achieved. 

The second type of interdependence is between bids to charge and 
discharge energy storage. For instance, for the EV, the fundamental 
requirement in order to buy energy at t1 and sell at t2 is: 

η2
inv • ηst

(
ppower,t2 − cV2X

)
≥ ppower,t1 (n. 8)  

where cV2X represents the cost of cycling the EV battery, ηst is the DC 
round-trip battery efficiency, and ηinv is the inverter efficiency. As with 
the ASHP and rSOC, the approach is to only allow small increments of 
energy to be submitted to the P2P auction at one time. For the EV, the 
total volume of bids to charge the storage (i.e. type EV_ARBITRAGE) 
should not exceed the volume of matched V2X energy by >10% of 
battery capacity. Conversely, the total volume of bids to discharge 
storage does not exceed the volume of matched EV_ARBITRAGE bids by 
>10%. As with the interdependence of heat and power bids, matching of 
a P2P bid to charge / discharge the EV will trigger adjustment of the 
price for a corresponding volume of discharged / charged energy. Bids to 
charge and discharge the TES are dealt with in analogous fashion. 

It is worth noting that the model also allows heat energy to be stored 
in the fabric of the house, by exceeding the minimum thermostat de-
mand temperature. The interaction of timeslots induced by this energy 
storage is handled by the optimiser, but we have not attempted to 
explicitly address it in the bidding strategy and reserve prices. 

Interdependent bids are updated after the clearing of every timeslot 
in every round, even if the house does not perform a full strategy update 

Table 3 
Truthful reserve prices (i.e. limit prices) assumed for different applications.  

Category Truthful reserve price (£/kWh) 
Offers to buy power 
INFLEXIBLE_LOAD pgrid retail 
EV_ESSENTIAL pgrid retail 
ASHP_BUY pgrid retail 
ASHP_FOR_EXPORT COP • p̃heat where p̃heat is the predicted price to sell heat 
RESISTIVE_BUY pgrid retail 
RSOC_BUY min

(
pgrid retail,

pH2 • ηinv
ηSOEC

)

EV_ARBITRAGE For an amount corresponding to the EV_V2G bids that 
have been matched (internally or externally) at an 
average value of pV2X: 
(pV2X − cV2X) • η2

inv • ηst 
For a further amount not exceeding 10% of battery 
capacity in each auction round: (

p̃V2X − cV2X
)
• η2

inv • ηst 

(where p̃V2X is the predicted average value of corresponding 
EV_V2X.)  

Asks to sell power 
PV_EXPORT pgrid FI 
RSOC_SELL No heat trading: 

For the power corresponding to heat used in the house: 
pH2

ηSOFC • ηinv + ηSOFCth  

For any further power: 
pH2

ηSOFC • ηinv 
With heat trading: 
Where corresponding heat is unmatched: 

pH2
ηSOFC • ηinv 
Where corresponding heat is matched at price pheat: pH2
ηSOFC • ηinv

−
pheat • ηSOFCth
ηSOFC • ηinv 

EV_V2G For an amount corresponding to the EV_ARBITRAGE bids 
that have been matched (internally or externally) at an 
average value of pARB: 

pARB
η2

inv • ηst
+ cV2X 

For a further amount not exceeding 10% of battery 
capacity in each auction round: 

p̃ARB
η2inv • ηst

+ cV2X  

where p̃ARB is the average predicted price of the 
EV_ARBITRAGE bids not yet matched. 

Offers to buy heat 
HEAT_DEMAND 

min
(

p̃power , pheat,marginal

)
where p̃power is predicted power 

price and pheat,marginal is the price to generate more heat 
locally. 

Asks to sell heat 
HEAT_FROM_RSOC Where corresponding power is unmatched: 

pH2
ηSOFCth 
Where corresponding power is matched at price ppower: 

pH2
ηSOFCth

−
ppower • ηSOFC • ηinv

ηSOFCth 
HEAT_FROM_ASHP Where corresponding power has not been obtained: 

pgrid retail
COP 

Where corresponding power has been obtained at price 
ppower: 
ppower
COP   
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that round. 

3.3.5. Pricing strategy 

3.3.5.1. Truthful reserve prices.. It is important for bidders to possess a 
truthful valuation of the energy they are seeking to trade. This can be 
variably termed a reserve price, a limit price, or an indifference price, 
and gives the minimum acceptable price for asks and a maximum 
acceptable price for offers. The assumptions made for these reserve / 
limit prices are shown in Table 3. In some cases, establishing reserve 
prices is straightforward (e.g. for PV export). Where there is interde-
pendence between bids, limit prices are also interdependent on the 
prices and volumes achieved by the connected bid, as detailed in Section 
3.3.4 above. 

3.3.5.2. ZIP bidding. Some auction participants submit their truthful 
valuations (or ‘limit’ prices) with their bids, as per Table 3. This is 
termed an ‘aggressive’ strategy, since it maximises the chance of making 
a trade, possibly at the expense of obtaining a less favourable price. 
Other participants bid using a ‘ZIP’ (‘zero intelligence plus’) strategy. 
This entails seeking a price better than the truthful limit price. This 
should not necessarily be seen as un-altruistic; as noted by Glismann, 
strategic markup can be an important coordination mechanism; ulti-
mately, traders leveraging their market power means that prices will 
more properly reflect supply and demand [32]. ZIP bidders submit a 
reserve price uniformly distributed between their truthful reserve price 
and an upper or lower bound price. For bids to buy power, this means: 

pres ∼ U
(

pgrid FI, ptr
)

(n. 9) 

For bids to sell power: 

pres ∼ U
(

ptr, pgrid retail
)

(n. 10) 

For bids to buy heat: 
pres ∼ U(0, ptr) (n. 11) 

For bids to sell heat: 

pres ∼ U
(

ptr, pgrid retail
)

(n. 11b)  

3.3.6. Flexible bidding by the EV 
For the charge and discharge of the EV battery, it is assumed that 

bidding can be more flexible than the strategy dictated by optimisation. 
The timeslots are partitioned into availability periods Ai representing 
distinct periods when the vehicle is available (long availability periods 
may also be subdivided). The amount to buy or sell from the battery is 
then calculated for the period as a whole, using the optimisation output, 
as per Eqs. 12 and 13: 
EAi

buy,EV =
∑

t∈Ai

Ebuy,EV,t (n. 12)  

EAi
sell,EV =

∑

t∈Ai

Esell,EV,t (n. 13) 

The bidder then places a ‘group’ of offers or asks across multiple 
timeslots of the availability period. These include the bids specified by 
the optimiser, as well as backup bids with a total volume of up to rbu •

EAi
buy,EV or rbu • EAi

sell,EV where rbu is a backup ratio randomly chosen by each 
auction participant. Since the total volume of the bids is now greater 
than required, superfluous bids must be cancelled once the targeted 
amount is secured for the availability periods. Because the timeslots of 
the auction are settled sequentially, there is opportunity after the set-
tlement of each timeslot to make these adjustments. Note again that the 
market does not allow the submission of bids that are flexible by time. 
Instead, the flexibility is achieved entirely by the bidder’s strategy of 

placing additional bids and cancelling those which become superfluous. 
Since the ‘backup’ bids have not been specified by the optimiser, the 

headroom to charge or discharge the battery has to be checked at each 
timeslot, against any bids to buy or sell that have already succeeded, and 
any energy planned to exchange between EV and house. 

3.3.7. Protecting state-of-charge limits 
Bids to supply energy from energy storage (the EV battery or TES) 

may be contingent on bids to buy energy at a separate timeslot. If only a 
subset of the bids placed are successful, then the state-of-charge limits of 
the storage could be infringed (in practice this could be prevented via 
last-minute trading at the grid tariffs, but this would be financially un-
attractive). To avoid this situation, the volume of bids can be trimmed to 
ensure that the future state-of-charge remains within limits. 

Following the settlement of the internal auctions, the ‘achieved’ 

storage profile Êstored,t is obtained for the EV battery (or any other energy 
storage device). That is, the profile achievable with energy already 
bought / sold on the P2P market, and energy shared within the house, 
that the internal market has assigned to the storage. Êcons,d,t ∈(0, Econs,d,t

) and Êgen,st,t ∈
(0,Egen,d,t

) are respectively the amounts of 
power consumption and generation cleared by the internal auction for 
the storage device d. The achieved storage profile is then defined as 
follows: 

Êstored,̂t = Estored,0 +
∑t̂

t=1

{
ηinv • ηst • Êcons,d,t −

1
ηinv

Êgen,d,t + Edrive,t −Edrive,t

}

(n. 14) 
Before the auction for timeslot t is settled, each participant checks 

the headroom for charge and discharge: 

BUYmax = min
t̂≥t

(Cst − Êstored,̂t
)
•

1
ηinv • ηst

(n. 15)  

SELLmax = min
(

min
t̂≥t

(Êstored,̂t
)
, Êstored,tlast − Emin final

)
• ηinv 

Note that, if there is a constraint Emin final on the final amount of en-
ergy stored, this must also be factored in. The volume of bids for energy 
to charge the storage are then compared to the value of BUYmax and 
reduced if necessary; asks are compared to SELLmax in the same way. 
Conversely, bids that were previously reduced in this way may be 
restored to their original value following the success of ‘dependent’ bids. 
Bids with volume reduced to zero are not submitted to the auction, but 
still retained in case they can be activated in future rounds. 

4. Results 

4.1. Case study 

To investigate the efficacy of the P2P market, we employ a case study 
of 25 houses, containing various devices (see Fig. 3). These are assumed 
to share the same circuit in the electrical distribution grid. Where heat 
trading is considered, the houses are assumed linked by a small 4th 
generation heat network. Results are also presented for a case with 1000 
houses, in order to verify the computational scalability of the approach. 

The energy sharing neighbourhood is notionally located in south- 
east England with climate data drawn from UKECN [52] and inflexible 
load data from UKPN [53]. 15 houses are randomly assigned to have 6 
kWp solar PV systems; these are evenly split between east-, south- and 
west-facing systems. Generation is calculated from irradiance data and 
the azimuth and tilt of the panels, using the model reported in [54]. 

All houses have one EV, with a trip schedule drawn from the UK 
National Travel Survey 2017–2019 [55]. The fuel economy of the ve-
hicles is assumed to depend strongly on outdoor temperature; for more 
details of the data sample and EV model, see [4]. EV chargers have 7 kW 
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capacity and for simplicity are assumed operable at any partial load. 
Furthermore, the possibility to discharge the EV battery V2H or V2G is 
always permitted. 

Heat demand is modelled by adopting the CREST building archetype 
for improved semi-detached buildings, with building parameters varied 
by ±20% for additional diversity [56]. Space heating demand temper-
atures are uniformly distributed between 17.5 ◦C and 22 ◦C; 50% of 
houses are assigned morning and evening heating patterns, while 50% 
are assigned all day heating patterns. 13 houses are assigned to have 
ASHP heating systems, and 12 have rSOCs. ASHPs have capacity 3 kWe; 
COP is assumed to be 38% of the ideal COP operating between the 
outdoor air temperature and a flow temperature of 55 ◦C, an assumption 
based on reference [57]. The heat pumps are assumed to be accompa-
nied with TES consisting of 300 l of hot water, operating between an 
upper temperature of 80 ◦C and a minimum usable temperature of 40 ◦C. 
Insulation is 10 cm thick with conductivity 0.03 W/mK; thermal losses 
are assumed to flow into the internal node of the space heating model; 
see also the MILP model in the Appendix. 

The rSOC is assigned a capacity in SOFC mode of 2.5 kWe. We assign 
ηSOFC as 16.7 kWhe/kgH2 and ηSOFCth as 13.3 kWhe/kgH2, for a total CHP 
efficiency of 90%LHV. ηSOEC is assigned as 48 kWhe/kgH2, so that used as 
an energy storage device, the rSOC has round-trip efficiency of just 
under 35%. Capacity in SOEC mode is taken as 7.5 kWe. In both modes, 
the rSOC is assumed to have a partial load range of 10–100%. The rSOC 
is sized as a compromise between the peak electrical load and the peak 
space heating load of around 5 kW; for peaks in heat demand, either 
resistive heat or the heat network connection must be employed. See 
also the MILP rSOC model in the Appendix. 

Simulations were run over the duration of one week. The first week 
simulated was a shoulder (spring) week with moderate heat demand and 
moderate solar resource; the second was a winter week with high heat 
demand and low solar resource. See Table 4 and Fig. 4 for the specifics. 
Note that a ‘heating degree day’ (HDD) is calculated as the gap between 
a day’s mean temperature and 15.5 ◦C. 

Three scenarios are considered: G_ONLY, where only grid trade of 
electricity is possible, and no trading in heat; P2P_P, where P2P trading 
of power only occurs, using the double auction approach detailed in the 

previous section; and P2P_H_P, where P2P trading of both heat and 
power is available. 

The grid retail tariff in this work is assumed to be a constant £0.28 / 
kWh [58]; the grid feed-in tariff is £0.075 / kWh [59]. The cost of rapid 
charging for EVs is set at £0.446 / kWh [60,61]. The price of hydrogen is 
assumed to be fixed in the case study, at £3.50 / kg [62,63]. 

4.2. Results 

We focus initially on the spring / shoulder week in order to explore 
the functioning of the market. Fig. 5 shows the volume of (a) power and 
(b) heat traded on April 2nd under P2P_H_P. The day’s timeslots are 
shown vertically, and the rounds of the auction horizontally. Impor-
tantly, trading comes to an end after finite time; this is expected, since 
re-trading of energy already bought / sold is not considered for this 
work. Most trading has ceased by 200 rounds; a similar outcome was 
observed for all days and seasons. It is noticeable that heat trading lags 
behind power trading; one reason for this is that ASHP heat becomes 
available on the market after the corresponding power has been ac-
quired. Fig. 6 (a) shows progress of the market in power for a particular 
timeslot (10–11 am for Thursday of the spring week). Price is rather 
volatile, averaging £0.179 / kWh, with 53 kWh eventually traded for the 
timeslot. 6 (b) shows progress of the same market with 1000 peers rather 
than 25. Price is less volatile, which is an expected ‘law of large 
numbers’ effect; trading comes to an end after a similar amount of time. 

The computational burden of the P2P market is incurred more by 
strategy formation of the peers than by the clearing of the auction itself. 
In the case with 25 peers, strategisation involved on average 11.9 s of 
computation per peer per day. This is assumed to be acceptable, given 
that these computations would be parallelised in any real application. 
Clearing of the auction involved only 1.7 s of computation (ca. 4 ms per 
round). To ascertain the scalability of the approach, the size of the study 
was increased to 1000 peers. In this case, strategisation required 10.6 s 
per peer per day, whilst the auction clearing required 61.1 s per day, 
which is considered to be entirely practicable. 

For the spring week under P2P_P, 9400 bids to trade power were 
matched by the P2P auction, representing a turnover of 2.95 MWh, with 
an average price of £0.220 / kWh. Fig. 7 (a) shows the diurnal P2P price 
variation, with heat demand and inflexible electrical load shown for 
comparison. The variation in electricity price is relatively modest; the 
price peak is roughly coincident with peak inflexible demand at 7 p.m., 
whilst availability of solar power depresses the price during the daytime. 

Figs. 8 (a) and 8 (b) respectively show the volume of offers and asks 
matched by the P2P_P market, by category, averaged over the spring 
week. The purchase of power for EV charging clearly peaks during the 
lowest priced period, particularly for the non-essential (‘arbitrage’) 
charging. ASHPs also purchase power to charge TES during the low price 
period. Transactions to supply inflexible load and essential EV charging 
continue all day, with generation from the rSOC dominating the supply 
side. Fig. 9 shows the energy flows for P2P_P in the second column. 
When comparing with G_ONLY, the following observations can be made:  

1. The quantity of grid imports is greatly reduced, with generation from 
the rSOC filling the gap. 

2. Use of the rSOC’s SOEC mode is decreased. Houses with solar sur-
pluses find it more profitable to sell power to peers rather than 
manufacture H2.  

3. EV charging increases during the peak in solar generation, replacing 
the SOEC use.  

4. Use of resistive heat is decreased. This is because the rSOCs in SOFC 
mode can now follow their household heat load, exporting the cor-
responding power to peers. 

For the spring week under P2P_H_P, 9100 bids to trade power were 
successful, representing a turnover of 3.6 MWh; for heat, 8200 bids 
representing 2.9 MWh were matched (compare the total heat demand of 

Fig. 3. Shows the possible devices included in houses (not all houses contain all 
devices). 1. PV generation. 2. EV. 3. Inflexible electric load. 4. ASHP. 5. rSOC. 6. 
Heat demand model. 7. TES. 25 houses with varying devices are included in the 
case-study. 

Table 4 
Climate weeks for simulation.  

Season Sample week start date Mean GHI (W/m2) Mean HDD 
(◦C) 

Winter 9th Jan 2013 22.1 14.5 
Spring 2nd April 2013 159.2 12.7  
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5.9 MWh). The average price of power was virtually unchanged from 
P2P_P at £0.226 / kWh; the average heat price was £0.078 / kWh. Fig. 7 
(b) shows the diurnal price variation for P2P power and heat; variations 
in heat price clearly respond to the demand. 

Figs. 8 (c) – (f) show the volume of successful asks and offers under 
P2P_H_P. As before, EV charging increases in response to peak solar 
generation. Large amounts of power are purchased by ASHPs in order to 
re-export the heat. ASHP dominates the supply side of heat market 
during the day, whereas rSOCs are more likely to export heat at night 
when (a) COP is lower for the ASHPs, making them less competitive and 
(b) local heat demand is more likely to be low. 1.97 MWh of ASHP heat 
was exported overall, at an average price of £0.077 / kWh; for rSOC the 
corresponding figures were 0.90 MWh, and £0.081 / kWh. Note that the 
cost of rSOC heat is well below the cost of the corresponding hydrogen, 
which is possible thanks to the high average value (£0.228 / kWh) of the 
corresponding power on the P2P market. Some import of heat in order to 

charge TES occurs during price troughs; this heat is always discharged 
locally, as no heat is observed to be sold back to the network. The impact 
of heat trading on the energy flows can be seen in Fig. 9; the most sig-
nificant impact is that the use of resistive heat now almost completely 
ceases, as heat that cannot be generated locally can instead be imported. 
Heat trading also appears to have enabled increased V2X discharge from 
the EVs, the reasons for which are not wholly clear. Use of TES is 
decreased, as exporting heat P2P may be more profitable than storing it. 

4.3. Savings and participant willingness 

We now evaluate the economic advantages of the P2P markets; re-
sults from both spring and winter are considered. Fig. 10 gives the 
average net bill for houses over (a) the winter week, and (b) the spring 
week; net bills comprise net P2P payments, net grid payments, and net 
hydrogen payments. Both trading systems enable the average house to 

Fig. 4. Irradiance and temperature for (a) the winter week and (b) the spring week.  

Fig. 5. Heat plot showing progress of the double auction for April 2nd, the first day of the spring week, under P2P_H_P, with the colour scale showing the quantity of 
energy cleared. Rounds of the auction are shown left to right, and timeslots of the day from top to bottom. (a) power trading; (b) heat trading. Timeslot 0 corresponds 
to 5 a.m. For clarity, only 300 of the rounds are shown. 
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save money relative to G_ONLY. For the winter week, the mean saving is 
£9.52 under P2P_P and £19.59 under P2P_H_P, and participant will-
ingness is 84% and 88% respectively (where participant willingness is 
defined as the proportion of participants who profit, relative to the 
baseline G_ONLY – see Fig. 11). rSOC houses appear to enjoy the greater 
financial benefits, but ASHP houses also profit. For the spring week, the 
mean saving is £16.99 under P2P_P and £16.69 under P2P_H_P, with 
participant willingness of 100% and 84%. From this it appears that the 
possibility to trade heat may not achieve additional financial savings 
during the spring weather conditions, although there may still be tech-
nical benefits. 

4.4. Technical and environmental impact 

Fig. 13 shows the impact of the trading systems on the load duration 
curve for electrical grid interaction. For both winter and spring, P2P_P 
achieves a notable decrease in peak load, and P2P_H_P achieves a further 
reduction. Specifically, under G_ONLY, grid imports peak at 44.5 kW in 
winter and 35.3 kW in spring. P2P_P sees decreases of 20% (to 35.5 kW) 
and 44% (to 20.0 kW) for winter and spring respectively. P2P_H_P sees 
decreases of 44% (to 24.8 kW) and 66% (to 12.0 kW) for winter and 
spring respectively. Conversely, export of electricity to the grid becomes 
somewhat more common under P2P trading. This is especially the case 
under P2P_H_P, where for the rSOC, the opportunity to earn money by 

exporting heat P2P means that exporting power at the feed-in tariff is 
more viable. Under P2P_P the export of power to grid is more ques-
tionable and may indicate imperfections in houses’ bidding strategies. 

Note that grid interaction is a relatively small proportion of overall 
energy flow (see Fig. 9); energy is principally obtained from hydrogen. 
P2P trading increases the usage of hydrogen, as the rSOCs are able to 
export energy to peers, and therefore run at a higher average load factor 
(see Figs. 9, 12 (a)). The UK marginal GHG intensity for grid electricity is 
estimated at 0.269 kgCO2e / kWh for 2022 [64]. Under the assumption 
that all hydrogen purchased is green hydrogen, the GHG emissions for 
the 25 houses are proportional to the grid imports. The highest GHG 
intensity occurs during the winter week under G_ONLY, averaging 5.93 
kgCO2e per house per day. P2P_P cuts this to 2.81 kgCO2e (−53%), 
P2P_H_P to 1.88 kgCO2e (−68%). The respective figures for spring are 
3.29 kgCO2e under G_ONLY; 0.447 kgCO2e (−86%) and 0.134 kgCO2e 
(−96%). 

5. Discussion and future work 

The advantages of the P2P power trading market (P2P_P) are clear 
from these results, with the average house making significant weekly 
savings in both the climate weeks. Whilst PV and EVs play a part (see 
Fig. 9) the rSOC is clearly the driving force, consuming more hydrogen 
in order to export power to peers at the P2P market price. The merits of 

Fig. 6. Shows progress of the double auction in power for one particular timeslot (10–11 am). (a) with 25 peers (b) with 1000 peers.  

Fig. 7. Daily P2P price variations averaged across the spring week. (a) P2P_P (b) P2P_H_P. The mean P2P transaction price is shown for each time of day, with the 
interquartile range shaded. Demand is shown for context (inflexible electricity demand in (a) and heat demand in (b)). 
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the heat trading are more nuanced. In the cold winter week, P2P_H_P 
almost doubled the savings of an average house compared to P2P_P; 
however, in the spring week additional savings were not obtained. On 
the other hand, the burden on the grid connection was reduced both in 
terms of total and peak energy import. 

Participant willingness for engagement with the P2P market was 
generally under 100% (Fig. 11), indicating that it was possible for 
households to lose money via their attempts to trade energy. This pos-
sibility is somewhat inevitable, given that actual clearing prices may 
always differ from predicted prices. Also, whenever passive bidding 
takes place, there is the possibility of sub-optimal outcomes – for 
instance, an offer of type ESSENTIAL_LOAD could be outbid by an offer 

of type EV_ARBITRAGE. More sophisticated price prediction could help 
with participant willingness, and it may be that the bidding and pricing 
strategies could be further improved. A possible extension of the model 
could see the CDA preceded by a one-off sealed-bid double auction, 
allowing complex orders as found on the Nordpool and EPEX exchanges. 

It is worth noting that the P2P power market in this work experi-
enced almost universal ‘seller’s market’ conditions, indicating an overall 
scarcity of power, and resulting in a P2P price closer to the retail tariff 
than the feed-in tariff. 6 kWp PV generation in houses was clearly 
insufficient to cause major downward pressure on prices, despite the 6 
kWp figure being towards the upper end of what is viable for average UK 
housing stock (the actual average is 3 kWp [1]). The addition of wind 

Fig. 8. Volume of P2P trades matched during the spring week, by category and time of day. Volume of trades is shown averaged across the week to obtain a daily 
profile. (a) and (b): electricity traded under P2P_P. (c) and (d): electricity traded under P2P_H_P. (e) and (f): heat traded under P2P_H_P. Note that 5 a.m. corresponds 
to timeslot 0 in the market. 
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power into the generation mix might add interesting dynamics to the 
market – however, wind power is not generally very feasible in prox-
imity to the built environment. Perhaps of more interest would be to use 
a variable grid tariff (the grid tariff was constant in this work) which 
could reflect the abundance of wind power on the wider electricity 
network. 

A related issue to the prevailing seller’s market conditions was the 
negligible use of SOEC mode of the rSOC. For manufacture of hydrogen 
to be optimal, there needs to be an abundance of cheap energy gener-
ation. For the spring week under G_ONLY, only 2.6 kg of hydrogen was 
produced via water electrolysis, compared to 133 kg consumed by SOFC 
mode. With the introduction of P2P trading, even this hydrogen pro-
duction was mainly eliminated, as it became more profitable to export 
energy surpluses to peers. Even when the model was run for a high 
irradiance summer week with negligible heat demand, demand for 
hydrogen was still an order of magnitude higher than production. This 
seems to indicate that it is difficult to have enough generation in a 
distributed energy setting to justify running electrolysis. 

All energy trading in this work was carried out on a day-ahead basis. 
In reality, trading would need to continue throughout the day, to bal-
ance imperfections in forecasting. The extension of the model to include 
such real-time trading should be relatively straightforward. Also, the 
information technology aspect of the continuous double auction market 
has not been considered here in detail, and future work could explore 
this in conjunction with data privacy aspects. Voltage constraints have 
not been considered in this work (nor the analogous temperature con-
straints in the heat network); previous work such as [36] has explored 
such issues. Whilst heat pump COP in this work varied with conditions, 
it did not vary between devices, and introducing this variation in future 

Fig. 9. Average daily energy flow during the spring week, for G_ONLY (left), P2P_P (centre) and P2P_H_P (right). Shown are the generation and consumption of both 
heat and electricity. Note that 5 a.m. corresponds to timeslot 0 in the market. 

Fig. 10. Average net household bills for the winter week (left) and the spring 
week (right); these consist of net P2P payments, net grid payments, and net 
hydrogen payments. 

Fig. 11. Participant willingness for the winter week (left) and the spring 
week (right). 
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work could enhance the motivation to trade [10]. 
The possibility for local storage of hydrogen was not modelled in this 

work, nor the possible fluctuations in hydrogen price over time. This is a 
topic worthy of interest. The fluctuating availability / price of hydrogen 
could provide additional incentives for P2P trading, as the relative 
desirability of procuring heat from ASHP and SOFC would see additional 
variation. 

6. Conclusions 

This work presented a continuous double auction peer-to-peer (P2P) 
market for trading of power and heat in the day ahead, simulated via an 
agent-based approach. Unlike in most existing literature, the proposed 
CDA model allows for forward trading across multiple future timeslots, 
and hence strategies were developed to address the interdependence of 
bidding both across timeslots and across energy types. Simulated over 
two week-long periods for a P2P scheme with 25 houses, both forms of 
market (with and without heat trading) were successful in reducing 
reliance on grid electricity, and significant household savings were 
observed of the order of £10 / week; however participants in the auction 
also occasionally incurred losses relative to the baseline with no P2P, 
indicating the potential for further strategy refinement and better price 
prediction to reduce this risk. Additionally, the availability of heat 
trading did not always provide an advantage over trading purely in 
power. Reversible solid oxide fuel cells (rSOCs) were particularly 

advantaged by the P2P energy markets: whilst the ‘reversible’ aspect 
proved relatively unimportant, with little hydrogen manufactured in the 
simulated case study, it is clear that regarding the combined heat and 
power (CHP) application, the P2P trading could help to incentivise the 
take-up of such devices. 
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Appendix A. - MILP models for devices. 

In this section details of the constraints that describe particular devices are given. Recall that Hgen, Egen, Hcons and Econs are the main variables 
interfacing the rest of the model. 

ASHP. 
Decision variables for the ASHP are the electrical energy consumed and heat energy produced for each time step, as related by COP. COP is 

assumed dependent only on the outdoor temperature, with no dependence on the load point. For simplicity, full modulation to arbitrary partial load is 
assumed to be possible. 
Hgen,ashp,t = COPt • Econs,ashp,t (n. 16)  

0 ≤ Econs,ashp,t ≤ Δt • Pmax
ashp (n. 17)   

A.1. EV battery. 

Optimisation of the EV battery includes two important time series inputs: the energy required for driving Edrive,t and the availability αt which takes a 
value in [0,1] for every timeslot. Decision variables are the AC power consumed by the battery Econs,EV,t , AC power generated Egen,EV,t , and power 
consumed from rapid charging while away from the house, Erapid,t. Penalty terms include the cost of rapid charging and the assumed cost for dis-
charging the battery V2X. Generally V2X discharge will not happen except when ppower,exp,t > cV2X/ηinv. 

Estored,t+1 = Estored,t + ηinv • ηst • Econs,EV,t + ηst • Erapid,t −
1

ηinv
• Egen,EV,t −Edrive,t (n. 18)  

0 ≤ Estored,t+1 ≤ CEV (n. 19)  

Estored,tlast ≥ Emin final (n. 20)  

Erapid,t ≤ 50 • (1−αt ) (n. 21)  

PENEV,t = crapid • Erapid,t + cV2X • Egen,EV,t (n. 22)  

A.2. rSOC. 

The rSOC may operate in either SOFC or SOEC mode. Operation is described principally by decision variables Egen,rSOC,t , Econs,rSOC,t and Hgen,rSOC,t 
with hydrogen consumption / production derived from these. Binary variables bSOFC and bSOEC describe the mode of the rSOC, and enable minimum 
partial loads to be imposed. Switching between modes incurs a penalty described by PENrSOC,t . The cost cswitch of switching modes is taken as £0.50 in 
the case study here. It is assumed that ‘hot idle’ operation corresponds to the lowest possible partial load for SOFC mode or SOEC mode; full cycling of 
the rSOC to a cold, fully off state is not considered in the context of the MILP formulation. Note that the rSOC is assumed to be able to reject heat to the 
environment if necessary. 
Δt • Pmin

SOFC • bSOFC,t ≤ Egen,rSOC,t ≤ Δt • Pmax
SOFC • bSOFC,t (n. 23)  

Δt • Pmin
SOEC • bSOEC,t ≤ Econs,rSOC,t ≤ Δt • Pmax

SOEC • bSOEC,t (n. 24)  

bSOFC,t + bSOEC,t = 1 (n. 25)  

0 ≤ Hgen,rSOC,t ≤
ηSOFCth
ηSOFC

Egen,rSOC,t (n. 26)  

H2gen,rSOC,t = Econs,rSOC,t
/

ηSOEC (n. 27)  

H2cons,rSOC,t = Egen,rSOC,t
/

ηSOFC (n. 28)  

PENrSOC,t+1 ≥ cswitch •
(bSOFC,t+1 − bSOFC,t

) (n. 29)  

PENrSOC,t+1 ≥ cswitch •
(bSOEC,t+1 − bSOEC,t

) (n. 30)  
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A.3. Space heating. 

Buildings consist of two thermal masses, representing the building interior and building walls. Building archetypes consist of the thermal masses of 
these Ci and Cw, and heat transfer coefficients Ki ↔ w, Ki ↔ e, Kw ↔ e, between the thermal masses and the environment. Heat Hsh,t representing space 
heating output is added to the building interior. A trapezoidal method is used to discretize the resulting system of ODEs. The demand temperature is 
given by Tdem,t while Tmax,t gives an upper temperature limit. Penalty terms PENsh,t are defined for infringing these limits, with csh representing the cost 
per degree-hour of temperature infringement. csh in this work was set to £1 per degree-hour. A penalty that rises more than linearly with the amount of 
temperature infringement could be of interest in future work. All temperatures and heat flows are technically decision variables, although they are 
ultimately dictated by the heat import / export and space heating output. 
Hi ↔ w,t = 0.5 • Δt • Ki ↔ w

(Ti,t +Ti,t+1 −Tw,t −Tw,t+1
) (n. 31)  

Hi ↔ e,t = 0.5 • Δt • Ki ↔ e
(Ti,t +Ti,t+1 −Te,t −Te,t+1

) (n. 32)  

Hw ↔ e,t = 0.5 • Δt • Kw ↔ e
(Tw,t +Tw,t+1 −Te,t −Te,t+1

) (n. 33)  

Ti,t+1 = Ti,t +
(Hsh,t +Hgain,t −Hi ↔ w,t −Hi ↔ e,t

)/Ci (n. 34)  

Tw,t+1 = Tw,t +
(Hi ↔ w,t −Hw ↔ e,t

)/Cw (n. 35)  

PENsh,t ≥ 0 (n. 36)  

PENsh,t ≥ Δt • csh •
(Tdem,t −Ti,t

) (n. 37)  

PENsh,t ≥ Δt • csh •
(Ti,t −Tmax,t

) (n. 38)  

A.4. TES 

Sensible thermal storage with hot water is modelled as a single thermal mass. This is described by decision variables Ttes,t , Hcons,tes,t and Hgen,tes,t. 
Losses Hloss,tes,t are assumed proportional to the difference in temperature Ttes − Ti between the storage and the house interior. These losses are added to 
the gains term Hgain,t of the space heating model. Ctes gives the constant heat capacity of the storage in kWh/◦C. Using a trapezoidal method to account 
for any variation in Ti over a timestep, the temperature of the storage evolves as specified in Eq. 40. Imposing a minimum usable temperature Tusabletes 
requires the introduction of binary variables bgen,tes,t and bcons,tes,t together with the constraints given in Eqs. 42,43,44 and 46. 

Λ := exp
(
−

Δt • Ktes ↔ i
Ctes

)
(n. 39)  

Ttes,t+1 = Λ • Ttes,t +(1−Λ) •

(Hcons,tes,t − Hgen,tes,t
Δt • Ktes ↔ i

+0.5 • Ti,t +0.5 • Ti,t+1

)
(n. 40)  

Hloss,tes,t = Ctes •
(Ttes,t −Ttes,t+1

)
−Hgen,tes,t +Hcons,tes,t (n. 41)  

bgen,tes,t + bcons,tes,t ≤ 1 (n. 42)  

Hcons,tes,t ≤ bcons,tes,t • Δt • Pmax
tes (n. 43)  

Hgen,tes,t ≤ bgen,tes,t • Δt • Pmax
tes (n. 44)  

Tmin
tes ≤ Ttes,t ≤ Tmax

tes (n. 45)  

Ttes,t+1 ≥ bgen,tes,t • Tusable
tes (n. 46)  

A.5. Resistive heater. 

A resistive heater in the model converts electrical power to heat with 100% efficiency. Decision variables are the consumption of electricity at each 
time step (also equal to the heat production). 
Hcons,rh,t = Econs,rh,t (n. 47)  

0 ≤ Econs,rh,t ≤ Δt • Pmax
rh (n. 48)  
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