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THE METHOD OF FUNDAMENTAL SOLUTIONS FOR SOLVING1

SCATTERING PROBLEMS FROM INFINITE ELASTIC THIN PLATES2

ANDREAS KARAGEORGHIS AND DANIEL LESNIC3

Abstract. We investigate different variants of the method of fundamental solutions for solving
scattering problems from infinite elastic thin plates. These provide novelty and desirable ease of
implementation as direct accurate and fast solvers to be used iteratively in solving the correspond-
ing inverse problems. Various direct problems associated with physical states of clamped, simply
supported, roller–supported and free plates can be solved efficiently using the proposed meshless
method. In particular, the numerical implementation performed for clamped plates leads to results
showing very good agreement with the analytical solution, where available, and with previously
obtained boundary integral method solutions. As for the inverse obstacle identification, the study
further develops a constrained nonlinear regularization method for identifying a cavity concealed
in an infinite elastic thin plate that has important benefits to the structural monitoring of aircraft
components using non–destructing material testing.

1. Introduction4

In the context of the Helmholtz equation and Maxwell system being the two main models of acous-5

tic and electromagnetic scattering from obstacles, respectively, [9], recently, a few studies on the6

scattering of biharmonic waves in thin plate elasticity have emerged [10,21,22,24]. These resulted7

from two active engineering areas. One is seismic cloaking aimed at protecting an infrastructure8

from earthquakes [26], and the other is the use of platonic crystals designed to harness or guide9

destructive wave energy for constructive purposes [10,11].10

Prior to this study, boundary integral methods (BIMs) [3,10,24] have been developed for solving11

the direct scattering of flexural waves on thin plates such as those governed by equations (2.1)–(2.3)12

below when the cavity D is known. Interior associated vibration problems when the governing13

equation (2.1) holds inside the bounded domain D have also been considered using BIMs in14

[20,23,27] and, in [13,14], using the boundary particle method. In Section 3 we propose, apparently15

for the first time, several meshless techniques based on the method of fundamental solutions16

(MFS) [12]. This is a versatile alternative to BIMs for solving such problems because it does17

not require meshing. Moreover, in Section 5 we investigate numerically the corresponding inverse18

scattering problem, which requires identifying impenetrable obstacles from multistatic near–field19

data.20
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2 ANDREAS KARAGEORGHIS AND DANIEL LESNIC

2. Mathematical formulation21

We consider the scattering by an impenetrable planar bounded obstacle D ⊂ R
2 with sufficiently22

smooth boundary, e.g. of class C3, in an infinite elastic Kirchhoff–Love thin (thickness h ≪ 2π/κ)23

plate connected medium Ω = R
2\D given by (in the frequency domain), see [4],24

∆2vs − κ4vs = 0 in Ω, (2.1)

subject to the radiation infinity condition25

lim
r→∞

∫

∂Br(0)

∣∣∣∣
∂vs

∂r
− iκvs

∣∣∣∣
2

ds = 0 (2.2)

and the boundary conditions26

B1(v
s + uinc) = B2(v

s + uinc) = 0 on ∂D = ∂Ω, (2.3)

where vs is the scattered field, κ > 0 is the wave number satisfying κ2 = ω
√

ϱh/D, where ω is27

the angular frequency, ϱ is the mass density and D is the flexural rigidity of the plate. Also,28

Br(0) = {x ∈ R
2| |x| < r} is the disk centred at the origin of radius r > 0, uinc is an incident field29

satisfying ∆2uinc − κ4uinc = 0 in R
2 (for example, a plane wave uinc(x1, x2) = eiκx1), and B1 and30

B2 are boundary operators giving the boundary conditions on ∂D, for example:31

(i) B1 = I, B2 = ∂/∂n (clamped plate)32

(ii) B1 = I, B2 = M (simply supported plate)33

(iii) B1 = ∂/∂n, B2 = N (roller–supported plate)34

(iv) B1 = M, B2 = N (free plate),35

where n = (n1, n2) is the inward unit normal to D, I is the identity trace operator, and M and36

N are the normalised bending moment and transverse force given by, see [15],37

Mu := ν∆u+ (1− ν)M0u, Nu := −∂(∆u)

∂n
− ∂(N0u)

∂t
, (2.4)

t = (−n2, n1) is the tangent unit vector to ∂D, ν ∈ [0, 0.5) is the Poisson’s ratio and38

M0u =
∂2u

∂x2
1

n2
1 + 2

∂2u

∂x1∂x2

n1n2 +
∂2u

∂x2
2

n2
2, N0u =

∂2u

∂x1∂x2

(
n2
1 − n2

2

)
−
(
∂2u

∂x2
1

− ∂2u

∂x2
2

)
n1n2.

The clamped and free plate boundary conditions (i) and (iv) correspond to the Dirichlet and39

Neumann boundary conditions associated with the fourth–order partial differential equation (2.1)40

and physically they specify the plane displacement and the angle of rotation of the plate, and the41

bending moment and the shear force, respectively, [5]. The unique solvability for the scattered42

field vs ∈ H2
loc(Ω) satisfying the direct problem (2.1)–(2.3) in cases (i), (ii) or (iii) for any κ > 043

holds [4]. In the case of free plates (iv) (modelling a hole D within the infinite plate) the unique44

solvability holds for any κ > 0 except for a countable set of wavenumbers (κn)n∈N satisfying45

limn→∞ κn = ∞. Note that in [10], the radiation condition (2.2) is replaced by the conditions46

lim
r→∞

√
r

(
∂vs

∂r
− iκvs

)
= 0 = lim

r→∞

√
r

(
∂(∆vs)

∂r
− iκ∆vs

)
. (2.5)
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Also, the radiation condition (2.2) is the same as the Sommerfeld radiation condition used for the47

Helmholtz equation in acoustic scattering, see [9,15]. As remarked in [5], the reason why only one48

radiation condition (2.2) is needed instead of a pair is that vs can be written as the superposition49

of a propagative part vpr = − 1
2κ2 (∆vs − κ2vs) satisfying the Helmholtz equation in Ω and an50

evanescent part vev = 1
2κ2 (∆vs + κ2vs) satisfying the modified Helmholtz equation in Ω, which51

does not contribute to the far field since it is exponentially decaying. Furthermore, in addition to52

vs = vpr + vev we also have that ∆vs = κ2 (vev − vpr).53

3. The method of fundamental solutions (MFS)54

We have implemented the following four MFS approaches for the solution of boundary value55

problem (2.1)–(2.3):56

3.1. First approach. We approximate the solution of (2.1)–(2.3) by a linear combination of57

non–singular fundamental solutions [29]58

vsN(x) =
2N∑

j=1

cj G(x, ξj), x ∈ Ω = Ω ∪ ∂Ω, (3.1)

where
(
ξj
)
j=1,2N

are source points located inside D and (cj)j=1,2N are unknown complex coefficients59

to be determined by imposing the boundary conditions (2.3). In (3.1), G is the fundamental60

solution of the operator in equation (2.1), which in two dimensions is given by, see [21],61

G(x, ξ) =
i

8κ2

(
H

(1)
0 (κ|x− ξ|)−H

(1)
0 (iκ|x− ξ|)

)
, (3.2)

where H
(1)
0 is the Hankel function of the first kind of order zero. Note that approximation (3.1)62

automatically satisfies the governing equation (2.1) in Ω and the infinity condition (2.2), see [5].63

Assuming that D is a smooth, star–like domain with respect to the origin, in polar coordinates64

its boundary ∂D can be parameterized as65

x1 = r(ϑ) cosϑ, x2 = r(ϑ) sinϑ, ϑ ∈ [0, 2π), (3.3)

where r is a smooth 2π−periodic function. We place M collocation points on ∂D as follows:66

xm = r(ϑ̃m)
(
cos ϑ̃m, sin ϑ̃m

)
, ϑ̃m = 2π(m− 1)/M, m = 1,M. (3.4)

We also place N sources on a pseudo–boundary ∂D′ given by67

ξℓ = η1 r(ϑℓ) (cosϑℓ, sinϑℓ) , ℓ = 1, N, (3.5)

and another N sources on a pseudo–boundary ∂D′′ given by68

ξN+ℓ = η2 r(ϑℓ) (cosϑℓ, sinϑℓ) , ℓ = 1, N, (3.6)

where ϑℓ = 2π(ℓ− 1)/N and the contraction parameters η1, η2 ∈ (0, 1) and η1 ̸= η2.69
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The imposition of the two boundary conditions in each of the cases (i)–(iv) yields a 2M × 2N70

linear system of the form71 [
B1

B2

]
c =

[
b1
b2

]
, (3.7)

where the matrices B1, B2 ∈ R
M×2N are defined by72

B1 = B1G(xi, ξj), B2 = B2G(xi, ξj), i = 1,M, j = 1, 2N,

and the vectors b1, b2 ∈ R
M×1 are defined by73

b1 = −B1u
inc(xi), b2 = −B2u

inc(xi), i = 1,M. (3.8)

Having determined the vector of coefficients c ∈ R
2N×1, the approximation (3.1) may be calculated74

anywhere in Ω.75

3.2. Second approach. Following the indirect boundary element formulation in [23, Section 4.1],76

see also [20,27], we now approximate the solution of (2.1)–(2.3) by77

vsN(x) =
N∑

j=1

cj G(x, ξj) +
N∑

j=1

dj
∂G

∂n(ξ)
(x, ξj), x ∈ Ω, (3.9)

where
(
ξj
)
j=1,N

are source points located inside D and (cj)j=1,N and (dj)j=1,N are unknown com-78

plex coefficients to be determined by imposing the boundary conditions (2.3). Note that in (3.9),79

n(ξ) = (nξ1 , nξ2) is the inward unit normal to the pseudo–boundary ∂D′ on which the sources are80

placed.81

Assuming that, as in Section 3.2, the boundary ∂D is a smooth, star–like curve with polar coor-82

dinates described by (3.3), we again place M collocation points on ∂D as in (3.4). We also place83

N sources on the pseudo–boundary ∂D′ given as84

ξℓ = η r(ϑℓ) (cosϑℓ, sinϑℓ) , ℓ = 1, N, (3.10)

where the contraction parameter η ∈ (0, 1).85

The imposition of the two boundary conditions in each of the cases (1)–(iv) yields a 2M × 2N86

linear system of the form87 [
B11 B12

B21 B22

] [
c

d

]
=

[
b1
b2

]
, (3.11)

where the matrices B11, B12, B21, B22 ∈ R
M×N are defined by88

B11 = B1G(xi, ξj), B12 = B1
∂G

∂n(ξ)
(xi, ξj), B21 = B2G(xi, ξj), B22 = B2

∂G

∂n(ξ)
(xi, ξj),

for i = 1,M, j = 1, N, and the vectors b1, b2 ∈ R
M×1 are defined by (3.8). Having determined the89

vectors of coefficients c,d ∈ R
N×1, the approximation (3.9) may be calculated anywhere in Ω.90
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3.3. Third approach. Following the indirect boundary element formulation (3.20) in [10], we91

now approximate the solution of (2.1)–(2.3) by92

vsN(x) =
N∑

k=1

cj GM(x, ξj) +
N∑

k=1

dj
∂GH

∂n(ξ)
(x, ξj), x ∈ Ω, (3.12)

where
(
ξj
)
j=1,N

are source points located inside D and (cj)j=1,N and (dj)j=1,N are unknown com-93

plex coefficients to be determined by imposing the boundary conditions (2.3). In (3.12), GM is94

the two–dimensional fundamental solution of the modified Helmholtz operator defined by95

GM(x, ξ) =
i

4
H

(1)
0 (iκ|x− ξ|), (3.13)

while GH is the two–dimensional fundamental solution of the Helmholtz operator defined by96

GH(x, ξ) =
i

4
H

(1)
0 (κ|x− ξ|), (3.14)

The discretization details are identical to those in Section 3.2.97

The imposition of the two boundary conditions in each of the cases (i)–(iv) yields a 2M × 2N98

linear system of the form99 [
C11 C12

C21 C22

] [
c

d

]
=

[
b1
b2

]
, (3.15)

where the matrices C11, C12, C21, C22 ∈ R
M×N are defined by100

C11 = B1GM(xi, ξj), C12 = B1
∂GH

∂n(ξ)
(xi, ξj), C21 = B2GM(xi, ξj), C22 = B2

∂GH

∂n(ξ)
(xi, ξj),

for i = 1,M, j = 1, N, and the vectors b1, b2 ∈ R
M×1 are defined by are defined by (3.8). Having101

determined the vectors of coefficients c,d ∈ R
N×1, the approximation (3.12) may be calculated102

anywhere in Ω. We remark that if GH and GM are swapped in (3.12), then we expect a similar103

performance of the MFS in the framework of the third approach.104

3.4. Fourth approach. Following the single–layer potential indirect boundary element formula-105

tion (5.3) in [10], we now approximate the solution of (2.1)–(2.3) by106

vsN(x) =
N∑

j=1

cj GM(x, ξj) +
N∑

j=1

dj GH(x, ξj), x ∈ Ω, (3.16)

where
(
ξj
)
j=1,N

are source points located inside D and (cj)j=1,N and (dj)j=1,N are unknown com-107

plex coefficients to be determined by imposing the boundary conditions (2.3). The discretization108

details are identical to those in Section 3.2, while assuming that κ2 is not an interior Dirichlet109

eigenvalue of −∆ in D′, see [2, 3].110
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The imposition of the two boundary conditions in each of the cases (i)–(iv) yields a 2M × 2N111

linear system of the form112 [
D11 D12

D21 D22

] [
c

d

]
=

[
b1
b2

]
, (3.17)

where the matrices D11, D12, D21, D22 ∈ R
M×N are defined by113

D11 = B1GM(xi, ξj), D12 = B1GH(xi, ξj), D21 = B2GM(xi, ξj), D22 = B2GH(xi, ξj),

for i = 1,M, j = 1, N, and the vectors b1, b2 ∈ R
M×1 are defined by (3.8). Having determined the114

vectors of coefficients c,d ∈ R
N×1, the approximation (3.16) may be calculated anywhere in Ω.115

4. Numerical examples for the direct problem (2.1)–(2.3)116

The appropriate derivatives needed for the approaches described in Section 3 are provided in the117

Appendix. The choices of the contraction parameters η1, η2 ∈ (0, 1) with η1 ̸= η2 in the first118

MFS approach and η ∈ (0, 1) in the other MFS approaches are based on trial and error. These119

parameters are chosen to be neither too small (close to 0) to avoid the clustering of the source120

points near the origin nor too large (close to 1) to avoid potential ill–conditioning caused by the121

small argument |x− ξ| in the Hankel functions in expressions (3.2), (3.13) or (3.14), see also [19].122

There is also the possibility of optimizing these contraction parameters [6] or to use the MFS123

locally [7, 8, 28] but, for simplicity, these are not considered herein.124

In all the numerical examples investigated in this section we take M = N such that the MFS125

systems of equations (3.7), (3.11), (3.15) or (3.17) are square. It is also possible to consider126

under–determined or over–determined scenarios [25], which occur when M < N or M > N ,127

respectively, but, for simplicity, these are not considered in the current study.128

4.1. Example 1. For a rigid circular plate of radius a centred at the origin the clamped plate129

boundary conditions (i) apply yielding the solution to (2.1)–(2.3) for uinc(x) = eiκx1 , see [21],130

vs(r, ϑ) =
∞∑

n=0

[
AnH

(1)
n

(κr) +BnKn(κr)
]
cos(nϑ), r > a, ϑ ∈ [0, 2π), (4.1)

where131

An = − εn i
n

[
Jn(κa)K

′
n
(κa)− J ′

n
(κa)Kn(κa)

H
(1)
n (κa)K ′

n
(κa)−H

(1)
n

′
(κa)Kn(κa)

]
,

132

Bn =
2 εn i

n+1

πκa
[
H

(1)
n (κa)K ′

n
(κa)−H

(1)
n

′
(κa)Kn(κa)

] , ε0 = 1, εn = 2 for n ≥ 1.

Details regarding the derivation of the quantities involved in (4.1) are provided in the Appendix.133

We carried out numerical experiments for different radii a and κ and M = N . The exact solution134

expansion was truncated at n = 30. We also chose η1 = 0.55 and η2 = 0.45 in the first approach135

and η = 0.5 in the other approaches. The approximation and exact solution were calculated at136

L = 25 uniformly distributed test points on a circle of radius b = 2a and we recorded the maximum137
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absolute error E. Some results showing the convergence of the MFS approaches are provided in138

Table 1. From this table it can be seen that the third and fourth MFS approaches are more139

accurate than the first and second MFS approaches.140

Table 1. Example 1: The maximum absolute errors Ek between the exact solution
(4.1) truncated at n = 30 and the kth MFS approach for k = 1, 2, 3, 4, calculated
at L = 25 uniformly distributed test points on a circle of radius b = 2a, for various
numbers of degrees of freedom M = N and values of a and κ. Note that 8.94(-4)
stands for the scientific notation 8.94e-04 or the standard form 8.94 ×10−4 of a
decimal number, etc.

a κ M = N E1 E2 E3 E4

2.0 1.0 16 8.94(-4) 8.31(-4) 9.81(-4) 1.97(-4)
2.0 1.0 32 6.69(-8) 3.42(-8) 6.92(-8) 4.88(-9)
2.0 1.0 64 5.24(-14) 3.79(-14) 9.43(-16) 4.04(-15)

2.0 2.0 16 1.29(-2) 1.29(-2) 3.25(-3) 3.57(-3)
2.0 2.0 32 1.64(-6) 1.07(-6) 1.87(-7) 1.09(-7)
2.0 2.0 64 3.88(-13) 2.71(-13) 3.84(-15) 1.51(-14)

2.0 3.0 16 4.70(-1) 4.81(-1) 7.14(-2) 6.80(-2)
2.0 3.0 32 2.72(-5) 2.14(-5) 2.97(-7) 1.89(-6)
2.0 3.0 64 3.32(-12) 2.42(-12) 2.10(-14) 6.93(-14)

3.0 1.0 16 2.75(-3) 2.62(-3) 6.88(-4) 8.21(-4)
3.0 1.0 32 3.59(-7) 2.09(-7) 1.15(-7) 2.44(-8)
3.0 1.0 64 1.56(-13) 9.20(-14) 1.79(-15) 6.98(-15)

3.0 2.0 16 4.70(-1) 4.81(-1) 7.14(-2) 6.80(-2)
3.0 2.0 32 2.72(-5) 2.14(-5) 2.97(-7) 1.89(-6)
3.0 2.0 64 3.17(-12) 2.21(-12) 1.24(-14) 5.68(-14)

3.0 3.0 16 1.34 1.37 6.40(-1) 6.38(-1)
3.0 3.0 32 1.53(-3) 1.50(-3) 9.54(-5) 1.02(-4)
3.0 3.0 64 9.24(-11) 5.70(-11) 1.75(-13) 6.29(-13)

4.2. Example 2. We next examine the solution of problem (2.1)–(2.2) with the clamped boundary141

conditions exact solution142

vs(x) = H
(1)
0 (κ|x− x|) +H

(1)
0 (iκ|x− x|), x ∈ ∂D, (4.2)

143

∂vs

∂n
(x) = −κ (x− x) · n

|x− x|
[
H

(1)
1 (κ|x− x|) + iH

(1)
1 (iκ|x− x|)

]
, x ∈ ∂D, (4.3)
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where x is the location of a point source in D, in place of (2.3). The problem (2.1), (2.2), (4.2)144

and (4.3) has the exact solution145

vs(x) = H
(1)
0 (κ|x− x|) +H

(1)
0 (iκ|x− x|), x ∈ Ω. (4.4)

This benchmark problem was considered in [10] for various shapes D, with smooth boundaries146

∂D whose parametric representations are given by x = r(ϑ) (cosϑ, sinϑ) , ϑ ∈ [0, 2π), and:147

(I) Bean shape: r(ϑ) =
0.55 (1 + 0.9 cosϑ+ 0.1 sin(2ϑ))

1 + 0.75 cosϑ
,148

(II) Peach shape: r(ϑ) = 0.22
(
2 + cos2 ϑ

√
1− sinϑ

)
,149

(III) Peanut shape: r(ϑ) = 0.275
√
1 + 3 cos2 ϑ.150

The following non–smooth shapes with parametric representations given by151

γ(ϑ) = (γ1(ϑ), γ2(ϑ)) , ϑ ∈ [0, 2π), were also considered in [10]:152

(IV) Drop shape: γ1(ϑ) = 2 sin(ϑ/2)− 1, γ2(ϑ) = − sinϑ,153

(V) Heart shape: γ1(ϑ) = (3/2) sin(3ϑ/2), γ2(ϑ) = sinϑ.154

In the cases (IV) and (V), equations (3.4)–(3.6) are replaced by155

xm =
(
γ1(ϑ̃m), γ2(ϑ̃m)

)
, m = 1,M, (4.5)

156

ξℓ = η1 (γ1(ϑℓ), γ2(ϑℓ)) , ℓ = 1, N, (4.6)

and157

ξN+ℓ = η2 (γ1(ϑℓ), γ2(ϑℓ)) , ℓ = 1, N, (4.7)

respectively.158

In shapes (I)–(IV), the location of the point source was taken at x = (0.1, 0.2), while in shape159

(V) at x = (−0.5, 0.2). The five shapes considered, as well as the locations of the point source160

in each case, are depicted in Figure 1. As in [10], we took κ = 2. As in Example 1, we also161

chose η1 = 0.55 and η2 = 0.45 in the first approach and η = 0.5 in the other approaches. The162

approximation and exact solution were calculated at L = 25 uniformly distributed test points on163

a circle of radius 1 centred at the origin for shapes (I)–(III) and on a circle of radius 2 centred at164

the origin for shapes (IV)–(V). We recorded the maximum absolute error E there and the discrete165

L2-error norm E = ||vs− vsN ||2/
√
L. The results for different degrees of freedom for each approach166

and each shape presented in Tables 2 and 3 illustrate the convergence of the MFS approaches167

with respect to increasing the number of degrees of freedom. It is noteworthy that, due to their168

increased boundary curvature, the heart and peanut–shape geometries, require more degrees of169

freedom than the other shapes to achieve a comparable level of accuracy.170



MFS FOR SCATTERING PROBLEMS 9

-1 0 1
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-0.5
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1
Bean shape

-1 0 1
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-1
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Figure 1. Example 2: Shapes considered. The location of the point source x is
denoted by a red asterisk ∗.

4.3. Example 3. As in [10], we examine the solution of problem (2.1)–(2.3) for a clamped plate171

when the cavity D is illuminated by the plane wave with an incident angle π/6 given by172

uinc(x) = eiκx·(cos(π/6),sin(π/6)), x ∈ R
2, (4.8)

where D can be any of the shapes considered in Example 2. As this problem has no analytical173

solution we shall use the numerical solution obtained for M = N = 2048 as the reference solution.174

For simplicity, we shall use only the third and fourth MFS approaches, and calculate the far field175

patterns vsN∞

at 32 uniformly distributed observation points on the unit circle. These far field176

patterns are given, from [10], by177

vsN∞

(x̂) =
eiπ/4√
8κπ

N∑

j=1

dj
∂
(
e−iκx̂·ξj

)

∂n(ξ)
for the Third Approach (4.9)

and178

vsN∞

(x̂) =
eiπ/4√
8κπ

N∑

j=1

cj e
−iκx̂·ξj for the Fourth Approach, (4.10)

where x̂ = x/r is the observation direction and r = |x|. As in Example 2, we took κ = 2 and179

chose η = 0.5.180
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Table 2. Example 2: The maximum absolute error E and the discrete L2-error
norm E between the exact solution (4.4) and the MFS approaches calculated at
L = 25 uniformly distributed test points on a circle of radius 1 centred at the origin,
for various numbers of degrees of freedom M = N for the shapes (I)-(III).

M = N E(bean) E(bean) E(peach) E(peach) E(peanut) E(peanut)
First Approach

16 1.78(-4) 8.28(-5) 1.22(-3) 4.68(-4) 2.39(-2) 1.03(-2)
32 9.71(-7) 3.61(-7) 1.43(-7) 5.59(-8) 9.93(-4) 3.65(-4)
64 6.73(-14) 3.06(-14) 6.21(-12) 2.42(-12) 8.84(-8) 3.30(-8)

Second Approach
16 7.18(-4) 2.63(-4) 9.66(-4) 3.18(-4) 4.13(-2) 1.52(-2)
32 1.19(-6) 5.15(-7) 2.38(-7) 7.86(-8) 6.04(-4) 2.22(-4)
64 6.99(-13) 2.64(-13) 3.83(-12) 1.39(-12) 1.15(-7) 5.13(-8)

Third Approach
16 7.07(-3) 2.98(-3) 1.39(-3) 7.27(-4) 8.79(-3) 3.70(-3)
32 4.54(-6) 1.62(-6) 7.27(-7) 2.37(-7) 2.83(-4) 1.08(-4)
64 5.72(-12) 1.96(-12) 2.83(-14) 1.45(-14) 2.44(-7) 9.10(-8)

Fourth Approach
16 1.07(-4) 4.00(-5) 1.35(-4) 4.33(-5) 1.95(-2) 7.26(-3)
32 1.57(-7) 6.26(-8) 8.78(-8) 2.77(-8) 5.50(-4) 2.22(-4)
64 6.39(-14) 2.71(-14) 7.55(-15) 2.48(-15) 2.07(-7) 7.71(-8)

In Figures 2 and 3 we present the real and imaginary parts of the far field patterns of the reference181

solution and the numerical solution obtained using the third MFS approach (the results obtained182

with the fourth MFS approach were indistinguishable) with M = N = 32 for the smooth shapes183

(I)–(III), and with M = N = 256 for the non–smooth shapes (IV)-(V), respectively. Although not184

illustrated, excellent agreement with the corresponding BIM numerical results of [10] is reported.185

Also, in Tables 4 and 5 we list the errors E and E obtained with different numbers of degrees186

of freedom for shapes (I)–(III) and (IV)–(V), respectively. We observe that, as expected, for187

the non–smooth shapes the convergence of the MFS with the number of degrees of freedom is188

considerably slower.189
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Table 3. Example 2: The maximum absolute error E and the discrete L2-error
norm E between the exact solution (4.4) and the MFS approaches calculated at
L = 25 uniformly distributed test points on a circle of radius 2 centred at the origin,
for various numbers of degrees of freedom M = N for the shapes (IV)-(V).

M = N E(drop) E(drop) E(heart) E(heart)
First approach

16 1.41(-3) 5.65(-4) 2.09(-2) 8.28(-3)
32 1.25(-6) 4.84(-7) 1.07(-3) 3.57(-4)
64 1.03(-11) 5.07(-12) 1.79(-6) 5.44(-7)

Second approach
16 6.42(-4) 2.86(-4) 5.34(-3) 2.34(-3)
32 9.88(-7) 4.70(-7) 2.69(-4) 1.03(-4)
64 5.62(-11) 2.12(-11) 2.71(-7) 8.57(-8)

Third approach
16 9.43(-3) 5.10(-3) 1.01(-1) 4.86(-2)
32 2.02(-3) 7.71(-4) 8.69(-4) 3.29(-4)
64 7.33(-7) 3.02(-7) 3.21(-7) 1.13(-7)

Fourth approach
16 7.42(-5) 4.00(-5) 3.08(-2) 1.25(-2)
32 4.80(-7) 2.17(-7) 1.51(-4) 5.88(-5)
64 2.06(-10) 7.55(-11) 7.34(-7) 2.37(-7)

Table 4. Example 3: The maximum absolute error E and the discrete L2-error
norm E between the reference solution and the third and fourth MFS approaches
for the far-field pattern calculated at L = 32 uniformly distributed test points on
the unit circle, for various numbers of degrees of freedom M = N for the shapes
(I)-(III).

M = N E(bean) E(bean) E(peach) E(peach) E(peanut) E(peanut)
Third approach

16 1.54(-1) 1.00(-1) 7.97(-2) 4.41(-2) 6.36(-2) 4.38(-2)
32 1.29(-2) 7.96(-3) 2.67(-4) 1.52(-4) 6.22(-3) 4.43(-3)
64 3.35(-4) 1.65(-4) 1.01(-7) 5.47(-8) 9.21(-8) 7.22(-8)
128 1.23(-6) 6.27(-7) 6.69(-9) 3.59(-9) 7.75(-14) 4.90(-14)

Fourth approach
16 1.02(-1) 5.62(-2) 2.85(-3) 1.58 (-3) 8.71(-3) 5.99(-3)
32 4.62(-2) 2.72(-2) 5.71(-5) 3.41(-5) 6.04(-4) 2.22(-4)
64 2.48(-4) 1.21(-4) 9.91(-8) 5.37(-8) 3.84(-9) 2.69(-9)
128 8.24(-6) 4.32(-6) 6.50(-9) 3.48(-9) 2.58(-13) 1.37(-13)
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Figure 2. Example 3: Real and imaginary parts of far–field patterns of reference
and numerical solutions obtained using the third MFS approach with M = N = 32,
for shapes (I)–(III).
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Table 5. Example 3: The maximum absolute error E and the discrete L2-error
norm E between the reference solution and the third and fourth MFS approaches
for the far-field pattern calculated at L = 32 uniformly distributed test points on
the unit circle, for various numbers of degrees of freedom M = N for the shapes
(IV)-(V).

M = N E(drop) E(drop) E(heart) E(heart)
Third approach

128 4.14(-2) 2.25(-2) 9.30(+1) 4.13(+1)
256 8.27(-3) 4.24(-3) 4.66(-2) 2.42(-2)
512 4.09(-3) 2.34(-3) 3.33(-3) 2.19(-3)
1024 1.48(-3) 8.41(-4) 1.53(-3) 9.61(-4)

Fourth approach
128 3.27(-2) 1.71(-2) 6.01(+1) 3.08(+1)
256 8.60(-3) 5.47(-3) 2.07(-2) 1.07(-2)
512 4.37(-3) 2.63(-3) 4.66(-3) 2.77(-3)
1024 1.21(-3) 8.15(-4) 3.88(-3) 2.09(-3)

5. Inverse problem190

The inverse problem in which the obstacle D is unknown was investigated in [5] as a model arising191

in the non destructive testing of the fuselage or wing of an aircraft. We formulate the inverse192

geometric problem of detecting the obstacle D in an infinite plate from suitable measurements,193

as proposed in [5]. We first assume that the unknown obstacle D is contained in some a priori194

known disk BR(0) for some known radius R > 0. Then, for a point y ∈ ∂BR(0) =: Γ, we denote195

by vs(·,y) and ṽs(·,y) the scattered fields associated with the incident point source and dipole196

fields197

uinc(·) = G(·,y) (5.1)

and198

uinc(·) = ∂G

∂n(y)
(·,y), (5.2)

where n(y) is the outward unit normal to Γ at y, respectively, via the corresponding solution of199

the direct problem (2.1)–(2.3). Note that unlike the direct problem where the incident field uinc
200

entering (2.3) was required to satisfy ∆2uinc − κ4uinc = 0 in R
2, see [4], in the inverse problem the201

incident field is required to satisfy ∆2uinc − κ4uinc = 0 only in a domain including D, see [5].202

The resulting compound of measured data203

vs(x,y) = f(x,y), (x,y) ∈ Γ× Γ, (5.3)
204

∂vs

∂n(x)
(x,y) = g(x,y), (x,y) ∈ Γ× Γ, (5.4)

205

ṽs(x,y) = f̃(x,y), (x,y) ∈ Γ× Γ, (5.5)
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Figure 3. Example 3: Real and imaginary parts of far–field patterns of reference
and numerical solutions obtained using the third MFS approach with M = N = 256,
for shapes (IV)–(V).

∂ṽs

∂n(x)
(x,y) = g̃(x,y), (x,y) ∈ Γ× Γ, (5.6)

called multistatic data, was shown to be sufficient for retrieving the obstacle D uniquely for both206

the Dirichlet clamped plates and the Neumann free plates, see [4, Theorem 2.3]. In [4], the207

linear sampling method (LSM) was developed for identifying the cavity D from the data (5.3)–208

(5.6). In the present paper, we develop a nonlinear Tikhonov regularization MFS for solving the209

inverse problem which is more precise and natural for solving nonlinear and ill–posed obstacle210

identification problems [16,17].211
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5.1. Numerical method for identification of cavity D. We first assume that the unknown212

cavity D ⊂ R
2 is star–shaped with respect to the origin and its boundary ∂D parameterized213

by (3.3), where the polar radius r(ϑ) for ϑ ∈ [0, 2π) is a smooth 2π–periodic function, which is214

unknown. For simplicity, we consider only the clamped boundary condition case (i) given by215

vs = −uinc,
∂vs

∂n
= −∂uinc

∂n
on ∂D, (5.7)

but a similar analysis can be performed for the free plate boundary conditions (iv). We shall216

use the Fourth MFS Approach and the first step is to fabricate the input data (5.3)–(5.6) that is217

required to be inverted in order to identify the obstacle (3.3). This is achieved numerically using218

the MFS approximation (3.16) with the sources
(
ξj
)
j=1,N

distributed as in (3.10), which satisfies219

the governing equation (2.1) and the infinity condition (2.2). For each y ∈ Γ, the unknown220

coefficients (cj)j=1,N and (dj)j=1,N are determined by imposing the boundary conditions (5.7) for221

the point source incident field (5.1). Once these coefficients have been found, equation (3.16)222

applied on Γ provides the data (5.3). Also, the differentiation of (3.16) and application on Γ given223

by224

∂vsN
∂n

(x) =
N∑

j=1

cj
∂GM

∂n(x)
(x, ξj) +

N∑

j=1

dj
∂GH

∂n(x)
(x, ξj), x ∈ Γ, (5.8)

where225

∂GM

∂n(x)
(x, ξj) =

κ
(
x− ξj

)
· n(x)

4|x− ξj|
H

(1)
1 (iκ|x− ξj|),

226

∂GH

∂n(x)
(x, ξj) = − iκ

(
x− ξj

)
· n(x)

4|x− ξj|
H

(1)
1 (κ|x− ξj|),

provide the data (5.4). The procedure is repeated for the dipole incident field (5.2) to provide the227

data (5.5) and (5.6).228

On choosing the points229

Y k = Xk = R (cosφk, sinφk) , φk = 2π(k − 1)/K, k = 1, K, (5.9)

on Γ, each of the data (5.3)–(5.6) generate a full matrix multistatic data compound given by230

F = (f(Xk,Y ℓ))k,ℓ=1,K , G = (g(Xk,Y ℓ))k,ℓ=1,K ,
231

F̃ =
(
f̃(Xk,Y ℓ)

)
k,ℓ=1,K

, G̃ = (g̃(Xk,Y ℓ))k,ℓ=1,K .

Summing up, the whole inverse model consists of the following assembly of discretized equations232

resulting from (5.8) applied for uinc given by (5.1) and (5.2), and equations (5.3)–(5.6):233

N∑

j=1

cj(Y ℓ)GM

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)
+

N∑

j=1

dj(Y ℓ)GH

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)

234

+G
(
(rm cos ϑ̃m, rm sin ϑ̃m),Y ℓ

)
= 0, m = 1,M, ℓ = 1, K, (5.10)
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235

N∑

j=1

cj(Y ℓ)
∂GM

∂n(x)

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)
+

N∑

j=1

dj(Y ℓ)
∂GH

∂n(x)

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)

236

+
∂G

∂n(x)

(
(rm cos ϑ̃m, rm sin ϑ̃m),Y ℓ

)
= 0, m = 1,M, ℓ = 1, K, (5.11)

237

N∑

j=1

cj(Y ℓ)GM

(
Xk, ξj

)
+

N∑

j=1

dj(Y ℓ)GH

(
Xk, ξj

)
= f(Xk,Y ℓ), k, ℓ = 1, K, (5.12)

238

N∑

j=1

cj(Y ℓ)
∂GM

∂n(x)

(
Xk, ξj

)
+

N∑

j=1

dj(Y ℓ)
∂GH

∂n(x)

(
Xk, ξj

)
= g(Xk,Y ℓ), k, ℓ = 1, K, (5.13)

239

N∑

j=1

c̃j(Y ℓ)GM

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)
+

N∑

j=1

d̃j(Y ℓ)GH

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)

240

+
∂G

∂n(y)

(
(rm cos ϑ̃m, rm sin ϑ̃m),Y ℓ

)
= 0, m = 1,M, ℓ = 1, K, (5.14)

241

N∑

j=1

c̃j(Y ℓ)
∂GM

∂n(x)

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)
+

N∑

j=1

d̃j(Y ℓ)
∂GH

∂n(x)

(
(rm cos ϑ̃m, rm sin ϑ̃m), ξj

)

242

+
∂2G

∂n(x)∂n(y)

(
(rm cos ϑ̃m, rm sin ϑ̃m),Y ℓ

)
= 0, m = 1,M, ℓ = 1, K, (5.15)

243

N∑

j=1

c̃j(Y ℓ)GM

(
Xk, ξj

)
+

N∑

j=1

d̃j(Y ℓ)GH

(
Xk, ξj

)
= f̃(Xk,Y ℓ), k, ℓ = 1, K, (5.16)

244

N∑

j=1

c̃j(Y ℓ)
∂GM

∂n(x)

(
Xk, ξj

)
+

N∑

j=1

d̃j(Y ℓ)
∂GH

∂n(x)

(
Xk, ξj

)
= g̃(Xk,Y ℓ), k, ℓ = 1, K, (5.17)

where rm := r(ϑ̃m), m = 1,M . Along with cjℓ := cj(Y ℓ), djℓ := dj(Y ℓ), c̃jℓ := c̃j(Y ℓ)245

and d̃jℓ := d̃j(Y ℓ), for j = 1, N, ℓ = 1, K, this amounts to M + 4NK unknowns entering the246

4MK + 4K2 equations (5.10)–(5.17). This system of nonlinear algebraic equations is solved by247

minimizing the least–squares residual penalised by the first–order regularizing term of the form248

λ
∑M

m=1 (rm+1 − rm)
2, where λ ≥ 0 is a regularization parameter to be prescribed and, by conven-249

tion rM+1 = r1, which implies C1–smoothness of the cavity D. The resulting nonlinear Tikhonov250

regularization functional is given by251

Tλ(C,D, C̃, D̃, r) := ||F(C,D, C̃, D̃, r)− b||2 + λ
M∑

m=1

(rm+1 − rm)
2 , (5.18)

where252

C = (cjℓ)j=1,N,ℓ=1,K , D = (djℓ)j=1,N,ℓ=1,K , C̃ = (c̃jℓ)j=1,N,ℓ=1,K , D̃ =
(
d̃jℓ

)
j=1,N,ℓ=1,K

,
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r = (rm)m=1,M , b is a vector of 4MK + 4K2 components containing the unknown data in the253

right–hand side of (5.10)–(5.17), and F(C,D, C̃, D̃, r) is the functional built by assembling the254

appropriate expressions in the left–hand side of (5.10)–(5.17). The minimization of (5.18) subject255

to the simple bounds256

0 < rm < R for m = 1,M (5.19)

is performed using the MATLABR⃝ toolbox routine lsqnonlin, which has proved a versatile and257

easy to use software in several nonlinear minimizations resulting from solving numerically inverse258

and ill–posed problems, see e.g. [16–18].259

Remark. The routine lsqnonlin minimizes the sum of squares of real equations in real unknowns.260

Hence, in the implementation, we need to provide it with the real and imaginary parts of the261

complex equations (5.10)–(5.17) leading to a total number of 2× (4MK + 4K2) equations. Also,262

we need to consider the real and imaginary parts of the complex coefficients cjℓ, djℓ, c̃jℓ and d̃jℓ,263

for j = 1, N, ℓ = 1, K, which in addition to the (real) radii rm, m = 1,M , lead to a total number264

of M + 2× (4NK) unknowns.265

5.2. Numerical implementation. In the numerical implementation of the described method we266

consider the identification of a circular disk scatterer D = B1(0) of radius 1 centred at the origin267

from the measurements (5.3)–(5.6). We first fabricate the input data (5.3)–(5.6) using the Fourth268

MFS Approach given by expansion (3.16) in Section 3.4. We take κ = 1, and M = N = 32,269

η = 0.5. The results for the data (5.3)–(5.6) are given in Table 6 for R = 2 and K = 2. In the270

inverse problem we use this data as input in the inverse problem that we solve, as described in271

Section 5.1, and take M = N = 16 (which is different than the direct problem solver in order to272

avoid committing an inverse crime) and η = 0.5. This leads to a total of 288 (real) equations in273

272 (real) unknowns.274

With M = N = 16 and K = 2, equations (5.10)–(5.17) form a nonlinear system of 4MK+4K2 =275

144 equations with M+4NK = 144 unknowns, which is solved by minimizing (5.18) subject to the276

constraints (5.19) from the initial guess r
(0)
m = 0.5 for m = 1, 16 and C(0) = D(0) = C̃(0) = D̃(0) = 0.277

The numerically obtained results without regularization, i.e. λ = 0, for the cavity D are illustrated278

in Figure 4 for various numbers of iterations showing convergent and accurate reconstructions.279

Next, in order to test the stability of the numerical reconstruction we perturb the data (5.3)–(5.6)280

of Table 6 by replacing f(Xk,Y ℓ) with (1+p ϱk,ℓ)f(Xk,Y ℓ), k, ℓ = 1, K, where p is the percentage281

noise added and [ϱ1,1, ϱ1,2, . . . , ϱ1,K , ϱ2,1, . . . , ϱ2,K , . . . , ϱK,K ]
T is a random noisy variable vector282

with components in [-1,1] obtained via the MATLAB R⃝ command -1+2*rand(1,K). Similarly283

for g, f̃ , g̃. Figure 5 presents the numerically retrieved cavity after 200 iterations for p = 5% and284

various values of λ. From this figure it can be seen that stable and accurate reconstructions of285

the cavity can be achieved by a suitable choice of the regularization parameter, e.g. λ = λ(5%)286

between 102 and 103.287
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Table 6. The data (5.3)–(5.6) fabricated by solving the direct problem using the
fourth MFS approach with M = N = 32 and η = 0.5.

(Xk,Y ℓ) f g f̃ g̃
(X1,Y 1) = ((2, 0), (2, 0)) 0.0644-0.0868i 0.0371+0.0508i 0.0371+0.0508i -0.0335+0.0054i
(X1,Y 2) = ((2, 0), (−2, 0)) -0.0011+0.0500i -0.0507-0.0077i -0.0507-0.0077i 0.0155-0.0469i
(X2,Y 1) = ((−2, 0), (2, 0)) -0.0011+0.0500 i -0.0507-0.0077i -0.0507-0.0077i 0.0155-0.0469i
(X2,Y 2) = ((−2, 0), (−2, 0)) 0.0644-0.0868i 0.0371+0.0508i 0.0371+0.0508i -0.0335+0.0054i

niter=1 niter=5 niter=10

niter=50 niter=100 niter=200

Figure 4. Results. The reconstructed cavity (red dots) after various numbers of
iterations, no noise and no regularization.

6. Conclusions288

In this paper, the MFS has been developed for the first time in the relevant literature for solving289

both direct and inverse scattering problems from infinite elastic thin plates. In this practical290

scenario the bi–Laplacian of the scattered field is augmented by a lower–order term.291
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Figure 5. The reconstructed cavity (red dots) after 200 iterations for various values
of the regularization parameter λ and noise p = 5%.

Four variants of the MFS have been investigated. From the results reported in Section 4, the292

performance of all four approaches with respect to accuracy is similar when compared with the293

analytical solutions available for Examples 1 and 2, or with a reference solution or the BIM294

numerical results of [10] for Example 3, which does not possess an explicitly available analytical295

solution. From the ease of implementation standpoint, clearly the first approach (described in296

Section 3.1) is the simplest as the approximation involves only one fundamental solution (basis297

function). However, in contrast to the other three approaches (described in Sections 3.2–3.4),298

the drawback is that two pseudo–boundaries instead of one need to be chosen. As elaborated at299

the beginning of Section 4, this is not such a serious drawback as, provided that the choices are300

reasonable, the position(s) of the pseudo–boundary(ies) do not significantly affect the solution’s301

accuracy. The second and third approaches are potentially more tedious to implement due to the302

presence of the (extra) derivatives in expressions (3.9) and (3.12), especially in cases where the303

boundary condition operators B1 and B2 in (2.3) involve higher-order derivatives, rendering the304

coefficient matrices resulting from these two approaches more vulnerable to ill–conditioning. We305



20 ANDREAS KARAGEORGHIS AND DANIEL LESNIC

should also mention that all four proposed approaches are considerably simpler than their BIM306

counterparts as they are meshless and do not involve troublesome integrations.307

As for the inverse analysis undertaken in Section 5, the identification of an unknown cavity con-308

cealed in an infinite plate has been accomplished by the fourth MFS approach combined with a309

constrained minimization embedded in the MATLABR⃝ routine lsqnonlin. The numerical results310

obtained for both exact and noisy input near–field multistatic data reveal satisfactorily stable and311

accurate reconstructions.312
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Appendix374

We shall be repeatedly employing the identity [1]375

d

dz
H(1)

n
(z) =

nH
(1)
n (z)

z
−H

(1)
n+1(z),

and for the evaluation of the Hankel function H
(1)
n (z) we used the MATLABR⃝ command besselh(n,z).376

To impose the boundary conditions (2.3) in (i) and (ii) we need the following derivatives:377

First Approach.

∂G

∂xj

(x, ξ) = − i(xj − ξj)

8κ|x− ξ|
[
H

(1)
1 (κ|x− ξ|)− iH

(1)
1 (iκ|x− ξ|)

]
, j = 1, 2,

378

∂2G

∂x2
1

(x, ξ) = − 1

8κ|x− ξ|
[
iH

(1)
1 (κ|x− ξ|) +H

(1)
1 (iκ|x− ξ|)

]

379

+
i(x1 − ξ1)

2

8|x− ξ|2
[
H

(1)
2 (κ|x− ξ|) +H

(1)
2 (iκ|x− ξ|)

]
,

380

∂2G

∂x2
2

(x, ξ) = − 1

8κ|x− ξ|
[
iH

(1)
1 (κ|x− ξ|) +H

(1)
1 (iκ|x− ξ|)

]
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381

+
i(x2 − ξ2)

2

8|x− ξ|2
[
H

(1)
2 (κ|x− ξ|) +H

(1)
2 (iκ|x− ξ|)

]
,

382

∂2G

∂x1∂x2

(x, ξ) =
i(x1 − ξ1)(x2 − ξ2)

8|x− ξ|2
[
H

(1)
2 (κ|x− ξ|) +H

(1)
2 (iκ|x− ξ|)

]
,

where x = (x1, x2) and ξ = (ξ1, ξ2).383

Second Approach.

∂G

∂ξj
(x, ξ) =

i(xj − ξj)

8κ|x− ξ|
[
H

(1)
1 (κ|x− ξ|)− iH

(1)
1 (iκ|x− ξ|)

]
, j = 1, 2,

384

∂2G

∂ξ1∂x1

(x, ξ) =
1

8κ|x− ξ|
[
iH

(1)
1 (κ|x− ξ|) +H

(1)
1 (iκ|x− ξ|)

]

385

− i(x1 − ξ1)
2

8|x− ξ|2
[
H

(1)
2 (κ|x− ξ|) +H

(1)
2 (iκ|x− ξ|)

]
,

386

∂2G

∂ξ2∂x2

(x, ξ) =
1

8κ|x− ξ|
[
iH

(1)
1 (κ|x− ξ|) +H

(1)
1 (iκ|x− ξ|)

]

387

− i(x2 − ξ2)
2

8|x− ξ|2
[
H

(1)
2 (κ|x− ξ|) +H

(1)
2 (iκ|x− ξ|)

]
,

388

∂2G

∂ξ1∂x2

(x, ξ) =
∂2G

∂ξ2∂x1

(x, ξ) = − i(x1 − ξ1)(x2 − ξ2)

8|x− ξ|2
[
H

(1)
2 (κ|x− ξ|) +H

(1)
2 (iκ|x− ξ|)

]
.

Third Approach.

∂GM

∂xj

(x, ξ) =
κ(xj − ξj)

4|x− ξ| H
(1)
1 (iκ|x− ξ|), j = 1, 2,

389

∂GH

∂ξj
(x, ξ) = − iκ(xj − ξj)

4|x− ξ| H
(1)
1 (κ|x− ξ|), j = 1, 2,

390

∂2GH

∂ξ1∂x1

(x, ξ) = − iκ

4|x− ξ|H
(1)
1 (κ|x− ξ|) + iκ2(x1 − ξ1)

2

4|x− ξ|2 H
(1)
2 (κ|x− ξ|),

391

∂2GH

∂ξ2∂x2

(x, ξ) = − iκ

4|x− ξ|H
(1)
1 (κ|x− ξ|) + iκ2(x2 − ξ2)

2

4|x− ξ|2 H
(1)
2 (κ|x− ξ|),

392

∂2GH

∂ξ1∂x2

(x, ξ) =
∂2GH

∂ξ2∂x1

(x, ξ) =
iκ2(x1 − ξ1)(x2 − ξ2)

4|x− ξ|2 H
(1)
2 (κ|x− ξ|).

Fourth Approach.

∂GH

∂xj

(x, ξ) = − iκ(xj − ξj)

4|x− ξ| H
(1)
1 (κ|x− ξ|), j = 1, 2.
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Example 1. In Example 1 we used the following identities for the derivatives of the Bessel393

functions of the first kind and order n, Jn(z), and the modified Bessel functions of the second kind394

and order n, Kn(z), [1]:395

d

dz
Jn(z) =

nJn(z)

z
− Jn+1(z),

d

dz
Kn(z) =

nKn(z)

z
−Kn+1(z).

For the evaluation of the functions Jn(z) and Kn(z) we used the MATLABR⃝ commands besselj(n,z)396

and besselk(n,z), respectively.397
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