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Abstract  36 

 37 

Remarkable progress in molecular analyses has improved our understanding of the 38 

evolution of cancer cells towards immune escape1–5. However, the spatial configurations of 39 

immune and stromal cells, which may shed light on the evolution of immune escape across 40 

tumor geographical locations, remain unaddressed. We integrated multi-region exome and 41 

RNA-seq data with spatial histology mapped by deep learning in 100 non-small cell lung 42 

cancer (NSCLC) patients from the TRAcking Cancer Evolution through Therapy (Rx) 43 

(TRACERx) cohort6. Cancer subclones derived from immune cold regions were more closely 44 

related in mutation space, diversifying more recently than subclones from immune hot 45 

regions. In TRACERx and in an independent multi-sample cohort of 970 lung 46 

adenocarcinoma (LUAD) patients, the number of immune cold regions significantly 47 

correlated with risk of relapse, independently of tumor size, stage and number of samples 48 

per patient. In LUAD, but not lung squamous cell carcinoma (LUSC), geometrical irregularity 49 

and complexity of the cancer-stromal cell interface significantly increased in tumor regions 50 

without disruption of antigen presentation. Decreased lymphocyte accumulation in adjacent 51 

stroma was observed in tumors with low clonal neoantigen burden. Collectively, immune 52 

geospatial variability elucidates tumor ecological constraints that may shape the emergence 53 

of immune evading subclones and aggressive clinical phenotypes.   54 
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Main Text 55 

 56 

Using an artificial intelligence framework, we developed a generalizable deep learning 57 

pipeline to spatially profile immune infiltration and discover tumor topological determinants 58 

of immunosuppression in digital pathology. Convolutional neural networks were tailored for 59 

the analysis of NSCLC morphology using diverse histology samples in the multi-region 60 

TRACERx 100 cohort6 to avoid overfitting (Methods). This approach enabled the spatial 61 

mapping of cancer cells, lymphocytes, stromal cells (fibroblasts and endothelial cells), and 62 

an “other” cell class (macrophages, pneumocytes and non-identifiable cells) in hematoxylin 63 

& eosin (H&E)-stained images (275 tumor regions from 85 patients and 100 diagnostic slides 64 

from all patients, Fig. 1a-c, CONSORT diagram Extended Data Fig. 1a-b, Supplementary 65 

Table 1). T cell subsets were also identified in CD4/CD8/FOXP3 immunohistochemistry (IHC) 66 

images for all 100 diagnostic samples (Fig. 1d).  67 

 68 

This pipeline for H&E analysis exhibited high accuracy and consistency compared with five 69 

orthogonal data types within TRACERx, including DNA-seq, RNA-seq, IHC, 5,951 single-cell 70 

annotations by pathologists (balanced accuracy, as an average of specificity and sensitivity = 71 

0.932), and pathology tumor-infiltrating lymphocyte (TIL) estimates following the guidelines 72 

developed by the International Immuno-Oncology Biomarker Working Group7 (Extended 73 

Data Fig. 2, Supplementary Table 2). The Leicester Archival Thoracic Tumor Investigatory 74 

Cohort8 (LATTICe-A, Extended Data Fig. 1c-d), a retrospective study of 970 resected LUAD 75 

patients that included H&E sections from all diagnostic tumor blocks with a median of four 76 

samples per tumor, was used for independent validation. The pipeline’s generalizability was 77 

supported using 5,082 pathologists’ single-cell annotations (balanced accuracy = 0.913), and 78 

virtual integration of IHC and H&E images generated from the same slides (Fig. 1e-h, 79 

Extended Data Fig. 2e-g, Supplementary Table 3). Using this unbiased scalable approach, 80 

immune infiltration was quantified as the percentage of all cells that were lymphocytes in 81 

each H&E image.  82 

 83 

High geospatial immune variability between tumor regions within the same patients was 84 

revealed (Fig. 2a-b), which did not reflect associations with pathological stage (Extended 85 

Data Fig. 3). To differentiate highly from poorly immune infiltrated tumor regions, regions 86 

containing a lymphocyte percentage greater than a quarter standard deviation above the 87 

median lymphocyte percentage were classified as immune hot, and regions containing a 88 

lymphocyte percentage below a quarter standard deviation of the median were classified as 89 

immune cold. The remaining 20% were classified as intermediate (Fig. 2b). Subsequent 90 

results were tested on four more classification schemes based on the standard deviation to 91 

ensure that results derived from this classification were not contingent upon choice of 92 

thresholds used (Extended Data Fig. 4). Significant difference in pathology TIL estimates was 93 

observed between immune hot and cold regions (	 = 4.6x10-8, Extended Data Fig. 5a). 94 

Significantly higher levels of RNA-seq estimated immune infiltrate1, particularly for immune 95 
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activation subsets, were consistently observed in immune hot compared to cold regions, 96 

supporting the validity of histology-based immune classification (Fig. 2c-d). We next directly 97 

compared our immune hot and cold regional classification (excluding intermediate regions) 98 

against RNA-seq-based1 classifications (݊ = 109 regions with histology and RNA-seq data). 78 99 

out of 109 regions were in agreement (Fisher’s exact test for overlap: 	 = 7.8x10-6, 100 

Extended Data Fig. 5b). Regions with discrepant classification (݊ = 31) had significantly 101 

higher spatial heterogeneity of lymphocyte distribution compared to regions concordant 102 

between the two methods (	 = 0.01, Extended Data Fig. 5c), suggesting spatial intratumor 103 

heterogeneity could contribute towards the discrepancy, since the different data types were 104 

derived from adjacent sections of the same tumor blocks. 105 

 106 

Ecological selection pressures drive genetic divergence9,10. To determine if cancer genetic 107 

divergence differs according to immune context, we calculated the genomic distance as the 108 

Euclidean distance of subclonal mutations for each pair of tumor regions with the same 109 

immune phenotype in a patient. We observed significantly lower genomic distance, 110 

indicating more shared subclonal mutations, for pairs of immune cold regions than for pairs 111 

of immune hot regions in LUAD (Fig. 3a, Extended Data Fig. 4b, 	 < 0.005 for all immune 112 

classification schemes), but not in LUSC (Extended Data Fig. 6a). In LUAD but not LUSC, 113 

analysis of immune phenotypes mapped onto the phylogenetic trees6 revealed that 114 

dominant clones (cancer cell fraction ≥ 75%, see Methods) in pairs of cold regions were 115 

more closely related on the phylogenetic tree, compared to dominant clones in pairs of 116 

immune hot regions (Fig. 3b). Moreover, dominant clones in hot regions almost always 117 

diversified at the most recent common ancestor of the tree (13/15, 87%, Fig. 3c), in contrast 118 

no such preference was observed in immune cold regions (11/23, 48%).  119 

 120 

We investigated the impact of immune context on disease-free survival. Tumors with high 121 

number of immune cold regions were at significantly increased risk of relapse that was 122 

independent of the total number of regions sampled, tumor size and stage in both histology 123 

types in TRACERx (Fig. 3d-e, Extended Data Fig. 6c-h). This association with disease-free 124 

survival was also significant using the number of immune low regions as estimated by RNA-125 

seq1 in 64 TRACERx tumors with available RNA-seq data (	 = 0.002, Extended Data Fig. 6b). 126 

Following the genomic findings in LUAD, we sought to validate this in 970 LUAD patients in 127 

the multi-sample LATTICe-A cohort, confirming the prognostic value of immune cold sample 128 

count, that was also independent of the number of samples per patient, tumor size and 129 

stage (Fig. 3f-g, Extended Data Fig. 6c-e). In both cohorts, the number of immune cold 130 

samples per patient correlated with relapse, more significantly than any other immune 131 

feature generated using deep learning, including the average and variability of lymphocyte 132 

percentage per tumor, number of immune hot regions, proportion of immune cold regions 133 

to the number of regions sampled, as well as CD8+ cell percentage or CD8+ to CD4+FOXP3+ 134 

ratio in TRACERx diagnostic slides (Extended Data Fig. 6e).  135 

 136 
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Studies have revealed immunosuppressive fibroblast subsets localizing to the boundary of 137 

tumor nests possibly contribute to T cell exclusion11–13. Therefore, we hypothesized that 138 

increased cancer-stroma physical contact may reflect stroma-modulated inhibition of anti-139 

tumor immune responses14–17.  To measure the physical contact between cancer and 140 

stromal cells (the majority being fibroblasts) identified by image analysis, we developed a 141 

spatial measure, using fractal dimension to quantify the geographical irregularity and 142 

complexity of the cancer-stromal cell interface (Methods, Fig. 4a, Extended Data Fig. 7a,b,e). 143 

Within the same tissue space, higher fractal dimension of cancer-stromal cell interface 144 

suggests increased geometric irregularity and more extensive physical contact between 145 

tumor and stromal cells than samples with a smooth interface. For both histology types, 146 

fractal dimension was significantly higher in immune cold regions compared to immune hot 147 

regions (Fig. 4b, Extended Data Fig. 7c). Moreover, the difference in fractal dimension 148 

between immune cold and hot regions was more significant compared to the difference in 149 

stromal cell percentage (both histology types combined: 	 = 0.00036, effect size 0.49 for 150 

fractal dimension versus 	 = 0.018, effect size 0.38 for stromal cell percentage, Extended 151 

Data Fig. 7d), suggesting the importance of stromal cell geographical location rather than 152 

their quantity. This supports the hypothesis that the stroma-based inhibition of immune 153 

infiltration17 may result from a specific topological pattern in the form of cancer-stroma 154 

engagement.  155 

 156 

To understand the associations of stromal-mediated immunosuppression in the context of 157 

the genetic mechanisms of immune evasion, we related fractal dimension to dysfunction in 158 

antigen presentation through loss of heterozygosity at the human leukocyte antigen locus 159 

(HLA LOH), which has been identified as a potent immune escape mechanism1,18. A 160 

significantly higher fractal dimension was found in LUAD tumor regions with intact HLA 161 

alleles compared with regions harboring HLA LOH (Fig. 4c, Extended Data Fig. 7f). This was 162 

observed at the tumor level (see Methods for definition), independent of clonal neoantigen 163 

burden (	 = 0.04, multivariate regression, Extended Data Fig. 7h), but was not observed in 164 

LUSC (Extended Data Fig. 7g, i).  165 

 166 

Although clonal neoantigens have been associated with a cytotoxic immune response19, the 167 

spatial distribution of lymphocytes in relation to clonal neoantigens remained unclear. To 168 

provide sufficient spatial context for analysis of cell distribution, whole-section TRACERx 169 

diagnostic H&E images, typically 10x larger than the regional samples, were used. To test 170 

the relationship between lymphocyte spatial distribution and clonal neoantigens, we 171 

leveraged an established method for lymphocyte spatial modeling20. Each lymphocyte was 172 

classified into three distinct spatial compartments: intra-tumor, adjacent-to-tumor or distal-173 

tumor, based on unsupervised modeling of cancer-lymphocyte proximity (Fig. 4d). In LUAD, 174 

but not LUSC, clonal neoantigens19 were found to be associated with a specific immune 175 

spatial score to approximate pathology TIL estimates7, defined as the ratio of adjacent-176 

tumor lymphocytes to stromal cells in the diagnostic H&E samples (	 = 0.0074, high clonal 177 
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neoantigen defined as above median in LUAD, Fig. 4e; correlation as continuous variables 178 

Rho = 0.37, 	 = 0.035 after multiple testing correction, Extended Data Fig. 8a). By contrast, 179 

subclonal neoantigen burden did not correlate with any immune score (Extended Data Fig. 180 

8a), supporting the notion that clonal but not subclonal neoantigens is associated with 181 

infiltration of cytotoxic T cells19 adjacent to tumor nests. 182 

 183 

To determine if there was an enrichment of a specific lymphocyte subpopulation within the 184 

adjacent-tumor compartment in LUAD, we spatially aligned IHC to H&E in 10 samples with 185 

the highest adjacent-tumor lymphocytes to stromal cell ratio, and projected IHC-derived T 186 

cell subsets onto H&E images, thereby creating virtual staining of cells in the H&E sections 187 

(Methods, Fig. 4f, Extended Data Fig. 8b-c). CD4+FOXP3-, CD8+, and CD4+FOXP3+ cells 188 

classified in IHC were projected onto a density map of cancer cell distribution inferred from 189 

H&E, and were classified into adjacent-tumor, intra-tumor, and distal-tumor compartments. 190 

In this limited dataset, a significant increase of the effector-regulator balance defined by 191 

CD8+/CD4+FOXP3+ cell ratio was observed in adjacent-tumor stroma compared to the distal 192 

tumor compartment (Fig. 4g). 193 

 194 

In summary, by training deep learning algorithms in diverse histology samples, we 195 

demonstrated that digital pathology can provide accurate tools for defining the ecological 196 

spatial context that may improve our understanding of cancer evolution and the immune 197 

response. In TRACERx and LATTICe-A cohorts, LUAD tumors with increased immune cold 198 

regions were at a significantly higher risk of cancer relapse, independent of total regions 199 

sampled and immune phenotypes of other regions. Thus, even within a tumor that has on 200 

average increased immune infiltration, if it contains regions classified as immune cold, 201 

prognosis appears to be associated with the number of cold regions. Analysis of cancer 202 

branched evolution within the ecological context of immune hot and cold regions revealed a 203 

difference in the evolution history of cancer subclones in these regions, possibly as a result 204 

of immunoediting. Based on this finding, we speculate that by identifying the subclone 205 

where immunoediting is likely to have occurred, new drivers of immune evasion may be 206 

elucidated. 207 

 208 

Spatial histology data can extend our knowledge of the tumor microenvironment 209 

topological configuration in relation to genetic alterations relevant to immune surveillance, 210 

including HLA LOH and clonal neoantigens in LUAD (Extended Data Fig. 9). Increased cancer-211 

stromal engagement as measured by fractal dimension may signal physical constraints 212 

against T cell ingress. This is supported by previous studies in lung cancer showing 213 

restriction of CD8+ and CD4+ T cell motility in dense stromal extracellular matrix areas 214 

around tumor epithelial cell regions which prevent them from entering tumor islets13. 215 

Additionally, the association between specific spatial localization of lymphocytes in tumor-216 
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adjacent stroma and clonal neoantigens further support exploration of the role of stromal 217 

cells in limiting tumor infiltration by T cells14–17.  218 

 219 

It will be imperative to validate our findings on a larger multi-region cohort of untreated 220 

NSCLC tumors. Differences in our findings pertaining to LUAD and LUSC may reflect 221 

differences in biology21–23 and immune evasion mechanisms, including increased prevalence 222 

of antigen presentation dysfunction (HLA transcriptional repression and HLA LOH1) in LUSC. 223 

Other limitations include the lack of detailed staining using multiplexing technologies24–26 224 

that could provide further insights into immune composition. However, with advanced deep 225 

learning developments and detailed tumor phylogenetic data, histology can be used to 226 

highlight fundamental immune contexture such as immune exclusion and its topological 227 

determinants. These data illuminate the clinical significance of immune cold regions that 228 

may reflect immune evading subclones, warranting further investigation into mechanisms 229 

that could contribute to the spatial variability of immune cells. 230 

  231 
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Figures legends 232 

 233 

Figure 1. The computational pathology deep learning pipeline for dissecting 234 

heterogeneous NSCLC tumor microenvironment. a. Histology sample generation in Lung 235 

TRACERx. To preserve morphology and generate good quality histology, samples from the 236 

same tumor regional frozen blocks specifically collected for TRACERx and generated 237 

molecular data1,6 were re-embedded in formalin fixed paraffin (FFPE). From these, H&E-238 

stained tumor section slides were generated. In addition, H&E section and triplex 239 

CD4/CD8/FOXP3 IHC slides were also generated from diagnostic blocks that represent 240 

clinical standard sampling. b. Our multistage deep learning pipeline consists of three key 241 

stages: fully automated tissue segmentation, single-cell detection and classification. The 242 

final output is shown as an image with all cells identified. For more details, please see the 243 

‘Training the deep learning pipeline’ section of the Methods. c. Illustrative 3-dimensional 244 

distribution of input image patches in the feature space learned by the convolutional neural 245 

networks, using Principal Component Analysis. The feature clusters were pseudo-colored to 246 

display segregation for four cell types in H&E, and d CD8+, CD4+FOXP3+, CD4+FOXP3- and 247 

“other” cell class (hematoxylin cells) in IHC, respectively. e. The deep learning single-cell 248 

classification model was trained using expert pathology annotations from a variety of 249 

TRACERx samples (diagnostic, regional, TMA). The trained model was then applied to the 250 

remaining TRACERx samples (predominantly LUAD and LUSC) and the LATTICe-A cohort 251 

(only LUAD), identifying over 171 million cells in TRACERx and over 4.9 billion cells in 252 

LATTICe-A. WSI: whole-section image. f. Biological validation of the deep learning approach. 253 

H&E and IHC images generated from the same TMA slide were virtually integrated for 254 

comparison of H&E-based cell classification and cell type marker expression. For each 255 

marker, the experiment was conducted once using a single TMA (݊ cores/patients = 48 256 

TTF1; 38 CD45). Scale bars represent 100µm. g-h. Correlations between cancer/lymphocyte 257 

cell percentage determined by H&E and TTF1+ (tumor marker)/CD45+ (immune marker) cell 258 

percentage per LUAD image tiles of size 100µm2 (݊	= 100 TTF1; 83 CD45). The shading 259 

indicates 95% confidence interval.  260 

 261 

Figure 2. Geospatial heterogeneity of lymphocytic infiltration in the TRACERx cohort. a. 262 

Representative examples of immune hot and immune cold multi-region H&E samples, scale 263 

bars represent 100µm. b. Each column represents a tumor, grouped by their histologic 264 

subtype (the “Other” group consists of adenosquamous carcinoma, large cell 265 

neuroendocrine carcinoma, pleomorphic carcinoma, and sarcomatoid carcinoma of 266 

pleomorphic type arising from adenocarcinoma). Tumor regions (illustrated as dots) were 267 

assigned to immune hot, immune cold, and intermediate phenotypes based on percentage 268 

of lymphocytes in all cells following H&E-based deep learning analysis. CD8+/CD4+FOXP3-269 

/CD4+FOXP3+ percentages based on automated analysis of the IHC diagnostic samples are 270 

also shown. c. A heatmap showing gene expression patterns of 14 immune cell populations 271 

across tumor regions, each row represents a tumor region (݊ = 142). The three clusters 272 
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correspond to the proposed immune regional classification as shown in b. d. Significant 273 

enrichment of all immune cell populations in hot regions, as compared to cold regions, 274 

particularly for the immune activating cell subsets, including cytotoxic, B-cell, and natural 275 

killer cells (݊ = 109 regions; 52 patients). A two-sided, non-parametric, unpaired, Wilcoxon 276 

signed-rank test was used for each box plot, all -values were corrected for multiple 277 

comparisons. Thick horizontal lines indicate the median value; outliers are indicated by the 278 

extreme points; the first and third quantiles are represented by the box edges; and vertical 279 

lines indicate the error range.  280 

 281 

Figure 3. Evolution of immune escape, and survival analysis in TRACERx and LATTICe-A. a. 282 

A box plot showing the difference in genomic distances for pairs of immune hot or immune 283 

cold regions within the same patients in LUAD (݊ = 66 pairs). b. A box plot showing the 284 

difference in mutational distance between the dominant subclones in pairs of immune hot 285 

or immune cold regions via their last common ancestor in LUAD (݊ = 23 immune cold pairs; 286 

15 immune hot pairs). This distance was calculated by taking the furthest dominant clone 287 

(cancer cell fraction (CCF) ≥ 75%) from the trunk, and it remained significant when the 288 

dominant clone closest to the most recent common ancestor of each tree was considered 289 

(	 = 0.02). c. Illustrative examples of tumor phylogenetic trees for a pair of immune hot and 290 

immune cold regions. Dominant subclones were labelled and their last common ancestor 291 

(annotated with arrows) was then identified. Minor (CCF < 75%) or undetected clones were 292 

neglected in this analysis. d,e. Kaplan-Meier curves illustrating the difference in disease-free 293 

survival according to the number of immune cold regions, dichotomized by the median 294 

value, in TRACERx (d) (LUAD and LUSC, ݊ = 79 patients, 249 regions) and LATTICe-A (e) 295 

(LUAD, ݊ = 970 patients, 4,324 samples). The same deep learning histology analysis and 296 

immune regional classification developed for TRACERx were applied directly to LATTICe-A. 297 

WSI: whole-section image. f. Forest plots showing multivariate Cox regression analyses in 298 

TRACERx (݊ = 79 patients; LUAD and LUSC). Clonal neoantigens were dichotomized using the 299 

upper quartile, determined individually for LUAD and LUSC tumors1. g. Forest plots showing 300 

multivariate Cox regression analyses in LATTICe-A (݊ = 651 LUAD patients with complete 301 

stage and smoking pack years data). For the patient subset with complete stage data but 302 

missing pack years information, the test remained significant (݊ = 827, 	 < 0.001, HR = 303 

1.4[1.1-1.9]). For statistical comparisons among groups, a two-sided, non-parametric, 304 

unpaired, Wilcoxon signed-rank test was used, unless stated otherwise. 305 

 306 

Figure 4. Association of spatial histology with genetic alterations relevant to immune 307 

surveillance. a. An illustrative example of fractal dimension calculated by the box-counting 308 

algorithm to quantify the geospatial complexity of the cancer cell-stromal cell interface. By 309 

examining boxes of decreasing sizes that contain both cancer and stromal cells, the box 310 

counting algorithm quantifies the rate at which the geometrical details of cancer-stromal 311 

interface develop at increasingly fine scales. Blue box illustrates the smallest box of 20µm by 312 

20µm in size. Scale bar represent 100µm. An example of a fractal structure displaying 313 
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geometrical self-similarity is shown below the panel. b. A box plot to illustrate the significant 314 

difference in fractal dimension between all TRACERx immune hot and cold regions (݊ = 219). 315 

c. A box plot showing a significant difference in fractal dimension between LUAD tumor 316 

regions (݊ = 116) harboring an LOH event for class 1 HLA of any type versus regions that do 317 

not, adjusted for multiple comparisons with the remaining HLA type-specific tests (see 318 

Extended Data Fig. 7f). d. Illustration of the adjacent-tumor lymphocyte/stroma ratio 319 

inferred by spatial modeling of cancer cell density (contours) and lymphocyte classification 320 

into spatial compartments. Cell classification in IHC sample of the same block was shown for 321 

comparison. Scale bars represent 50µm. e. A box plot showing the difference in the 322 

adjacent-tumor lymphocyte/stroma ratio between high (≥ median) and low (< median) 323 

clonal neoantigens for all LUAD patients in TRACERx (݊ = 61). f. Illustration of image 324 

registration to spatially align serial sections of H&E and IHC and generate a virtual composite 325 

map of T cell subset in the context of cancer/stroma density. T cell subsets classified in the 326 

IHC were projected onto the cancer density map inferred from H&E, so that they can be 327 

classified into adjacent-tumor, intra-tumor, and distal-tumor compartments. g. A box plot 328 

showing significantly higher ratio of CD8+ to CD4+FOXP3+ cells in adjacent-tumor and intra-329 

tumor lymphocytes compared with distal-tumor lymphocytes in registered LUAD image tiles 330 

(݊ = 20 image tiles, using paired Wilcoxon test). For statistical comparisons among groups, a 331 

two-sided, non-parametric, unpaired, Wilcoxon signed-rank test was used, unless stated 332 

otherwise. 333 

 334 

  335 
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Methods 488 

 489 

Tissues and digital images 490 

The main cohort evaluated comes from the first 100 patients prospectively analyzed by the 491 

lung TRACERx study6 (Extended Data Fig. 1, Supplementary Tables 1, 4, 492 

https://clinicaltrials.gov/ct2/show/NCT01888601, approved by an independent Research 493 

Ethics Committee, 13/LO/1546). 62 were men and 38 were women, with a median age of 494 

68. 61 were LUAD, 32 were LUSC and the remaining 7 had ‘other’ histology subtypes 495 

(including adenosquamous carcinoma, large cell carcinoma, large cell neuroendocrine 496 

carcinoma, pleomorphic carcinoma and pleomorphic carcinoma arising from 497 

adenocarcinoma).  498 

 499 

The 85 case subcohort with regional histology consisted of 55 male and 30 female patients 500 

and of those 49 were LUAD, 32 were LUSC and 6 were ‘other’ types. 10 of these patients 501 

had a single region while the rest ranged between 2-8 regions (݊ = 275 total regional 502 

histology samples). Snap-frozen regional samples were processed to FFPE blocks after 503 

dissecting fresh-frozen tissues for DNA-seq and RNA-seq analyses. Tissue microarrays (TMAs) 504 

were created containing 133x2mm regional tissue cores from 75 patients in 7 blocks. 505 

 506 

In addition to the regional samples, full-sized diagnostic blocks were obtained for all 100 507 

cases precisely mirroring the Jamal-Hanjani et al. 2017 prospective 100 patient cohort6.  508 

4µm thick sections were cut and subjected to H&E staining and multiplex IHC for 509 

CD8/CD4/FOXP3: anti-CD8 (type: Rabbit Monoclonal, clone: SP239, cat. no.: ab178089, 510 

source: Abcam Plc, Cambridge, UK, used at 1:100); anti-CD4 (type: Rabbit Monoclonal, 511 

clone: SP35, cat. no.: ab213215, source: Abcam Plc, Cambridge, UK, used at 1:50); anti-512 

FOXP3 (type: Mouse, clone: 236A/E7, source: kind gift from Dr G Roncador, CNIO, Madrid, 513 

Spain, used at: 1:100). All regional and diagnostic slides were scanned using NanoZoomer 514 

S210 digital slide scanner (C13239-01) and NanoZoomer digital pathology system version 515 

3.1.7 (Hamamatsu, Japan) at 40x (228 nm/pixel resolution).   516 

 517 

The external validation cohort was obtained from the Leicester Archival Thoracic Tumor 518 

Investigatory Cohort – Adenocarcinoma (LATTICe-A) study8, a continuous retrospective 519 

series of resected primary LUAD tumors from a single surgical center between years 1998 to 520 

2014 (Extended Data Fig. 1, Supplementary Table 5). It consists of 4,324 whole-tumor 521 

diagnostic blocks from 970 LUAD patients (ranging from 1 to 16 blocks per case with a 522 

median of 4). 455 were men and 515 were women with a median age of 69. Most clinical 523 

data (age, sex, adjuvant therapy status and time to recurrence or death) were available for 524 

all patients, with complete pathological stage for 827 and smoking history for 651. All 525 

archival slides containing tumor material were used in order to capture the full diversity of 526 

each lesion. Slides were dearchived and scanned using a Hamamatsu NanoZoomer XR at 40x 527 

(226 nm/pixel resolution) yielding 15 TB of image data. Images containing incidental lymph 528 
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node tissue were excluded to avoid confounding immune infiltration analysis. For the 529 

biological validation assay, a subset of 49 paraffin blocks from 49 patients was obtained 530 

from the same study, and from these a validation TMA was prepared, containing a single 531 

1mm core from each case. The work was ethically approved by an NHS research ethics 532 

committee (ref. 14/EM/1159). This study complies with the STROBE guidelines. 533 

 534 

The deep learning pipeline for cell detection and classification  535 

The deep learning pipeline consists of three parts. First, the pipeline segments tissue regions 536 

utilizing multi-resolution input/output image features (Micro-Net27). It was designed to 537 

capture global tissue context and learn weak features that could be important for 538 

identifying tissue boundary, but are often not achieved by other machine learning methods 539 

such as thresholding of the grey-scale image, active contours, watershed segmentation or 540 

Support Vector Machine-based training on local binary pattern features27. Tissue 541 

segmentation removes background noise and artefacts and subsequently allows for more 542 

computationally efficient cell detection and accurate classification. Secondly, a cell 543 

detection model modified from SCCNN28 predicts for each pixel the probability that it 544 

belongs to the center of a nucleus within tissue regions identified by Micro-Net. Nuclei are 545 

detected from the probability map obtained from the deep network. Lastly, a cell 546 

classification framework utilizes a neighboring ensemble predictor classifier coupled with 547 

SCCNN to classify each cell by type.  548 

 549 

For tissue segmentation, each whole slide image was reduced to 1.25x resolution and 550 

segmented for tissue regions using Micro-Net-51227 architecture. This architecture visualizes 551 

the image at multiple resolutions, captures context information by connecting intermediate 552 

deep layers and adds bypass connections to max-pooling to maintain weak features (Fig. 553 

1b). 10 whole slide images were used to train the tissue segmentation network using Micro-554 

Net. The segmented images from the network were inspected visually and quantitatively 555 

(Supplementary Table 6, Supplementary Figures 1-20) to evaluate performance using an 556 

independent set of images. 557 

 558 

The SCCNN adds two layers to conventional deep learning architecture for cell detection 559 

within the segmented tissue. SC1 estimates the location and probability of each pixel 560 

belonging to the center of a cell, and these probabilities are then mapped by SC2 to the 561 

image. A customized implementation of SCCNN was coded in Python (version 3.5) using 562 

TensorFlow29 library (version 1.3) which makes it computationally more efficient compared 563 

to the original MATLAB implementation28. To process an image of size 1000×1000 pixels, the 564 

Python implementation takes 4.8 seconds for nucleus detection compared to 41.0 seconds 565 

using the original implementation28, excluding preprocessing which remained the same in 566 

both implementations (using MATLAB (version 2018b)). In addition, through empirical 567 

experimentation, we optimized the patch size to 31x31 instead of 27x27 in the original 568 

implementation for increased cell detection accuracy. To generate nuclear locations from 569 
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the SC2 probability map, peak detection was applied where thresholds for intensity and 570 

minimum grouping distance were also optimized to 0.15 and 12 pixels through 571 

experimentation using validation data. 572 

 573 

For cell classification, a neighboring ensemble predictor was used. This predictor utilizes 574 

SCCNN to classify cells in neighboring locations to the detected center of the cell. In our 575 

implementation, the ensemble classifier required votes from SCCNN classification of nine 576 

different neighborhood locations near to the center of the cell compared to five votes in 577 

original implementation. Through experimentation, the patch size was optimized to 51x51 578 

for classification instead of 27x27 as originally proposed. This permitted incorporation of 579 

greater tissue spatial context while maintaining the accuracy of classifying small cells.  580 

 581 

Altogether, this pipeline enabled the spatial mapping of four cell types from H&E images: 582 

cancer (malignant epithelial) cells, lymphocytes (including plasma cells), non-inflammatory 583 

stromal cells (fibroblasts and endothelial cells), and an “other” cell type that included non-584 

identifiable cells, less abundant cells such as macrophages and chondrocytes, and ‘normal’ 585 

pneumocytes and bronchial epithelial cells.  586 

 587 

Training the deep learning pipeline  588 

To improve neural network generalizability and to avoid overfitting for cell detection and 589 

classification, we trained and tested our pipeline on a variety of sample types, including 590 

diagnostic (݊ = 100), regional (݊ = 275) and 133 cores corresponding to 75 TRACERx patients 591 

from TMA slides (63 patients had two cores and 12 patients had a single core). Both cell 592 

detection and classification were trained based on single-cell annotations from pathologists. 593 

Two thoracic pathologists annotated 26,960 cells on 53 whole slide images (3 TMAs, 35 594 

regional slides and 15 diagnostic slides) to incorporate morphological variations in 595 

appearance of various cell types and stain variability. Several hundred examples of each cell 596 

class were marked on 76 cores selected at random from TMA images. In total, 4,056, 5,310, 597 

15,007, 2,587 annotations were collected for stromal cells, lymphocytes, cancer cells and 598 

“other” cell types, respectively. These whole slide images were divided into small tile images 599 

of size 2000×2000 pixels (each pixel = 0.5µm), which were then divided into three sample 600 

sets maintaining the class distribution of cells. These included: 13 diagnostic, 58 regional 601 

and 134 TMA tile images for training; 4 diagnostic, 21 regional and 72 TMA tile images for 602 

validation; and 3 diagnostic, 22 regional and 61 TMA tile images for testing. As a result, the 603 

annotations were divided between the three groups; 2/3 for training, 1/6 for validation and 604 

1/6 for testing. The training set included annotations for 2,147 stromal cells, 3,183 605 

lymphocytes, 10,103 cancer and 1,357 other cell types. The validation set had annotations 606 

for 473 stromal cells, 825 lymphocytes, 2,562 tumor and 359 other cell types. Breakdown 607 

for the test set is provided in Supplementary Table 2. 608 

 609 
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For IHC cell classification, we used a pretrained SCCNN network on samples stained for 610 

CD4/CD8/FOXP3. The training set consisted of 1,657 CD4+FOXP3-, 3,187 CD8+, 1,001 611 

CD4+FOXP3+, and 3,488 other (negative) cells. The trained network was tested on 5,028 cell 612 

annotations collected on 6 lung diagnostic whole slide images, including 251 CD4+FOXP3-, 613 

406 CD8+, 123 CD4+FOXP3+ and 4,248 other cells to test the ability of the algorithm in 614 

correctly detecting and classifying negative cells. See Supplementary Table 7 for the total 615 

number of identified cells in the H&E diagnostic, H&E multi-region and IHC diagnostic 616 

datasets.  617 

 618 

Validation of the H&E deep learning pipeline with orthogonal data types 619 

The algorithms’ performance in detecting and classifying single cells in H&E were first 620 

evaluated against the test set of 5951 cells. Individual class accuracy statistics were 621 

calculated using the R function ‘confusionMatrix’ from the R package ‘caret’. 622 

 623 

Pathology TIL estimates were scored following the international guidelines developed by the 624 

International Immuno-Oncology Biomarker Working Group7. Briefly, by inspection of H&E 625 

slide of a given tumor region, the fraction of the stromal area infiltrated by TILs was 626 

assessed.  627 

 628 

For regional samples, tumor cellularity, estimated as the computed percentage cancer cells 629 

was correlated with tumor purity estimated by ASCAT based on DNA-seq copy number and 630 

VAF purity (both available from Jamal-Hanjani et al.6, ݊ = 239 regional tumor samples). The 631 

RNA-seq-based CD8+ T cell signature (available from Rosenthal et al.1, computed using the 632 

Danaher et al. method30) was correlated with the deep learning based lymphocyte 633 

percentage for 142 regional tumor samples. For diagnostic samples, deep learning-based 634 

lymphocyte percentage from H&E was correlated with deep learning-based CD8+ cell 635 

percentage from IHC (݊ = 100 diagnostic samples, Extended Data Fig. 2a-d).   636 

 637 

Discordance rate between RNA-seq based1 and histology/deep learning-based immune hot 638 

and cold regional classification was calculated by cross-tabulation of immune hot and cold 639 

(from histology) versus high and low (from RNA-seq), disregarding any regions without one 640 

of these two types of data. The RNA-seq method used 15 immune cell signatures presenting 641 

different T- and B-cell subsets, as well as neutrophils, macrophages, mast and dendritic cells, 642 

to classify tumor regions into high and low categories. A Fisher’s exact test was used to 643 

compute the overlap between the two immune classifications. Distributions of multiple 644 

immune scores (lymphocyte percentage, intra-tumor lymphocytes and adjacent-tumor 645 

lymphocytes/stroma) as well as ASCAT tumor purity were compared between hot versus 646 

cold (deep learning) and high versus low (RNA-seq) classifications (Extended Data Fig. 5).  647 

 648 

Validation of the deep learning pipeline with the independent LATTICe-A cohort 649 
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The external validity of the proposed deep learning pipeline was performed on 100 650 

randomly selected patients from the LATTICe-A cohort8. This validation ensures that the 651 

trained cell detection and cell classification models from the TRACERx tumor blocks are 652 

generalizable to a distinct dataset which is processed, stained and scanned in another 653 

center (the LATTICe-A study, University of Leicester).  654 

 655 

All 100 whole-tumor H&E sections were processed using the same TRACERx trained model. 656 

The validation was then performed using two data types. First, a pathologist provided 5,082 657 

single-cell annotations following the same protocol for TRACERx in 20 randomly selected 658 

LATTICe-A sections. The breakdown for single-cell annotations was 1,997 stromal cells, 787 659 

lymphocyte cells, 1,839 cancer cells and 459 other cells (see Supplementary Table 3). 660 

Second, two independent pathologists jointly scored the remaining 80 sections for overall 661 

fraction of lymphocytic infiltration and pathology TIL estimates7. These manual scores were 662 

correlated with the deep learning-based lymphocyte percentage and adjacent-tumor 663 

lymphocytes/total stroma (Extended Data Fig. 2e).  664 

 665 

Validation of the deep learning pipeline with biological assays 666 

A new biological validation method was developed to overcome the challenge of obtaining 667 

large quantities of cell-specific validation data (Fig. 1f-h, Extended Data Fig. 2f-g). 48 cores 668 

were available for the TTF1-H&E image pairs, 38 for the CD45-H&E pairs, and 33 for the 669 

SMA-H&E pairs. Stains were performed using a Ventana BenchMark ULTRA instrument 670 

(H&E, TTF-1) or a Dako Link 48 (CD-45, SMA). Digital images were acquired using a 671 

Hamamatsu Nanozoomer slide scanner. First, H&E staining was performed using a Leica 672 

Infinity kit, and a digital image was collected. The slide was subsequently de-coverslipped, 673 

the H&E stain removed by acid alcohol washing, and then an immunohistochemical stain 674 

with haematoxylin counterstain was applied using a standard diagnostic antigen retrieval 675 

and antibody protocol. A second digital image was acquired after mounting and 676 

coverslipping. Through experimentation, no difference in the staining was observed when 677 

the procedure was reversed.  678 

 679 

TTF-1 (type: Novocastra Liquid Mouse Monoclonal antibody thyroid transcription factor 1, 680 

clone: SPT24, cat. no.: NCL-L-TTF-1, source: Leica biosystems, Germany, used at 1:100) was 681 

selected as the cancer cell marker in these LUAD samples because it is the most robust and 682 

widely used immunohistochemical marker of LUAD cells31. It is very specific, both in that 683 

only epithelial cells are stained in the lung, and in that very few tumors of non-lung or 684 

thyroid origin are stained32. The sensitivity of the antibody clone used (SPT24) is also high, 685 

staining >75% of tumor cells in 76% of LUAD tumors in one published series33. However, as 686 

this implies, there are many tumors in which tumor cell staining is incomplete (i.e. <100%). 687 

Therefore, only cores showing near-universal TTF-1-positivity of tumor cells were used for 688 

validation, in order to provide the best possible ‘gold standard’ comparator for the deep 689 

learning algorithm. The same procedure was followed for pairs of H&E-CD45 (anti-human 690 



 21

CD45, type: Mouse Monoclonal, clone: 2B11 + PD7/26, cat. no.: M0701, source: Agilent 691 

DAKO, USA, used at 1:200) and H&E-SMA (myofibroblast marker, type: Mouse Monoclonal 692 

antibody Smooth Muscle Actin (1A4), cat. no.: 760-2833, source: Roche, Switzerland, a 693 

ready to use antibody) to biologically validate the accuracy of single cell classification.  694 

 695 

In total, 64,976 TTF1+ cells, 26,284 CD45+ cells and 46,343 SMA+ cells were detected from 696 

the IHC images, denoting the advantage of this method in acquiring large amount of 697 

validation data at single-cell resolution. The correlation measured (Fig. 1f-h, Extended Data 698 

Fig. 2g) was that between the fraction of classified cells in the H&E versus fraction of 699 

positively stained IHC cells per 100µm2
.  700 

 701 

Immune phenotype classification  702 

To classify tumor regions into different immune phenotypes, we assigned each region to an 703 

immune hot, cold or intermediate category based on lymphocyte percentage. The 704 

dependency of our subsequently results on thresholds chosen for this classification scheme 705 

was tested after applying perturbations to the thresholds used. Four new classification 706 

schemes were tested: no intermediate zone (i.e. using median lymphocyte percentage for 707 

separating hot and cold regions), regions with lymphocyte percentage greater than standard 708 

deviation/2 above/below the median lymphocyte percentage classified as immune hot/cold,  709 

, and similarly for standard deviation/3 and standard deviation/6 (Extended Data Fig. 4a-b). 710 

For every new classification, we repeated the multivariate survival analysis to confirm the 711 

significance of the number of immune cold regions in predicting disease-free survival as well 712 

as the genomic distance test for pairs of immune hot versus immune cold regions in LUAD 713 

patients (Extended Data Fig. 4b). In addition, the CD8+ RNA-seq signature was used to test 714 

the difference in CD8+ levels between immune hot and immune cold phenotypes across all 715 

classification schemes (Extended Data Fig. 4c).  716 

 717 

Genomic distance measure 718 

Genomic distance was calculated as described previously1, by taking the Euclidean distance 719 

of the mutations present for every pair of immune hot and immune cold regions from the 720 

same patient. All mutations present in a region from a tumor were turned into a binary 721 

matrix of which the rows were mutations and columns were the tumor regions. From this 722 

matrix, the pairwise distance was determined. 723 

 724 

Distance between dominant clones to the last common ancestor of region pair 725 

Deep learning-based immune phenotypes were integrated with the TRACERx phylogenetics 726 

data6. Dominant clones (using the upper quartile of cancer cell fraction, ≥ 75%) were 727 

labelled for all tumor regions’ trees which had an available H&E sample in LUAD patients (݊ 728 

= 76 regions, 15 immune hot pairs and 23 immune cold pairs). For every pair of immune hot 729 

/ cold regions within a tumor, the distance between the dominant clones (as measured by 730 

branch length, i.e. number of mutations) via their last common ancestor was computed. The 731 
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recently shared ancestry clone between the two dominant clones was labelled as the ‘last 732 

common ancestor of region pair’ (annotated with arrows in Fig 3.c). To ensure this analysis 733 

was not dependent on a certain cancer cell fraction threshold, multiple thresholds (CCF ≥ 734 

80%, 85%) were placed while repeating the same analysis. Next, by identifying the last 735 

common ancestral subclone for pairs of the same phenotype, each pair was categorized into 736 

one of two diversification patterns: ‘diversifying at the most recent common ancestor 737 

(MRCA) of the tree’ or ‘diversifying at a descendant subclone of the MRCA of the tree’. The 738 

latter category included a pattern exclusive to immune cold pairs, where the two regions 739 

shared the same dominant subclone that was the direct descendant of the MRCA of the 740 

tree. 741 

 742 

Tumor spatial modelling 743 

H&E and IHC cell abundance scores (e.g. lymphocyte percentage, CD8+ percentage) were 744 

computed as the percentage of a cell type in the total sample cell count. Stromal TILs were 745 

identified using spatial modelling20,34,35, where lymphocytes were classified (using 746 

unsupervised clustering) into intra-tumor lymphocytes, adjacent-tumor lymphocytes and 747 

distal-tumor lymphocytes based on their spatial proximity to epithelial cell nests in H&Es. 748 

The immune hotspot score was calculated using the Getis–Ord algorithm as previously 749 

described36. To capture the emergence of complex morphological patterns that dictate 750 

cancer-stromal cell spatial contact preserved over varying spatial scales, a fractal dimension 751 

calculation (Minkowski-Bouligand dimension) was performed using the box-counting 752 

algorithm37. This algorithm calculates the number of boxes of a certain size needed to cover 753 

a geometric pattern. We modified a MATLAB-based algorithm38 to include both spatial 754 

information of cancer and stromal cells, as opposed to its conventional use on one variable 755 

(i.e. pixel information of an image). The analysis was carried out on spatial maps generated 756 

using coordinates of classified stromal and cancer cells, while utilizing the tissue segmented 757 

image (as a boundary mask) to exclude all empty tissue areas. Choices of box size were 758 

informed by the distribution of minimum and maximum Euclidean distance for each stromal 759 

cell to its nearest cancer cell in all 275 tumor regions (Extended Data Fig. 7a). The mean 760 

minimum distance was 21.43µm. We limited the upper box size at 300µm, which is just 761 

above a previously proposed cell-cell communication distance of 250µm
39 but designed to 762 

be more inclusive. For statistical tests where fractal dimension was represented at tumor 763 

level, the maximum regional score was used.  764 

 765 

H&E-IHC spatial alignment/immune subset projection 766 

For a H&E diagnostic slide, we determined the number of intra-tumor lymphocytes, 767 

adjacent-tumor lymphocytes and distal-tumor lymphocytes (nI, nA, nD) based on spatial 768 

modelling of the H&Es. After spatial alignment of IHC and projecting IHC-derived cells onto 769 

the H&E, the number of CD8+ cells that were also intra-tumor lymphocytes was determined 770 

(nCD8
ITL), and similarly for other cell types. As a result, intra-tumor lymphocytes were 771 

deconvoluted by nI = nCD8
I + nCD4

I + nFOXP3
I + nother

I. Two-sided paired Wilcox was used to test the 772 
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difference in the percentage of CD8+ cells among intra-tumor lymphocytes, adjacent-tumor 773 

lymphocytes and distal-tumor lymphocytes (nCD8
ATL, nCD8

DTL, nCD8
ITL).  The same test was performed 774 

for CD4+FOXP3- and CD4+FOXP3+ cells.  775 

 776 

The 10 LUAD patients with the highest adjacent-tumor lymphocytes to stromal cell ratio 777 

were selected for this immune subset spatial projection. All samples had above median 778 

CD8+%. One sample was excluded due to poor HE-IHC alignment quality and the subsequent 779 

analysis was performed on the remaining nine samples. The quality of alignment was 780 

evaluated by manually identifying 238 visible landmarks and placed on corresponding 781 

positions in H&E and IHC tiles (total number of tiles = 249, maximum landmarks per tile = 5), 782 

as shown in Extended Data Fig. 8b. These marked points were used to compute the 783 

Euclidean distance (difference in ݔ,  coordinates) between them to obtain a quantitative 784 ݕ

measurement of alignment accuracy. The average distance between matching landmarks 785 

was 9.57µm, whereas the maximum distance between the H&E and CD4/CD8/FOXP3 786 

sections was 16µm.  787 

 788 

Survival analysis and other statistical methods 789 

Survival tests were conducted using Kaplan-Meier estimator (‘ggsurvplot’ R function from 790 

the ‘survminer’ and ‘survival’ R packages) as well as Cox model (‘coxph’ R function and 791 

displayed using ‘ggforest’ R function). Forest plots show the hazard ratio in the x-axis; each 792 

variable’s hazard ratio is plotted and annotated with a 95% confidence interval. The clinical 793 

parameters included in the multivariate model were age, sex, smoking pack years, histology 794 

(whether LUAD, LUSC or otherwise), tumor stage, adjuvant therapy (whether received or 795 

not). Because of its prognostic importance in TRACERx, the upper quartile of clonal 796 

neoantigens in each histology cohort was also incorporated in the multivariate model. The 797 

range of available disease-free survival data was 34-1364 days (median = 915 days) in 798 

TRACERx, and 1-6139 days (median = 684 days) in LATTICe-A. All hazard ratios were 799 

computed on all time points (i.e. the whole survival curve, not at a specific time point). 800 

Correlation tests used Spearman’s method and were generated using the function 801 

‘ggscatter’ from the ‘ggpubr’ R package. All correlation plots show the Rho (ρ) coefficient 802 

and the significance -value. For statistical comparisons among groups, a two-sided, non-803 

parametric, unpaired, Wilcoxon signed-rank test was used, unless stated otherwise. All box 804 

plots were generated using the function ‘ggboxplot’ from the ‘ggpubr’ R package (all data 805 

points are plotted with the ‘jitter’ option, the median value is indicated by a thick horizontal 806 

line; minimum and maximum values are indicated by the extreme points; the first and third 807 

quantiles are represented by the box edges; and vertical lines indicate the error range) or 808 

the function ‘ggbetweenstats’ from the ‘ggstatplot’ R package for more than two groups. 809 

Tests for concordance between two data classes were analyzed using a Fisher’s exact test. 810 

All statistical tests were two-sided, a  value of less than .05 was considered statistically 811 

significant. To adjust -values for multiple comparisons, the Benjamini & Hochberg method 812 
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was used. To measure effect size, Cohen’s d method was used. All statistical analyses were 813 

conducted in R (version 3.5.1).  814 

 815 

Reporting summary 816 

Further information on research design is available in the Nature Research Reporting 817 

Summary linked to this paper. 818 

  819 
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Extended Data Figures legends 820 

 821 

Extended Data Fig. 1. CONSORT diagrams for TRACERx 100 and LATTICe-A histology 822 

cohorts and patient characteristics. a. TRACERx CONSORT diagram to illustrate sample 823 

collection and analysis of regional and diagnostic histology samples, as well as the overlap 824 

with RNA and DNA studies. b. TRACERx patient characteristics for the histology cohort. c. 825 

LATTICe-A CONSORT diagram (݊ = 970 LUAD patients). Legends for ‘type of the analysis’ 826 

correspond to panel a. d. Demographics and clinical patient characteristics for TRACERx (top 827 

three panels) and LATTICe-A (bottom three panels) showing the distribution of age (colored 828 

by sex), distribution of smoking pack years and the proportion of patients in each 829 

pathological stage. Horizontal lines indicate the median value. 830 

 831 

Extended Data Fig. 2. Validation of the automated single-cell classification for H&E. a. A 832 

scatter plot showing the correlation between H&E-based adjacent-tumor 833 

lymphocytes/stromal and pathology TIL estimates in diagnostic samples (݊ = 98 diagnostic 834 

slides/patients).  b. Scatter plots showing the correlations between H&E-based tumor 835 

cellularity estimate and ASCAT/VAF purity scores (݊ = 238 regions; 83 patients). c. A scatter 836 

plot showing the correlation between H&E-based estimate of lymphocyte percentage 837 

among all cells and RNA-seq-based CD8+ signature using the Danaher et al. method30 (݊ = 838 

142 regions; 56 patients).  d. A scatter plot showing the correlation between H&E-based 839 

estimate of lymphocyte percentage among all cells and CD8+ cell percentage in IHC in the 840 

diagnostic samples (݊  = 100 diagnostic slide/patients). e. Scatter plots showing the 841 

correlation between H&E-based lymphocyte percentage versus pathological scores of 842 

overall lymphocytic cell fraction, and adjacent-tumor lymphocytes/stromal versus pathology 843 

TIL estimates in an external cohort (LATTICe-A, ݊  = 80 diagnostic slides/patients). f. 844 

Illustrative example to show the spatial alignment of TTF1/CD45/SMA-stained IHC and H&E 845 

images obtained using sequential staining on the same tissue microarray section for 846 

biological validation. g. A scatter plot showing the correlation between stromal cell 847 

percentage determined by H&E and SMA+ cell percentage per LUAD image tiles of size 848 

100µm2 (݊  = 144). The experiment was conducted once using one TMA (݊  = 33 849 

cores/patients). The shading indicates 95% confidence interval. 850 

 851 

Extended Data Fig. 3. Distribution of regional lymphocytic infiltration according to 852 

pathological stage. All available patients’ data have been used in this figure except for the 853 

standard deviation tests excluding patients with a single tumor region. Patients without 854 

pathological staging information from the LATTICe-A cohort were also removed. a, b, c, top 855 

row: TRACERx and bottom row: LATTICe-A. Horizontal lines indicate the median value. a. 856 

Distribution of the standard deviation of regional lymphocyte percentage for LUAD and 857 

LUSC patients in TRACERx (݊ = 69), and LUAD in LATTICe-A (݊ = 814). b. Distribution of the 858 



 26

standard deviation of regional lymphocyte percentage across pathological stages (݊ = 69 for 859 

TRACERx, 814 for LATTICe-A). c. Distribution of regional mean of lymphocyte percentage 860 

across stages (݊ = 79 for TRACERx, 827 for LATTICe-A). d. No significant difference among 861 

stages with respect to standard deviation (݊ = 69 for TRACERx, 814 for LATTICe-A) or mean 862 

(݊ = 79 for TRACERx, 827 for LATTICe-A) of regional lymphocytic infiltration. Left panel, 863 

TRACERx and right panel, LATTICe-A. Correction for multiple testing was applied in d, for 864 

each cohort individually. A two-sided, non-parametric, unpaired, Wilcoxon signed-rank test 865 

was used; each dot represents a patient; the mean value is annotated with a large dot; the 866 

median value is represented by a thick horizontal line; minimum and maximum values are 867 

indicated by the extreme points; the first and third quantiles are represented by the box 868 

edges; and the violin shape shows the data distribution as a kernel density estimation. 869 

 870 

Extended Data Fig. 4. Validation of immune phenotype classification. a. The proposed 871 

immune classification imposed on density plot showing distribution of lymphocyte 872 

percentage. The middle zone corresponds to the intermediate phenotype, red zone for 873 

immune hot and blue zone for immune cold. Black dash line shows the median. This 874 

classification was validated after applying small perturbations to the thresholds to re-classify 875 

regional immune phenotypes, illustrated as grey dash lines: no intermediate zone (i.e. hard 876 

median for separating hot and cold), standard deviation (SD)/2 above and below the 877 

median, SD/3 and SD/6. b. Forest plots to show repeated multivariate Cox regression tests 878 

for the number of immune cold regions using these new classifications (݊ = 79 patients), 879 

after accounting for stage, total number of samples, upper quartile of clonal neoantigens 880 

determined for LUAD and LUSC individually, and other clinical parameters. Box plots 881 

showing difference in genomic distance for pairs of hot regions compared with pairs of cold 882 

regions for LUAD and LUSC separately (LUAD: ݊ = 45 hot pairs, 45 cold pairs for no 883 

intermediate zone; ݊ = 19 hot, 25 cold for SD/2; ݊ = 25 hot, 33 cold for SD/3; ݊ = 32 hot, 41 884 

cold for SD/6. LUSC: ݊ = 32 hot pairs, 54 cold pairs for no intermediate zone; ݊ = 19 hot, 27 885 

cold for SD/2; ݊ = 19 hot, 37 cold for SD/3; ݊ = 27 hot, 41 cold for SD/6.). c. Box plots 886 

showing significant difference in CD8+ RNA-seq signature using the Danaher method 887 

between regions of hot and cold phenotype across all classification schemes (݊ = 219 for 888 

SD/4; 275 for no intermediate zone; 173 for SD/2; 204 for SD/3; 237 for SD/6). d. 889 

Distribution and difference of lymphocytic infiltration for LUAD versus LUSC regions in 890 

TRACERx (݊ = 275 regions; 85 patients) as well as distribution for LUAD in LATTICe-A (݊ = 891 

4,324 samples; 970 patients). Horizontal lines in the distribution plots indicate mean values. 892 

For statistical comparisons among groups, a two-sided, non-parametric, unpaired, Wilcoxon 893 

signed-rank test was used, unless stated otherwise. 894 

 895 

Extended Data Fig. 5. Concordance between histology deep learning and RNA-seq immune 896 

classification. a. A box plot showing the difference in pathology TIL estimates between 897 
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immune hot and immune cold regions (݊ = 219). Pathology TIL estimates score fraction of 898 

stroma containing TILs, whereas immune classification was defined based on the percentage 899 

of lymphocytes in all cells within a slide. b. A confusion matrix to compare RNA-seq and 900 

deep learning histology immune classifications (discarding immune intermediate regions, ݊ 901 

= 109 regions (57 LUAD, 37 LUSC, 15 other histology subtypes); 52 patients). The p-value 902 

was generated using a two-sided Fisher’s exact test for overlap. c. A box plot showing the 903 

difference in the fraction of immune hotspots36 in regions where the two classifications are 904 

in agreement (݊ = 78; labeled as ‘In agreement’) against the discrepant regions (݊ = 31, 905 

labeled as ‘Discrepant’). Each dot represents a region, the median value is indicated by a 906 

thick horizontal line; minimum and maximum values are indicated by the extreme points; 907 

and the first and third quantiles are represented by the box edges. d. Box plots to support 908 

the overall consistency between H&E-deep learning and RNA-seq methods by comparing 909 

different immune scores as well as ASCAT tumor purity between immune hot/high and 910 

cold/low tumor regions (all 	-values < 0.0001). Top row, H&E-deep learning immune 911 

classification (݊ = 219; except the ASCAT purity box plot ݊ = 186 regions), bottom row, RNA-912 

seq derived immune classification (݊ = 142; except the ASCAT purity box plot, ݊ = 141 913 

regions). For statistical comparisons among groups, a two-sided, non-parametric, unpaired, 914 

Wilcoxon signed-rank test was used, unless stated otherwise. 915 

 916 

Extended Data Fig. 6. Genomic and survival analysis of tumor regions according to 917 

immune phenotypes. a. A box plot showing the difference in genomic distances for pairs of 918 

immune hot versus immune cold regions within the same LUSC patients (݊ = 59 pairs). A 919 

two-sided, non-parametric, unpaired, Wilcoxon signed-rank test was used. b. Forest plots to 920 

show the univariate prognostic value for the number of immune low regions (both as 921 

continuous and dichotomized at the median (≤1 versus >1)), or the number of immune high 922 

regions, using the immune classification generated by RNA-seq-based infiltrating immune 923 

cell populations1 in 64 TRACERx tumors (41 LUAD, 16 LUSC and 7 other histology subtypes). 924 

c. Forest plots showing multivariate Cox regression analyses in both TRACERx (݊ = 79 925 

patients; LUAD and LUSC combined) and LATTICe-A (݊ = 651 LUAD patients representing a 926 

subset with complete stage and smoking pack years data) with the number of immune cold 927 

regions dichotomized at the median (≤1 versus >1). This remains significant when the 928 

number of immune cold regions was replaced as a continuous variable, in the same 929 

multivariate model, (	 = 0.019 in TRACERx and < 0.001 in LATTICe-A, for the number of 930 

immune cold regions). Clonal neoantigens were dichotomized using the upper quartile, 931 

determined individually for LUAD and LUSC tumors1. d. The same test in c when tumor size 932 

(in mm) was also controlled in the multivariate model in LATTICe-A. This test also remained 933 

significant for a bigger group of patients with complete stage data, but missing pack years 934 

information (݊ = 815,  < 0.001, HR = 1.4[1.1-1.8]). e. Forest plots to compare the prognostic 935 

value of regional immune scores as well as diagnostic H&E and IHC scores for relapse-free 936 

survival in TRACERx (݊ = 79 patients, LUAD and LUSC combined). Wherever possible, these 937 
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immune features were tested in LATTICe-A (݊ = 970 patients). To compare the prognostic 938 

value of the number of immune cold region with other immune features, LATTICe-A 939 

comparisons were conducted in Cox multivariate regression models to include every 940 

immune feature after correcting for the number of immune cold regions in the same model. 941 

Each variable’s HR is plotted with a 95% confidence interval; all -values were adjusted for 942 

multiple testing; and the size of the circles denotes –log10(	). For the sake of visualization, 943 

a minor adjustment was made to the HR for the number of cold regions/total number of 944 

regions in LATTICe-A from 0.88[0.57-1.3] to 0.99[0.97-1.3]. SD: standard deviation, used for 945 

measuring variability of lymphocyte percentage among samples within a tumor. f. Forest 946 

plots using Cox multivariate regression analysis showing that the prognostic value of the  947 

number of immune cold regions was independent of: 1) genetic measure, subclonal copy 948 

number alteration (obtained from 6); 2) tumor cellularity from DNA-seq-based ASCAT purity, 949 

3) tumor cellularity measured by deep learning-based cancer cell percentage. g. Kaplan 950 

Meier curves to illustrate the difference in relapse-free survival for TRACERx patients 951 

including other histology types (݊ = 85; representing all TRACERx patients in the multi-952 

region histology cohort) with high and low number of immune cold regions, dichotomized 953 

by its median value. Log-rank  = 0.0017. h. Forest plot using Cox regression for the 954 

multivariate survival analysis for the number of immune cold regions in TRACERx including 955 

patients with other histology subtypes (݊ = 85). 956 

 957 

Extended Data Fig. 7. Fractal dimension and relationships with stromal cells. a. 958 

Distribution of the average minimum Euclidean distance between a stromal cell to its 959 

neighboring cancer cell. For every stromal cell in a tumor region slide, the minimum distance 960 

to nearest cancer cell was computed. This distance was then averaged for all identified 961 

stromal cells in every region to plot the distribution (݊ = 275 regions; 85 patients). b. 962 

Distribution of the fractal dimension of the cancer-stroma cell interface for histology types 963 

in the TRACERx cohort (݊ = 275 regions; 85 patients). c. Box plots to show the difference in 964 

fractal dimension between immune hot and cold regions in TRACERx LUAD (݊ = 113) and 965 

LUSC (݊ = 84). d. Box plots showing the difference in stromal cell percentage between 966 

immune hot and cold regions in all (݊ = 219), LUAD (݊ = 113), and LUSC (݊ = 84). e. Scatter 967 

plots showing the correlation between fractal dimension and percentage of cells that are 968 

stromal or cancer in all tumor regions (݊ = 275 regions; 85 patients). This shows that fractal 969 

dimension was independent of tumor cell composition, with only a weak correlation with 970 

stromal cell percentage and no correlation with tumor cellularity. f. Box plots showing the 971 

difference in fractal dimension between LUAD tumor regions harboring an LOH event for 972 

HLA type A (݊ = 106), type B (݊ = 113), type C (݊ = 108) versus regions that do not, adjusted 973 

for multiple comparisons with the corresponding test in Fig. 4c. g. The same test in f 974 

repeated for LUSC tumor regions (݊ = 87) for HLA of any type. h. Box plots showing the 975 

difference in tumor-level fractal dimension using the maximum value of regional measures 976 

between LUAD tumors (݊ = 48) harboring a single LOH event for any HLA type, HLA type A, 977 
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type B and type C versus tumors that do not, independent of predicted clonal neoantigens. 978 

Each p-value was generated using a multiple regression linear model and was also adjusted 979 

for multiple testing correction. i. The same test in h repeated for LUSC tumors (݊ = 29) for 980 

HLA of any type. For statistical comparisons among groups, a two-sided, non-parametric, 981 

unpaired, Wilcoxon signed-rank test was used, unless stated otherwise. 982 

 983 

Extended Data Fig. 8. Relationship of immune subsets and spatial TILs in LUAD. a. 984 

Spearman’s correlations between immune scores in diagnostic slides and genetic measures 985 

including predicted neoantigens and HLALOH in LUAD patients (݊ = 46). ITLR: intra-tumor 986 

lymphocytes to total tumor cell ratio. Only significant correlations after multiple testing are 987 

highlighted (rho = 0.37, 	 = 0.035). b. Examples of registered H&E and IHC tiles. The green 988 

cross denotes a manually placed landmark repeated 238 times on pairs of H&E-IHC image 989 

tiles. The Euclidean distance (difference in ݔ,  coordinates) was computed between the two 990 ݕ

landmarks which was then c. shown as a distribution to represent the accuracy of the 991 

registration (݊ = 249 total H&E-IHC image tiles, maximum five landmarks per a pair of tiles). 992 

The average distance between matching landmarks was 9.57µm and the distribution is 993 

within the expected range of maximum distance between four serial sections (16µm). d. Box 994 

plots to illustrate the difference in percentage of immune cell subsets among adjacent, intra 995 

and distal-tumor lymphocytes (݊ = 20 image tiles), a non-parametric, paired Wilcoxon test 996 

was used. 997 

 998 

Extended Data Fig. 9. Summary of immune and genomics features in NSCLC. An extended 999 

heatmap showing all immune variables described in TRACERx across all patients (݊ = 275 1000 

regions; 85 patients), along with genetic measures and clinical parameters. Each column 1001 

represents a tumor, grouped by their histologic subtype. Tumor regions (illustrated as dots) 1002 

were assigned to immune hot, immune cold and intermediate phenotypes based on 1003 

percentage of lymphocytes in all cells following H&E-based deep learning analysis. Cancer-1004 

stromal fractal dimension, defined using the maximum fractal dimension in regions of a 1005 

patient, using the median as cut-off to determine high and low groups. 1006 

  1007 



 30

Methods and Extended Data References  1008 

 1009 

27. Raza, S. E. A. et al. Micro-Net: A unified model for segmentation of various objects in 1010 

microscopy images. Med. Image Anal. 52, 160–173 (2019). 1011 

28. Sirinukunwattana, K. et al. Locality Sensitive Deep Learning for Detection and 1012 

Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans. Med. Imaging 1013 

35, 1196–1206 (2016). 1014 

29. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous 1015 

Distributed Systems. (2016). 1016 

30. Danaher, P. et al. Gene expression markers of Tumor Infiltrating Leukocytes. J. 1017 

Immunother. Cancer 5, 18 (2017). 1018 

31. HOLZINGER, A. et al. Monoclonal Antibody to Thyroid Transcription Factor-1: 1019 

Production, Characterization, and Usefulness in Tumor Diagnosis. Hybridoma 15, 49–53 1020 

(1996). 1021 

32. Matoso, A. et al. Comparison of thyroid transcription factor-1 expression by 2 1022 

monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl. 1023 

Immunohistochem. Mol. Morphol.  AIMM 18, 142–9 (2010). 1024 

33. Pelosi, G. et al. ΔNp63 (p40) and Thyroid Transcription Factor-1 Immunoreactivity on 1025 

Small Biopsies or Cellblocks for Typing Non-small Cell Lung Cancer: A Novel Two-Hit, 1026 

Sparing-Material Approach. J. Thorac. Oncol. 7, 281–290 (2012). 1027 

34. Heindl, A. et al. Relevance of Spatial Heterogeneity of Immune Infiltration for 1028 

Predicting Risk of Recurrence After Endocrine Therapy of ER+ Breast Cancer. JNCI J. Natl. 1029 

Cancer Inst. 110, (2018). 1030 

35. Heindl, A. et al. Microenvironmental niche divergence shapes BRCA1-dysregulated 1031 

ovarian cancer morphological plasticity. Nat. Commun. 9, 3917 (2018). 1032 

36. Nawaz, S., Heindl, A., Koelble, K. & Yuan, Y. Beyond immune density: critical role of 1033 

spatial heterogeneity in estrogen receptor-negative breast cancer. Mod. Pathol. 28, 766–1034 

777 (2015). 1035 

37. Dubuc, Quiniou, Roques-Carmes, Tricot & Zucker. Evaluating the fractal dimension of 1036 

profiles. Phys. Rev. A, Gen. Phys. 39, 1500–1512 (1989). 1037 

38. MOISY, F. & JIMÉNEZ, J. Geometry and clustering of intense structures in isotropic 1038 

turbulence. J. Fluid Mech. 513, 111–133 (2004). 1039 

39. Francis, K. & Palsson, B. O. Effective intercellular communication distances are 1040 

determined by the relative time constants for cyto/chemokine secretion and diffusion. Proc. 1041 

Natl. Acad. Sci. U. S. A. 94, 12258–62 (1997). 1042 

  1043 



 31

 1044 

1045 



 32

References 1046 

 1047 

1. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. 1048 

Nature 1 (2019). doi:10.1038/s41586-019-1032-7 1049 

2. Morris, L. G. T. & Chan, T. A. Lung Cancer Evolution: What’s Immunity Got to Do with 1050 

It? Cancer Cell 35, 711–713 (2019). 1051 

3. Morris, L. G. T. et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic 1052 

determinant of survival. Oncotarget 7, 10051–10063 (2016). 1053 

4. Milo, I. et al. The immune system profoundly restricts intratumor genetic 1054 

heterogeneity. Sci. Immunol. 3, (2018). 1055 

5. Jia, Q. et al. Local mutational diversity drives intratumoral immune heterogeneity in 1056 

non-small cell lung cancer. Nat. Commun. 9, (2018). 1057 

6. Jamal-Hanjani, M. et al. Tracking the Evolution of Non–Small-Cell Lung Cancer. N. 1058 

Engl. J. Med. 376, 2109–2121 (2017). 1059 

7. Hendry, S. et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors. Adv. Anat. 1060 

Pathol. 24, 311–335 (2017). 1061 

8. Moore, D. A. et al. In situ growth in early lung adenocarcinoma may represent 1062 

precursor growth or invasive clone outgrowth—a clinically relevant distinction. Mod. 1063 

Pathol. 1 (2019). doi:10.1038/s41379-019-0257-1 1064 

9. Whittaker, K. A. & Rynearson, T. A. Evidence for environmental and ecological 1065 

selection in a microbe with no geographic limits to gene flow. Proc. Natl. Acad. Sci. U. 1066 

S. A. 114, 2651–2656 (2017). 1067 

10. Shafer, A. B. A. & Wolf, J. B. W. Widespread evidence for incipient ecological 1068 

speciation: A meta-analysis of isolation-by-ecology. Ecology Letters 16, 940–950 1069 

(2013). 1070 

11. Costa, A. et al. Fibroblast Heterogeneity and Immunosuppressive Environment in 1071 

Human Breast Cancer. Cancer Cell 33, 463-479.e10 (2018). 1072 

12. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts 1073 

in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017). 1074 

13. Salmon, H. et al. Matrix architecture defines the preferential localization and 1075 

migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–1076 

910 (2012). 1077 

14. Thomas, D. A. & Massagué, J. TGF-β directly targets cytotoxic T cell functions during 1078 

tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005). 1079 

15. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor 1080 

microenvironment. Science (80-. ). 348, 74–80 (2015). 1081 

16. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. 1082 

Immunol. 10, 712–723 (2010). 1083 

17. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer–immune set 1084 

point. Nature 541, 321–330 (2017). 1085 

18. McGranahan, N. et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer 1086 

Evolution. Cell 171, 1259-1271.e11 (2017). 1087 

19. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity 1088 

to immune checkpoint blockade. Science (80-. ). 351, (2016). 1089 

20. Yuan, Y. Modelling the spatial heterogeneity and molecular correlates of lymphocytic 1090 

infiltration in triple-negative breast cancer. J. R. Soc. Interface 12, 20141153 (2015). 1091 



 33

21. Thomas, A., Liu, S. V., Subramaniam, D. S. & Giaccone, G. Refining the treatment of 1092 

NSCLC according to histological and molecular subtypes. Nat. Rev. Clin. Oncol. 12, 1093 

511–526 (2015). 1094 

22. Hammerman, P. S. et al. Comprehensive genomic characterization of squamous cell 1095 

lung cancers. Nature 489, 519–525 (2012). 1096 

23. Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma: The 1097 

cancer genome atlas research network. Nature 511, 543–550 (2014). 1098 

24. Keren, L. et al. A Structured Tumor-Immune Microenvironment in Triple Negative 1099 

Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 1373-1387.e19 1100 

(2018). 1101 

25. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular 1102 

resolution by mass cytometry. Nat. Methods 11, 417–422 (2014). 1103 

26. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX 1104 

Multiplexed Imaging. Cell 174, 968-981.e15 (2018). 1105 

27. Raza, S. E. A. et al. Micro-Net: A unified model for segmentation of various objects in 1106 

microscopy images. Med. Image Anal. 52, 160–173 (2019). 1107 

28. Sirinukunwattana, K. et al. Locality Sensitive Deep Learning for Detection and 1108 

Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans. Med. 1109 

Imaging 35, 1196–1206 (2016). 1110 

29. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous 1111 

Distributed Systems. (2016). 1112 

30. Danaher, P. et al. Gene expression markers of Tumor Infiltrating Leukocytes. J. 1113 

Immunother. Cancer 5, 18 (2017). 1114 

31. HOLZINGER, A. et al. Monoclonal Antibody to Thyroid Transcription Factor-1: 1115 

Production, Characterization, and Usefulness in Tumor Diagnosis. Hybridoma 15, 49–1116 

53 (1996). 1117 

32. Matoso, A. et al. Comparison of thyroid transcription factor-1 expression by 2 1118 

monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl. 1119 

Immunohistochem. Mol. Morphol.  AIMM 18, 142–9 (2010). 1120 

33. Pelosi, G. et al. ΔNp63 (p40) and Thyroid Transcription Factor-1 Immunoreactivity on 1121 

Small Biopsies or Cellblocks for Typing Non-small Cell Lung Cancer: A Novel Two-Hit, 1122 

Sparing-Material Approach. J. Thorac. Oncol. 7, 281–290 (2012). 1123 

34. Heindl, A. et al. Relevance of Spatial Heterogeneity of Immune Infiltration for 1124 

Predicting Risk of Recurrence After Endocrine Therapy of ER+ Breast Cancer. JNCI J. 1125 

Natl. Cancer Inst. 110, (2018). 1126 

35. Heindl, A. et al. Microenvironmental niche divergence shapes BRCA1-dysregulated 1127 

ovarian cancer morphological plasticity. Nat. Commun. 9, 3917 (2018). 1128 

36. Nawaz, S., Heindl, A., Koelble, K. & Yuan, Y. Beyond immune density: critical role of 1129 

spatial heterogeneity in estrogen receptor-negative breast cancer. Mod. Pathol. 28, 1130 

766–777 (2015). 1131 

37. Dubuc, Quiniou, Roques-Carmes, Tricot & Zucker. Evaluating the fractal dimension of 1132 

profiles. Phys. Rev. A, Gen. Phys. 39, 1500–1512 (1989). 1133 

38. MOISY, F. & JIMÉNEZ, J. Geometry and clustering of intense structures in isotropic 1134 

turbulence. J. Fluid Mech. 513, 111–133 (2004). 1135 

39. Francis, K. & Palsson, B. O. Effective intercellular communication distances are 1136 

determined by the relative time constants for cyto/chemokine secretion and 1137 

diffusion. Proc. Natl. Acad. Sci. U. S. A. 94, 12258–62 (1997). 1138 



 34

  1139 



 35

Geospatial immune variability illuminates differential evolution of  1140 

lung adenocarcinoma  1141 

 1142 

 1143 

TRACERx consortium member names 1144 

Charles Swanton (3,4,5), Mariam Jamal-Hanjani (3,5), John Le Quesne (10,11,15), Allan 1145 

Hackshaw (12), Sergio A Quezada (13), Nicholas McGranahan (3,14), Rachel Rosenthal (3,4), 1146 

Crispin T Hiley (3,4), Selvaraju Veeriah (3,4), David A Moore (3,6), Maise Al Bakir (4), Teresa 1147 

Marafioti (6), Roberto Salgado (8,9), Yenting Ngai (12), Abigail Sharp (12), Cristina Rodrigues 1148 

(12), Oliver Pressey (12), Sean Smith (12), Nicole Gower (12), Harjot Dhanda (12), Joan Riley 1149 

(16), Lindsay Primrose (16), Luke Martinson (16), Nicolas Carey (16), Jacqui A Shaw (16), 1150 

Dean Fennell (16,28), Gareth A Wilson (17), Nicolai J Birkbak (17), Thomas B K Watkins (17), 1151 

Mickael Escudero (17), Aengus Stewart (17), Andrew Rowan (17), Jacki Goldman (17), Peter 1152 

Van Loo (17), Richard Kevin Stone (17), Tamara Denner (17), Emma Nye (17), Sophia Ward 1153 

(17), Emilia L Lim (17), Stefan Boeing (17), Maria Greco (17), Kevin Litchfield (17), Jerome 1154 

Nicod (17), Clare Puttick (17), Katey Enfield (17), Emma Colliver (17), Brittany Campbell (17), 1155 

Christopher Abbosh (18), Yin Wu (18), Marcin Skrzypski (18), Robert E Hynds (18), Andrew 1156 

Georgiou (18), Mariana Werner Sunderland (18), James L Reading (18), Karl S Peggs (18), 1157 

John A Hartley (18), Pat Gorman (18), Helen L Lowe (18), Leah Ensell (18), Victoria Spanswick 1158 

(18), Angeliki Karamani (18), Dhruva Biswas (18), Maryam Razaq (18), Stephan Beck (18), 1159 

Ariana Huebner (18), Michelle Dietzen (18), Cristina Naceur-Lombardelli (18), Mita Afroza 1160 

Akther (18), Haoran Zhai (18), Nnennaya Kannu (18), Elizabeth Manzano (18), Supreet Kaur 1161 

Bola (18), Ehsan Ghorani (18), Marc Robert de Massy (18), Elena Hoxha (18), Emine 1162 

Hatipoglu (18), Stephanie Ogwuru (18), Benny Chain (18), Gillian Price (19), Sylvie Dubois-1163 

Marshall (19), Keith Kerr (19), Shirley Palmer (19), Heather Cheyne (19), Joy Miller (19), 1164 

Keith Buchan (19), Mahendran Chetty (19), Mohammed Khalil (19), Veni Ezhil (20), Vineet 1165 

Prakash (20), Girija Anand (21), Sajid Khan (21), Kelvin Lau (22), Michael Sheaff (22), Peter 1166 

Schmid (22), Louise Lim (22), John Conibear (22), Roland Schwarz (23,24,25), Jonathan 1167 

Tugwood (26), Jackie Pierce (26), Caroline Dive (26,27), Ged Brady (26,27), Dominic G 1168 

Rothwell (26,27), Francesca Chemi (26,27), Elaine Kilgour (26,27), Fiona Blackhall (27,30), 1169 

Lynsey Priest (27,30), Matthew G Krebs (27,30), Philip Crosbie (27,51,52), Apostolos Nakas 1170 

(28), Sridhar Rathinam (28), Louise Nelson (28), Kim Ryanna (28), Mohamad Tuffail (28), 1171 

Amrita Bajaj (28), Jan Brozik (28), Fiona Morgan (29), Malgorzata Kornaszewska (29), Richard 1172 

Attanoos (29), Haydn Adams (29), Helen Davies (29), Mathew Carter (30), Lindsay CR (30), 1173 

Fabio Gomes (30), Zoltan Szallasi (31), Istvan Csabai (32), Miklos Diossy (32), Hugo Aerts 1174 

(33,34), Alan Kirk (35), Mo Asif (35), John Butler (35), Rocco Bilanca (35), Nikos Kostoulas 1175 

(35), Mairead MacKenzie (36), Maggie Wilcox (36), Sara Busacca (37), Alan Dawson (37), 1176 

Mark R Lovett (37), Michael Shackcloth (38), Sarah Feeney (38), Julius Asante-Siaw (38), 1177 

John Gosney (39), Angela Leek (40), Nicola Totten (40), Jack Davies Hodgkinson (40), Rachael 1178 

Waddington (40), Jane Rogan (40), Katrina Moore (40), William Monteiro (41), Hilary 1179 

Marshall (41), Kevin G Blyth (42), Craig Dick (42), Andrew Kidd (42), Eric Lim (43), Paulo De 1180 



 36

Sousa (43), Simon Jordan (43), Alexandra Rice (43), Hilgardt Raubenheimer (43), Harshil 1181 

Bhayani (43), Morag Hamilton (43), Lyn Ambrose (43), Anand Devaraj (43), Hema Chavan 1182 

(43), Sofina Begum (43), Aleksander Mani (43), Daniel Kaniu (43), Mpho Malima (43), Sarah 1183 

Booth (43), Andrew G Nicholson (43), Nadia Fernandes (43), Jessica E  Wallen (43), Pratibha 1184 

Shah (43), Sarah Danson (44), Jonathan Bury (44), John Edwards (44), Jennifer Hill (44), Sue 1185 

Matthews (44), Yota Kitsanta (44), Jagan Rao (44), Sara Tenconi (44), Laura Socci (44), Kim 1186 

Suvarna (44), Faith Kibutu (44), Patricia Fisher (44), Robin Young (44), Joann Barker (44), 1187 

Fiona Taylor (44), Kirsty Lloyd (44), Teresa Light (45), Tracey Horey (45), Dionysis Papadatos-1188 

Pastos (45, 47), Peter Russell (45), Sara Lock (46), Kayleigh Gilbert (46), David Lawrence (47), 1189 

Martin Hayward (47), Nikolaos Panagiotopoulos (47), Robert George (47), Davide Patrini 1190 

(47), Mary Falzon (47), Elaine Borg (47), Reena Khiroya (47), Asia Ahmed (47), Magali Taylor 1191 

(47), Junaid Choudhary (47), Penny Shaw (47), Sam M Janes (47), Martin Forster (47), Tanya 1192 

Ahmad (47), Siow Ming Lee (47), Javier Herrero (47), Dawn Carnell (47), Ruheena Mendes 1193 

(47), Jeremy George (47), Neal Navani (47), Marco Scarci (47), Elisa Bertoja (47), Robert CM 1194 

Stephens (47), Emilie Martinoni Hoogenboom (47), James W Holding (47), Steve Bandula 1195 

(47), Babu Naidu (48), Gerald Langman (48), Andrew Robinson (48), Hollie Bancroft (48), 1196 

Amy Kerr (48), Salma Kadiri (48), Charlotte Ferris (48), Gary Middleton (48), Madava 1197 

Djearaman (48), Akshay Patel (48), Christian Ottensmeier (49), Serena Chee (49), Benjamin 1198 

Johnson (49), Aiman Alzetani (49), Emily Shaw (49), Jason Lester (50), Yvonne Summers (51), 1199 

Raffaele Califano (51), Paul Taylor (51), Rajesh Shah (51), Piotr Krysiak (51), Kendadai 1200 

Rammohan (51), Eustace Fontaine (51), Richard Booton (51), Matthew Evison (51), Stuart 1201 

Moss (51), Juliette Novasio (51), Leena Joseph (51), Paul Bishop (51), Anshuman Chaturvedi 1202 

(51), Helen Doran (51), Felice Granato (51), Vijay Joshi (51), Elaine Smith (51), Angeles 1203 

Montero (51) 1204 

 1205 

TRACERx consortium affiliations 1206 

(3) Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer 1207 

Institute, London, UK 1208 

(4) Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK 1209 

(5) Department of Medical Oncology, University College London Hospitals NHS Foundation 1210 

Trust, London, UK 1211 

(6) Department of Cellular Pathology, University College London, University College Hospital, 1212 

London, UK 1213 

(7) Translational Immune Oncology Group, Centre for Molecular Medicine, Royal Marsden 1214 

Hospital NHS Trust, London, UK 1215 

(8) Department of Pathology, GZA-ZNA-Ziekenhuizen, Antwerp, Belgium 1216 

(9) Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, 1217 

Victoria, Australia 1218 

(10) MRC Toxicology Unit, Lancaster Road, University of Cambridge, Leicester, UK 1219 



 37

(11) Leicester Cancer Research Centre, University of Leicester, Leicester, UK 1220 

(12) Cancer Research UK & University College London Cancer Trials Centre, University College 1221 

London, London, UK 1222 

(13) Cancer Immunology Unit, University College London Cancer Institute, London, UK 1223 

(14) Cancer Genome Evolution Research Group, University College London Cancer Institute, 1224 

University College London, London, UK 1225 

(15) Glenfield Hospital, University Hospitals Leicester NHS Trust, Groby Road, Leicester, UK 1226 

(16) Cancer Research Centre, University of Leicester, Leicester, United Kingdom 1227 

(17) The Francis Crick Institute, London, United Kingdom 1228 

(18) University College London Cancer Institute, London, United Kingdom 1229 

(19) Aberdeen Royal Infirmary, Aberdeen, United Kingdom 1230 

(20) Ashford and St Peter's Hospitals NHS Foundation Trust 1231 

(21) Barnet & Chase Farm Hospitals, United Kingdom 1232 

(22) Barts Health NHS Trust 1233 

(23) Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 1234 

Berlin, Germany 1235 

(24) German Cancer Consortium (DKTK), partner site Berlin 1236 

(25) German Cancer Research Center (DKFZ), Heidelberg 1237 

(26) Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK 1238 

(27) Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, 1239 

Manchester, UK 1240 

(28) Leicester University Hospitals, Leicester, United Kingdom 1241 

(29) Cardiff & Vale University Health Board, Cardiff, Wales 1242 

(30) Christie NHS Foundation Trust, Manchester, United Kingdom 1243 

(31) Danish Cancer Society Research Center, Copenhagen, Denmark 1244 

(32) Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, 1245 

Hungary 1246 

(33) Departments of Radiation Oncology and Radiology, Dana Farber Cancer Institute, Brigham 1247 

and Women’s Hospital, Harvard Medical School, Boston, MA, USA 1248 

(34) Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands  1249 

(35) Golden Jubilee National Hospital 1250 

(36) Independent Cancer Patients Voice 1251 

(37) University of Leicester, Leicester, United Kingdom 1252 



 38

(38) Liverpool Heart and Chest Hospital NHS Foundation Trust 1253 

(39) Royal Liverpool University Hospital 1254 

(40) Manchester Cancer Research Centre Biobank, Manchester, United Kingdom 1255 

(41) National Institute for Health Research Leicester Respiratory Biomedical Research Unit, 1256 

Leicester, United Kingdom 1257 

(42) NHS Greater Glasgow and Clyde 1258 

(43) Royal Brompton and Harefield NHS Foundation Trust 1259 

(44) Sheffield Teaching Hospitals NHS Foundation Trust 1260 

(45) The Princess Alexandra Hospital NHS Trust 1261 

(46) The Whittington Hospital NHS Trust, London, United Kingdom 1262 

(47) University College London Hospitals, London, United Kingdom 1263 

(48) University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom 1264 

(49) University Hospital Southampton NHS Foundation Trust 1265 

(50) Velindre Cancer Centre, Cardiff, Wales 1266 

(51) Wythenshawe Hospital, Manchester University NHS Foundation Trust 1267 

(52) Division of Infection, Immunity and Respiratory Medicine, University of Manchester, 1268 

Manchester, UK 1269 

 1270 




























	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9

