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ABSTRACT: Mixing two solvents can sometimes make a much better solvent than expected from
their weighted mean. This phenomenon, called synergistic solvation, has commonly been
explained via the Hildebrand and Hansen solubility parameters, yet their inability in other
solubilization phenomena, most notably hydrotropy, necessitates an alternative route to
elucidating solubilization. While, recently, the universal theory of solubilization was founded on
the statistical thermodynamic fluctuation theory (as a generalization of the Kirkwood−Buff
theory), its demand for experimental data processing has been a hindrance for its wider
application. This can be overcome by the solubility isotherm theory, which is founded on the
fluctuation theory yet reduces experimental data processing significantly to the level of isotherm
analysis in sorption. The isotherm analysis identifies the driving force of synergistic solvation as the enhancement of solvent mixing
around the solute, opposite in behavior to hydrotropy (characterized by the enhancement of demixing or self-association around the
solute). Thus, the fluctuation theory, including its solubility isotherms, provides a universal language for solubilization across the
historic subcategorization of solubilizers, for which different (and often contradictory) mechanistic models have been proposed.

1. INTRODUCTION

Low solubility is a major hindrance to formulation processes.1

This can be overcome, however, by adding solubilizer
molecules. The “solubilizer” is a general terminology adopted
in this paper, which encompasses different subcategories,
commonly referred to as (a) cosolvents, which can mix with
solvents at high concentrations (Figure 1a),2−4 as well as (b)
hydrotropes (Figure 1b)5−7 and (c) surfactants (Figure
1c)7−14 that are usually added in dilution to water.

Our goal is to establish a universal theory of solubilization.
So far, we have clarified how hydrotropes1,7 and surfactants15

work, based on the statistical thermodynamic fluctuation
theory, whose applicability ranges from solutions,16−18 macro-
molecules and colloids,1,19 and interfaces.20 However, an
important class of solubilization phenomena, synergistic
solvation, remains to be elucidated beyond the current
limitations, as summarized below.
1.1. Synergistic Solvation. When the solubility in a

binary solvent mixture is higher than expected from those in
pure solvents (shown schematically in Figure 1a), synergistic
solvation takes place. Its mechanism, according to the regular
solution model,21 is the matching of solubility parameters: the
solubility parameter for the mixed solvent (calculated via
weighted averaging of the pure solvent values) matches that of
the solute.22−24 This approach was adopted later by the three-
dimensional solubility parameters by Hansen.24 However, such
an approach is not only dependent on a series of model
assumptions (as will be made clear in Section 3) but also
limited only to the positive deviation from ideality.25

This necessitates a renewed quest for understanding the
mechanism of synergistic solvation on a molecular basis. To do

so, the key is the solubility isotherm (i.e., a plot of solubility
against solubilizer concentration, Figure 1), whose shape
contains information on the underlying solubility mecha-
nism.1,7,15 In the following, we will survey the two modern
theoretical tools available for elucidating solubility isotherms.
1.2. Kirkwood−Buff Theory. Hydrotropes are a loosely

defined class of solubilizers, most commonly small molecules
with weak amphiphilicity, which do not exhibit critical micelle
concentrations (CMC).1,5,6 Classically, hydrotrope preaggre-
gation (i.e., self-association in the bulk) was considered to be
the driving force for solubilization.6,26 Despite the lack of
micelle formation, an analogy between the threshold hydro-
trope concentration for solubilization (i.e., the minimum
hydrotrope concentration) and micellar solubilization has been
invoked by some authors.27,28 However, the Kirkwood−Buff
(KB) theory of solutions,16−19,29 an exact, model-free theory
from classical statistical thermodynamics, has shown that the
hydrotrope self-association in the bulk decreases solubilization
efficiency,30−32 contrary to the classical hypothesis.

Before the application of the KB theory, it was necessary to
classify solubilizers into subcategories (such as hydrotropes,
cosolvents, and surfactants) and to develop a different model
for each.30−32 The KB theory was game-changing in its ability
to quantify the interactions between every pair of species in the
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solution, based directly on experimental data,16−19,29 to
identify the interactions that influence solubilization domi-
nantly and to achieve the above quantification and
identification without introducing any model assumptions.

Need for Simplification. The rigorous nature of the KB
theory has also been the source of difficulty, which can be
appreciated by considering solubility in a binary mixture. For
this system, six KB integrals (KBIs; solute−solvent, solute−
solubilizer, solvent−solvent, solubilizer−solubilizer, solubil-
izer−solvent and solute−solute) need to be evaluated,
requiring 6 different sets of thermodynamic data as an input;
not only solubility but also density, activity coefficients, and
compressibility measured extensively as a function of
composition. Focusing on dilute solutes reduces the number
of KBIs only by one.32 Because of such difficulty, a full
determination of KBIs in concentrated ternary solutions has
rarely been performed.33−37 However, only a few KBIs (such
as the solute−solubilizer and solubilizer−solubilizer) turned
out to be the key to understanding solubilization.15,32 This
implies that the solubilization mechanism could be revealed via
a simpler route. Such a simplification will be carried out in this
work.
1.3. Cooperative Solubilization. Understanding the

origin of the abrupt solubilization onset at the “minimum
hydrotrope concentration”27,28 necessitated us to go beyond
the KB theory. We have developed a theory of cooperative
solubilization,30−32 which was successful in attributing the
onset of solubilization to the enhancement of hydrotrope self-
association around the solute. This has led to replacing the
classical hydrotrope preaggregation hypothesis with the
cooperative hydrotrope association around the solute.30−32

This conclusion applies not only to hydrotropes alone but also
to surfactants, for which the sudden onset of solubilization
comes from the enhanced surfactant aggregation around
CMC.15

Need for Simplification. The application of the cooperative
solubilization theory, despite its universality, has been limited
to the onset of solubilization (such as the minimum
hydrotrope concentration and CMC) because of its theoretical
complexity. To overcome this limitation, we have developed
the cooperative solubility isotherm for hydrotropes,38 ex-
pressed via a simple analytical equation for capturing solute-
induced hydrotrope association, which can be used to fit
experimental solubility data.30−32 However, its success has
been limited to hydrotropes.39,40 A solubility isotherm based
on the statistical thermodynamic fluctuation theory, which can
be applicable to synergistic solubility, is not available until now.
1.4. Need for a Solubility Isotherm. Our goal is to reveal

the mechanisms of solubilization via solubility isotherms as a

novel, simpler alternative to the KB and cooperative
solubilization theories that are exact yet complicated for
applications.38 To achieve this goal, important lessons come
from sorption isotherms. First, the recently established analogy
between solvation and sorption enables the application of the
theoretical tools for sorption to solubilization, across their
difference in the thermodynamic degrees of freedom.19,41,42

Second, our recent sorption isotherms enable a statistical
thermodynamic interpretation (such as number fluctuations
and KBIs) of experimental data through only a few
parameters.43−45 Such an approach is less demanding in data
acquisition and processing than the KB theory.20,43,46,47 Third,
cumbersome thermodynamic variable transformation, indis-
pensable for converting experimental data to KBIs, has been
made more efficient by statistical variable transformation.48,49

1.5. Our Aims. Armed with the modern theoretical tools
summarized above, we will implement our aims (see the
opening paragraph) with the following objectives:

a. To establish an isotherm approach to elucidating
solubilization mechanisms as a facile alternative to the
KB theory.

b. To derive the polynomial solubility isotherm to capture
solute−solubilizer preferential interaction and the
enhancement or reduction of self-association around
the solute.

c. To show that synergistic solvation and cooperative
solubilization have the opposite behavior in terms of the
solute’s role in solubilizer self-association.

To quantify the self-association of solubilizers and solvents, we
will employ the Kirkwood−Buff χ (KB χ) parameter, which we
introduced recently as the generalization of the Flory χ and
employed to elucidate sorption.43,44

2. THEORETICAL METHODS

2.1. Fluctuation Theory. Consider the solubility of a
solute (denoted as species u) in a mixture consisting of a
solvent (species 1) and a solubilizer (species 2). (Note that the
terms “solvent” and “solubilizer” have been introduced to
facilitate comparison across different classes of solubilization.
For synergistic solvation, the “solubilizer” simply refers to the
component whose concentration is increased when plotting
the solubility isotherm.) Let Ni be the number of species i
molecules, ⟨Ni⟩ be its ensemble average, and δNi = Ni − ⟨Ni⟩
be its deviation from the mean. Our starting point is the
fundamental relationship from the fluctuation solution theory
on how the solvation free energy of a solute (μu*, i.e.,
pseudochemical potential) depends on the chemical potential
of the solubilizer (μ2),

Figure 1. Schematic diagram showing the solubility isotherms in the presence of (a) cosolvents, (b) hydrotropes, and (c) surfactants. (a)
Synergistic solubility is the existence of a solubility peak above the solubilities in pure solvent and cosolvent. (b) Minimum hydrotrope
concentration is a sudden onset of solubility increase, typically around 0.5 M. (c) Around CMC, a sudden onset of solubilization is observed, above
which solubility increases linearly.
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which is linked to the solute−solubilizer number correlation.
(For the derivation of eq 1a, see eq 35 of ref 48 with the
indexes 1 and 2 swapped.) Note that eq 1a, derived under
phase equilibrium between the solute in its pure phase and in
solution (constant μu in equilibrium with the pure solute
phase), is valid for any solute concentration.15 (This means
that the equation of the same form applies to solutes with
sparse solubility, including the examples analyzed in this
paper.) Here, for mathematical simplicity, we adopt a {T, P,
N1, μ2, μu} ensemble,50,51 yet converting to the grand canonical
ensemble {T, V, μ1, μ2, μu}, commonly adopted for the KB
theory,16−18 is straightforward via statistical variable trans-
formation (Appendix A).48,49

Here, we rewrite eq 1a in the format suitable for solubility
isotherms. This can be achieved using the well-known
relationships, first between the solvation free energy and
solubility cu, dμu* = −RTd ln cu,

52 which can be derived
straightforwardly from the basic relationship between μu and
μu* (see Appendix A), and second between the chemical
potential and solubilizer activity, dμ2 = RTd ln a2, through
which we obtain
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See Appendix A for its derivation.
Improved clarity can be attained in the application of eq 1b

by introducing an inhomogeneous ensemble, which contains a
fixed solute molecule at the origin as the source of an external
field for the solution mixture.53,54 The ensemble average in the
inhomogeneous ensemble, ⟨⟩u, is the conditional mean in the
presence of a fixed solute molecule, which is related to ⟨⟩ (i.e.,
the “homogeneous” mean), via
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Through eq 2, eq 1b can be expressed in the following simple
form
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Equation 3, being a rigorous relationship, is the theoretical
foundation for solubility isotherms that will be derived in this
paper.
2.2. Solubility Isotherms. Our aim is not only to derive

solubility isotherm equations for fitting experimental data but
also to quantify the interactions underlying solubilization
through the fitting parameters. Just like sorption iso-
therms,43−45 there may be multiple isotherm equations serving
different subclasses of solubilization. Indeed, our previous
theory of cooperative solubilization38 is in fact a solubility
isotherm for hydrotropes that exhibit a sigmoidal functional
shape. In this paper, we will derive the polynomial isotherm,
founded on the a2-dependence of ⟨N2⟩u − ⟨N2⟩ and thereafter
employ x2 (solubilizer mole fraction) as the variable, to
conform to the experimental practice. The polynomial
isotherms will reveal the molecular interactions underlying

nonlinear solubilization (Section 3) and will serve as facile
alternatives to the KB theory.19,29,30,32

2.2.1. Polynomial Isotherm. Here, we derive the poly-
nomial isotherm by expanding ⟨N2⟩u − ⟨N2⟩ in terms of
solubilizer activity, a2, as

= + + ···N N A a B a
u2 2 0 2 0 2

2
(4a)

where the parameters A0 and B0 are defined at the a2 → 0 limit
as
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where the subscript 0 is the shorthand for a2 → 0, which will
be used throughout this paper. Note that the lowest-order term
in eq 4a is A0a2 because ⟨N2⟩ − ⟨N2⟩u tends to 0 as a2 → 0.
Combining eqs 3 and 4a yields

= + + ···
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and integrating eq 5a (Appendix B) yields

= + + ···
c

c
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B
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( ) 2

u

u 0
0 2

0
2
2

(5b)

where (cu)0 is the molar solubility in the absence of the
solubilizer at a2 = 0. Equation 5b will be referred to as the
polynomial isotherm.

In the above, the polynomial isotherm was truncated at the
second order of a2, and the second-order expansion with
respect to the mole fraction of the solubilizer x2 will be
discussed in Section 3.2.2. Synergistic solvation is typically
expressed in the form of quadratic dependence of the solubility
on a2 or x2, in which case eq 5b is enough to capture the
physical meanings of the coefficients involved in the quadratic
form. If a quadratic fit is insufficient, our formulation can be
straightforwardly extended to incorporate higher-order terms
beyond the quadratic in eq 5b.

2.2.2. Interpreting A0 and B0. The fluctuation theory
provides an interpretation of the isotherm parameters, A0 and
B0. Statistical variable transformation48,49 enables a straightfor-
ward conversion between different ensembles (see Appendices
B and C), through which A0, defined via eq 4b in the {T, P, N1,
μ2, μu} ensemble,50,51 can be expressed in the grand canonical
({T, V, μ1, μ2, μu}) ensemble as

= [ ]A c G G( )
u u0 1 2 1 0 (6a)

where c1 is the mole per volume of the pure solvent, V is the
volume of the system, and Gu2 and Gu1 are the solute−
solubilizer and solute−solvent KBIs. The subscript 0 expresses
the a2 → 0 limit. The parameters for the polynomial
solubilization isotherm are defined and evaluated at this
limit, just like the ones for the statistical thermodynamic
sorption isotherms.43,44,46,55 As is clear from eq 6a, A0 is the
difference between the solute−solubilizer and solute−solvent
KBIs, commonly referred to as the preferential interaction of
solubilizers.50,51
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Likewise, B0, defined via eq 4c in the {T, P, N1, μ2, μu}
ensemble, can be transformed into the grand canonical
ensemble {T, V, μ1, μ2, μu} as (Appendix C)

= + +B K N N( 1) ( 1)
u u0 e

2
1 1 0 (6b)

where Ke is the equilibrium constant for swapping “a solvent at
the vicinity of the solute” with “a solubilizer in the bulk,” and
χu and χ0, the KB χ parameters around the solute and in the
bulk,44 are defined as
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χu and χ0 signify the net self-interaction (solvent−solvent and
solubilizer−solubilizer, as compared to solubilizer−solvent)
around the solute and in the bulk, respectively. Both χu and χ0

have been defined at the a2 → 0 limit. The KB χ (eq 6c) was
introduced as the generalization of the Flory χ.25,44 While the
Flory χ has been derived in the framework of the lattice model
of solutions under mean-field approximation, the KB χ
parameter is model- and approximation-free. Using the KB χ,
B0 can be interpreted as the solute-induced enhancement of
the self-interaction. (Note that B0/A0 will later be employed for
fitting and interpretation, which will be shown shortly to be
free of ⟨N1⟩u and ⟨N1⟩ as found in eq 6b, which sharpens its
character as the extent of the solute-induced enhancement of
the self-interaction).

The KB χ for the bulk solution (eq 6c) appears also in the
conversion of a2 to the mole fraction x2 (see Appendix C), via

= + ···a x x
2 2 0 2

2

(6d)

which shows that the KB χ captures the nonideality of binary
solution mixtures in a manner analogous to the Flory χ.25

However, the common adoption of the mixing rule (especially
in the solubility parameters) has prevented the Flory χ-based
approaches from recognizing the importance of the solute-
induced enhancement or reduction of self-interactions (eq 6c).

Combining eqs 5b and 6d, we obtain the following
logarithmic solubility isotherm as a function of x2
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which can also be expressed in the (linear-)solubility
representation as
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The parameters A0 and χ0 have already given interpretations

(eqs 6a and 6c). Combining eqs 6a and 6b, B

A

0

0

can be

expressed (Appendices C and D) as

=

+ +B

A

K K

K

( 1) ( 1)

1

u0

0

e 2 0

2 (7c)

where K2 is the bulk−solute vicinity partition coefficient of the

solubilizer. Based on eq 7c, B

A

0

0

is interpreted as the solute-

induced enhancement of self-association (from χ0 in the bulk
to χu around the solute).

Thus, the two representations of the polynomial isotherm,
ln cu/(cu)0 and cu/(cu)0, will both be useful in the analysis and
interpretation of experimental isotherms, as will be discussed in
Section 3. The polynomial solubilization isotherm bears
similarity to the polynomial sorption isotherm in its parameters
and interpretation.44 To summarize, we have established the
polynomial solubility isotherm (eqs 7a and 7b), whose
parameters contain contributions from the preferential
solute−solubilizer interaction (A0), the enhancement of self-
interaction around the solute (B0/A0), and the bulk χ.

2.2.3. Significance of the Polynomial Isotherm. The
polynomial solubility isotherm, in its two representations
(eqs 7a and 7b), is founded on the a2-expansion of
solubilization (eq 5b) and the x2-expansion of a2 (eq 6d).
While these expansions are exact, truncating the expansion
leads to approximation. The parameters of the expansions (eqs
5b and 6d), as well as of the polynomial solubility isotherm
(eqs 7a and 7b), are defined at the x2 → 0 limit. This is not an
approximation but is a logical consequence of the Maclaurin
expansions (eqs 5b and 6d) underlying the solubility isotherm.
In this way, our theory can be considered as the generalization
of the McMillan−Mayer theory of osmotic pressure, which
involves a series expansion of the osmotic pressure in terms of
the solute concentration.56 Its parameters (i.e., the virial
coefficients) are defined at the zero solute concentration,
analogous to our polynomial solubility isotherm. Approxima-
tion can be made via the truncation of the expansion, whose
sufficiency can be informed through fitting experimental data.

The novelty of the solubility isotherm is threefold. First, in
contrast to the conventional KBI calculations at each
concentration,30 the solubility isotherm synthesizes the
predictive nature of an isotherm equation and the capability
for a rigorous molecular interpretation via its parameters. Note
that the concept of solute-induced self-association (which is
contained in B0) was beyond the reach of the traditional KBIs
(which are, by definition, binary). This novel concept was
introduced by us initially via the inhomogeneous solution
theory,14 thereafter through the cooperative solubilization
model applicable for hydrotropes at low concentration,38 and
finally as one of the characteristic parameters for the sorption
isotherms.44 Second, how the solute-induced self-association
affects the shape of the solubility isotherm over a wide
composition range has now been clarified, which was not
possible with our previous approach.14 Third, our solubility
isotherm constitutes a part of a universal approach spanning
from solution to sorption, founded on the mathematical
analogy between solvation and sorption, which has only
recently been formulated rigorously.19,41,42

3. RESULTS AND DISCUSSION

3.1. Synergistic Solvation. 3.1.1. Synergy via Quadratic
Isotherm. Our goal is to reveal the mechanism of synergistic
solvation and clarify how it differs from hydrotropy. Our
theoretical foundation is the polynomial isotherm derived from
the fluctuation solution theory (eqs 7a and 7b). The strict
definition of synergistic solvation has not been established, yet
“a binary solvent mixture exhibits a higher solubility than either
of the component solvents alone” may be the most general one
at this stage.4 Note that synergistic solvation is “also known as
parabolic solubility”4 due to the ubiquitousness of the
parabolic solubility isotherms.3,57,58 Hence, the present paper
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focuses on the quadratic isotherm as the simplest and most
common class of synergistic solvation as the first step. (For the
solubility isotherms with more complex functional shapes,
cubic or higher-order terms in x2 may be incorporated.)

3.1.2. Logarithmic versus Linear Plots of Solubility. Here,
we show that the logarithmic representation (eq 7a) of the
polynomial isotherm is superior to the linear representation
(eq 7b) in fitting experimental solubility data. To demonstrate
this, we have chosen the solubility of benzoin in ethyl acetate−
methanol and ethyl acetate−ethanol mixtures57,59 and the
solubility of rivaroxaban in methanol−dichloromethane
mixtures.58,60 While the logarithmic representation leads to
an excellent fit incorporating up to x2

2 (Figure 2), the linear

representation exhibited fitting difficulties, requiring higher-
order terms (Figure 3). Note that a minor adjustment was
involved for the logarithmic representation (eq 7a) with an
adjustable constant, ϵ, as

= + +
c

c
A x B A xln

( )

1

2
( 2 )u

u 0
0 2 0 0 0 2

2

(8)

leading to a good fit over the entire range of x2 with a
negligibly small ϵ (see Appendix B for its necessity). The fitting
parameters are summarized in Table 1, from which the
interaction parameters have been calculated (Table 2).
Although the linear representation has been adopted widely
to report experimental solubility isotherms, we advocate for a
logarithmic representation based not only on the facility for
fitting but also on its directness in interpreting the fitting
parameters.

3.1.3. Conditions for Synergy. According to its definition,
higher solubility in the mixture is observed for synergistic
solvation than is expected from the weighted averaging of
solubilities in pure solvents. Based on the logarithmic
representation of the polynomial isotherm (eq 7a), here we

clarify the mechanism underlying the solubility maximum. As a
first step, we rewrite eq 7a as

=

+ + ···

i

k

jjjjj

y
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For eq 9 to exhibit a maximum, ( )A 2
B

A0 0
0

0

must be

positive. (This is in line with the negative 2
B

A 0

0

0

in Table

2). Under this condition, the maximum solubility, cu
max, is

expressed as

=

c

c

A
ln
( ) 2

1

2

u

u

B

A

max

0

0

0
0

0 (10a)

For cu
max to be greater than (cu)0, ( )A / 2

B

A0 0
0

0

must be

positive. This condition is equivalent to the above positiveness

condition for ( )A 2
B

A0 0
0

0

. In addition, the maximum

solubility at

=x x
1

2
B

A

2 2

max

0

0

0 (10b)

must be located between x2 = 0 and 1. x2
max > 0 leads to

>2 0
B

A0

0

0

. Consequently, A0 > 0 results in combination

with the maximum and synergy conditions. The other end, x2
max

< 1, leads to >2 1
B

A0

0

0

. Taking all together, we can

summarize the conditions following for synergistic solubiliza-
tion as

> >A
B

A
0, 2 10 0

0

0 (10c)

which is indeed satisfied by all of the examples (Table 2).

Figure 2. Application of the quadratic solubility isotherm (eq 8) to fit
the logarithmic scale solubility data (ln cu/(cu)0), plotted against the
mole fraction x2. (a) Solubility of benzoin (species u) in the mixtures
of ethyl acetate (species 1) and alcohol (species 2) at 298.15 K (black
circles for methanol and red squares for ethanol), based on the data
reported by Yang et al.,57 in combination with the density data of
alcohol−ethyl acetate mixtures published by Nikam et al.59 (b)
Solubility of rivaroxaban (species u) in the mixture of methanol
(species 1) and dichloromethane (species 2) at 293.15 K, based on
the data reported by Jeong et al.,58 in combination with the density
data by Damyanov and Velchev.60 The fitting parameters are
summarized in Table 1.

Figure 3. Linear solubility isotherm, cu/(cu)0 against x2, of rivaroxaban
(species u) in the mixture of methanol (species 1) and dichloro-
methane (species 2), to be compared with the logarithmic isotherm in
Figure 2b. A quadratic isotherm (cu/(cu)0 = −12.969 + 228.27x2 −
201.65x2

2, black line) was insufficient to fit the experimental data
(black circles), and the fifth-order polynomial was required for a
reasonable fit (red line; = 0.2061 + 70.076x2 − 523.91x2

2 + 3304.7x2
3 −

5355.1x2
4 + 2509.2x2

5). This complication contrasts with the ease of
fitting by the logarithmic isotherm (Figure 2b).
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3.1.4. Mechanism of Synergy. Having identified the range
of parameters that exhibit synergistic solvation (eq 10c), here
we clarify its significance on a mechanistic basis. To do so, let
us start by summarizing the interpretations of the parameters
involved:

a. A0 for preferential solute−solubilizer interaction (eq 6a)

b. B

A

0

0

for the self-association (KB χ) enhancement around

the solute (eq 7c)
c. χ0 for bulk-phase self-association (eq 6c).

The interpretation of the parameters (a−c) will now reveal the
mechanism of synergistic solubilization (eq 10c). First, A0 > 0
in eq 10c signifies preferential solute−solubilizer interaction

compared to solute−solvent. Second, >2 1
B

A0

0

0

in eq 10c

signifies sufficiently stronger bulk-phase self-association (χ0)
compared to the self-association enhancement around the
solute (B0/A0). This can be rephrased more intuitively by

rewriting it as >2( ) 1
B

A 0
0

0

. Now,
B

A

0

0

signifies the

enhancement of solvent−solubilizer mixing (self-dissociation),
whereas −χ0 means the solvent−solubilizer mixing in the bulk.
The rephrased inequality shows that mixing, enhanced around
the solute, is stronger than the bulk-phase mixing of solvent
and solubilizer.

3.1.5. Synergy versus Cooperative Solubilization by
Hydrotropes. We have shown above that synergistic solvation
takes place under preferential solute−solubilizer interaction
and enhanced solvent−solubilizer mixing around the solute.
The above signatures of synergistic solvation, expressed
schematically via Figure 4a, are contrasted with the cooperative
solubilization by hydrotropes14,38,61 and surfactants (Figure
4b),15 both of which involve enhanced solubilizer self-
association around the solute. We emphasize that solubilizer
self-association (in the case of hydrotropes and surfactants) is
synonymous with solvent−solubilizer demixing, opposite to
solvent−solubilizer mixing underlying synergistic solvation
(Figure 4).

In the case of hydrotropy (surfactancy), the accumulation of
hydrotropes (surfactants) around the solute leads to a further
increase in the gradient of the solubility isotherm (Figures 4b
and 1b,c). In contrast, solvent−solubilizer mixing weakens the
effect of solubilizer accumulation (Figures 4a and 1a), leading
to a decreased gradient in the solubility isotherm.
3.2. Choices for Interpretive Clarity in Solubility

Isotherms. The solubility isotherm, founded on the
fluctuation solution theory, is capable not only of drawing
mechanistic insights into solubilization directly from exper-

imental data but also of unifying solubilization phenomena that
were classified previously into different subcategories. In the
following, we will show how mechanistic interpretation could
be facilitated by an appropriate choice in reporting
experimental solubility isotherm data.

3.2.1. Linear versus Logarithmic Solubility Isotherms.
Solubility isotherms have traditionally been the linear
representation (eq 7b), i.e., the plot of solubility itself against
composition. However, the logarithmic representation (eq 7a)
is superior for the following reasons. First, the logarithmic
representation offers a better fitting capability of experimental
isotherms (compare Figure 2b with Figure 3). Second, while

the logarithmic scale involves two parameters (B
A

0

0

and χ0, eq

7a) in the quadratic term, the linear scale involves three (B
A

0

0

,

Table 1. Fitting Parameters for the Logarithmic Representation of the Quadratic Solubility Isotherm (Equation 8)

solute solvent cosolvent A0 B0 − 2A0χ0 ϵ

benzoin ethyl acetate methanol 1.56 −3.93 −0.044

benzoin ethyl acetate ethanol 1.14 −4.34 −0.011

rivaroxaban methanol dichloromethane 15.1 −26.6 −0.0036

Table 2. Interaction Parameters Evaluated Based on Table 1

solute solvent cosolvent χ0 A0 B0 2
B

A 0

0

0

benzoin ethyl acetate methanol 1.91a 1.56 2.03 −2.52

benzoin ethyl acetate ethanol 1.32a 1.14 −1.33 −3.80

rivaroxaban methanol dichloromethane 1.06a 15.1 5.42 −1.76
aCalculated from Table 13−4 of ref 71 and ref 72 which can be transformed to χ0 = 2α via eq C8.

Figure 4. Difference between (a) synergistic solvation and (b)
hydrotropy as clarified by our theory. (a) Synergistic solvation is
driven by local mixing, i.e., the mixing of solvent (blue) and solubilizer
(green) is enhanced around the solute (red) compared to the bulk
solution. (b) Hydrotropy is driven by local demixing, i.e., the
enhancement of self-association around the solute compared to the
bulk solution. Synergistic solvation and hydrotropy exhibit opposite
behaviors.
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A0, and χ0, eq 7b); hence, interpreting the logarithmic scale
isotherm is easier than the one in the linear scale.

3.2.2. Mole-Fraction versus Molarity Solubility Scales. The
superiority of the molarity scale for solubility over the mole-
fraction scale was established decades ago,52 with its direct
interpretation as the solute insertion process. This generality
contrasts with the mole-fraction scale, which either requires
activity coefficients or its restriction to dilute solubility.52

However, the mole-fraction scale is still used today for
reporting solubility. Here, we add another reason as to why
the mole-fraction scale adds complications. To this end, let us
start with the following definition of the mole-fraction
solubility in the constant N1 ensemble (to be consistent with
eqs 1a and 1b)

=

+ +

x
N

N N N
u

u

u1 2 (11)

Our goal is to derive a mole-fraction counterpart to eq 3, which
is the foundation of solubility isotherms. The first step is to
carry out a μ2-derivative of eq 11 (Appendix E), which yields

=

i
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jjjjj

y
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zzzzz

x

a
x

N N

N
x

N N

N

ln

ln
(1 )u

T P N

u

u

u
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2 , , ;

2 2 2

2
u1

(12)

Let us examine eq 12 as the potential generating relationship
for isotherms (i.e., xu as a function of x2). There are two

contributions: (i) N N

N

u

u

2 as the measure of solute−solubilizer

interaction via their number correlation and (ii) N N

N

2 2

2

as the

bulk property. This contrasts with the molarity scale
counterpart (eq 1b), which only contains (i), without any
contributions from the bulk properties, (ii). Thus, the molarity
scale is superior, which enables us to focus on solute−
solubilizer interactions without any involvement of the bulk
property.
3.3. Comparison to Solubility Parameters. 3.3.1. Sol-

ubility Parameters are Founded on the Regular Solution
Theory. Synergistic solubility is conventionally explained by
solubility parameters.24 According to this approach, solubility
maximum takes place when the solubility parameter of the
solute matches that of the solvent mixture, calculated as the
weighted average of the parameters for the pure solvent and
solubilizer.24 This explanation is founded on the regular
solution theory.

Our objective here is to show the advantages of our new
theory over the classical approach. This task is made
complicated due to the gulf in foundations between the
modern statistical thermodynamics of solvation (founded on
the pseudochemical potential, μu*, in eq 1a) and the classical
solution thermodynamics (founded on the “ideal solubility”
and the solute activity coefficient). The regular solution theory
aims to provide an approximate model for the contribution of a
solute’s activity coefficient to solubility.

However, in contrast to the directness afforded by modern
statistical thermodynamics in achieving the aims a−c set out in
Section 1.5, the regular solution model not only complicates its
link to solubility via a series of assumptions but also is
incapable of achieving these aims, as will be clarified in the
following.

3.3.2. Regular Solution Theory as the Deviation from the
Ideal Solubility. The regular solution theory21 considers the

free energy of transferring one mole of solute from the pure
liquid to a regular solution

= RT aln
u u u

o

(13a)

where μu
o is the chemical potential of the solute at its pure state.

The regular solution theory divides this into the following two
steps. The first is the transfer from the pure liquid to the ideal
solution (denoted by the superscript i),

= RT xln
u

i

u u

o

(13b)

The second is the transfer “from the ideal solution to a regular
solution”62

= =RT
a

x
RTln ln

u u

i u

u

u
(13c)

For eq 13c, the regular solution theory assumes the following
functional form

=RT bxln
u 1

2

(14)

and assumes the parameter b to be of enthalpic origin. The
regular solution theory, in its traditional form, expresses b in eq
14 in terms of the “solubility parameters,” under a series of
model assumptions, most notably the mixing rule, the solvent
mixtures as the weighted mean of the pure solvents, and the
lattice model with mean-field approximation or the van der
Waals fluid model.21 Based on these assumptions, the solubility
parameter models of Hildebrand21 and Hansen24 provide b via
one- and three-dimensional distances between the solubility
parameters of solute and solvent for the solubilities in pure
solvents. For mixed solvents, their solubility parameters are
estimated as the weighted mean of the constituent solvents.

What does the parameter b signify in eq 14? To answer this
question, the following expansion from the fluctuation theory
(derived by swapping the indexes 2 and u eq B4 in Appendix
B) is useful

= + ···xln
u R 1

2

(15a)

where χR is expressed via the KBIs,25 as

= +
N

V
G G G( 2 )u

uu uR 11 1 (15b)

Due to the mathematical analogy between eqs 14 and 15a, χR

in eq 15b constitutes the statistical thermodynamic inter-
pretation for b/RT in eq 14, signifying the relative strength of
the self-interactions (1 − 1 and u − u) over mutual (1 − u).

3.3.3. Difficulties of the Solubility Parameters in Deriving
Solubility Isotherms. We have rewritten the fundamental
relationship for the regular solution theory (eq 14) in the
language of the statistical thermodynamic fluctuation theory
(eqs 15a and 15b; without adopting any of the assumptions for
deriving solubility parameters). Here, we show that it is not
straightforward to derive solubility isotherms from the regular
solution theory (Cf. Aim b in Section 1.5). Combining eq 14
(or eqs 15a and 15b) with eq 13b and 13c, we obtain

= +RT x bxln
u u u

o

1

2

(16a)

Under phase equilibrium, μu = μu
o, eq 16a leads to

=RT x bxln
u 1

2
(16b)

which is the solubility isotherm derived from the regular
solution theory. (Noting that ln γu = −ln xu under μu = μu

o, eq
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16b for the binary mixture of the species 1 and u is parallel in
form to eq B4 in Appendix B, expressed for the mixture of the
species 1 and 2.) However, when applying eq 16b to the
solvation of the solute u in the binary solvent mixtures
(consisting of the species 1 and 2) via the solubility
parameters, the following two assumptions have been
introduced.21,24 First, b in eq 14 (which is used as the model
approximation for χR in eq 15b) is the squared “distance” of
solubility parameters between the solute and the binary
mixture. Second, the solubility parameters for the binary
mixture are assumed to be the composition-weighted mean of
the pure (bulk) solvent values. These two assumptions have
made it impossible to identify the fact that solubilization is
linked to the local solution structure around the solute, which,
by contrast, is captured by the fluctuation theory and its
polynomial isotherm.

Thus, the solubility parameters cannot capture the micro-
scopic basis of solvation, i.e., the local solution structure
around the solute. Nevertheless, the Hansen solubility
parameters have been used widely as a handy tool for solvent
selection and screening.24 Their true foundation, applicability,
and limitations should be identified via modern statistical
thermodynamics.25 (As a preliminary step, the historic iodine
dissolution experiments,63−65 previously taken as the support-
ing evidence for regular solution theory,21 have been
reinterpreted as the dominance of enthalpy on the solvation
free energy difference between solvents).25

3.4. Comparison to the Kirkwood−Buff Theory and
Its Generalizations. Our quadratic isotherm marks a
departure from a direct application of the KB theory16−18

and cooperative solubilization theory.7,14,61,66 Our isotherm
focuses exclusively on how solubility changes with solubilizer
concentration, leading to a facile identification of a few key
parameters (e.g., A0 and B0, together with χ0) that can describe
the overall functional shape of an isotherm.43,46,55 Such an ease
contrasts with the calculation of KB integrals at every
solubilizer concentration, for which measurements other than
solubility (e.g., activity, density, and compressibility) are
indispensable. The simplification here owes itself to the
mathematical simplicity of the isotherm, which can never-
theless capture (a) solute−solubilizer interaction and (b)
solute-solubilizer mixing enhancement around the solute that
would require significantly more work on data processing when
approached via a direct application of the KB theory.7,14,15

Thus, the solubility isotherm, despite its simplicity in form,
captures the salient mechanisms of solubilization. However, a
direct application of the KB theory will remain a powerful
approach when an exhaustive quantification is needed for all
interactions.

4. CONCLUSIONS

Our goal was twofold: (i) to elucidate the mechanism
underlying synergistic solvation (i.e., the maximum solubility
in binary solvent mixtures being larger than the weighted mean
of the solubilities in pure solvents) and (ii) to achieve (i) via
the solubility isotherm theory as a simpler alternative to the
Kirkwood−Buff and the cooperative solvation theories. This
was made possible by combining our recent theoretical
progress: capturing solution structure and its change around
the solute via molecular distribution functions and number
correlations,14,15,32,61 a systematic approach for deriving
isotherm equations directly from the principles of the
fluctuation theory,19,20,29,41,42 and the ability to generalize

our approach to isotherms to solvation via the mathematical
analogy between solvation and sorption isotherms.19,41,42

Synergistic solvation is caused by the enhancement of
solvent mixing around the solute. This behavior is opposite to
hydrotropy, which involves the demixing of water and
hydrotropes (i.e., self-association) around the solute. This
conclusion was reached via the solubility isotherm derived
from the statistical thermodynamic fluctuation theory. While
the solubility isotherm provides a clear interpretation of its
parameters that are rooted in the molecular distribution
functions and the Kirkwood−Buff integrals, its application to
experimental solubility isotherms is far less demanding than
the evaluation of the Kirkwood−Buff integrals via cumbersome
data analysis involving additional experimental data (e.g.,
density, compressibility, and osmotic data).14,15,32,61

Historically, the study of solubilizers has relied on classifying
them into subcategories (e.g., cosolvents, hydrotropes, and
surfactants) that involved challenging outliers and misleading
mechanistic hypotheses. Instead, our simple, isotherm-based
approach provides a universal language of solubilization.20,43,44

■ APPENDIX A STATISTICAL VARIABLE
TRANSFORMATION AND A LINK TO SOLUBILITY

First, we carry out a statistical variable transformation48,49 to
link solubility measurements to KBIs. If approached
thermodynamically, converting thermodynamic fluctuation
expressed in one ensemble (e.g., {N1, μ2, μu, P, T}, abbreviated
as {N1} below) to another (e.g., {μ1, μ2, μu, V, T}, abbreviated
as {μ1}) involves a cumbersome change of variables that need
to be carried out for the elements of the fluctuation Hessian
matrix.49 In contrast, significant simplification comes from
statistical variable transformation.48,49 The starting point is the
invariance of the solubilizer−solvent mole ratio, C2 = N2/N1,
and its deviation from the mean, as

+
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+

{ } { }
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The Maclaurin expansion of eq A1 yields

=
{ } { } { }N N C N( ) ( ) ( )
N2 2 2 11 1 1 (A2)

Likewise, from the invariance of Cu = Nu/N1, we can also
derive

=
{ } { } { }N N C N( ) ( ) ( )

u N u u 11 1 1 (A3)

Equations A2 and A3 are the relationships for statistical
variable transformation between {N1, μ2, μu, P, T} and {μ1, μ2,
μu, V, T} that will be used throughout this paper.

Now, we use eqs A2 and A3 to carry out a {N1, μ2, μu, P, T}
→ {μ1, μ2, μu, V, T} transformation of eq 1a, which yields
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(A4)

where Cu → 0 has been used. To simplify eq A4 further, we
will introduce the Kirkwood−Buff integrals,16,48,49

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c01582
J. Phys. Chem. B XXXX, XXX, XXX−XXX

H

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c01582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=

=

{ } { }

{ } { }

{ } { }

{ } { }

G V

N N

N N

G V

N N

N N

( ) ( )

( ) ( )

u

u

u

u

u

u

1

1

1

2

2

2

1 1

1 1

1 1

1 1 (A5)

through which eqs 1a and A4 can be expressed as
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Note that eq A6 is a well-known relationship in the
Kirkwood−Buff theory.19,29 When solute molecules are under
phase equilibrium, a generalization of eq A6 to arbitrary solute
concetrations can be carried out as shown in Appendix A of ref
15.

Second, we link the solvation free energy (pseudochemical
potential), μu*, to solubility. This can be carried out by
decomposing the chemical potential of the solute in the
solution phase, μu, into the following two contributions: (i) the
pseudochemical potential μu*, which has a clear physical
meaning as the free energy of inserting a solute molecule at a
fixed position and (ii) the free energy of liberating a solute
from positional fixation, via52,67

= * + RT ln
u u u u

3

(A7)

where the contribution (ii), i.e., the second term of eq A7,
involves ρu (the number density of the solute) and Λu (the
momentum distribution function of the solute).52,68 Equation
A7 is valid for multiple-component solutions regardless of
solute concentration and solvent composition.52,68 Differ-
entiating eq A7 under constant temperature yields

= * + RT cd d dln
u u u (A8)

In deriving eq A8, we have exploited the fact that the only
difference between ρu (number density) and cu (molarity
concentration) are their units, which leads to d ln ρu = d ln cu.
When the solute in the solution phase is at phase equilibrium
with the pure solute phase, μu = μu

o, where μu
o is the chemical

potential of the solute in its pure phase. Under constant
temperature and pressure, μu

o is a constant. Consequently, μu
remains a constant, which leads to dμu = 0. Thus, under phase
equilibrium (i.e., constant μu),

* = RT cd dln
u u (A9)

Combining eqs A6 and A9, we obtain
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Note that the newly appeared subscript, μu, signifies that the
partial derivative is defined under constant μu, reflecting the
derivation of eq A9. From eq A10, eq 3 can be derived
straightforwardly from the elementary relationship between μ2

and a2.
We emphasize here that the use of the molarity (or number

density) scale is advantageous because its foundation, eq A7, is
“valid for any composition of the mixture.”52 This is in contrast
to the use of the mole-fraction solubility scale whose
fundamental equation has been derived “only in the limit of
extremely dilute solution.”52

■ APPENDIX B INTERPRETING THE PARAMETERS
OF THE POLYNOMIAL ISOTHERM

Activity Scale

Let us attribute to the parameters A and B a statistical
thermodynamic interpretation. To facilitate the derivation, we
specify the a2 → 0 limit at the end. As a first step, we rewrite A,
defined via eq 4b, as

= =

=

A
N N

a

N

V
V

N N

N

c V
N N
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u u

u

2 2

2

1 2 2

2
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2 (B1a)

where c1 = ⟨N1⟩/V is the concentration of pure solvent. Note

that V
N N

N

u2 2

2

in eq B1a is reminiscent of the definition of

KBI. However, the ensemble adopted for eq B1a is {T, P, N1,
μ2} instead of the grand canonical ensemble ({T, V, μ1, μ2})

for KBIs. Consequently, V
N N

N

u2 2

2

may be considered as the

pseudo-KBI in {T, P, N1, μ2}, defined as

=G V
N N

N
u

u

2

2 2

2 (B1b)

through which A has the following interpretation

=A c G
u1 2 (B1c)

Thus, the parameter A signifies solute−solubilizer interaction
in the framework of the {T, P, N1, μ2} ensemble. In Appendix
C, we have carried out a {T, P, N1, μ2} → {T, V, μ1, μ2}
transformation, using the statistical variable transformation
(Appendix A),48,49 and express A in eq B1c in the framework
of the conventional KB theory.

Now, we move onto B, defined via eq 4c. Carrying out the
differentiation, we obtain

=

=

[ ]
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(B2a)

Note that eq B2a is under the {T, P, N1, μ2} ensemble (instead
of the grand canonical ensemble for the KB theory).
Introducing the pseudo-KBI in the {T, P, N1, μ2} ensemble via

=G V
N N N

N
22

2 2 2

2

2
(B2b)

=G V
N N N

N
u

u u

u

,22

2 2 2
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(B2c)

and noting a2 ≃ x2 ≃ ⟨N2⟩/⟨N1⟩ at a2 → 0, we obtain
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(B2d)
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for eq 4c. B0, according to eq B2d, signifies the change of
solubilizer−solubilizer interaction induced by the presence of a
solute molecule. This, again, is the interpretation of the {T, P,
N1, μ2} ensemble. Transformation to the grand canonical
ensemble will be carried out in Appendix C via statistical
variable transformation (Appendix A).

Conversion to the Mole-Fraction Scale
Here, we convert the variable a2 of the polynomial isotherm to
the mole fraction, x2, in the form of

= + + ···a x x
2 2 2

2

(B3)

where we have chosen the dilute-ideal standard state, which
has made the coefficient for the first-order term 1. We are
going to determine the parameter λ. This can be achieved by
using the simplest activity model, the Margules model, which
has the following form

= + ···xln
1 2

2

(B4)

Connecting γ1 to a2 requires the Gibbs−Duhem equation
under constant temperature and pressure

+ =x xd d 01 1 2 2 (B5a)

which can be rewritten as
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Combining eqs B4 and B5b yields
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The corresponding expression from eq B3 is
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Comparing eqs B6 and B7 yields λ = −2α; hence, we obtain
the following activity expansion using the Margules constant,
α, as

= + ···a x x2
2 2 2

2

(B8)

whose parameter will be given a statistical thermodynamic
interpretation in Appendix C.25

Our theory is applicable when species 2 is a salt consisting of
several ions. In this case, following the well-established method
in the KB theory, x2 is taken as the mole fraction of total ions,
a2 is the activity of the average ion, and all of the resultant KBIs
refer to the interactions with the average ion.69 Indeed, we
emphasize that salt concentrations, instead of individual ion
concentrations, are controlled when changing the composition
of the mixture experimentally.

Application to Data Fitting
When we use eq 7a directly to fit the data, (cu)0, i.e., the
solubility at x2 = 0, is taken as the value without any errors. To
prevent this, we introduce

= + + +c A x B A x cln
1

2
( 2 ) ln( )

u u0 2 0 0 0 2
2

0 (B9)

such that the solubility at x2 = 0, ln(cu)0 + ϵ, is also a fitting
parameter. Consequently, ϵ signifies the difference between
experimental and fitted logarithmic solubility at x2 = 0.

■ APPENDIX C INTERPRETATION OF THE
POLYNOMIAL ISOTHERM PARAMETERS IN THE
GRAND CANONICAL ENSEMBLE

Ensemble Transformation: {T, P, N1, μ2} → {T, V, μ1, μ2}
To interpret parameters A and B in the grand canonical ({T, V,
μ1, μ2}) ensemble, here we carry out a {T, P, N1, μ2} → {T, V,
μ1, μ2} transformation via statistical variable transformation
(Appendix A).

To carry out the statistical variable transformation on A, the
inhomogeneous ensemble average must first be expressed in
terms of the homogeneous,14 i.e.

= =G V
N N

N
V

N N

N N
u

u u

u

2

2 2

2

2

2 (C1a)

Carrying out the statistical variable transformation on δNu and
δN2 (Appendix A), we obtain

=G G G
u u u2 2 1 (C1b)

Hence, the parameter A, in the grand canonical ensemble, can
be rewritten as

=A c G G( )
u u1 2 1 (C2)

This means that A signifies the preferential solute−solubilizer
interaction compared to solute−solvent.

To carry out statistical variable transformation on B, we
need to convert G22′ and Gu,22′ . The key is the following
statistical variable conversion (Appendix A)
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Here, we introduce the conventional KBI in the grand
canonical ensemble, defined as

=
{ } { }

{ } { }
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(C3b)

Using eq C3b, eq C3a can be expressed as
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(C3c)

This leads to the following transformation rule between the
pseudo-KBI in {T, P, N1, μ2} (eq B2b) and the conventional
KBI in {T, V, μ1, μ2}

= + +G G G G
V

N
2

22 11 22 12

1 (C4a)

This can easily be generalized as

= + +G G G G
V

N
2

u u u u

u

,22 ,11 ,22 ,12

1 (C4b)

Thus, when expressed in the grand canonical ({T, V, μ1, μ2})
ensemble, the pseudo-KBI signifies the net self-interaction, i.e.,
the difference between the self (solvent−solvent, G11, and
solubilizer−solubilizer, G22) and mutual (solvent−solubilizer,
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G12) interactions. The presence of V/⟨N1⟩ in eq C4a (or V/
⟨N1⟩u in eq C4b) can be justified by considering a system in
which species 2 interacts weakly with itself as well as with
species 1, such that G22 ≃ 0 and G12 ≃ 0. Since G11 ≃ −V/⟨N1⟩
for pure solvent,19 this non-interacting solubilizer example
leads to G22′ = G11 + G22 − 2G12 + V/⟨N1⟩ ≃ 0.

Kirkwood−Buff χ

Following our previous papers,43,44 here we introduce the
Kirkwood−Buff (KB) χ parameter as the measure of self-
interaction as

= +
N

V
G G G( 2 )1
11 22 12 (C5a)

through which eq C3c can be expressed as

= +{ } { }N N N
N

N
( 1)

N N2 2 2
2
2

1
1 1 (C5b)

Through eqs C5a and C5b, together with their inhomogeneous

counterparts and the a x
N

N2 2

2

1

at a2 → 0, B0 in eq B2a

can be rewritten as

= + +B K N N( 1) ( 1)
u u0 e

2
1 1 0 (C6a)

where Ke is the equilibrium constant for the swapping of “a
solubilizer in bulk” and “a solvent in solute’s vicinity”, defined
as

= = =K
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where K1 and K2 are the bulk-to-solute vicinity exchange
constant of the solvent and solubilizer, respectively. Con-
sequently, B0 contains the effect of solute-induced enhance-
ment of self-interaction, but the presence of ⟨N1⟩u and ⟨N1⟩
complicates its interpretation.

A simpler interpretation can be obtained for B

A

0

0

. Combining

eq C6a with eqs B1a and C6b yields

=

+ +B

A

K K

K

( 1) ( 1)

1

u0

0

e 2 0

2 (C7)

Now, eq C7 does not contain ⟨N1⟩u and ⟨N1⟩. It signifies the
enhancement of self-interactions (i.e., KB χ) around the solute
from the bulk.

The Margules parameter, α, has also been given a statistical
thermodynamic interpretation. Leaving the derivation to our
recent papers,25,70 here we emphasize that α can also be
expressed in terms of the bulk Kirkwood−Buff χ parameter as

=

2

0

(C8)

through which the expansion of a2 in the power series of x2 (eq
B8) can be rewritten as

= + ···a x x
2 2 0 2

2

(C9)

Thus, the Kirkwood−Buff χ plays a central role in the
nonlinear term of solubilization isotherms.

■ APPENDIX D ALTERNATIVE EXPRESSION FOR B/A

This appendix provides an alternative expression for B/A in the
homogeneous ensemble. Our starting point is the fluctuation

expressions of A and B (eqs B1a and B2a), from which we
obtain
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with
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(D1b)

based on the definition of the mean in the inhomogeneous
ensemble, ⟨N2⟩u = ⟨N2Nu⟩/⟨Nu⟩. Our goal is to simplify eq
D1a. The first step is to use (for derivation, see below)
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through which eq D1a can be rewritten with the help of eq
D1b, as
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Combining eqs D3 and 4b, we obtain
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Proof of Equation D2
From the definition of δ, the left-hand side of eq D2 can be
rewritten as

= +N N N N N N N N
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Using the definition of the inhomogeneous mean
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Combining eqs D5a and D5b, we obtain
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The first term of the right-hand side of eq D2 becomes
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From eqs D5c and D6, straightforward algebra yields
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which, via eq D1b, is equivalent to eq D2.

■ APPENDIX E LOCAL FLUCTUATION IN THE
MOLE-FRACTION SOLUBILITY SCALE

Here, we demonstrate that the use of the mole-fraction
solubility scale leads to a more complicated version of eq 1b.
Let us start with the definition of solubility in the mole-fraction
scale, written as eq 11. Here, we adopt the constant N1

ensemble (to be consistent with eq 1b). Our goal is to derive
a mole-fraction version of eq 1b. The first step is to carry out a
μ2-derivative of eq 11, which yields
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This leads to eq 12.

■ AUTHOR INFORMATION

Corresponding Author

Seishi Shimizu − York Structural Biology Laboratory,
Department of Chemistry, University of York, York YO10
5DD, United Kingdom; orcid.org/0000-0002-7853-
1683; Email: seishi.shimizu@york.ac.uk

Author

Nobuyuki Matubayasi − Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University,
Toyonaka, Osaka 560-8531, Japan; orcid.org/0000-
0001-7176-441X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcb.4c01582

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This study originated as “homework” from Charles Hansen
about a decade ago; S.S. apologizes for the time taken while
thanking him for his insights. The authors are grateful to
Steven Abbott for his helpful comments on their manuscript.
The authors thank Julie Lynch, Will Heamen, and Aro
Nugawela for the discussions. S.S. acknowledges the travel
fund from the Steven Abbott TCNF Ltd. N.M. is grateful to
the Fugaku Supercomputer Project (Nos. JPMXP1020230325
and JPMXP1020230327) and the Data-Driven Material
Research Project (No. JPMXP1122714694) from the Ministry

of Education, Culture, Sports, Science, and Technology and to
Maruho Collaborative Project for Theoretical Pharmaceutics.

■ REFERENCES

(1) Shimizu, S. Formulating Rationally via Statistical Thermody-
namics. Curr. Opin. Colloid Interface Sci. 2020, 48, 53−64.
(2) Chen, Y.; Iuzzolino, L.; Burgess, S. A.; Chung, C. K.; Corry, J.;

Crawford, M.; Desmond, R.; Guetschow, E.; Hartmanshenn, C.; Kuhl,
N.; et al. Leveraging Synergistic Solubility in the Development of a
Direct Isolation Process for Nemtabrutinib. Org. Process Res. Dev.
2023, 27 (4), 659−668.
(3) Herzog, B.; Schäfer, A.; Quass, K.; Giesinger, J. Synergistic

Effects of Binary Oil Mixtures on the Solubility of Sunscreen UV
Absorbers. Eur. J. Pharm. Sci. 2020, 145, No. 105230.
(4) Qiu, J.; Albrecht, J.; Janey, J. Synergistic Solvation Effects:

Enhanced Compound Solubility Using Binary Solvent Mixtures. Org.
Process Res. Dev. 2019, 23 (7), 1343−1351.
(5) Friberg, S. E. Hydrotropes. Curr. Opin. Colloid Interface Sci.
1997, 2 (5), 490−494.
(6) Kunz, W.; Holmberg, K.; Zemb, T. Hydrotropes. Curr. Opin.
Colloid Interface Sci. 2016, 22, 99−107.
(7) Shimizu, S.; Matubayasi, N. Unifying Hydrotropy under Gibbs

Phase Rule. Phys. Chem. Chem. Phys. 2017, 19, 23597−23605.
(8) Mukerjee, P. Solubilization in Micellar Systems. Pure Appl. Chem.
1980, 52, 1317−1321.
(9) Christian, S. D.; Scamehorn, J. F. Solubilization in Surfactant
Aggregates; Taylor & Francis: Boca Raton, Fl, 1995.
(10) Nagarajan, R. Solubilization in Aqueous Solutions of

Amphiphiles. Curr. Opin. Colloid Interface Sci. 1996, 1 (3), 391−401.
(11) Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial
Phenomena, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA,
2012.
(12) Israelachvili, J. Intermolecular and Surface Forces; Elsevier:

Amsterdam, 2011.
(13) Rangel-Yagui, C. O.; Pessoa, A., Jr.; Tavares, L. C. Micellar

Solubilization of Drugs. J. Pharm. Pharm. Sci. 2005, 8 (2), 147−163.
(14) Shimizu, S.; Matubayasi, N. Hydrotropy: Monomer-Micelle

Equilibrium and Minimum Hydrotrope Concentration. J. Phys. Chem.
B 2014, 118, 10515−10524.
(15) Shimizu, S.; Matubayasi, N. Cooperativity in Micellar

Solubilization. Phys. Chem. Chem. Phys. 2021, 23 (14), 8705−8716.
(16) Kirkwood, J. G.; Buff, F. P. The Statistical Mechanical Theory

of Solutions. J. Chem. Phys. 1951, 19 (6), 774−777.
(17) Hall, D. G. Kirkwood-Buff Theory of Solutions. An Alternative

Derivation of Part of It and Some Applications. Trans. Faraday Soc.
1971, 67, 2516−2524.
(18) Ben-Naim, A. Inversion of the Kirkwood−Buff Theory of

Solutions: Application to the Water−Ethanol System. J. Chem. Phys.
1977, 67 (11), 4884−4890.
(19) Shimizu, S.; Matubayasi, N. Preferential Solvation: Dividing

Surface vs Excess Numbers. J. Phys. Chem. B 2014, 118, 3922−3930.
(20) Shimizu, S.; Matubayasi, N. Fluctuation Adsorption Theory:

Quantifying Adsorbate-Adsorbate Interaction and Interfacial Phase
Transition from an Isotherm. Phys. Chem. Chem. Phys. 2020, 22,
28304−28316.
(21) Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and
Related Solutions; Van Nostrand Reinhold Co.: New York, 1970.
(22) Gordon, L. J.; Scott, R. L. Enhanced Solubility in Solvent

Mixtures. I. The System Phenanthrene�Cyclohexane�Methylene
Iodide 1. J. Am. Chem. Soc. 1952, 74 (16), 4138−4140.
(23) Smith, E. B.; Walkley, J.; Hildebrand, J. H. Intermolecular

Forces Involving Chlorofluorocarbons. J. Phys. Chem. A 1959, 63 (5),
703−704.
(24) Hansen, C. M. Hansen Solubility Parameters: A User’s
Handbook; CRC Press: Boca Raton, FL, 2007.
(25) Shimizu, S.; Matubayasi, N. Statistical Thermodynamics of

Regular Solutions and Solubility Parameters. J. Mol. Liq. 2019, 273,
626−633.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c01582
J. Phys. Chem. B XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Seishi+Shimizu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7853-1683
https://orcid.org/0000-0002-7853-1683
mailto:seishi.shimizu@york.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nobuyuki+Matubayasi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7176-441X
https://orcid.org/0000-0001-7176-441X
https://pubs.acs.org/doi/10.1021/acs.jpcb.4c01582?ref=pdf
https://doi.org/10.1016/j.cocis.2020.03.008
https://doi.org/10.1016/j.cocis.2020.03.008
https://doi.org/10.1021/acs.oprd.2c00391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.oprd.2c00391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ejps.2020.105230
https://doi.org/10.1016/j.ejps.2020.105230
https://doi.org/10.1016/j.ejps.2020.105230
https://doi.org/10.1021/acs.oprd.9b00077?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.oprd.9b00077?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S1359-0294(97)80096-9
https://doi.org/10.1016/j.cocis.2016.03.005
https://doi.org/10.1039/C7CP02132A
https://doi.org/10.1039/C7CP02132A
https://doi.org/10.1351/pac198052051317
https://doi.org/10.1016/S1359-0294(96)80139-7
https://doi.org/10.1016/S1359-0294(96)80139-7
https://doi.org/10.1021/jp505869m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp505869m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0CP06479C
https://doi.org/10.1039/D0CP06479C
https://doi.org/10.1063/1.1748352
https://doi.org/10.1063/1.1748352
https://doi.org/10.1039/tf9716702516
https://doi.org/10.1039/tf9716702516
https://doi.org/10.1063/1.434669
https://doi.org/10.1063/1.434669
https://doi.org/10.1021/jp410567c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp410567c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0CP05122E
https://doi.org/10.1039/D0CP05122E
https://doi.org/10.1039/D0CP05122E
https://doi.org/10.1021/ja01136a054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01136a054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01136a054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j150575a013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j150575a013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.molliq.2018.10.024
https://doi.org/10.1016/j.molliq.2018.10.024
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c01582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(26) Buchecker, T.; Krickl, S.; Winkler, R.; Grillo, I.; Bauduin, P.;
Touraud, D.; Pfitzner, A.; Kunz, W. The Impact of the Structuring of
Hydrotropes in Water on the Mesoscale Solubilisation of a Third
Hydrophobic Component. Phys. Chem. Chem. Phys. 2017, 19 (3),
1806−1816.
(27) Balasubramanian, D.; Srinivas, V.; Gaikar, V. G.; Sharma, M. M.

Aggregation Behavior of Hydrotropic Compounds in Aqueous
Solution. J. Phys. Chem. A 1989, 93 (9), 3865−3870.
(28) Neumann, M. G.; Schmitt, C. C.; Prieto, K. R.; Goi, B. E. The

Photophysical Determination of the Minimum Hydrotrope Concen-
tration of Aromatic Hydrotropes. J. Colloid Interface Sci. 2007, 315
(2), 810−813.
(29) Shimizu, S. Estimating Hydration Changes upon Biomolecular

Reactions from Osmotic Stress, High Pressure, and Preferential
Hydration Experiments. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1195−
1199.
(30) Booth, J. J.; Abbott, S.; Shimizu, S. Mechanism of Hydrophobic

Drug Solubilization by Small Molecule Hydrotropes. J. Phys. Chem. B
2012, 116 (51), 14915−14921.
(31) Shimizu, S.; Booth, J. J.; Abbott, S. Hydrotropy: Binding

Models vs. Statistical Thermodynamics. Phys. Chem. Chem. Phys.
2013, 15 (47), 20625−20632.
(32) Booth, J. J.; Omar, M.; Abbott, S.; Shimizu, S. Hydrotrope

Accumulation around the Drug: The Driving Force for Solubilization
and Minimum Hydrotrope Concentration for Nicotinamide and Urea.
Phys. Chem. Chem. Phys. 2015, 17 (12), 8028−8037.
(33) Matteoli, E.; Lepori, L. Kirkwood−Buff Integrals and

Preferential Solvation in Ternary Non-Electrolyte Mixtures. J. Chem.
Soc., Faraday Trans. 1995, 91 (3), 431−436.
(34) Matteoli, E.; Lepori, L. Solute−Solute Interactions in Water. II.

An Analysis through the Kirkwood−Buff Integrals for 14 Organic
Solutes. J. Chem. Phys. 1984, 80 (6), 2856−2863.
(35) Ruckenstein, E.; Shulgin, I. L. Solubility of Drugs in Aqueous

Solutions Part 2: Binary Nonideal Mixed Solvent. Int. J. Pharm. 2003,
260 (2), 283−291.
(36) Rösgen, J. Synergy in Protein−Osmolyte Mixtures. J. Phys.
Chem. B 2015, 119 (1), 150−157.
(37) Rösgen, J.; Jackson-Atogi, R. Volume Exclusion and H-Bonding

Dominate the Thermodynamics and Solvation of Trimethylamine- N
-Oxide in Aqueous Urea. J. Am. Chem. Soc. 2012, 134 (7), 3590−
3597.
(38) Shimizu, S.; Matubayasi, N. The Origin of Cooperative

Solubilisation by Hydrotropes. Phys. Chem. Chem. Phys. 2016, 18
(36), 25621−25628.
(39) Abranches, D. O.; Benfica, J.; Soares, B. P.; Ferreira, A. M.;

Sintra, T. E.; Shimizu, S.; Coutinho, J. A. P. The Impact of the
Counterion in the Performance of Ionic Hydrotropes. Chem.
Commun. 2021, 57 (23), 2951−2954.
(40) Soares, B. P.; Abranches, D. O.; Sintra, T. E.; Leal-Duaso, A.;

García, J. I.; Pires, E.; Shimizu, S.; Pinho, S. P.; Coutinho, J. A. P.
Glycerol Ethers as Hydrotropes and Their Use to Enhance the
Solubility of Phenolic Acids in Water. ACS Sustainable Chem. Eng.
2020, 8 (14), 5742−5749.
(41) Shimizu, S.; Matubayasi, N. A Unified Perspective on

Preferential Solvation and Adsorption Based on Inhomogeneous
Solvation Theory. Phys. A 2018, 492, 1988−1996.
(42) Shimizu, S.; Matubayasi, N. Implicit Function Theorem and

Jacobians in Solvation and Adsorption. Phys. A 2021, 570,
No. 125801.
(43) Shimizu, S.; Matubayasi, N. Understanding Sorption Mecha-

nisms Directly from Isotherms. Langmuir 2023, 39 (17), 6113−6125.
(44) Shimizu, S.; Matubayasi, N. Sorption from Solution: A

Statistical Thermodynamic Fluctuation Theory. Langmuir 2023, 39
(37), 12987−12998.
(45) Shimizu, S.; Matubayasi, N. Cooperativity in Sorption

Isotherms. Langmuir 2023, 37 (34), 10279−10290.
(46) Shimizu, S.; Matubayasi, N. Sorption: A Statistical Thermody-

namic Fluctuation Theory. Langmuir 2021, 37, 7380−7391.

(47) Shimizu, S.; Matubayasi, N. Cooperative Sorption on Porous
Materials. Langmuir 2021, 37 (34), 10279−10290.
(48) Shimizu, S.; Matubayasi, N. Intensive Nature of Fluctuations:

Reconceptualizing Kirkwood-Buff Theory via Elementary Algebra. J.
Mol. Liq. 2020, 318, No. 114225.
(49) Shimizu, S.; Matubayasi, N. Ensemble Transformation in the

Fluctuation Theory. Phys. A 2022, 585, No. 126430.
(50) Stockmayer, W. H. Light Scattering in Multi-Component

Systems. J. Chem. Phys. 1950, 18 (1), 58−61.
(51) Hill, T. L. Theory of Solutions. II. Osmotic Pressure Virial

Expansion and Light Scattering in Two Component Solutions. J.
Chem. Phys. 1959, 30 (1), 93−97.
(52) Ben-Naim, A. Standard Thermodynamics of Transfer. Uses and

Misuses. J. Phys. Chem. A 1978, 82 (7), 792−803.
(53) Henderson, D. Fundamentals of Inhomogeneous Fluids; Marcel

Dekker: New York, 1992; pp 1−22.
(54) Lazaridis, T. Inhomogeneous Fluid Approach to Solvation

Thermodynamics. 1. Theory. J. Phys. Chem. B 1998, 102 (18), 3531−

3541.
(55) Shimizu, S.; Matubayasi, N. Surface Area Estimation: Replacing

the BET Model with the Statistical Thermodynamic Fluctuation
Theory. Langmuir 2022, 38, 7989−8002.
(56) McMillan, W. G.; Mayer, J. E. The Statistical Thermodynamics

of Multicomponent Systems. J. Chem. Phys. 1945, 13 (7), 276−305.
(57) Yang, Y.; Tang, W.; Li, X.; Han, D.; Liu, Y.; Du, S.; Zhang, T.;

Liu, S.; Gong, J. Solubility of Benzoin in Six Monosolvents and in
Some Binary Solvent Mixtures at Various Temperatures. J. Chem. Eng.
Data 2017, 62 (10), 3071−3083.
(58) Jeong, J. S.; Ha, E. S.; Park, H.; Lee, S. K.; Kim, J. S.; Kim, M. S.

Measurement and Correlation of Solubility of Rivaroxaban in
Dichloromethane and Primary Alcohol Binary Solvent Mixtures at
Different Temperatures. J. Mol. Liq. 2022, 357, No. 119064.
(59) Nikam, P. S.; Mahale, T. R.; Hasan, M. Density and Viscosity of

Binary Mixtures of Ethyl Acetate with Methanol, Ethanol, Propan-1-
Ol, Propan-2-Ol, Butan-1-Ol, 2-Methylpropan-1-Ol, and 2-Methyl-
propan-2-Ol at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data
1996, 41 (5), 1055−1058.
(60) Damyanov, D.; Velchev, K. Liquid-Vapor Equilibrium in the

Methylene Chloride - Methanol - Dimethylaniline Ternary System at
Atmospheric Pressure. Nauc. Tr. Viss. Inst. Khranit. Vkusova Prom. P
lovdiv. 1982, 29, 267−277.
(61) Shimizu, S.; Matubayasi, N. Hydrotropy and Scattering: Pre-

Ouzo as an Extended near-Spinodal Region. Phys. Chem. Chem. Phys.
2017, 19 (39), 26734−26742.
(62) Hildebrand, J. H. Solubility. XII. Regular Solutions. J. Am.
Chem. Soc. 1929, 51 (1), 66−80.
(63) Shinoda, K.; Hildebrand, J. H. The Solubility and Entropy of

Solution of Iodine in Octamethylcyclotetrasiloxane and Tetraethox-
ysilane. J. Phys. Chem. A 1957, 61, 789.
(64) Shinoda, K.; Hildebrand, J. H. Partial Molal Volumes of Iodine

in Various Complexing and Non-Complexing Solvents. J. Phys. Chem.
A 1958, 62 (3), 295−296.
(65) Shinoda, K.; Hildebrand, J. H. The Solubility and Entropy of

Solution of Iodiune in N-C7F16, c-C6F11CF3, (C3F7COOCH2)4C,
c-C4Cl2F6, CCl2FCClF2, and CHBr3. J. Phys. Chem. A 1957, 62,
292−294.
(66) Shimizu, S.; Matubayasi, N. Statistical Thermodynamic

Foundation for Mesoscale Aggregation in Ternary Mixtures. Phys.
Chem. Chem. Phys. 2018, 20, 13777−13784.
(67) Gurney, R. W. Ionic Processes in Solution; McGraw-Hill: New

York, 1953.
(68) Ben-Naim, A. Molecular Theory of Solutions; Oxford University

Press: Oxford, 2006; pp 112−135.
(69) Chitra, R.; Smith, P. E. Molecular Association in Solution: A

Kirkwood-Buff Analysis of Sodium Chloride, Ammonium Sulfate,
Guanidinium Chloride, Urea, and 2,2,2-Trifluoroethanol in Water. J.
Phys. Chem. B 2002, 106 (6), 1491−1500.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c01582
J. Phys. Chem. B XXXX, XXX, XXX−XXX

M

https://doi.org/10.1039/C6CP06696H
https://doi.org/10.1039/C6CP06696H
https://doi.org/10.1039/C6CP06696H
https://doi.org/10.1021/j100346a098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100346a098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jcis.2007.07.020
https://doi.org/10.1016/j.jcis.2007.07.020
https://doi.org/10.1016/j.jcis.2007.07.020
https://doi.org/10.1073/pnas.0305836101
https://doi.org/10.1073/pnas.0305836101
https://doi.org/10.1073/pnas.0305836101
https://doi.org/10.1021/jp309819r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp309819r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/c3cp53791a
https://doi.org/10.1039/c3cp53791a
https://doi.org/10.1039/C4CP05414H
https://doi.org/10.1039/C4CP05414H
https://doi.org/10.1039/C4CP05414H
https://doi.org/10.1039/FT9959100431
https://doi.org/10.1039/FT9959100431
https://doi.org/10.1063/1.447034
https://doi.org/10.1063/1.447034
https://doi.org/10.1063/1.447034
https://doi.org/10.1016/S0378-5173(03)00273-4
https://doi.org/10.1016/S0378-5173(03)00273-4
https://doi.org/10.1021/jp5111339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja211530n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja211530n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja211530n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C6CP04823D
https://doi.org/10.1039/C6CP04823D
https://doi.org/10.1039/D0CC08092F
https://doi.org/10.1039/D0CC08092F
https://doi.org/10.1021/acssuschemeng.0c01032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.0c01032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.physa.2017.11.113
https://doi.org/10.1016/j.physa.2017.11.113
https://doi.org/10.1016/j.physa.2017.11.113
https://doi.org/10.1016/j.physa.2021.125801
https://doi.org/10.1016/j.physa.2021.125801
https://doi.org/10.1021/acs.langmuir.3c00256?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.3c00256?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.3c00804?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.3c00804?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.3c01243?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.3c01243?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.1c00742?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.1c00742?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.1c01236?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.1c01236?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.molliq.2020.114225
https://doi.org/10.1016/j.molliq.2020.114225
https://doi.org/10.1016/j.physa.2021.126430
https://doi.org/10.1016/j.physa.2021.126430
https://doi.org/10.1063/1.1747457
https://doi.org/10.1063/1.1747457
https://doi.org/10.1063/1.1729949
https://doi.org/10.1063/1.1729949
https://doi.org/10.1021/j100496a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100496a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9723574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9723574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c00753?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c00753?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c00753?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1724036
https://doi.org/10.1063/1.1724036
https://doi.org/10.1021/acs.jced.7b00238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jced.7b00238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.molliq.2022.119064
https://doi.org/10.1016/j.molliq.2022.119064
https://doi.org/10.1016/j.molliq.2022.119064
https://doi.org/10.1021/je960090g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je960090g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je960090g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je960090g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C7CP04990K
https://doi.org/10.1039/C7CP04990K
https://doi.org/10.1021/ja01376a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j150552a022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j150552a022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j150552a022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j150561a010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j150561a010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C8CP01207E
https://doi.org/10.1039/C8CP01207E
https://doi.org/10.1021/jp011462h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp011462h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp011462h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c01582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(70) Maneffa, A. J.; Stenner, R.; Matharu, A. S.; Clark, J. H.;
Matubayasi, N.; Shimizu, S. Water Activity in Liquid Food Systems: A
Molecular Scale Interpretation. Food Chem. 2017, 237, 1133−1138.
(71) Perry, R. H.; Green, D. W. Perry’s Chemical Engineers’
Handbook; McGraw-Hill: New York, 2008.
(72) Martin, M. C.; Cocero, M. J.; Mato, F. Vapor-Liquid

Equilibrium Data at 25°C for Six Binary Systems Containing Methyl
Acetate or Methanol, with Dichloromethane, Chloroform, or 1,2-
Trans-Dichloroethylene. J. Solution Chem. 1991, 20 (1), 87−95.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c01582
J. Phys. Chem. B XXXX, XXX, XXX−XXX

N

https://doi.org/10.1016/j.foodchem.2017.06.046
https://doi.org/10.1016/j.foodchem.2017.06.046
https://doi.org/10.1007/BF00651642
https://doi.org/10.1007/BF00651642
https://doi.org/10.1007/BF00651642
https://doi.org/10.1007/BF00651642
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c01582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

