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Abstract

1. Recent years have seen significant advances in artificial intelligence (AI) technology.

This advancement has enabled the development of decision support systems that

support farmers with herbivorous pest identification and pest monitoring.

2. In these systems, the AI supports farmers through the detection, classification and

quantification of herbivorous pests. However, many of the systems under develop-

ment fall short of meeting the demands of the end user, with these shortfalls acting

as obstacles that impede the integration of these systems into integrated pest man-

agement (IPM) practices.

3. There are four common obstacles that restrict the uptake of these AI-driven deci-

sion support systems. Namely: AI technology effectiveness, functionality under field

conditions, the level of computational expertise and power required to use and run

the system and system mobility.

4. We propose four criteria that AI-driven systems need to meet in order to overcome

these challenges: (i) The system should be based on effective and efficient AI;

(ii) The system should be adaptable and capable of handling ‘real-world’ image data

collected from the field; (iii) Systems should be user-friendly, device-driven and

low-cost; (iv) Systems should be mobile and deployable under multiple weather and

climate conditions.

5. Systems that meet these criteria are likely to represent innovative and transforma-

tive systems that successfully integrate AI technology with IPM principles into tools

that can support farmers.

K E YWORD S

artificial intelligence, decision support system, image recognition, integrated pest management,

machine learning, pest management

INTRODUCTION

Infestation with herbivorous pests can be extremely damaging to crop

production (Culliney, 2014), with approximately 20%–30% crop losses

caused by herbivorous pests and pathogens worldwide (Savary

et al., 2019). Herbivorous pest infestations are also anticipated to

increase under a changing climate (Deutsch et al., 2018). Farmers

often use plant protective products, such as pesticides, to manage

herbivorous pest infestations. However, there are increasing environ-

mental, ecological and public concerns around the use of pesticides, a
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growing need to use pesticides in a more environmentally conscious

manner, a requirement to reduce overall pesticide use and a drive to

promote uptake of alternative management options. Restricting pesti-

cide use is also important in order to reduce the likelihood that

pesticide resistant populations will develop (Bass et al., 2015).

Integrated pest management (IPM) aims to reduce reliance on

plant protection products through the implementation of multiple pest

management techniques. There are eight key IPM principles that

underpin this (Barzman et al., 2015):

1. Prevention and suppression

2. Pest identification and monitoring

3. Decision based on monitoring and thresholds

4. Non-chemical methods

5. Pesticide selection

6. Reduced pesticide use

7. Anti-resistance strategies

8. Evaluation

In general, these principles provide a logical, stepwise process to

assist growers with their decision-making. Recently, a more holistic

system, Agroecological Crop Protection, has been suggested as an

alternative to IPM (Deguine et al., 2021). The underlying principles

and aims of IPM and Agroecological Crop Protection are similar, how-

ever, Agroecological Crop Protection places greater emphasis on

holistic and sustainable farming within an ecosystem context, whereas

IPM has become synonymous with pest and disease management

(Deguine et al., 2021). Nonetheless, a key element in both schemes is

the correct identification and sustained monitoring of herbivorous

pests and the integration of the information gained from these moni-

toring efforts into crop protection practices. Correct identification of

the pests present in agricultural fields, and the combination of this

with appropriate management advice, is essential if agricultural pests

are to be controlled successfully (Ellis et al., 2014; Ramsden

et al., 2017).

CORRECT PEST IDENTIFICATION AND

SUSTAINED HERBIVOROUS PEST

MONITORING: KEY CHALLENGES FOR

FARMERS

The correct identification of herbivorous pests is a key challenge for

most farmers and advisors. Farmers need to be able to confidently

identify herbivorous pests, and/or the damage caused by these pests,

in order to apply correct and timely pest management interventions.

The sustained monitoring of herbivorous pest populations, particularly

the build-up of pest populations, is also an important component that

underpins IPM and Agroecological Crop Protection principles

(Barzman et al., 2015; Deguine et al., 2021). Generally, most farmers

follow established economic thresholds (Ramsden et al., 2017). Eco-

nomic thresholds (hereafter, thresholds) are the number of herbivo-

rous pests per plant, or unit area, above which there is sufficient risk

that the level of crop damage caused will result in economic yield loss

(Higley & Pedigo, 1993; Pedigo et al., 1986). Farmers primarily apply

pesticides, or other interventions, once herbivorous pest populations

within the crop breach these thresholds. Therefore, the sustained and

frequent monitoring of herbivorous pest populations within the crop

is a central component of IPM. This often requires extensive in-crop

inspections or the installation and frequent assessment of insect mon-

itoring traps, both of which are time- and labour-intensive (Ramsden

et al., 2017). These challenges in herbivorous pest identification and

monitoring can limit the extent to which farmers successfully imple-

ment IPM, or Agroecological Crop Protection.

Technological advances in herbivorous pest monitoring and pre-

diction can support farmers by predicting pest migration and infesta-

tion (Leybourne et al., 2022), and by monitoring in-crop pest

populations (Badgujar et al., 2023; Roosjen et al., 2020). There are

several prediction tools that can help farmers estimate pest migration

and crop risk within a given year (Leybourne et al., 2022, 2023;

Tonnang et al., 2017). Herbivorous pest monitoring is often supported

at regional or national scales, for example, through nationwide insect

trap networks (Lagos-Kutz et al., 2020; Miao et al., 2011). Farmers

primarily use these monitoring networks to time their own in-field

monitoring efforts, although these efforts remain labour- and time-

intensive (Ramsden et al., 2017). Remote imaging and image analysis

are two technologies that are well-placed to be able to support

farmers with in-field herbivorous pest monitoring and identification

efforts, specifically by providing near real-time information on pest

populations (remote imaging: Roosjen et al., 2020) and supporting

identification efforts to confirm herbivorous pest presence (image

analysis: Badgujar et al., 2023; Bjerge et al., 2023).

ARTIFICIAL INTELLIGENCE AND

SUSTAINABLE AGRICULTURE

Artificial intelligence (AI) can be integrated into these remote imaging

and image analysis technologies to develop smart and dynamic sys-

tems that can better support farmers. In this perspectives article we

discuss how AI can be integrated into pest monitoring schemes to

help with the implementation of sustainable agricultural practices. We

discuss the potential of AI applications for sustainable agriculture pri-

marily through the lens of using AI to assist with insect detection and

predictive modelling, focussing on aspects of AI related to computer

vision, deep learning and machine learning.

In these systems, AI represents the technology that underpins

effective herbivorous pest detection, classification and quantification

from data inputs (e.g., image capture or video data); the AI system can

also support the decision-making process (Li et al., 2023; Yuan

et al., 2023). AI can be used to support several aspects of IPM. Indeed,

AI has recently been highlighted as a potential tool that can be used

to support aphid monitoring (including detection and quantification) in

agricultural systems (Batz et al., 2023). With regard to the eight IPM

principles, AI could revolutionise the development and deployment of

several IPM principles, including integration of AI into image-detection

models to support pest identification (Principle 2); development of
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AI-driven models that can better predict pest infestations (Principle

2); the integration of AI into library screening to identify novel bioac-

tive compounds and the development of new pesticide chemistry

(Principle 5); and the development of AI models that can better pre-

dict outbreaks of pesticide resistant populations (Principle 7). With

regard to the second principle of IPM (pest identification and monitor-

ing and prediction models; Barzman et al. (2015)), AI and AI-driven

technologies are well-placed to support farmers through the develop-

ment of 21st century IPM systems.

AI AND PEST MONITORING: ARE THERE

OBSTACLES TO INTEGRATION AND

UPTAKE?

Numerous AI-based pest identification technologies have been

developed. With the majority of these focussing on herbivorous pest

identification in specific agricultural systems, such as tea plantations

(Deng et al., 2018), wheat and cereal crops (Badgujar et al., 2023; Li

et al., 2023) and banana (Selvaraj et al., 2019). Table 1 summarises

some of the available AI-driven pest identification technologies,

focussing on examples that have been developed using images cap-

tured in natural environments. For a more extensive overview of

herbivorous pest detection technologies, see review by Yuan

et al. (2022).

AI-based decision-making is a process relying on ‘big data’. In

other words, machines draw conclusions from a large volume of data

and then apply these conclusions to real-world scenarios

(Jarrahi, 2018). Compared with traditional decision-making models, AI

technologies can deal with various complex environments and situa-

tions. The ability of AI, and by association AI-based computational

technologies, to deal with complex scenarios enables these models to

make robust estimations that are representative of the real world.

Integrating machine-learning components into decision-making pro-

cesses can produce more powerful tools, and this process has already

been used to develop image analysis tools that can potentially support

farmers with a range of agricultural tasks (Yuan et al., 2023).

There are several challenges and obstacles that limit the extent to

which the resulting AI-based systems can be deployed under real-

world scenarios. These obstacles need to be addressed and overcome

if AI-driven 21st century IPM systems are to be developed and

applied. We outline four obstacles below.

Obstacle 1: Model effectiveness. Machine learning techniques

have been used to develop image-detection techniques that provide

automated identification of insects from image data (Hansen

et al., 2020; Mayo & Watson, 2007). These methods primarily work

through a process of image collation, image annotation and AI model

training. (Liu et al., 2019, 2021; Zhang et al., 2022). However, the

underlying models can often run into accuracy and precision issues.

The quality and resolution of the image, including the quality of the

T AB L E 1 Overview of some available artificial intelligence-driven herbivorous pest detection systems that are based on algorithms trained on

images collected under natural environments. For a more exhaustive list, please see Yuan et al. (2022).

Agricultural system (number

of pests covered) Country of development Accuracy Development conditions Reference

Tea plantations (10 pests) China 85.5% Developed and tested using images

collected in natural environments.

Small dataset (40–72 images per

species).

Deng et al.,

(2018)

93% Developed models using the Deng

et al., 2018 image dataset.

Wang et al.,

(2019)

95% Nanni et al.,

(2020)

99% Dewi et al.,

(2023)

Banana plantations (Six pests

and disease)

Africa and India 70%–

99%

Developed and tested using images

collected in natural environments.

Large dataset (18,000 images).

Selvaraj et al.,

(2019)

Longan orchards (One stink

bug)

Taiwan 90%–

92%

Developed and tested using images

collected in natural environments.

Small dataset (849 images, increasing to

5000 after artificial augmentation)

Chen et al.,

(2020)

Beans and pea (Two beetles) Mexico 76%–

89%

Developed and tested using images

collected in natural environments.

Small dataset (75–200 images per

species).

Roldán-Serrato

et al., (2018)

Cereals (Focus on aphids) United Kingdom (includes some pest

images collected in China)

42%–

75%

Developed and tested using images

collected in natural environments.

Large dataset (20,000 images).

Li et al., (2023)

AI AND HERBIVOROUS PEST MONITORING 3
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training images, is a significant factor influencing accuracy and preci-

sion that can also impact system effectiveness (Bereciartua-Pérez

et al., 2023; Kamei, 2023; Roosjen et al., 2020). These obstacles can

be addressed through preprocessing techniques, including image aug-

mentation and cleaning, that can improve model performance.

Reduced effectiveness of AI models is not directly due to low quality

of images, but because of the size of pests and interference from

complex nature environments. In previous work (Liu et al., 2019,

2021; Zhang et al., 2022), it has been illustrated that if the total size

of pests in the image is above 1% of overall image resolution, then the

accuracy of pest detection and counting could be up to 90%. Con-

versely, the accuracy of pest detection and counting reduces when

this falls below 1%.

Obstacle 2: Functionality under field conditions. Several AI tech-

niques are capable of detecting herbivorous pests (Faithpraise

et al., 2013; Liu et al., 2019; Xie et al., 2015) and other arthropods

(Hansen et al., 2020; Marques et al., 2018; Valan et al., 2019). How-

ever, many of these models have only been developed and tested on

image libraries collated under controlled conditions. This represents a

significant challenge in developing real-world solutions, as system suc-

cess in controlled conditions will not necessarily translate to success

under field conditions where external factors can reduce system

effectiveness. Models that are developed and trained on image data

that is primarily obtained under field-conditions are often reported to

perform better under test scenarios (Ahmad et al., 2020; Gutiérrez

et al., 2021). Therefore, by ensuring systems are trained on image and

data captured under real-world natural environments they are better

able to perform when deployed in the field. Indeed, effective systems

have been developed for field-based identification of freshwater

invertebrates (BIODISCOVER system; Høye et al., 2022) and for auto-

mated monitoring of moths in terrestrial environments (The UK Cen-

tre for Ecology & Hydrology AMI-trap platform).

Obstacle 3: Level of computational expertise and computational

power required to use the system. Another obstacle to the uptake of

these AI-based systems is end user operability. If the AI systems

require significant computational knowledge, or are computationally

intensive, they will not be seen as a feasible option for the majority of

farmers and other end users. Similar obstacles are known to exist for

standard computational pest prediction models (Leybourne

et al., 2023); explainable AI is one potential solution that can facilitate

farmer and end user accessibility to AI (Coulibaly et al., 2022). These

obstacles can also be overcome by reducing the computational power

needed to run the system, or by running it via external servers held on

cloud platforms (Li et al., 2023); reducing computational power

reduces the computational requirements of the end user. A number of

approaches can be used to develop higher performing models, such as

Single Shot Detector (Liu et al., 2016), Faster Region-based Convolu-

tional Neural Networks (Ren et al., 2015), Feature Pyramid Network

(Lin et al., 2017) and extended variations of these modelling

approaches (Dai et al., 2016). By using these techniques to increase

model performance, the underlying techniques can also be implemen-

ted on standard smart devices that farmers are more comfortable with

using, including mobile phones where the computational models can

be run via cloud-computing systems (Li et al., 2023; Yuan et al., 2023).

Creating a simple and ergonomic user-interface for the end user will

promote accessibility and facilitate uptake by perspective end users. If

AI systems are user-friendly and operable on smart devices that

farmers are familiar and confident in using, they will likely have a

greater chance of being integrated into a farmer’s everyday IPM prac-

tices. Several automated or device-driven AI systems have been

developed (Badgujar et al., 2023; Bjerge et al., 2023; Yang

et al., 2023); however, further developments are required to ensure a

balance between accuracy, efficiency and usability.

Obstacle 4: System mobility. AI-based systems that are mobile

and deployable are more likely to be used by end users. Mobile sys-

tems, for example systems that run via a smart device (Yuan

et al., 2023), are well-placed to support farmers as a tool that can sup-

port ad hoc pest identification and monitoring activities. Versatility in

the deployment and usability of systems is likely to be a key driving

force behind whether any system is used by farmers under real-world

conditions. Systems that can be initiated and used on-the-go are more

likely to support the dynamic working patterns experienced by

farmers, and systems that can be rapidly initiated can provide support

as and when needed. These on-the-go systems will support insect

identification tasks, however, if these systems are further developed

into deployable systems that can be installed as remote imaging sta-

tions within fields they could further support farmers through real-

time herbivorous pest monitoring (Wang et al., 2021). Advances in this

area should be focussed on developing tools and functionality in order

to ‘scale down’ the process in order to provide farmers the capability,

the convenience and the precision of the AI-based DSS on a mobile

phone (Yuan et al., 2023) or a deployable AI-driven ‘monitoring sta-

tion’. The potential integration into herbivorous pest detection sys-

tems that are operable on smart devices means that in the future it

will be possible for a farmer to conduct enhanced herbivorous pest

monitoring ad hoc during routine crop walks.

Above we identify four common obstacles that potentially limit

the uptake of AI systems. These correspond to four criteria, outlined

below, that we believe need to be successfully met in order to

develop an AI-driven system that can support farmers with herbivo-

rous pest monitoring efforts. As a minimum the AI model and the inte-

grated AI-pest monitoring system should be:

1. Based on an accurate and precise model;

2. Adaptable and usable under real-world scenarios;

3. User-friendly, ‘device-driven’ and low-cost;

4. Mobile and deployable.

Transparency and reproducibility of AI are also key obstacles that

will impact the development and uptake of these systems. Amongst

others, these obstacles include access to and reproducibility of under-

lying code and the development of an open and transparent research

and innovation community. However, as the targeted end users of AI-

enabled pest management support are farmers and agronomists, we

have focussed our obstacles and challenges around the development

and uptake of usable systems by the end user.

4 LEYBOURNE ET AL.
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INTEGRATING IMAGING AND AI FOR

REAL-TIME ON-FARM PEST MONITORING

There are several avenues through which imaging technology, AI-

driven image analysis techniques and IPM requirements for her-

bivorous pest monitoring can be combined to develop integrative

systems that support farmers. The main avenue through which

these are currently being combined is via the development of

smart AI-driven herbivorous pest monitoring systems (Badgujar

et al., 2023; Li et al., 2023; Yuan et al., 2023). Herbivorous pest

monitoring systems that can capture automated near real-time

pest images and transmit these images, alongside contextual data

(e.g., environmental information), to computational servers to

develop deployable herbivorous pest monitoring systems that can

support farmer activities, including automated and sustained her-

bivorous pest monitoring.

F I GU R E 1 Graphical overview showing how artificial intelligence-techniques can be integrated with automated detection, classification and

quantification of insect pests to develop smart herbivorous pest monitoring systems. (a) A mobile smart system supports farmers with ad hoc

herbivorous pest identification; (b) A remote imaging station captures images from in-field traps; (c) A mobile monitoring station captures images

from the crop canopy. All systems transmit images to a computer server where AI-driven models identify pest species present in the image and

provide the end user with an output that can be used to guide decision-making processes. Image created with BioRender.com. Adapted from

Leybourne et al. (2023).
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One avenue that is currently being explored by our team is the

development of on-the-go systems that run on routine smart devices,

these systems are able to support farmers through AI-driven image

detection and provide support with herbivorous pest identification

during crop walks (Figure 1a; Li et al. (2023); Yuan et al. (2023)). Other

systems could include fixed camera stations that are deployed by

farmers alongside standard herbivorous pest traps (e.g., water traps),

with images regularly passed to computational servers running AI-

driven herbivorous pest detection models (Figure 1b). Stations could

also comprise fully deployable pest monitoring stations that monitor

herbivorous pest abundance and activity within the crop canopy

(Figure 1c), for example, the Wild Pest Monitoring Station proposed

by Wang et al. (2021) and the BIODISCOVER system proposed by

Høye et al. (2022); these systems would also support automated near

real-time herbivorous pest monitoring. AI-driven herbivorous pest

identification techniques could then identify and quantify any herbiv-

orous pests present in images captured during a crop walk (Figure 1a),

in insect traps (Figure 1b) or in the crop canopy (Figure 1c). This would

enable automated near real-time collection and assessment of trap

contents and support sustained herbivorous pest monitoring at a

given location, enabling farmers to target pest management interven-

tions more precisely when thresholds are breached. Trap stations

could be coupled with insect pheromone trapping to monitor specific

herbivorous pests in a more specific manner: A system combining

pheromone traps, automated imaging and AI-based pest identification

has been developed to monitor and detect Cydia pomenella (Codling

moth) in apple orchards (Mazare et al., 2019).

Integrating AI models into on-the-go smart devices and deploy-

able in-field monitoring systems (Figure 1) would represent the next-

step in utilising AI models in herbivorous pest management systems

and fully integrating AI into a central IPM principle. Furthermore, as

some of these systems (Figure 1b,c) collect automated near real-time

insect trap data, additional image-detection models could also be inte-

grated to monitor non-pest species, including beneficial arthropods.

These integrated systems would also enable highly precise monitoring

of insect phenology and migration at a high-resolution temporal scale.

Aerial imaging, for example, remote imaging by a drone or

unmanned aircraft vehicle (UAV), is a further option that could sup-

port ad hoc herbivorous pest monitoring. Aerial surveys with UAVs

can be used to detect immobile stages of the moth Monema flavescens

and also distinguish between open and closed cocoons (Park

et al., 2021). UAV has also been used to locate and identify the mobile

instar of Halyomorpha halys (Sorbelli et al., 2023). These studies high-

light the potential of UAVs for direct herbivorous pest detection in

agriculture and early pest detection to prevent pest outbreaks. These

systems are also useful for tracking and monitoring herbivorous pest

migration across larger spatial scales (Abd El-Ghany et al., 2020).

Integrating AI into an effective and efficient IPM system will also

depend on successfully managing edge device issues, such as cloud

computing and Internet accessibility. Typically, these issues can be

addressed by connecting devices to back-end servers that deploy the

AI models to process the data and make the decision (Li et al., 2023;

Yuan et al., 2023). However, in situations where infrastructure is poor

deployment of these systems could be limited. Internet connectivity

and accessibility can be addressed by developing lightweight AI

models that can run on mobile or portable devices without requiring

Internet access (Li et al., 2023; Yuan et al., 2023). Alternatively, for

image-detection AI systems, the smart device could also transfer

images to a cloud computing system once connectivity is restored

(Karar et al., 2021).

PERCEIVED CHALLENGES IN INTEGRATING

AI INTO A 21ST CENTURY INTEGRATED PEST

MANAGEMENT SYSTEM

Integrating AI into IPM can support and improve herbivorous pest

control by acting as an effective and reliable warning system for her-

bivorous pest outbreaks and threshold breaches. However, there are

several challenges that need to be addressed before AI can be fully

integrated into IPM systems. These include entomological, pest man-

agement and computational challenges.

Challenges from an entomological perspective

Taxonomic classification

The difficulty in assigning a correct taxonomy increases exponentially

as the taxonomist, or the AI, moves down the taxonomic tree towards

a species-level classification (Valan et al., 2019). Currently, the main

pitfalls for integrating AI into pest management schemes are the taxo-

nomic challenges associated with developing and training computa-

tional models that can accurately, precisely and reliably identify and

quantify herbivorous pests. As a minimum, in order to have real-world

implications any AI technology that aims to be integrated into an IPM

system should be able to differentiate and quantify individual arthro-

pods to a satisfactory resolution that is capable of providing agricul-

turally relevant information, where possible this technology should

also be trained and developed using real-world ‘field’ images to

ensure they can make these predictions under suboptimal conditions.

Furthermore, a related challenge is the successful differentiation of a

pest from a taxonomically similar, but agriculturally beneficial, insect;

if an automated AI system incorrectly classifies a beneficial insect as a

pest this could significantly lower farmer confidence in the tool. In

order to develop fully automated AI-driven pest monitoring schemes,

these challenges need to be addressed. Recent work has highlighted

some of these challenges, and simultaneously identified computa-

tional methods through which these can begin to be addressed (Yuan

et al., 2023).

The applicability of the system within an ecosystem

context

Agricultural ecosystems are inherently complex ecological networks

comprising herbivorous pest species, their natural enemies and the

environment (Zu et al., 2023). Most AI technologies have focused
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solely on the identification of ‘pests’ and have neglected agricultural

ecosystem complexity. Incorporating the wider ecological network will

enable systems to account for the presence and absence of natural

enemies, and will support farmers in working towards more sustain-

able management practices. The behaviour and spatial location of the

herbivorous pest is also a key factor to consider. Herbivorous pests

can conceal themselves from predators in areas that are not readily

visible when observing the crop canopy from a top-down perspective,

such as beneath leaves, leaf sheath or within the soil. Therefore, sys-

tems designed to assess herbivorous pest abundance and crop risk

through the acquisition and analysis of top-down images might not

fully capture the ‘real’ extent of herbivorous pest pressure and fall

short as an alternative to a crop walk.

Challenges from a pest management perspective

Translating thresholds into correlated variables that can

be detected with an AI system

Herbivorous pest thresholds are critical components of IPM systems,

providing guidelines for when pest control measures should be imple-

mented. However, some thresholds rely on crop damage rather than

herbivorous pest abundance. For example, current thresholds for cab-

bage stem flea beetles (Psylliodes chrysocephala) are based on the per-

centage of leaf area damaged—50% of the leaf area damaged when

crops are at growth stage 13 and 14 (Ellis et al., 2014). This poses a

challenge for AI-based herbivorous pest monitoring systems as most

AI technologies are developed to identify and quantify pests, not

assess the damage they cause. Developing hybrid systems that com-

bine AI-based pest monitoring with traditional monitoring methods,

such as pest scouting and damage assessment, should create more

comprehensive and effective AI-driven IPM systems. Further field-

work is also required in order to relate thresholds that are compatible

with AI systems (e.g., herbivorous pests per leaf) with thresholds that

are currently followed (e.g., leaf damage).

Farmer perspective: Do they want it, do they need it,

will they use it, will they trust it?

Despite the promise of smart farming technologies, including AI-based

IPM, farmers may not necessarily be eager to adopt it (Adereti

et al., 2024). Farmers are less convinced of smart farming technologies

when it comes to specific on-farm challenges, and are hesitant regard-

ing smart farming technology adoption (Kernecker et al., 2020). Sev-

eral factors contribute to this reluctance: Traditional farming practices

are deeply rooted in cultural practices, and this can create resistance

against the adoption of AI technology, which is often perceived as dis-

ruptive (Adereti et al., 2024). Farmers often rely on their own exper-

tise and lived experience to make informed decisions, and AI’s

reliance on data-driven insights may raise concerns about its accuracy

and reliability, especially when the underlying algorithms are not

transparent. To overcome these challenges and promote broader

adoption of AI-powered IPM, farmers need access to accessible and

tailored training programmes or demonstration to understand AI-

based IPM principles, potential benefits and practical application

coupled with farmer-friendly AI interfaces.

Challenges from a computational perspective

Deep learning techniques show outstanding performance with regard

to herbivorous pest detection, and this can be used as a backbone to

support the development AI-driven IPM systems. However, there are

a set of key technical challenges associated with using these tech-

niques to develop desirable pest management systems.

Accurate detection and effective classification of

multiple crop pests in natural scenes

The task of detecting multiple crop pests in natural scenarios has

some inherent feature extraction challenges, for example, the plethora

of classification targets requires a feature extractor to be able to

extract recognisable features. In addition, intuitive features of pests

(e.g., texture, shape or colour) can be easily confused with background

information, while features of tiny pests (e.g., rotation, zoom and pan-

ning) are too weak and insensitive to be recognised. There is a techni-

cal challenge on how to design an effective and robust AI model for

multiple crop pest detection in the wild fields through effective learn-

ing methods.

Efficient and lightweight pest detection models in low-

cost settings

The accuracy of deep learning models relies on a large number of

trainable parameters for fitting complex non-linear relationships.

However, the large number of parameters undoubtedly increases the

memory and computational resource requirements during model com-

putation, which significantly increases the cost of computing devices.

Therefore, it is a technical challenge to lighten the model and increase

the detection speed without losing detection accuracy through knowl-

edge distillation and model quantisation. Cost associated with the use

of decision support systems has recently been highlighted as a key

obstacle against farmer uptake of these systems (Adereti et al., 2024),

so this also represents a user-need challenge.

There are also aspects of computational power that represent a

challenge when developing and designing usable systems. During the

model design process, it is possible to minimise the number of model

parameters to improve the efficiency of model calculation (Hou et al.,

2018; Mostafa et. al., 2019). Mostafa et al. (2019) proposed an effec-

tive model design strategy to reduce the number of model parameters

and computational requirements without loss of accuracy, achieved

through the introduction of convolutional structures that can be easily
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reparametrised. Similarly, Hou et al. (2018) proposed a strategy to

reduce the computational requirements by converting long floating-

point weights that are computationally and memory-intensive into

integers to reduce the high requirements on hardware without loss of

precision.

Generation of sustainable and economically efficient

pest management advice

Current AI-enabled decision support systems for herbivorous pest

management normally rely on predetermined criteria to measure

insect abundance and relate this to the economic threshold for the

detected insect. The systems then use this information to provide

optimal pest management advice. These systems could be further

improved by better incorporating additional conextual information,

such as environmental data, that could be used to produce more effi-

cicient and sustainable guidance for growers.

Societal and agricultural benefits

Economic benefits

Using AI technology for pest management decisions in cropping sys-

tems offers several long-term benefits for both the economy and the

environment. Some benefits include the optimal utilisation of

resources and time, reducing production costs (achieved through AI-

driven support in pest detection and monitoring); accurate pest identi-

fication and alignment with current thresholds can also reduce the

need for management interventions and further reduce the use of

resources, time and costs.
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