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Magnetoencephalography-derived oscillatory 
microstate patterns across lifespan: the 
Cambridge centre for ageing and neuroscience 
cohort

Yujing Huang,1,2,3,4 Chenglong Cao,5 Shenyi Dai,6,7 Hu Deng8; Cambridge Centre for 

Neuroscience and Ageing; Li Su9,10 and Ju-Sheng Zheng1,2,3,4

The aging brain represents the primary risk factor for many neurodegenerative disorders. Whole-brain oscillations may contribute 

novel early biomarkers of aging. Here, we investigated the dynamic oscillatory neural activities across lifespan (from 18 to 88 years) 

using resting Magnetoencephalography (MEG) in a large cohort of 624 individuals. Our aim was to examine the patterns of oscilla-

tion microstates during the aging process. By using a machine-learning algorithm, we identify four typical clusters of microstate pat-

terns across different age groups and different frequency bands: left-to-right topographic MS1, right-to-left topographic MS2, 

anterior-posterior MS3 and fronto-central MS4. We observed a decreased alpha duration and an increased alpha occurrence for 

sensory-related microstate patterns (MS1 & MS2). Accordingly, theta and beta changes from MS1 & MS2 may be related to motor 

decline that increased with age. Furthermore, voluntary ‘top-down’ saliency/attention networks may be reflected by the increased MS3 

& MS4 alpha occurrence and complementary beta activities. The findings of this study advance our knowledge of how the aging brain 

shows dysfunctions in neural state transitions. By leveraging the identified microstate patterns, this study provides new insights into 

predicting healthy aging and the potential neuropsychiatric cognitive decline.
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Graphical Abstract

Introduction
The neural dynamic oscillatory patterns represent an early 

hallmark of aging.1,2 It has been posited that monitoring 

regular and predictable oscillations over the course of an 

adult’ lifespan can aid in identifying potential progression 

of cognitive decline.3,4 At the cellular level, neurons have 

bio-electrochemical properties that facilitate the flow of elec-

trical ions, resulting in the production of electromagnetic 

fields.5 There are five typical oscillatory brain signals in 
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humans: delta, theta, alpha, beta and gamma. Abnormal 

neural physiological activities within specific frequency 

bands can serve as potential histopathological biomarkers 

for brain dysfunctions.6-8 So far, the specific contribution 

of oscillatory changes within certain frequency bands on 

healthy aging are not yet well understood.

There are substantial changes in alpha oscillation during aging 

in humans, such as alpha slowing,9 alpha power reduction,10,11

alpha reactivity declining,12,13 and alpha sub-component 

changes.14 Additionally, other oscillatory neurons and top-

ology reflect different activities with the increasing age. For 

instance, Barry and De Blasio15 observed reduced theta 

power and increased beta power, accompanied by decreased 

alpha power in elder adults. Furthermore, the neuropsycho-

logical Stroop task, a standard attention conflict measure-

ment, highlights the opposing alpha and theta activities.16

Thus, there is no consensus regarding whether aging involves 

multi-frequency dynamic oscillatory changes or is character-

ized by dominant alpha frequency deficiency. Previous 

Cam-CAN studies17-20 have indicated reduced neural effi-

ciency or specificity rather than compensation across life-

span. For example, Tibon et al.17,18 showed that there was 

an age-related ‘neural shift’ with decreased occurrence of 

‘lower-order’ networks in early visual states and increased oc-

currence of ‘higher-order’ fronto-temporal-parietal networks 

in visual and sensorimotor states. Another leading the-

ory,19,20 the posterior-to-anterior shift in aging (PASA), 

states that the anterior regions are recruited when posterior 

cortical function is impaired.

Koenig et al.21 defined four classes: A (left-to-right orienta-

tion), B (right-to-left orientation), C (anterior-posterior 

orientation) and D (fronto-central maxium). Brain sources 

underlying microstates in the literature showed that different 

microstates were highly correlated with functional magnet-

ic imaging neural activities: auditory network (microstate 

A), visual network (microstate B), saliency network 

(microstate C) and attention network (microstate D).22,23

Magnetoencephalography (MEG) is a non-invasive measure-

ment of oscillatory magnetic fields with excellent temporal 

resolution and reasonable spatial resolution. In the present 

study, using resting MEG, we aimed to record the spontan-

eous rhythmic responses across lifespan and perform ma-

chine learning-based microstate clustering in a cohort study 

involving participants from different age groups. We hy-

pothesized that alpha rhythm changes would be the most pro-

nounced MEG microstate phenomenon in the aging brain. 

We further hypothesized that the microstates originating 

from the posterior regions would move anteriorly with age 

to increase the occurrence of higher-order sensory systems.

Materials and methods

Demographics

The present study was based on the cohort of Cambridge 

Centre for Ageing and Neuroscience (Cam-CAN), involving 

624 participants ranging from 18–88 years. The demograph-

ic details in the study are shown in Table 1. Participants were 

divided into five groups: young adults (YA, 18–29 years old), 

early middle-aged adults (EMA, 30–44 years old), late 

middle-aged adults (LMA, 45–59 years old), young seniors 

(YS, 60–74 years old) and elderly adults (EA, 75–88 years 

old). We performed resting MEG session for all these parti-

cipants. The study was approved by the Cambridgeshire 2 

Research Ethics Committee and all participants provided 

written informed consent prior to the study.

Resting MEG recordings

MEG data were recorded via 306-channel VectorView MEG 

system (Elekta Neuromag, Helsinki). MEG Vectorview sys-

tem contains 204 planar gradiometers and 102 magnet-

ometers. Magnetometers consist of a single coil to measure 

the magnetic flux perpendicular to the cortex surface. 

Planar gradiometers are arranged in pairs (a ‘figure-of-eight’ 

coil configuration) and the differences between two loops of 

the spatial gradient were calculated. The signals from planar 

gradiometers indicate magnetic fields from two directions in 

a plain parallel to the head surface. Participants were re-

quired to keep eyes closed but stay awake during resting 

MEG recording in a magnetically shielded room. MEG 

resting-state data were recorded with a duration of 8 and 

40 sec, sampled at 1 kHz with a high-pass filter of 0.03 Hz. 

Head positions within MEG helmet were estimated via 

Head-Position Indicator (HPI) coils for offline correction 

of head movements.

Resting MEG data preprocess

The MaxFilter 2.2.12 software (Elekta Neuromag Oy, 

Helsinki, Finland) applied temporal Single Source 

Separation (‘t-SSS’) to preprocess continuous MEG 

data.24,25 T-SSS helps to detect and reconstruct noisy MEG 

channels, remove noises from external sources, correct head- 

motion artefacts and remove 50 Hz noise. Following the de- 

noising steps, continuous MEG data were imported into 

MATLAB and resampled into 250 Hz via SPM12 (http:// 

www.fil.ion.ucl.ac.uk/spm). Then MEG data were filtered 

and segmented into different frequency bands: delta (1–3 Hz), 

theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), gamma 

(31–40 Hz) and overall (1–40 Hz). We applied two-pass 

butter-worth filters, initially a high-pass filtre and then a low- 

pass filter with zero phase shift. Specifically, for delta, theta, al-

pha, beta, gamma and overall frequency bands, the high-pass 

filters were 1, 4, 8, 14, 31 and 1 Hz respectively; the low-pass 

filters were 3, 7, 13, 30, 40 and 40 Hz respectively. The filtered 

data for each frequency band were continuous datasets across 

experimental time. After that, we firstly combined original pla-

nar channels (i.e. MEGPLANAR electrodes) into MEGCOMB 

electrodes by using SPM12. Then original magnetometers (i.e. 

MEGMAG electrodes) and newly MEGCOMB electrodes 

were concatenated for better data interpretation in further mi-

crostates analyses. However, to compare the global explained 
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variance for MEGCOMB electrodes with MEGMAG electro-

des, we would re-run the preprocesses and separately conduct 

microstate global explained variance analyses for 

MEGCOMB electrodes or MEGMAG electrodes (Table 2).

Microstate pattern analyses using 
machine learning

For each oscillatory frequency band, the modification of the 

microstate k-means algorithm was used to extract microstate 

patterns.26,27 We applied + microstate (MATLAB package, 

https://github.com/lukewtait/microstate_toolbox) which had 

high signal-to-noise ratio for spontaneous transitions between 

brain states. The MEG microstate pipeline was based on 

machine-learning k-means pipeline presented by Pascual- 

Marqui et al.28 Details and justification of the microstate pipe-

line are illustrated as follows. 

1. Import resting MEG sensor-level preprocessed data. The 

clean MEG dataset included 204 channels in total, con-

sisting of 102 magnetometer electrodes and 102 com-

bined gradiometer electrodes.

2. Extract activity maps at global-field power (GFP) peaks 

per individual. The GFP at a time point was defined as 

the standard deviation of the magnetic potential across 

sensors. Subsequent clustering required samples with 

optimal signal-to-noise and topographic stability, which 

correspond to those with peaks in the GFP. Thereby, po-

larity of the map was ignored;

3. Run k-means clustering on maps per individual. K maps 

were chosen as the initial cluster centroids (k = 4). Then 

we calculated cosine distance between activity maps and 

centroids. Each activity map was subsequently clustered 

based on nearest centroid. Using the new centroids, the 

procedure of calculating cluster labels and updating 

cluster centroids was iterated until convergence was 

reached. Due to random initial seeding, the k-means al-

gorithm was repeated 20 times and the repetition with 

highest global explained variance (GEV) was chosen 

for further analyses;21

4. Run two-level ‘global clustering’ to obtain global map 

per age group per frequency band, and cluster the global 

microstate maps from each individual at the group level;

5. Backfit group-level global maps to obtain individual mi-

crostate parameters (duration, coverage, occurrent) per 

age group per frequency band. Specific parameters in-

clude duration (mean duration of a specific microstate 

that remains stable), coverage (the percentage of time 

spent when a given microstate is dominant), occurrence 

(the number of times the microstate appears per second) 

et al.

6. Re-order global maps per age group per frequency band, 

so as to obtain comparable microstate parameters across 

individuals at different age group and different fre-

quency bands. The rule of re-ordering was based on 

Pearson’s correlations of global maps between young 

group at overall frequency band (1–40 Hz) and other 

groups. Clustering analyses in + microstate toolbox 

had variations in topology across different age groups 

or across different frequency bands. The aim of global 

map correlations is to re-order the clustering maps to 

obtain microstates with consistent topology. In this 

case, we would fit-back the comparable statistics after 

re-ordering for further analyses.

7. Calculate microstate statistics per microstate pattern per 

age group per frequency band. The parameters of micro-

states (coverage, occurrence, duration) were compared 

via one-way analysis of variance (ANOVA) across dif-

ferent age group per frequency band. The post hoc tests 

were analyzed via the Tukey method if there was signifi-

cant homogeneity of variances; Tamhane’s T2 was used 

for multiple comparisons if there was significant hetero-

geneity of variances.

8. Correlation analyses between age and microstate statis-

tics. We analyzed Pearson’s correlations between age 

and microstate parameters (coverage, occurrence, dur-

ation) respectively per frequency band.

Table 1 Summary of participant demographics

Group N

Age 

(years)

Mean Age 

(mean ± S.D.) Gender (female/male) Handedness (R/L)

Young Adults 67 18–29 25.16 ± 3.42 38/29 61/6

Early Middle-aged Adults 141 30–44 37.27 ± 4.07 68/73 126/14a

Late Middle-aged Adults 150 45–59 51.73 ± 4.30 73/77 139/11

Young Seniors 150 60–74 66.86 ± 4.10 75/75 135/14a

Elderly Adults 116 75–88 79.88 ± 3.23 56/60 111/5

Total 624 18–88 54.48 ± 18.26 310/314 572/50

aThe handedness record of one participant was ambidexter.

Table 2 Global explained variance for gradiometer only 

and magnetometer only electrodes

GEV(%)

Com  

(Mean ± S.E.)

MAG  

(Mean ± S.E.)

Paired-sample  

T-tests (tdf)

Overall 78.32 ± 0.07 35.63 ± 0.16 t623 = 331.19***

Delta 78.87 ± 0.07 37.00 ± 0.22 t623 = 210.83***

Theta 78.08 ± 0.07 34.21 ± 0.13 t623 = 332.43***

Alpha 78.77 ± 0.10 40.33 ± 0.31 t623 = 157.98***

Beta 78.27 ± 0.06 33.57 ± 0.12 t623 = 463.10***

Gamma 76.67 ± 0.08 25.72 ± 0.09 t623 = 444.62***

‘***’ indicated that P < 0.001; all age groups were included for each frequency band. 

COM showed gradiometer electrodes while MAG was magnetometer electrodes.
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9. Visualizing microstate data via neuromag306 template.

10. Global Explained Variance (GEV) comparison for gradi-

ometer and magnetometer electrodes. For each frequency 

band, the GEV was computed for ‘gradiometer only’ and 

‘magnetometer only’ respectively. Then paired-sample 

T-tests were used to compare the GEV differences for 

gradiometer and magnetometer electrodes per frequency 

band regardless of age groups.

Statistical analysis

Chi-square tests were conducted for age differences per age 

group and handedness differences per age group. The demo-

graphic differences across age groups were analyzed by 

Chi-square tests. One-way ANOVA was used to compare 

the age-related group differences per frequency band per mi-

crostate pattern per microstate parameter (coverage, occur-

rence and duration). The post hoc tests were analyzed via 

the Tukey method if there was significant homogeneity of 

variances; Tamhane’s T2 was used for multiple comparisons 

if there was significant heterogeneity of variances. The 

Pearson’s correlations between age and each microstate par-

ameter were analyzed per microstate pattern per frequency 

band. The Bonferroni method was used for multiple statistic-

al correction of one-way ANOVA, post hoc tests and corre-

lations. Multiple linear regression was analysed with age as a 

dependent variable and all other parameters as independent 

variables. Microstate GEV was compared via pair-sample 

T-tests between MEGCOMB and MEGMAG electrodes. 

The group-level correlations among microstate maps were 

based on the Pearson’s correlations.

Results

Demographics

According to Chi-square tests, there were no statistical dif-

ferences in gender distributions per age group for the re-

cruited participants [YA: χ2(1) = 1.20, P = 0.27; EMA: 

χ2(1) = 0.17, P = 0.67; LMA: χ2(1) = 0.10, P = 0.74; YS: 

χ2(1) = 0, P = 1; EA: χ2(1) = 0.13, P = 0.71]. Additionally, 

there was no significant gender difference across age group 

[χ2(4) = 1.60, P = 0.80]. Furthermore, the statistic results 

about handedness showed that there were fewer left-hand 

participants than right-hand participants per age group 

[YA: χ2(1) = 45.14, P < 0.001; EMA: χ2(1) = 89.6, P < 0.001; 

LMA: χ2(1) = 109.22, P < 0.001; YS: χ2(1) = 98.26, 

P < 0.001; EA: χ2(1) = 96.86, P < 0.001]. Similarly, there 

was no significant handedness difference across age group 

[χ2(4) = 3.45, P = 0.48].

Determination of microstate 
patterns

The observed topographic clusters were initially labeled by 

Koenig et al. (1999) as class A, B, C and D.21,22 Microstate 

map A (MS1) and map B (MS2) exhibited a left-to-right 

orientation and a right-to-left orientation respectively. 

Microstate map C (MS3) indicated an anterior-posterior 

orientation while a fronto-central maximum was shown by 

microstate map D (MS4) (Fig. 1). As shown in Fig. 2, these 

four maps seem to consistently dominate the resting MEG 

data across different age groups and different frequency 

bands. As suggested by previous studies,23,29,30 the polarity 

can be ignored in the microstate definition (blue versus. 

red in Fig. 1 & Fig. 2). For each microstate pattern, the cor-

relations between the young group at overall frequency 

band (1–40 Hz) and other groups were calculated. The cor-

relation results (mostly r > 0.90, Fig. 3) help to re-order the 

microstates patterns for different age groups and different 

frequency bands. Thus, the parameters of microstates across 

age group and oscillatory activities were comparable for a 

given microstate pattern after re-ordering.

Higher gradiometer global explained 
variance for dynamic microstate 
patterns

As reported in previous studies, the optimal number of clusters 

by using the machine-learning model (i.e. K-means clustering) 

is four microstate clusters. The GEV of four cluster maps ex-

plained varies among studies, ranging from 65% to 84%.19

Our findings indicated that gradiometer electrodes showed 

higher GEV compared to magnetometer electrodes for all fre-

quency bands (Table 2). These observations might represent 

that the set of four cluster microstate patterns fit the common 

map for gradiometers rather than magnetometers.

Alpha duration decrease and 
occurrence increase for sensory 
networks

As mentioned above, MS1 and MS2 were indications of audi-

tory and visual networks respectively. In our findings, there 

was significant decrease in alpha duration and increase in al-

pha occurrence for MS1 and MS2 (Fig. 4). In other words, 

aging adults showed decreased alpha duration time of stable 

MS1 or MS2 while there were increased number of times per 

second for the appearance of MS1 or MS2 for alpha activities 

[Alpha Duration: F(4619)MS1 = 15.06, PMS1 < 0.001, 

F(4619)MS2 = 32.57, PMS2 < 0.001; Alpha Occurrence: 

F(4619)MS1 = 10.14, PMS1 < 0.001, F(4619)MS2 = 13.55, 

PMS2 < 0.001]. The microstate patterns of alpha were signifi-

cantly correlated with age [Alpha Duration: R2
MS1 = 0.08, 

rMS1 = −0.29, PMS1 < 0.01, R2
MS2 = 0.16, rMS2 = −0.40, 

PMS2 < 0.01; Alpha Occurrence: R2
MS1 = 0.05, rMS1 = 0.22, 

PMS1 < 0.01, R2
MS2 = 0.05, rMS2 = 0.24, PMS2 < 0.01].

Furthermore, other frequency bands, such as theta band 

or beta band, showed accompanying decline with age for 

MS1 (Fig. 5). For example, the ANOVA and correlation re-

sults showed that theta duration and beta occurrence for 

MS1 were decreased across lifespan [Theta duration: 
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F(4619)MS1 = 4.33, PMS1 = 0.002, R2
MS1 = 0.03, rMS1 = −0.17, 

PMS1 < 0.01; Beta occurrence: F(4619)MS1 = 8.35, PMS1 

< 0.001, R2
MS1 = 0.04, rMS1 = −0.20, PMS1 < 0.01]. Similarly, 

we observed decreased alpha coverage for MS2 across life-

span [Alpha coverage: F(4619)MS2 = 11.87, PMS2 < 0.001, 

R2
MS2 = 0.03, rMS2 = −0.17, PMS2 < 0.01]. post hoc analyses 

of MS1 & MS2 were summarized in Table 3 (details in 

Supplementary Table 1).

Increased alpha occurrence but 
reverse Beta changes for salience/ 
attention networks

MS3 and MS4 may reflect salience and attention networks.18,19

As shown in Fig. 6, we found that MS3 and MS4 had increased 

alpha occurrence, which was consistent with the findings for 

MS1 and MS2. [Alpha occurrence: F(4619)MS3 = 17.75, 

PMS3 < 0.001, R2
MS3 = 0.11, rMS3 = 0.33, PMS3 < 0.01; 

F(4619)MS4 = 10.44, PMS4 < 0.001, R2
MS4 = 0.05, rMS4 = 0.26, 

PMS4 < 0.01]. The results indicated that there was aging-related 

increased number of times per second for whole-brain micro-

state patterns of alpha responses.

The possible aging-related compensatory changes of 

MS3 and MS4 were shown for beta band (Fig. 6). 

Interestingly, alpha and beta coverage was increased for 

MS3 while three beta parameters (coverage, occurrence, 

duration) were declined for MS4 [Alpha coverage: 

F(4619)MS3 = 10.75, PMS3 < 0.001, R2
MS3 = 0.07, rMS3 = 0.28, 

PMS3 < 0.01; Beta coverage: F(4619)MS3 = 7.45, PMS3 

< 0.001, R2
MS3 = 0.04, rMS3 = 0.20, pMS3 < 0.01; F(4619)MS4 

= 7.12, PMS4 < 0.001, R2
MS4 = 0.05, rMS4 = −0.23, PMS4 

< 0.01; Beta occurrence: F(4619)MS4 = 4.89, PMS4 = 0.001, 

R2
MS4 = 0.03, rMS4 = −0.20, PMS4 < 0.01; Beta duration: 

F(4619)MS4 = 5.01, PMS4 = 0.001, R2
MS4 = 0.03, rMS4 = −0.18, 

PMS4 < 0.01]. Coverage was defined as the percentage of 

time spent when a given microstate was dominant. Thus, 

MS3 had an increased average percentage of time but 

overall MS4 patterns were declineed especially for beta 

band across lifespan. Post hoc analyses of MS3 & MS4 

were summarized in Table 3 (details in Supplementary 

Table 1).

Above all, there was dominant alpha deficiency with 

multi-rhythm decay across lifespan. We observed a whole- 

brain microstate patterns changes across lifespan. 

Microstate patterns for rhythmic activities showed a domin-

ant alpha deficiency for most microstate patterns. 

Meanwhile, some other frequency bands had accompanying 

responses, such as theta and beta microstates patterns. These 

findings were briefly summarized in Table 4.

Discussion
In the present study, typical topographic clusters of micro-

states dominate the resting MEG data across different age 

Figure 1 Determination of microstate patterns. MS1 and MS2 exhibited a left-to-right orientation and a right-to-left orientation respectively. 

MS3 indicated an anterior-posterior orientation while a fronto-central maximum was shown by MS4. The polarity was marked via blue and red: blue 

indicated positive and red was negative. The microstate patterns are group-level maps of young adults at 1–40 Hz. ‘MS1’, ‘MS2’, ‘MS3’ and ‘MS4’ indicate 

‘microstate1’,’microstate2’,’microstate3’ and ‘microstate4’ respectively in the figure. The unit of microstate global map is ‘fT’.
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groups and different frequency bands. The alpha deficiencies 

were apparent with increasing age, such as the whole-brain 

alpha occurrence abnormality. Apart from alpha occurrence 

changes, the decline of sensory and motor networks might be 

reflected via distributed oscillation microstate patterns. 

Specifically, we observed decreased alpha duration and in-

creased alpha occurrence (left-to-right topographic MS1 & 

right-to-left topographic MS2) from young to elderly adults. 

Furthermore, theta duration and beta occurrence decreased 

across lifespan, which may be related to motor impairments. 

In addition, the ‘top-down’ voluntary network may be re-

flected by anterior-posterior MS3 and fronto-central MS4. 

We found that the decreased beta was apparent for MS4 dur-

ing aging while there may be complementary relationships 

between MS3 and MS4.

Machine-learning-identified 
microstate patterns with 
intra-subject stability

Traditionally oscillation analyses to extract power or peak 

frequency are meaningful, but the promising machine- 

learning-identified oscillatory microstates patterns may be su-

perior to help observe the multi-frequency topology patterns 

Figure 2 Microstate patterns across age groups and frequency bands. Four typical clusters (MS1, MS2, MS3 and MS4) were illustrated. 

Each column showed an age group and each row indicated a frequency band (Overall:1–40 Hz; Delta: 1–3 Hz; Theta:4–7 Hz; Alpha:8–13 Hz; Beta: 

14–30 Hz; Gamma: 31–40 Hz). The blue and red for polarity can be ignored as suggested by previous researchers [32–34]. Five age groups were 

defined: young adults (YA, 18–29 years old), early middle-aged adults (EMA, 30–44 years old), late middle-aged adults (LMA, 45–59 years old), 

young seniors (YS, 60–74 years old) and elderly adults (EA, 75–88 years old). ‘MS1’, ‘MS2’, ‘MS3’ and ‘MS4’ indicate ‘microstate1’, 

’microstate2’,’microstate3’ and ‘microstate4’ respectively in the figure. The unit of microstate global map is ‘fT’.
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with high temporal resolution. The concept of brain states is 

that a discrete microstate pattern remains stable before transi-

tioning to a different state.31,32 Machine-learning microstate 

patterns rely on topologic clustering to label a couple of dis-

crete clusters which can explain the majority of global vari-

ance across the cortex.26,27 Machine-learning k-means 

clustering was first proposed to calculate the global field 

power and to extract parameters (such as occurrence, dur-

ation, coverage) for each microstate pattern.28 Microstate 

analysis involves clustering the sensor-space spatial topog-

raphies without an arbitrary priori selected time window for 

continuous neural data. Recently, the dysfunction of brain dy-

namics is reflected by microstates in neurological 

diseases.33-36 Our identified microstate patterns provide in-

sights into transitions of spontaneous brain states across 

lifespan.

Although the k-means++ algorithm can be used for selec-

tion of initial cluster,37 four cluster maps are retained in the 

majority of previous studies.38-40 It was argued that four 

clusters in most previous studies exhibited highly similar top-

ographies, strongly resembling the maps initially described 

by Koenig and colleagues.21 The oscillatory brain responses 

observed in microstates offer a valuable perspective for gain-

ing a deeper understanding of aging. In consistent with 

previous studies,21-23 we identified four clusters that were ex-

tracted across lifespan for different neural oscillations.

As for our findings on group-level correlations, the net-

work activation patterns across lifespan describe intra- 

subject stability. The neural activities mainly include 

left-to-right, right-to-left, anterior-to-posterior and fronto- 

central topologies with healthy aging. In previous literature, 

four or five microstates revealed a set of brain regions active 

in the majority of networks.41 The GEV, a measure of how 

well the spatial microstate topographies can explain the vari-

ance of the data, can reach up to 84%.23 Regardless of the 

age group or frequency bands in our study, the common 

areas may correspond to the main hubs about structural/ 

functional brain networks (e.g. anterior and posterior cingu-

late cortices, dorsal superior prefrontal cortex, supramargi-

nal gyrus, insula, precuneus, superior frontal cortex 

et al.).42,43

The patterns related to MS4 (i.e. fronto-central topology) 

are highly correlated across groups and frequencies. The 

MS4 has been attributed to the attentional network in the 

fMRI literature via source localization approach.22 Britz 

et al. demonstrated that MS4 correlated with negative 

BOLD activation in right-lateralized dorsal and ventral areas 

of the frontal and parietal cortices. Additionally, the 

Figure 3 The global map correlation results. The Pearson’s correlations between young group at overall frequency (1–40 Hz) and other 

groups were illustrated per microstate pattern at group level. Each column indicated an age group while each row showed a frequency band. All 

correlations were significant (r-values for Pearson’s correlation analyses, P ≤ 0.01). Five age groups were defined: young adults (YA, 18–29 years 

old), early middle-aged adults (EMA, 30–44 years old), late middle-aged adults (LMA, 45–59 years old), young seniors (YS, 60–74 years old) and 

elderly adults (EA, 75–88 years old). Each row represents a frequency band (Overall:1–40 Hz; Delta: 1–3 Hz; Theta:4–7 Hz; Alpha:8–13 Hz; Beta: 

14–30 Hz; Gamma: 31–40 Hz). Correlation coefficients range from −1.0 to +1.0 with unit free. ‘MS1’, ‘MS2’, ‘MS3’ and ‘MS4’ indicate 

‘microstate1’,’microstate2’,’microstate3’ and ‘microstate4’ respectively in the figure.
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Figure 4 Alpha duration decrease and occurrence increase for MS1&MS2. The violin plots had age groups as X axis and mean value of microstate parameters (duration or occurrence) as 

Y axis. The black symbols ‘*’，‘**’, ‘***’ indicated the post hoc uncorrected significance level of ‘P ≤ 0.05’, ‘P ≤ 0.01’ and ‘P ≤ 0.001’ respectively. The red symbol of ‘***’ indicated that the P-value 

survived after Bonferroni correction. The post hoc tests for MS1 alpha occurrence and MS2 alpha occurrence were analyzed via the Tukey method since there was significant homogeneity of 

variances; the post hoc tests for MS1 alpha duration and MS2 alpha duration via the Tamhane’s T2 since there was significant heterogeneity of variances. Five age groups were defined: young adults 

(YA, 18–29 years old), early middle-aged adults (EMA, 30–44 years old), late middle-aged adults (LMA, 45–59 years old), young seniors (YS, 60–74 years old) and elderly adults (EA, 75–88 years old). 

The units in the violin plots for duration and occurrence were ‘second’ and ‘times’ respectively. The bottom scatter plots were the correlations results between age and microstate parameters 

(duration or occurrence). Each data point represents the mean value per participant. The X axis of scatter plots were age and Y axis of scatter plots were mean value of microstate parameters 

(duration or occurrence). Correlation coefficients range from −1.0 to +1.0 with unit free. The uncorrected ‘P < 0.01’ values of Pearson’s correlations were marked with the symbol ‘**’. The 

Bonferroni correction for Pearson’s correlations was used but no significant correlations survived. The units in the scatter plots for age, duration and occurrence were ‘years’, ‘second’ and ‘times’ 

respectively. ‘MS1’ and ‘MS2’ indicate ‘microstate1’ and ‘microstate2’ respectively in the figure.
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posterior cingulate cortices were active in all the microstates 

maps.42,43 Thus, we could probably see the important func-

tion of attention related to the stable fronto-central network 

across lifespan.

Microstate patterns with 
intra-subject variability

It is also interesting to find that there is still intra-subject vari-

ability in the maps between groups within a frequency or in 

the maps between frequencies within an age group. This 

may indicate the individualized microstate patterns and 

they won’t be the exact map across age groups or across fre-

quency bands. The MS1&MS2 variability appears at delta 

band and gamma band, indicating that the sensory impairments 

with the increase of age may be the coherence of the low fre-

quency and high-frequency band. Previously, ketamine-induced 

‘delta-to-gamma’ shift has been observed in animal studies, 

indicating the underlying N-methyl-D-aspartic acid (NMDA) 

mechanism.44-46 Previous researchers claimed that EEG 

delta-band phase and gamma-band amplitudes predict 

some complementary aspects of the time course of spikes of 

visual cortical neurons.47 Another possible explanation by 

Cam-CAN studies claimed that higher-order visual system 

may be more involved than lower-order visual system with 

healthy aging.17,18 These researches provide possible expla-

nations for the delta and gamma intra-subject variability in 

our findings. Our findings may be consistent with previous 

Cam-CAN studies, indicating the recruitment of higher- 

order sensory system across lifespan.

The relative low group-level correlations for MS3 at theta 

and alpha bands may be related to the dysfunction in sali-

ency network across lifespan. Existing literatures have 

showed that the salience network serves to identify salient 

stimuli and switch between the central executive network 

and the default-mode network.48 Older adults had lower 

Figure 5 Multi-frequency changes for MS1&MS2 across lifespan. Apart from dominant alpha oscillation decline across lifespan, there was 

accompanying decreased theta duration and decreased beta occurrence for MS1. Also, decreased alpha coverage was observed for MS2. The violin 

plots had age groups as X axis and mean value of microstate parameters (duration, occurrence or coverage) as Y axis. The black symbols ‘*’，’**’, 

‘***’ indicated the post-hoc uncorrected significance level of ‘P ≤ 0.05’, ‘P ≤ 0.01’ and ‘P ≤ 0.001’ respectively. The red symbol of ‘***’ indicated that 

the P-value survived after Bonferroni correction. The post hoc tests for MS1 beta occurrence and MS2 alpha coverage were analyzed via the Tukey 

method since there was significant homogeneity of variances; the post hoc tests for MS1 theta duration via the Tamhane’s T2 since there was 

significant heterogeneity of variances. Five age groups were defined: young adults (YA, 18–29 years old), early middle-aged adults (EMA, 30–44 

years old), late middle-aged adults (LMA, 45–59 years old), young seniors (YS, 60–74 years old) and elderly adults (EA, 75–88 years old). The units 

in the violin plots for duration, occurrence and coverage were ‘second’, ‘times’ and ‘percentage’ respectively. The bottom scatter plots were the 

correlations results between age and microstate parameters (duration, occurrence or coverage). Each data point represents the mean value per 

participant. The X axis of scatter plots were age and Y axis of scatter plots were mean value of microstate parameters (duration, occurrence or 

coverage). Correlation coefficients range from −1.0 to +1.0 with unit free. The uncorrected ‘P < 0.01’ values of Pearson’s correlations were 

marked with the symbol ‘**’. The Bonferroni correction for Pearson’s correlations was used but no significant correlations survived. The units in 

the scatter plots for age, duration, occurrence and coverage were ‘years’, ‘second’, ‘times’ and ‘percentage’ respectively. ‘MS1’ and ‘MS2’ indicate 

‘microstate1’ and ‘microstate2’ respectively in the figure.

10 | BRAIN COMMUNICATIONS 2024, fcae150                                                                                                                    Y. Huang et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
c
o
m

m
s
/a

rtic
le

/6
/3

/fc
a
e
1
5
0
/7

6
5
9
4
3
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

1
 M

a
y
 2

0
2
4



theta power in resting electroencephalograms and in task 

performances.49 Former study also suggested that alpha- 

band oscillations play an important role in distractor filter-

ing.50 Our current study supports the evidence that the the-

ta/alpha may be a sensitive marker of cognitive aging in 

salience network.

Sensory microstate pattern effects 
across lifespan

In the current study, MS1 and MS2 indicated the dysfunction 

in visual and auditory networks, which probably reflect the 

alpha changes across lifespan. We found that the microstate 

patterns with decreased alpha duration and increased 

alpha occurrence are highly valuable in advancing our 

understanding of healthy aging. Most researchers favor the 

view that there is a strong relationship between levels of sen-

sory and cognitive decline across lifespan.51,52 Age-related 

hearing loss and visual impairments starts to develop grad-

ually in middle adulthood (around 35–45 years) and tends 

to accumulate over time.53 Furthermore, it has been demon-

strated that older adults experience a decline in grey matter 

within the posterior temporal areas and parietal-occipital re-

gions at an annual rate of 2%.54 In addition, the precuneus, 

lateral parietal and temporal association cortices, and the 

posterior consistently had grey matter atrophy, hypometa-

bolism and amyloid plaque deposition in normal older 

adults.55-59 The alpha changes of MS1 and MS2 may be 

linked to the neuropsychiatric abnormality and neural dys-

functions, involving higher-order sensory systems.

Table 3 Microstate pattern parameter changes with healthy aging

MS1

YA 

N = 67

EMA 

N = 141

LMA 

N = 150

YS 

N = 150

EA 

N = 116

One-way ANOVA 

F (df1 = 4, df2 = 619)

post hoc 

Tukey

Pearson’s r 

(2-tailed)b Beta

Alpha/duration 0.14(3E3) 0.14(2E3) 0.14(2E3) 0.12(1E3) 0.12(1E3) F = 15.06*** YA = EMA>>>YS = EA(a) −0.29** n.s.

Alpha/occurrence 1.47(3E2) 1.56(3E2) 1.58(3E2) 1.75(2E2) 1.69(3E2) F = 10.14*** YA = EMA<<<YS 0.22** n.s.

Beta/occurrence 4.79(3E2) 4.72(2E2) 4.61(2E2) 4.58(2E2) 4.60(2E2) F = 8.35*** YA>>>YS −0.20** n.s.

Gamma/occurrence 6.70(8E2) 6.69(4E2) 6.18(6E2) 5.98(6E2) 5.94(8E2) F = 25.13*** YA = EMA>>>LMA = YS =  

EA(a)

−0.34** n.s.

MS2

YA 

N = 67

EMA 

N = 141

LMA 

N = 150

YS 

N = 150

EA 

N = 116

One-way ANOVA F 

(df1 = 4, df2 = 619)

Post hoc 

Tukey

Pearson’s r 

(2-tailed)b Beta

Delta/occurrence 0.53(6E3) 0.56(4E3) 0.52(6E3) 0.47(1E2) 0.55(9E3) F = 24.15*** YA>>>YS 

EMA>>>LMA 

EMA>>>YS 

YS<<<EA(a)

−0.12** n.s.

Alpha/coverage 0.25(6E3) 0.23(4E3) 0.21(3E3) 0.21(4E3) 0.22(4E3) F = 11.87*** YA>>>LMA = YS −0.16** −0.51**

Alpha/duration 0.15(4E3) 0.15(2E3) 0.13(2E3) 0.12(1E3) 0.12(1E3) F = 32.57*** EMA>>>LMA 

YA = EMA>>>YS = EA(a)

−0.40** n.s.

Alpha/occurrence 1.60(3E2) 1.55(2E2) 1.56(2E2) 1.66(2E2) 1.80(3E2) F = 13.55*** EMA<<<EA 

LMA<<<EA

0.23** 0.64***

Gamma/coverage 0.22(4E3) 0.22(2E3) 0.25(2E3) 0.24(3E3) 0.25(5E3) F = 14.59*** YA = EMA<<<LMA(a) 0.22** n/a

Gamma/occurrence 6.00(7E2) 6.08(4E2) 6.82(5E2) 6.61(5E2) 6.66(5E2) F = 42.93*** YA = EMA<<<LMA = YS =  

EA

0.34** −0.55*

MS3

YA 

N = 67

EMA 

N = 141

LMA 

N = 150

YS 

N = 150

EA 

N = 116

One-way ANOVA 

F (df1 = 4, df2 = 619)

Post hoc 

Tukey

Pearson’s r 

(2-tailed)b Beta

Delta/coverage 0.21(3E3) 0.23(3E3) 0.22(3E3) 0.19(6E3) 0.19(6E3) F = 14.12*** EMA>>>YA 

EMA>>>EA 

EMA>>>YS(a)

−0.20** 0.85**

Delta/occurrence 0.53(5E3) 0.57(4E3) 0.55(5E3) 0.47(6E3) 0.48(1E2) F = 32.07*** YS<<<YA<<<EMA 

EMA>>>YS = EA 

LMA>>>YS = EA(a)

−0.32** −0.55**

Theta/occurrence 1.17(1E2) 1.20(1E2) 1.20(1E2) 1.15(1E2) 1.25(1E2) F = 10.01*** YA = YS<<<EA(a) 0.07* n.s.

Alpha/coverage 0.16(6E3) 0.18(5E3) 0.19(6E3) 0.21(6E3) 0.21(7E3) F = 10.74*** YA<<<YS = EA(a) 0.27** n.s.

Alpha/occurrence 1.23(4E2) 1.36(3E2) 1.45(3E2) 1.64(3E2) 1.68(4E2) F = 17.75*** YA = EMA<<<YS = EA 0.33** n.s.

Beta/coverage 0.22(4E3) 0.23(2E3) 0.24(3E3) 0.24(3E3) 0.24(3E3) F = 7.45*** YA<<<YS 0.20** n.s.

Beta/duration 0.05(4E4) 0.05(3E4) 0.05(3E4) 0.05(3E4) 0.05(3E4) F = 14.43*** YA<<<LMA = YS = EA 0.27** n.s.

MS4

YA 

N = 67

EMA 

N = 141

LMA 

N = 150

YS 

N = 150

EA 

N = 116

One-way ANOVA 

F (df1 = 4, df2 = 619)

Post hoc 

Tukey

Pearson’s r 

(2-tailed)b Beta

Alpha/occurrence 1.76(3E2) 1.84(2E2) 1.86(2E2) 1.99(2E2) 1.95(3E2) F = 10.43*** YA<<<YS 0.23** n.s.

Notes:The symbols of ***, >>>, <<< indicate that significance level are corrected based on Bonferroni method. The values of ‘mean(S.E.)’ was provided for each age group (YA: young 

adults; EMA: early middle age; LMA: late middle age; YS: young seniors; EA: elder adults). The letter ‘(a)’ means Tamhane’s T2 was used due to heterogeneity of variances. Pearson’s 

correlations between age and microstates parameters were calculated at the uncorrected significance level of 0.05 (‘*’) and 0.01 (‘**’). The superscript letter ‘b’means that the statistics 

didn’t pass the Bonferroni correction. Beta of linear regression analyses indicated the standardized coefficients with age as dependent variable and all microstate parameters as 

independent variables.
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In our current study, the microstates in divergent coupling 

(i.e. delta, theta, gamma) oscillations for MS1 and MS2 may 

be related to motor dysfunction across lifespan. Prior studies 

have suggested that motor network dysfunctions are related 

to distributed oscillatory systems in the brain.60-63 It has 

been demonstrated that motor cortical theta oscillation de-

cline emerges in the medial frontal cortex with increased 

age. The co-activation of central-parietal regions and 

Figure 6 Alpha and Beta changes for MS3&MS4 across lifespan. The violin plots had age groups as X axis and mean value of microstate 

parameters (occurrence or coverage) as Y axis. The black symbols ‘*’，’**’, ‘***’ indicated the post hoc uncorrected significance level of ‘P ≤ 0.05’, 

‘P ≤ 0.01’ and ‘P ≤ 0.001’ respectively. The red symbol of ‘***’ indicated that the P-value survived after Bonferroni correction. The post hoc tests for 

MS3 beta coverage, MS3 alpha occurrence, MS4 alpha occurrence, MS4 beta coverage and MS4 beta occurrence were analyzed via the Tukey 

method since there was significant homogeneity of variances; the post hoc tests for MS3 alpha coverage via the Tamhane’s T2 since there was 

significant heterogeneity of variances. Five age groups were defined: young adults (YA, 18–29 years old), early middle-aged adults (EMA, 30–44 years 

old), late middle-aged adults (LMA, 45–59 years old), young seniors (YS, 60–74 years old) and elderly adults (EA, 75–88 years old). The units in the 

violin plots for occurrence and coverage were ‘times’ and ‘percentage’ respectively. The bottom scatter plots were the correlations results between 

age and microstate parameters (occurrence or coverage). Each data point represents the mean value per participant. The X axis of scatter plots 

were age and Y axis of scatter plots were mean value of microstate parameters (occurrence or coverage). Correlation coefficients range from −1.0 

to +1.0 with unit free. The uncorrected ‘P < 0.01’ values of Pearson’s correlations were marked with the symbol ‘**’. The Bonferroni correction for 

Pearson’s correlations was used but no significant correlations survived. The units in the scatter plots for age, occurrence and coverage were ‘years’, 

‘times’ and ‘percentage’ respectively. ‘MS3’ and ‘MS4’ indicate ‘microstate3’ and ‘microstate4’ respectively in the figure.
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frontal-central areas is supported by alternating theta oscilla-

tory patterns in both visual and auditory modalities.64-67 In 

addition to the involvement of alpha and beta oscillations in 

movement generation,68-71 oscillatory theta activity also 

plays a role in movement production during cognitive con-

trol, action monitoring, et al.72-76

Saliency/attention network 
impairments during healthy aging

Our findings on MS3 & MS4 provide evidence for saliency/ 

attention network impairments from young to aging adults 

in support of PASA theory. The saliency network includes hu-

man brain composed of the anterior insular and dorsal anter-

ior cingulate cortex. According to PASA theory, a neural shift 

from posterior to anterior is commonly detected. The modu-

lations in alpha and beta oscillations at pre-central and post- 

central cortical sites have been linked to execution or volun-

tary activities. Alpha oscillations in parieto-occipital areas 

are that alpha activity, such as age-related reduction in alpha 

amplitude, purportedly associated with weakening of inhibi-

tory abilities.77-80 Both alpha and beta power attenuation 

were reported to commence before voluntary movements in 

the fronto-medial and central areas.81,82 Furthermore, it 

was reported that elder adults exhibit more beta power dur-

ing rest compared to young adults.83 Also, increased attenu-

ation and recruitment of cortical areas occurred during 

self-paced movements in elders.84 In our study, the increased 

alpha occurrence/coverage and beta coverage in MS3 may be 

related to voluntary and execution declines across lifespan, 

moving anteriorly across lifespan. The greater attenuation 

of alpha/beta oscillations in elderly has been associated with 

enhanced involvement of neural resources for energy- 

consuming during executive responses.85-87 Our findings in 

MS3&MS4 may also indicate that low efficiency in neural ac-

tivities appears with the increase of age.

Alpha dysfunction in cognitive decline 
across lifespan

Three parameters (duration, occurrence, coverage) in machine- 

learning based microstate patterns provide information with 

temporal and spatial resolution. Consistent with our hypoth-

eses, microstate patterns indicated age-related whole-brain dy-

namic neural activities impairments with dominant alpha 

responses, accompanying with related frequency variations. 

Both topographic and temporal dynamic microstate changes 

are useful to explore and predict aging in humans. For example, 

as previously suggested, decreased alpha power and peak fre-

quency amplitude on scalp level was typically found in 

occipital-parietal areas with the increased age.12,88 Alpha 

power was linked to a variety of cognitive decline, such as atten-

tion, inhibition and memory retrieval. However, in this study, 

the decreased alpha duration and increased alpha occurrence 

provide insights into the temporal modulations at left-right 

topographic orientation.

Strength and limitations
To sum up, there was several main findings according to this 

microstate analysis in the Cam-CAN cohort: 1) We found the 

dominant age-related alpha band microstate effects, especially 

an increased alpha occurrence in the whole brain with healthy 

aging. 2) The MS1&MS2 intra-subject variability explained 

that individualized microstate patterns at different age groups 

involved a higher-order sensory system in elder adults. 3) The 

microstate effects in MS3&MS4 implicate the dysfunction 

with healthy aging in saliency/attention network, moving an-

teriorly in elder adults. These findings provide insightful evi-

dences for the reduced neural efficiency across lifespan.

The strength of this work is that we have identified novel 

biomarkers of microstate patterns and confirm that there are 

dominant alpha deficiencies with multi-frequency recession 

in the progression of aging. Furthermore, the Cam-CAN co-

hort provides a wide range of age groups to examine the pro-

gress of aging. The findings based on the gender-balanced 

cohort could convincingly reveal the oscillation changes 

with increased age. With high temporal and reasonable spa-

tial resolution, both oscillations and topography across life-

span can be in-vivo detected. The limitation of the work is 

lack of tracking for the neural sources to uncover the rela-

tionships between microstate patterns and brain atrophy. 

In future work, it is essential to combine resting MEG, func-

tional magnetic imaging resonance (MRI) and structural 

MRI to obtain multi-model aging biomarkers.

Conclusions
In conclusion, we discovered oscillation changes across dif-

ferent age groups via microstate patterns, and the results sug-

gested that aging involve alpha microstate impairments, 

accompanying with theta and beta changes. The identified 

novel biomarker may be helpful to predict aging in future.

Supplementary material
Supplementary material is available at Brain Communications 

online.
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60. Başar E, Brain Oscillations. Brain function and oscillations, eds. 

Principles and approaches 1. Springer Berlin; 1998:39–74.
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