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Abstract

A number field K is primitive if K and Q are the only subextensions of K . Let C be a
curve defined over Q. We call an algebraic point P ∈ C(Q) primitive if the number field
Q(P) is primitive. We present several sets of sufficient conditions for a curve C to have
finitely many primitive points of a given degree d. For example, let C/Q be a
hyperelliptic curve of genus g, and let 3 ≤ d ≤ g − 1. Suppose that the Jacobian J of C
is simple. We show that C has only finitely many primitive degree d points, and in
particular it has only finitely many degree d points with Galois group Sd or Ad . However,
for any even d ≥ 4, a hyperelliptic curve C/Q has infinitely many imprimitive degree d
points whose Galois group is a subgroup of S2 ≀ Sd/2.
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1 Introduction

By a curve C over a field K we mean a smooth projective and geometrically irreducible

variety defined over K having dimension 1. We say that a curve C defined over a field K

is hyperelliptic if the genus of C is at least 2 and C admits a degree 2 morphism C → P1,

defined over K , which we shall refer to as the hyperelliptic morphism. We say that C/K

hasK -gonalitym ifm is the least degree of a non-constantmorphismπ : C → P1 defined

over K . Thus, for example, a hyperelliptic curve defined over K has K -gonality 2. We say

that C/K is bielliptic if its genus is at least 2 and it admits a degree 2 morphism C → E,

defined over K , where E is a curve of genus 1.

Recall that a number field K is called imprimitive if there is some subextension Q �

L � K ; if there is no such subextension then K is called primitive. Now let C be a curve

defined over Q. Let P ∈ C be an algebraic point; i.e. P ∈ C(Q). We say P has degree d if

the number field Q(P) has degree d. We say that P is primitive if the number field Q(P)

is primitive, otherwise we say that P is imprimitive. A degree d point P ∈ C(Q) is called

P1-isolated if there is no degree d non-constant morphism φ : C → P1, defined over

Q, such that P is in the preimage of an element of P1(Q). The notion of isolated points

was introduced in [7] and has become important in understanding low degree points on

curves, particularly on modular curves (e.g. [8,18]). It is easy to see that if d < m, where

m is the Q-gonality of C , then P is P1-isolated. A key observation we make in this paper is

that primitive points are often P1-isolated even if the degree is greater than the gonality.
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Theorem 1 Let C be a curve defined overQwith genus g andQ-gonality m ≥ 2. Let d ≥ 2

be an integer satisfying

d �= m, d < 1 +
g

m − 1
. (1)

Let P ∈ C(Q) be a degree d point onC that is notP1-isolated. ThenQ(P) contains a subfield

of index d′ satisfying

1 < d′ < d, d′ | gcd(d,m).

In particular, the following hold.

(I) If gcd(d,m) = 1 or d is prime then any degree d point P ∈ C(Q) is P1-isolated.

(II) If P ∈ C(Q) is a primitive degree d point, then P is P1-isolated.

Under certain additional assumptions on the Jacobian J of the curve C , it is possible to

conclude finiteness of primitive degree d points on C .

Theorem 2 Let C be a curve defined overQwith genus g andQ-gonality m ≥ 2. Let d ≥ 2

be an integer satisfying (1). Let J be the Jacobian of C. Suppose either of the following hold:

(a) J (Q) is finite;

(b) or d ≤ g − 1, and A(Q) is finite for every abelian subvariety A/Q of J of dimension

≤ d/2.

Then C has finitely many primitive degree d points. Moreover, if gcd(d,m) = 1 or d is

prime then C has finitely many degree d points.

Observe that, for d ≤ g − 1, assumption (b) is trivially satisfied if J is simple. We

moreover note that the inequality d ≤ g − 1 in (b) follows immediately from (1) ifm ≥ 3.

Example 3 We consider the modular curve X0(239) which has genus g = 20 and Q-

gonality m = 6 (see [32, Table 3]). We consider degree d points for d = 2, 3, 4; we note

that (1) is satisfied for these values of d. A straightforward computation in Magma, which

makes use of modular symbols algorithms due to Cremona [12] and Stein [40], shows that

the Jacobian J0(239) of X0(239) factors as

J0(239) ∼ A3 × A17,

where A3 and A17 are simple abelian varieties of dimension 3 and 17, respectively. More-

over A17 has analytic rank 0, and A3 has positive analytic rank. Assuming the Birch and

Swinnerton–Dyer conjecture, J0(239)(Q) is infinite, and so hypothesis (a) of Theorem 2

is not satisfied. However, J0(239), clearly satisfies hypothesis (b) for d = 2, 3, 4. By Theo-

rem 2, we conclude that X0(239) has finitely many quadratic, cubic and primitive quartic

points.

We point out the following theorem [17, Proposition 2.3] which gives a stronger con-

clusion than Theorem 2 under different assumptions.

Theorem 4 (Derickx and Sutherland) Let C be a curve defined over Q with genus g and

Q-gonality m ≥ 2. Let J be the Jacobian of C and suppose J (Q) is finite. Suppose d < m.

Then C has finitely many degree d points.
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The following corollary to Theorem 2 is obtained by restricting Theorem 2 and its proof

to the hyperelliptic case.

Corollary 5 LetC beahyperelliptic curve defined overQwith genus g. Let J be the Jacobian

of C and let d be a positive integer. Suppose either of the following hold:

(a) 3 ≤ d ≤ g and J (Q) is finite;

(b) or 3 ≤ d ≤ g−1, and A(Q) is finite for every abelian subvariety A/Q of J of dimension

≤ d/2.

Then C has finitely many primitive degree d points. More precisely, the following hold.

(i) If d is odd, then C has finitely many degree d points.

(ii) If d is even, then for all but finitelymany degree d points P onC, the fieldQ(P) contains

a subfield of index 2.

We note that Gunther and Morrow [21, Proposition 2.6] prove that conclusions (i) and

(ii) hold for 100% of genus g hyperelliptic curves over Q with a rationalWeierstrass point,

provided only that d ≤ g − 1, though their proof is rather different.

In contrast to Corollary 5 we note the following.

Lemma 6 Let C be a hyperelliptic curve defined over Q. Let d ≥ 4 be an even integer.

Then C has infinitely many imprimitive degree d points.

Proof Wemay suppose C has an affine model

C : Y 2 = F (X) (2)

where F ∈ Q[X] is a squarefree polynomial. Let L be any number field of degree d/2 and

choose θ ∈ L such that L = Q(θ ). By Faltings’ theorem,C(L) is finite. Thus wemay choose

some a ∈ Q such that F (θ + a) is a non-square in L. Let P = (θ + a,
√

F (θ + a)). This is a

degree d point on C , and is imprimitive as Q(P) contains the index 2 subfield L. ⊓⊔

Let C be a curve defined over Q. Let P ∈ C be an algebraic point; i.e. P ∈ C(Q). We

define the Galois group of P to be the Galois group of the Galois closure of Q(P)/Q. A

degree d ≥ 4 point whose Galois group is Sd or Ad is primitive (Lemma 29). Thus if d is

an even integer and if C , d satisfy the hypotheses of Corollary 5 then C has only finitely

many degree d points with Galois group Sd or Ad . However, it follows from the proof

of Lemma 6 that C has infinitely many degree d points with Galois group contained in

S2 ≀ Sd/2. In a separate paper [27] we explore Galois groups of algebraic points in more

detail. For now, we content ourselves with the following result.

Theorem 7 Let C be a hyperelliptic curve defined over Q with genus 2 or 3. Let J be the

Jacobian of C and suppose that J (Q) is trivial. Then C has no quartic points with Galois

group S4 or A4 . However, C has infinitely many quartic points with Galois group contained

in D4 .

The above results exploit the gonality map C → P1 to make deductions about low

degree primitive points. However, the existence of a low degree map C → C ′ with C ′ of

positive genus also makes it more likely for low degree primitive algebraic points on C to

be P1-isolated, as illustrated by the following theorem.
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Theorem 8 Let π : C → C ′ be a morphism of curves defined over Q of degree m ≥ 2.

Write g, g ′ for the genera of C, C ′ respectively, and suppose g ′ ≥ 1. Let d ≥ 2 be an integer

satisfying

d < 1 +
g − mg ′

m − 1
. (3)

Let P ∈ C(Q) be a degree d point onC that is notP1-isolated. ThenQ(P) contains a subfield

of index d′ satisfying

1 < d′ < d, d′ | gcd(d,m).

In particular, the following hold.

(I) If gcd(d,m) = 1 or d is prime then any degree d point P ∈ C(Q) is P1-isolated.

(II) If P ∈ C(Q) is a primitive degree d point, then P is P1-isolated.

Theorem 9 Let π : C → C ′ be a morphism of curves defined over Q of degree m ≥ 2.

Write g, g ′ for the genera of C, C ′ respectively, and suppose g ′ ≥ 1. Let d ≥ 2 be an integer

satisfying (3). Write J for the Jacobian of C and suppose J (Q) is finite. Then C has finitely

many primitive degree d points. Moreover, if gcd(d,m) = 1 or d is prime then C has finitely

many degree d points.

Example 10 We illustrate Theorem 9 by giving an example. Consider the modular curve

X1(45). The LMFDB [42] gives the following information:

(a) X1(45) has genus 41;

(b) X1(45) is a degree 3 cover of a genus 9 curve (the latter has LMFDB label

45.576.9-45.a.4.1);

(c) J1(45) has analytic rank 0.

Write J = J1(45). As J has analytic rank 0, a theorem of Kato [25, Corollary 14.3] implies

that theMordell–Weil group J (Q) is finite. Thus, by Theorem 9, the curveX1(45) has only

finitely many degree d points for d = 2, 3, 4, 5, 7, and only finitely many primitive degree

d points for d = 6. We point out that the Q-gonality of X1(45) appears to be currently

unknown; according to the LMFDB it belongs to the interval 9 ≤ γ ≤ 18.

Applying Theorem 9 and its proof to bielliptic curves gives the following.

Corollary 11 Let C be a bielliptic curve defined over Q with genus g. Let J be the Jacobian

of C and suppose J (Q) is finite. Let 2 ≤ d ≤ g − 2. Then C has finitely many primitive

degree d points. More precisely, the following hold.

(i) If d = 2 or d is odd, then C has finitely many degree d points.

(ii) If d ≥ 4 and even, then for all but finitely many degree d points P on C, the field Q(P)

contains a subfield of index 2.

The above theorems are concerned with finiteness criteria for low degree primitive

points. In the opposite direction,we show that if the degreed is sufficiently large compared

to the genus, then there are infinitely many primitive degree d points, provided there is at

least one such point.
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Theorem 12 Let C/Q be a curve. Let d ≥ g + 1 where g is the genus of C. Suppose there

exists a primitive degree d point on C. Then there are infinitely many primitive degree d

points on C.

Thepaper is organized as follows. In Section 2we review some standard results regarding

Riemann–Roch spaces and we use these to prove Theorem 7. In Section 3 we recall the

Castelnuovo–Severi theorem and use it to give proofs of Theorems 1 and 8. In Section 4

we give criteria for when a complete linear series does not contain any primitive divisors

(a primitive divisor is simply the Galois orbit of a primitive algebraic point). Let C satisfy

the hypotheses of either Theorem 2 or Theorem 9, and write C (d) for the d-th symmetric

power of C . In Section 5, using a powerful theorem of Faltings, we show that C (d)(Q)

may be decomposed as a finite union of complete linear series. In Section 6 we prove

Theorems 2 and 9 and their corollaries, making use of the results developed in previous

sections. In Section 7we recall the relationship betweenprimitive extensions andprimitive

group actions, andwe use this togetherwithHilbert’s irreducibility theorem to give a proof

of Theorem 12. Finally, in Sections 8 and 9 we give consequences of Theorems 2 and 9

(and their proofs) for the modular curves X1(N ) and X0(N ) for certain small N .

We are grateful to Nils Bruin, Victor Flynn, Samuel Le Fourn, David Loeffler, Filip

Najman, Petar Orlić, Damiano Testa and Bianca Viray for helpful discussions, and to the

referees for suggesting many improvements.

2 Proof of Theorem 7

Let C be a curve defined over Q. When we speak of divisors on C we in fact mean rational

divisors: a divisor on C/Q is a finite formal integral linear combination D =
∑

aiPi

of algebraic points Pi that is stable under the action of Gal(Q/Q). We call this divisor

effective and write D ≥ 0 if and only if ai ≥ 0 for all i. An irreducible divisor is an

effective divisor that cannot be written as the sum of two non-zero effective divisors.

Thus an effective degree d divisor D is irreducible if and only if there is a degree d point

P ∈ C(Q) such that D = P1 + P2 + · · · + Pd where {P1, . . . , Pd} is the Galois orbit of P.
We say that D is the irreducible divisor corresponding to P.

For a divisor D on C we denote by L(D) the corresponding Riemann–Roch space

defined by

L(D) = {0} ∪ {f ∈ Q(C)× : div(f ) + D ≥ 0},

and we let ℓ(D) = dim L(D). We shall make frequent use of the Riemann–Roch theorem

[3, page 13] which asserts that

ℓ(D) − ℓ(KC − D) = deg(D) − g + 1; (4)

hereKC is any canonical divisor onC , and g is the genus ofC . Recall that deg(KC ) = 2g−2.

Therefore, if deg(D) ≥ 2g − 1 then KC − D has negative degree and cannot be linearly

equivalent to an effective divisor. In that case ℓ(KC − D) = 0.

We shall also require Clifford’s theorem [22, Theorem IV.5.4] on special effective divi-

sors. Recall that an effective divisor D is special if ℓ(KC − D) > 0.

Theorem 13 (Clifford) Let D be an effective special divisor on a curve C. Then

ℓ(D) ≤
deg(D)

2
+ 1.
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Moreover, equality occurs if and only if D = 0, or D is a canonical divisor, or C is hyperel-

liptic and D is a multiple of a hyperelliptic divisor.

Recall that a hyperelliptic curve C is equipped with a degree 2 morphism π : C → P1;

a hyperelliptic divisor on C is π∗(α) for any α ∈ P1(Q).

Proof of Theorem 7 Let C be as in the statement of Theorem 7. We may suppose C has

an affine model as in (2) where F ∈ Q[X] is a squarefree polynomial of degree 2g + 1 or

2g + 2. It follows from Lemma 6 and its proof that C has infinitely many quartic points

with Galois group contained in D4. To complete the proof it is enough to show that there

are no quartic points on C with Galois group S4 or A4.

If deg(F ) = 2g + 1 we let ∞ be the single point at infinity on this model, and write

D0 = 4∞. If deg(F ) = 2g + 2 we let ∞+ and ∞− be the two points at infinity, and write

D0 = 2∞+ + 2∞−. In either case D0 is twice a hyperelliptic divisor.

Let P be a degree 4 point on C , and letD be the corresponding irreducible divisor. Since

J (Q) is trivial, D − D0 ∼ 0 where ∼ denotes linear equivalence on C . That is,

D = D0 + div(f ),

where f ∈ L(D0).We claim that 1, X, X2 is aQ-basis of L(D0). Let us first assume our claim

and use it to complete the proof. Thus f = a0 + a1X + a2X
2 for some a0, a1, a2 ∈ Q.

Moreover, f is non-constant as D �= D0. Now P is a zero of f . Hence X(P) satisfies the

non-constant polynomial a0 + a1U + a2U
2 ∈ Q[U ]. Since Q(P) = Q(X(P), Y (P)) is a

quartic field, and Y (P)2 = F (X(P)), we see that Q(X(P)) is quadratic and contained in the

quartic field Q(P). Therefore the Galois group of P is neither S4 nor A4.

It remains to prove our claim. Note that X has a double pole at infinity and no other

poles if deg(F ) = 2g + 1; and also X has a simple pole at ∞+ and ∞−, and has no other

poles if deg(F ) = 2g+2. Therefore, 1,X ,X2 belong to L(D0), and so ℓ(D0) ≥ 3. It is enough

to show that ℓ(D0) = 3. We now make use of our assumption that g = 2 or 3. If g = 2

then Riemann–Roch immediately gives ℓ(D0) = 3. Suppose g = 3. Then Riemann–Roch

tells us that D0 is special, and since it is twice a hyperelliptic divisor, Clifford’s theorem

gives the equality ℓ(D0) = 3. ⊓⊔

3 Proofs of Theorems 1 and 8

We start by recalling the classical Castelnuovo–Severi theorem.

Theorem 14 (Castelnuovo–Severi theorem) Let k be a perfect field, and let X, Y , Z be

curves over k. Denote the genera of these curves by g(X), g(Y ) and g(Z) respectively. Let

πY : X → Y and πZ : X → Z be non-constant morphisms defined over k, having degrees

m and n respectively. Suppose

g(X) > m · g(Y ) + n · g(Z) + (m − 1)(n − 1). (5)

Then there is a curve X ′ defined over k, and a morphism X → X ′ also defined over k and

of degree > 1 through which both πY and πZ factor.

Proof We are unable to find a reference that gives the precise statement that we need.

Indeed the theorem is most often given in the context of complex Riemann surfaces (for

example [1]), or the field of definition of the morphism X → X ′ is not mentioned (for

example [24, Corollary]). We therefore give an explanation of how the version above



M. Khawaja, S. Siksek Res. Number Theory           (2024) 10:57 Page 7 of 20    57 

follows straightforwardly from a proof due to Mattuck and Tate [28] of the Castelnuovo–

Severi inequality.

Let S = Y × Z. Given two divisors D, D′ on the surface S, we denote their intersection

number by D · D′. Let D be the image of X on S under the morphism (πY ,πZ) : X → S,

and write h : X → D for the induced map. Clearly the curve D and the map h are defined

over k . Let u : D → Y and v : D → Z be the restrictions of the projections Y × Z → Y

and Y × Z → Z to D. Then πY = u ◦ h and πZ = v ◦ h. We claim that deg(h) > 1. The

theorem follows from our claim on letting X ′ be the normalization of D.

We prove our claim by contradiction. Suppose deg(h) = 1. The h is a birational map,

and g(D) = g(X) (where g(D) denotes the geometric genus of D). Mattuck and Tate [28,

page 296] show that

D · D ≤ 2mn, D · KS = (2g(Y ) − 2)m + (2g(Z) − 2)n, (6)

where KS denotes any canonical divisor on S (the inequality on the left is itself referred to

as theCastelnuovo–Severi inequality). By the adjunction formula for surfaces [22, Exercise

V.1.3] we have

2pa(D) − 2 = D · (D + KS),

where pa(D) is the arithmetic genus of D. Thus, from (6),

pa(D) ≤ g(Y )m + g(Z)n + (m − 1)(n − 1).

However, since the geometric genus is bounded by the arithmetic genus,

g(X) = g(D) ≤ pa(D) ≤ g(Y )m + g(Z)n + (m − 1)(n − 1).

contradicting assumption (5). This establishes our claim. ⊓⊔

Proof of Theorem 1 Let P be a degree d point onC and suppose P is not P1-isolated. Thus

there is a degree d map f : C → P1, defined over Q, such that f (P) = α ∈ P1(Q). Observe

that f ∗(α) consists precisely of the Galois orbit of P. Let m ≥ 2 be the Q-gonality of C ;

thus in particular, there is a morphism π : C → P1 defined over Q, of minimal degree

m ≥ 2. Asm and d satisfy (1), the Castelnuovo–Severi theorem immediately implies that

themorphisms f , π must simultaneously factor through a common non-trivial morphism

of curves. We obtain a commutative diagram of non-constant morphisms of curves

C

P1 Y P1

f
h

π

u v

(7)

defined over Q, where deg(h) > 1. Write d′ = deg(h). Then d′ divides both d = deg(f )

and m = deg(π ), so d′ | gcd(d,m). If d′ = d, then d | m. However, m ≤ d by the

minimality ofm. Thereforem = d contradicting (1). We deduce that d′ < d.

Let Q = h(P) ∈ Y . Since Gal(Q/Q) acts transitively on f ∗(α) ∋ P, it acts transitively on

u∗(α) ∋ Q. Hence Q has degree deg(u) = d/d′ and Q(Q) ⊆ Q(P). Thus the field Q(P) of

degree d contains the subfield Q(Q) of index d′. The theorem follows. ⊓⊔

Proof of Theorem 8 This proof is similar to the proof of Theorem 1. As before, let P be a

degree d point on C and suppose that P is not P1-isolated. Thus there is a degree d map

f : C → P1, defined over Q, such that f (P) = α ∈ P1(Q).
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From assumption (3), the Castelnuovo–Severi theorem gives a commutative diagram of

non-constant morphisms of curves

C

P1 Y C ′

f
h

π

u v

(8)

defined over Q, where deg(h) > 1. As before we let d′ = deg(h). If deg(u) = 1 then

Y ∼= P1 which contradicts the existence of a non-constant morphism v from Y to the

curve C ′ having genus g ′ ≥ 1. Thus deg(u) > 1 and d′ = d/ deg(u) < d. The rest of the

proof is similar to the proof of Theorem 1. ⊓⊔

4 Primitive divisors in complete linear series

Let C be a curve over Q. For an effective divisor D on C the notation |D| denotes the
complete linear series containing D:

|D| = {D + div(f ) : f ∈ L(D)};

this is precisely the set of effective divisors linearly equivalent to D. Observe that for

effective divisors D, D′, we have D ∼ D′ if and only if |D| = |D′|. Recall that |D| ∼=
Pℓ(D)−1(Q). Note that ℓ(D) ≥ 1 since Q ⊆ L(D) for any effective divisor D. In particular,

|D| = {D} if and only if ℓ(D) = 1.

The following well-known lemma highlights the relationship between a point being

not P1-isolated and the complete linear series of its irreducible divisor having positive

dimension.

Lemma 15 Let C be a curve defined over Q, and let d ≥ 1. Let D be an irreducible degree

d divisor. The following are equivalent.

(a) dim|D| ≥ 1.

(b) ℓ(D) ≥ 2.

(c) There is a degree d morphism f : C → P1, defined over Q, such that f ∗(∞) = D.

(d) Any P ∈ D is not P1-isolated.

Proof Recall that |D| ∼= Pℓ(D)−1(Q). Thus dim|D| = ℓ(D) − 1 and therefore (a) and (b)

are equivalent.

Suppose ℓ(D) ≥ 2. Then there is some non-constant f ∈ L(D). Thus f ∈ Q(C)×

satisfies div(f ) + D ≥ 0. Write div∞(f ) for the divisor of poles of f . As f is non-constant,

0 < div∞(f ). As f is defined over Q, we have div∞(f ) is a rational divisor. Moreover,

div∞(f ) ≤ D since div(f )+D ≥ 0. Since D is irreducible, div∞(f ) = D. Now we consider

f as a morphism C → P1 defined over Q. Then f ∗(∞) = D. As D has degree d so does f .

Thus (b) implies (c).

Conversely, suppose (c). Then f ∈ L(D) and non-constant giving (b).

It is clear that (c) implies (d). To complete the proof we suppose (d) and prove (c). Thus

there is a morphism f : C → P1 of degree d defined over Q with f (P) = α ∈ P1(Q).

Composing f with an automorphism of P1 we may suppose α = ∞. Now P ∈ div∞(f ),

and so D ≤ div∞(f ) as div∞(f ) is stable under the action of Galois. Thus D = div∞(f ) as

both divisors have degree d. This completes the proof. ⊓⊔
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We will call an irreducible divisor primitive if it is the Galois orbit of a primitive point.

Corollary 16 Let C be a curve defined over Q with genus g and Q-gonality m ≥ 2. Let

d ≥ 2 be an integer satisfying (1). Let D′ be an effective degree d divisor on C with ℓ(D′) ≥ 2.

Then |D′| contains no primitive degree d divisors. Moreover, if gcd(d,m) = 1 or d is prime,

then |D′| contains no irreducible divisors.

Proof Suppose D ∈ |D′| is an irreducible divisor. Then ℓ(D) = ℓ(D′) ≥ 2. By Lemma 15,

any P ∈ D is not P1-isolated. By part (II) of Theorem 1 we see that P is imprimitive. Thus

|D′| contains no primitive divisors.

Suppose now that gcd(d,m) = 1 or d is prime. Then part (I) of Theorem 1 gives a

contradiction, therefore |D′| contains no irreducible divisors. ⊓⊔

The following variant of Corollary 16 has an almost identical proof, but appealing to

Theorem 8 instead of Theorem 1.

Corollary 17 Let π : C → C ′ be a morphism of curves defined over Q of degree m ≥ 2.

Write g, g ′ for the genera of C, C ′ respectively, and suppose g ′ ≥ 1. Let d ≥ 2 be an integer

satisfying (3). Let D′ be an effective degree d divisor on C with ℓ(D′) ≥ 2. Then |D′| contains
no primitive degree d divisors. Moreover, if gcd(d,m) = 1 or d is prime, then |D′| contains
no irreducible divisors.

5 Decomposition of C(d) into complete linear series

We denote the d-th symmetric power of C by C (d). Recall that C (d)(Q) can be identified

with the set of effective degree d divisors on C . The purpose of this section is to prove the

following proposition.

Proposition 18 Let C be a curve over Q of genus g ≥ 1, and let J be the Jacobian of C. Let

d be a positive integer. Suppose either of the following two conditions hold:

(a) J (Q) is finite;

(b) or d ≤ g − 1, and A(Q) is finite for every abelian subvariety A/Q of J of dimension

≤ d/2.

Then there are finitely many effective degree d divisors D1, D2, . . . , Dn such that

C (d)(Q) =
n

⋃

i=1

|Di|. (7)

To prove the proposition we shall need the following famous theorem of Faltings [19].

Theorem 19 (Faltings) Let B be an abelian variety defined over a number field K , and let

V ⊂ B be a subvariety defined over K . Then there is a finite number of abelian subvarieties

B1, . . . , Bm of B, defined over K , and a finite number of points x1, . . . , xm ∈ V (K ) such that

the translates xi + Bi are contained in V , and, moreover, such that

V (K ) =
m
⋃

i=1

xi + Bi(K ). (8)

We shall also need the following theorem of Debarre and Fahlaoui [13, Corolllary 3.6].
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Theorem 20 (Debarre and Fahlaoui) Let C/C be a curve of genus g ≥ 1 with Jacobian J ,

and let d ≤ g − 1. Let D0 be a fixed divisor of degree d on C. Let Wd(C) be the image of

C (d) under the Abel–Jacobi map

ι : C (d) → J, D �→ [D − D0]. (9)

Let A be an abelian subvariety of J with a translate contained in Wd(C). Then dim(A) ≤
d/2.

Proof of Proposition 18 If C (d)(Q) = ∅ then we take n = 0 and there is nothing to prove.

So suppose C (d)(Q) �= ∅ and fix D0 ∈ C (d)(Q). LetWd(C) be the image of C (d) under the

Abel–Jacobi map (9), which is defined over Q. We claim that Wd(C)(Q) is finite. This is

trivially true if (a) holds, so suppose (b). In particular d ≤ g −1 and soWd(C) is birational

to C (d) (e.g. [31, Theorem 5.1]) and so has dimension d. We apply Falting’s Theorem with

B = J and V = Wd(C). Thus, there are x1, . . . , xm ∈ Wd(C)(Q) and B1, . . . , Bm abelian

subvarieties of J defined over Q such that xi + Bi ⊂ Wd(C) and

Wd(C)(Q) =
m
⋃

i=1

xi + Bi(Q).

By the theorem of Debarre and Fahlaoui, dim(Bi) ≤ d/2. However, by assumption (b),

Bi(Q) is finite. HenceWd(C)(Q) is finite, proving our claim.

Let Wd(C)(Q) = {R1, . . . , Rn} and choose D1, . . . , Dn ∈ C (d)(Q) mapping to R1, . . . , Rn

respectively. If D ∈ C (d)(Q) then ι(D) = Ri for some i, and so [D − D0] = [Di − D0].

Hence [D − Di] = 0, so D ∈ |Di|. This completes the proof. ⊓⊔

Observe that if C and d satisfy the hypotheses of either Theorem 2 or 9 then they satisfy

the hypotheses of Proposition 18 and thereforeC (d)(Q) can be decomposed into the union

of finitely many complete linear series as in (7).

6 Proofs of Theorems 2 and 9 and their corollaries

Proof of Theorem 2 Let C ,m, d be as in the statement of Theorem 2. By Proposition 18,

C (d)(Q) has a finite decomposition, as in (7) where D1, . . . , Dn are effective degree d

divisors. If ℓ(Di) ≥ 2 then, by Corollary 16, the complete linear series |Di| does not

contain primitive divisors. On the other hand, if ℓ(Di) = 1 then |Di| = {Di}. Hence there

are only finitely many primitive degree d points on C .

Suppose now that gcd(d,m) = 1 or d is prime. Again, if ℓ(Di) ≥ 2 then, by Corollary 16,

the complete linear series |Di| does not contain irreducible divisors. The theorem follows.

⊓⊔

Proof of Corollary 5 LetC/Qbehyperelliptic of genus g . This has gonalitym = 2. Suppose

either of hypotheses (a), (b) ofCorollary 5 is satisfied. ThenC , g ,m,d satisfy the hypotheses

of Theorem 2. In particular, if d is odd then C has finitely many degree d points.

Suppose d is even. By Proposition 18, we have that (7) holds where D1, . . . , Dn is a

finite set of effective degree d divisors on C . Let P be a degree d point and let D be the

corresponding irreducible divisor. Then D ∈ |Di| for some i. Suppose D �= Di. Then

ℓ(D) ≥ 2 and so by Lemma 15 the point P is not P1-isolated. It follows from Theorem 1

that Q(P) contains a subfield of index d′ = 2. Thus, for all but finitely many degree d

points P we have that Q(P) contains a subfield of index 2. ⊓⊔
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Proof of Theorem 9 This follows from Proposition 18 and Corollary 17 by trivial modifi-

cations to the proof of Theorem 2. ⊓⊔

Proof of Corollary 11 Theproof is a straightforwardmodificationof preceding arguments.

⊓⊔

6.1 A remark on effectivity

Let C and d satisfy the hypotheses of Theorem 2 or Theorem 9. Then C (d)(Q) can be

decomposed into a finite union of complete linear systems as in (7). Suppose that we are

able to explicitly compute the representativesDi in (7). Then we have an effective strategy

for computing all primitive degree d points. Indeed, if ℓ(Di) ≥ 2 then |Di| contains no
primitive divisors by Corollary 16. We are left to consider |Di| for ℓ(Di) = 1. However, if

ℓ(Di) = 1, then |Di| = {Di} and we simply need to test Di to determine if it is the Galois

orbit of a primitive degree d point. Moreover, if gcd(d,m) = 1 or d is prime then we can

compute all degree d points by a slight modification of the strategy: if ℓ(Di) = 1 then

simply test Di for irreducibility.

We remark that the decomposition (7) can often be computed using symmetric power

Chabauty (e.g. [39] or [10]) provided r + d ≤ g where r is the rank of the Mordell–Weil

group J (Q).

6.2 A remark on the assumptions of Corollary 5

As noted previously, assumption (b) of Corollary 5 is satisfied for d ≤ g − 1 whenever the

Jacobian J is simple.We remark that almost all hyperelliptic curves have simple Jacobians,

in a sense that we make precise shortly. For this we will need the following theorem of

Zarhin [44, Theorem 1.1].

Theorem 21 (Zarhin) Let k be a field, char(k) �= 2. Let C : Y 2 = f (X), where f ∈ k[X]

is a separable polynomial of degree n ≥ 5, and let J denote the Jacobian of C. Suppose

char(k) �= 3 or n ≥ 7, and that f has Galois group either Sn or An. Then End(J ) ∼= Z, and

in particular J is absolutely simple.

We fix a genus g ≥ 2. Let n = 2g + 1 or 2g + 2. The set of all polynomials of degree ≤ n

can be naturally identifiedwithAn+1(Q): here a = (a0, a1, . . . , an) ∈ An+1(Q) corresponds

to the polynomial

fa(X) = anX
n + an−1X

n−1 + · · · + a0.

Hilbert’s irreducibility theorem asserts the existence of a thin set S ⊂ An+1(Q) such that

for a ∈ An+1(Q) \ S, the polynomial fa is irreducible of degree n and has Galois group

Sn. See [38, Chapter 9] for a statement of Hilbert’s irreducibility theorem as well as the

definition of thin sets.

Therefore, for a ∈ An+1(Q) \ S, the genus g hyperelliptic curve Y 2 = fa(X) has a simple

Jacobian by Zarhin’s theorem.

We point out that there is no shortage of hyperelliptic curves satisfying the finite

Mordell–Weil group condition of Corollary 5. This immediately follows from the pre-

ceding remarks together with the following Theorem of Yu [43, Theorem 3], applied with

r = 0.
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Theorem 22 (Yu) Let K be a number field with at least one real embedding. Let f ∈ K [X]

be a separable degree n polynomial such that n ≡ 3 (mod 4) and Gal(f ) ∼= Sn or An. Let

C : Y 2 = f (X) be a hyperelliptic curve over K with Jacobian J . Then for every r ≥ 0, there

are infinitely many quadratic twists Jb of J such that dimF2 (Sel2(Jb/K )) = r.

7 Proof of Theorem 12

Theproof ofTheorem12 relies on the followingproposition,which is in fact a consequence

of Hilbert’s Irreducibility Theorem.

Proposition 23 Let d ≥ 2 be an integer. Let f : C → P1 be a degree d morphism of curves

defined over Q, and let α ∈ P1(Q). Suppose that α is not a branch value for f , and that

the fibre f −1(α) consists of a single Galois orbit of points. Let P ∈ f −1(α) and suppose the

extension Q(P) is primitive. Then there is a thin set S ⊂ P1(Q) such that for β ∈ P1(Q) \ S,
the fibre f −1(β) consists of a single Galois orbit of points and, for any Q ∈ π−1(β), the

extension Q(Q) is primitive of degree d.

Before proving Proposition 23 we show that it implies Theorem 12.

Proof of Theorem 12 Let C/Q be a curve of genus g . Suppose P ∈ C(Q) is primitive of

degree d ≥ g + 1, and let D be the corresponding irreducible divisor.

By Riemann–Roch,

ℓ(D) ≥ d − g + 1 ≥ 2.

It follows from Lemma 15 that there is a degree d morphism f : C → P1 defined over

Q such that f ∗(∞) = D. We apply Proposition 23 with α = ∞ ∈ P1(Q). The theorem

follows. ⊓⊔

The proof of Proposition 23makes use of the relationship between primitive extensions

and primitive Galois groups. Whilst this relationship is known, we are unable to find a

convenient reference, and we therefore give the details. Let X be a non-empty set, and let

G be a group acting transitively onX . The trivial partitions ofX are {X} and {{x} : x ∈ X}.
A partition P of X is said to be G-stable if σ (Z) ∈ P for all σ ∈ G and Z ∈ P . Observe,

as the action ofG on X is transitive, thatG also acts transitively on anyG-stable partition

P , and that any two elements of P therefore have the same cardinality.

We say that G acts imprimitively on X if X admits a G-stable non-trivial partition. If

X does not have a G-stable non-trivial partition then we say that G acts primitively on

X . The following lemma is an immediate consequence of this definition.

Lemma 24 Let G be a group acting transitively on a set X. Let G′ be a subgroup of G and

suppose that G′ acts primitively on X. Then G acts primitively on X.

The following result is well-known, and in particular implies that Sd and Ad act primi-

tively on {1, . . . , d}, for d ≥ 1 and d ≥ 3 respectively.

Lemma 25 Let G be a group acting 2-transitively on a set X. Then the action is primitive.

Proof Let P be a G-stable partition of X and suppose Y ∈ P has at least two elements.

We would like to show that Y = X . Let a, b ∈ Y be distinct, and let c ∈ X be distinct

from a, b. Then there is some σ ∈ G such that σ (a) = a and σ (b) = c. Thus a ∈ Y ∩ σ (Y )

which forces σ (Y ) = Y , and therefore c ∈ Y . Hence Y = X . ⊓⊔
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Lemma 26 Let G be a group acting transitively on a set X. The action is imprimitive if

and only if there is a proper subset Y of X, with at least two elements, such that

∀σ ∈ G, if σ (Y ) ∩ Y �= ∅ then σ (Y ) = Y. (10)

Proof Given a G-stable non-trivial partition P we can take Y to be any element of P . As

P is a partition, Y clearly satisfies (10), and as P is non-trivial, Y is a proper subset of X

with at least two elements.

Conversely, suppose Y is a proper subset of X containing at least two elements and

satisfying (10).We easily check thatP = {τ (Y ) : τ ∈ G} is aG-stable non-trivial partition.

⊓⊔

Lemma 27 Let G be a finite group acting transitively on a non-empty finite set X. Let

x ∈ X, and write Stab(x) for the stabilizer of x in G. The action of G on X is imprimitive if

and only if Stab(x) is a non-maximal proper subgroup of G.

Proof Let x ∈ X and assume the existence of a subgroup Stab(x) � H � G. Let Y =
{τ (x) : τ ∈ H}. Then, #Y = [H : Stab(x)] and so 2 ≤ #Y < [G : Stab(x)] = #X . Moreover,

suppose σ ∈ G and σ (Y ) ∩ Y �= ∅. Let z ∈ σ (Y ) ∩ Y . Then there are τ1, τ2 ∈ H such

that στ2(x) = z = τ1(x). Thus τ−1
1 στ2 ∈ Stab(x) ⊆ H . Hence σ ∈ H , and so σ (Y ) = Y .

Therefore (10) is satisfied and so the action is imprimitive.

Conversely, suppose the existence of a proper subset Y of X with at least two elements

satisfying (10). As the action is transitive, we may in fact suppose that x ∈ Y . Let H =
{σ ∈ G : σ (Y ) = Y }. As G is transitive, H is a proper subgroup of G. Moreover, Stab(x)

is contained inH . Let x′ ∈ Y , x′ �= x. Then there is some σ ∈ G such that σ (x) = x′. Thus

σ (Y ) = Y , and so σ ∈ H but σ /∈ Stab(x). It follows that Stab(x) is a proper in H , and so

is non-maximal as a subgroup of G. ⊓⊔

Lemma 28 Let K = Q(θ ) be a number field and let K̃ be its Galois closure over Q. Let

G = Gal(K̃/Q). Let d = [K : Q] and let θ1, . . . , θd ∈ K̃ be the Galois conjugates of θ . Then

G acts primitively on {θ1, . . . , θd} if and only if the extension K/Q is primitive.

Proof LetX = {θ1, . . . , θd}. ThenG acts transitively onX .We let x = θ ∈ X and note that

the stabilizer Stab(θ ) is in fact Gal(K̃/K ). By the Galois correspondence, K is imprimitive

if and only if the subgroupGal(K̃/K ) is proper and non-maximal inG, which by Lemma 27

if equivalent to the action of G being imprimitive. ⊓⊔

The following result was assumed in the introduction.

Lemma 29 Let C/Q be a curve, let d ≥ 3 and let P be a degree d point on C with Galois

group Sd or Ad . Then P is primitive.

Proof The lemma follows from Lemma 28, and for this we need the fact that Sd and Ad

act primitively on {1, . . . , d}. This is trivially true if d = 3, and for d ≥ 4 follows from

Lemma 25. ⊓⊔

Proof of Proposition 23 By composing f with a suitable automorphism of P1 we may sup-

pose that α = 0 ∈ P1(Q). Write K = Q(C) for the function field of C . We may regard f

as a non-constant element of K, and with this interpretation Q(f ) = Q(P1) is a subfield of

K of index d.
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By hypothesis, α = 0 is not a branch value for f , and f −1(0) consists of a single Galois

orbit containing P.WriteD = f ∗(0) whichwe think of as a degree d place ofK, unramified

in the extension K/Q(P1). Write

OD = {h ∈ K : ordD(h) ≥ 0}, mD = {h ∈ K : ordD(h) ≥ 1},

for the valuation ring of D and its maximal ideal. Then the residue field OD/mD can be

identified with K = Q(P) where the identification is given by g + mD �→ g(P). Now fix

θ ∈ K such that K = Q(θ ). Then there is some g ∈ OD such that g(P) = θ . As g ∈ K and

K has degree d over Q(f ), there is a polynomial F (U,V ) ∈ Q[U,V ],

F (U,V ) =
n

∑

i=1

ai(V )U i, ai(V ) ∈ Q[V ] (11)

of degree n | d, such that gcd(a0(V ), . . . , an(V )) = 1, and F (g, f ) = 0. Now, F (θ , 0) =
F (g(P), f (P)) = 0, and so θ is a root of the polynomial F (U, 0) ∈ Q[U ]; this polynomial

is non-zero as gcd(a0(V ), . . . , an(V )) = 1. As θ has degree d, it follows that n = d, and

that F (U,V ) is irreducible over Q(V ). In particular F (U,V ) = 0 is a (possibly singular)

plane model for C . As C is absolutely irreducible, F (U,V ) is irreducible over Q. Write K̃

for the Galois closure of K/Q(P1), and let g1, . . . , gd be the roots of F (U, f ) = 0 in K̃; then

K̃ = Q(P1)(g1, . . . , gd).

Let C̃/Q be the algebraic curve associated to K̃. Let D̃ be an extension of the place D of

K to K̃. As D is unramified in K/Q(P1), the place D̃ is unramified in the Galois closure

K̃/Q(P1) (see for example [41, Corollary III.8.4]). We claim that g1, . . . , gd ∈ OD̃. To see

this, note that G = Gal(K/Q(P1)) acts transitively on the gi. Thus we would like to show

ordD̃(τ (g)) ≥ 0 for all τ ∈ G. However,

ordD̃(τ (g)) = ordτ−1(D̃)(g) = ordD(g) ≥ 0,

where the second equality follows as g ∈ K and τ−1(D̃) is an unramified place of K̃ above

D. This proves the claim.

The place D̃ corresponds to aGalois orbit of points on C̃ andwe let P̃ be a representative

point chosen above P. Write GD̃ for the decomposition group corresponding to D̃ in

G = Gal(K̃/Q(P1)); by definition this is

GD̃ = {σ ∈ G : σ (mD̃) = mD̃}.

As D̃ is unramified in the Galois closure K̃/Q(P1), the theory of decomposition groups

allows us to identify the decomposition group GD̃ with Gal(K̃/Q), where K̃ is the Galois

closure of K/Q. Here we shall in fact need the details of the precise identification. Let

σ ∈ GD̃. We associate σ to σ ′ ∈ Gal(K̃/Q) as follows. We let γ ∈ K̃ ∼= OD̃/mD̃. Then

γ = h(P̃) for some h ∈ OD̃, and we define σ ′(γ ) = σ (h)(P̃). It immediately follows from

the definition ofGD̃ that σ ′ is well-defined. ThemapGD̃ → Gal(K̃/Q) given by σ �→ σ ′ is

in fact an isomorphism [41, Theorem III.8.2], and fromnow onwe shall identify Gal(K̃/Q)

with GD̃ via this identification.

Let θ1, . . . , θd be the conjugates of θ in K̃ , where we take θ1 = θ . Now θ = g(P) = g(P̃).

Let 1 ≤ i ≤ d. Then there is someσi ∈ GD̃ such that σi(θ ) = θi and therefore σi(g)(P̃) = θi.

Thus there is a conjugate of g sending P̃ to θi. As the θi are pairwise distinct, we may

after reordering the gi suppose that gi(P̃) = θi. Now Gal(K̃/Q) = GD̃ is a subgroup of

G = Gal(K̃/Q(P1)) and both act on {g1, . . . , gd}. As K/Q is primitive, Lemma 28 tells us
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that GD̃ acts primitively on the θi and therefore on the gi. Thus by Lemma 24, the action

of G on {g1, . . . , gd} is primitive.

Finally we apply Hilbert’s Irreducibility Theorem [38, Chapter 9] to f : C → P1. For

β ∈ P1(Q) we shall make a standard abuse of language and speak of the decomposition

group Gβ by which we mean the decomposition group GQ̃ for any point Q̃ ∈ C̃ above β .

As usual,Gβ is only defined up to conjugation inG. Now, Hilbert’s Irreducibility Theorem

applied to f : C → P1 asserts the existence of a thin set S ⊂ P1(Q), which includes all

branch values, such that Gβ = G for β ∈ P1(Q) \ S. We enlarge S by adjoining finitely

many values in P1(Q): the roots of ad(V ) (which is the leading coefficient of F regarded

as an element of Q[V ][U ]); the V -coordinate of any singular point of the plane model

F (U,V ) = 0; and the point∞ ∈ P1(Q). As we have added finitely many points to the set S

it remains thin. Let β ∈ P1(Q) \ S. Let φ1, . . . ,φd be the roots of F (U,β). Let Q = (φ1,β);

this is a smooth point on the planemodel, and somay be regarded as a point onC . Let Q̃ be

a point of C̃ aboveQ. Then as before, we can identify the action ofGβ on {φ1, . . . ,φd}with
the action of G on {g1, . . . , gd}. As G is acting transitively and primitively on {g1, . . . , gd},
we have thatGβ = Gal(Q(f −1(β))/Q) is acting transitively and primitively on {φ1, . . . ,φd}.
Hence, the Galois action on the fibre f −1(β) = {(φ1,β), . . . , (φd ,β)} is primitive and, by

Lemma 28, the field Q(Q) = Q(φ1) is primitive of degree d. The proposition follows. ⊓⊔

Let C/Q be a curve and let d ≥ g + 1 where g is the genus of C . Theorem 12 asserts the

existence of infinitely many primitive degree d points on C provided there is at least one.

However, the existence of a primitive degree d point is not guaranteed, as illustrated by

the following lemma.

Lemma 30 Let g ≥ 2 be even. Let C be a degree 2g + 1 genus g curve defined over Q

C : Y 2 = a2g+1X
2g+1 + a2gX

2g + · · · + a0.

Suppose J (Q) = 0 where J is the Jacobian of C. Then C has no points of degree g + 1 points.

Proof Write ∞ for the single point at infinity on the given model. Write D0 = (g +
1)∞. Note that X has a double pole at ∞. Thus 1, X, . . . , Xg/2 ∈ L(D0). We claim that

1, X, . . . , Xg/2 is a basis for L(D0). We first explain how our claim implies the lemma. Let

D be an effective degree g + 1 divisor. Since J (Q) = 0, we have D −D0 = div(f ) for some

f ∈ L(D0). Thus, f = α0 + α1X + · · · + αg/2X
g/2, for some α0, . . . ,αg/2 ∈ Q. In particular

f ∈ L(g∞). Thus

D − ∞ = D0 + div(f ) − ∞ = g∞ + div(f )

is effective. Hence D is reducible. It follows that C has no degree g + 1 points.

It remains to prove our claim. Since 1, X, . . . , Xg/2 ∈ L(D0), our claim is equivalent to

showing that ℓ(D0) ≤ g/2+ 1. If g = 2, the Riemann–Roch theorem immediately implies

that ℓ(D0) = 2 = g/2 + 1 as required. We may therefore suppose g > 2, and as g is even,

g ≥ 4. It follows from the Riemann–Roch theorem (4) that ℓ(KC − D0) = ℓ(D0) − 2 ≥
g/2 − 1 > 0. In particular, D0 is a special divisor. By Clifford’s theorem (Theorem 13)

we have ℓ(D0) ≤ g/2 + 3/2. However, since g is even and ℓ(D0) is an integer, we have

ℓ(D0) ≤ g/2 + 1, completing the proof. ⊓⊔

In a positive direction, we can use Theorem 12 to construct curves with infinitely many

primitive points.
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Lemma 31 Let g ≥ 2. Let d = g + 1. Then there is a hyperelliptic curve C/Q of genus g

with infinitely many primitive degree d points.

Proof Let K = Q(θ ) be any primitive number field of degree d. Let θ1, . . . , θd be the

conjugates of θ in a fixed Galois closure K̃ of K . Choose a rational number α such that

2α �= θi+θj for any pair 1 ≤ i, j ≤ d. Letφ = θ−α. The conjugates ofφ areφi = θi−αwith

1 ≤ i ≤ d, and satisfy φi �= ±φj for any pair i, j. Note that Q(φ2) ⊆ K . As K is primitive,

either Q(φ2) = Q or Q(φ2) = K . However, if Q(φ2) = Q, then K = Q(θ ) = Q(φ) has

degree atmost 2, contradicting the fact thatK has degree d = g+1 ≥ 3. ThusK = Q(φ2).

Let f ∈ Q[X] be the minimal polynomial of φ2, which must be irreducible of degree d.

Let h = f (X2). The roots of h are ±φ1, . . . ,±φd which are pairwise distinct and hence h

is separable of degree 2d = 2g + 2. Let C be the genus g hyperelliptic curve

C : Y 2 = h(X).

Note that this has the primitive degree d point (φ, 0). Hence by Theorem 12 there are

infinitely many primitive degree d points. ⊓⊔

8 Low degree primitive points on some X1(N)

Mazur [29] showed that all rational points on X1(p) are cuspidal for prime p ≥ 11.

Merel’s uniform boundedness theorem [30] asserts that for prime p, and for d satisfying

(3d/2 + 1)2 ≤ p, the only degree d points on X1(p) are cuspidal. We now know, for each

1 ≤ d ≤ 8, the exact set of primes p such that X1(p) has degree d non-cuspidal points,

thanks to the efforts of Kamienny [23], Parent [36,37], Derickx, Kamienny, Stein and Stoll

[15], and Khawaja [26]. Less is known about the low degree points onX1(N ) for composite

N , though several authors consider the somewhat easier problemofdetermining the values

of N such X1(N ) has infinitely many degree d points for given small d (see for example

[7] and [17] for two different approaches to studying this problem). Example 10 illustrates

howour results can be applied tomodular curvesX1(N ) provided the analytic rank of J1(N )

is 0 and we have information about the quotients or gonality of X1(N ). The LMFDB [42]

contains a database of modular curves X1(N ) for 1 ≤ N ≤ 70. For 61 of these curves the

Jacobian J = J1(N ) has analytic rank 0. It follows from a theorem of Kato [25, Corollary

14.3] that the Mordell–Weil group J (Q) is finite. We are able to apply Theorem 9 to

around half of these curves in order to deduce the finiteness of primitive points of certain

low degrees. We note that it is common for X1(N ) to cover multiple curves, and in these

instances we apply Theorem 9 to the covered curve C ′ that gives the most generous range

for d in inequality (3). We record the results in Table 1.

In [14, Theorem 3.1] the authors give a complete list of N for which J1(N ) has analytic

rank 0. There are in total 83 such values of N , the largest of which is N = 180.

9 Low degree primitive points on some X0(N)

The computational study of quadratic points on modular curves is an active area of

research (see e.g. [2,11,20,33,35], to name but a few works). Comparatively less is known

about points defined over number fields of higher degree. Still, there is reason to be hope-

ful. Establishing the modularity of all elliptic curves over totally real cubic fields [16], and

totally real quartic fields not containing
√
5 [9] required the study of cubic, and quartic

points on certain modular curves. Banwait and Derickx [4] have determined all cubic
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Table 1 The table summarizes our conclusions upon applying Theorem 9 to C = X1(N) for the

values of N in the first column. Here g denotes the genus of X1(N); the integerm denotes the degree

of the morphism X1(N) → C ′ ; g′ denotes the genus of C ′ . The sixth column gives the values of d

furnished by the theorem for which there are only finitely many points of degree d. The final column

gives the values of d (not appearing in the previous column) for which the theorem asserts that

there are only finitely primitive degree d points
N g C ′ (LMFDB label) g′ m X1(N) has finitely many degree d points X1(N) has finitely many primitive degree d points

19 7 19.120.1-19.a 1 3 d = 2 -
22 6 X1(11) 1 3 d = 2 -
24 5 24.192.1-24.dg.2.1 1 2 2 ≤ d ≤ 3 -
26 10 X1(13) 2 3 d = 2 -
27 13 27.216.1-27.a.1.1 1 3 2 ≤ d ≤ 5 -
28 10 28.288.4-28.d.1.1 4 2 d = 2 -
30 9 X1(15) 1 3 2 ≤ d ≤ 3 -
31 26 31.320.6-31.c.1.2 6 3 2 ≤ d ≤ 4 -
32 17 32.384.5-32.bu.1.1 5 2 2 ≤ d ≤ 7 d �= 4, 6 d = 4, 6
34 21 X1(17) 5 3 2 ≤ d ≤ 3 -
36 17 36.288.3-36.c.1.1 3 3 2 ≤ d ≤ 4 -
38 28 X1(19) 7 3 2 ≤ d ≤ 4 -
39 33 39.448.9-39.a.3.1 9 3 2 ≤ d ≤ 3 -
40 25 40.576.9-40.bh.1.1 9 2 2 ≤ d ≤ 7 d �= 4, 6 d = 4, 6
42 25 X1(21) 5 3 2 ≤ d ≤ 5 -
44 36 44.720.16-44.e.1.1 16 2 2 ≤ d ≤ 3 d = 4
45 41 45.576.9-45.a.4.1 9 3 2 ≤ d ≤ 7 d �= 6 d = 6
46 45 X1(23) 12 3 2 ≤ d ≤ 5 -
48 37 48.768.13-48.nt.1.1 13 2 2 ≤ d ≤ 11 d �= 4, 6, 8, 10 d = 4, 6, 8, 10
49 69 49.336.3-49.b.1.2 3 7 2 ≤ d ≤ 8 -
50 48 50.360.4-50.a.2.2 4 5 2 ≤ d ≤ 7 -
52 55 52.1008.25-52.p.1.1 25 2 2 ≤ d ≤ 5 d �= 4 d = 4
54 52 54.648.10-54.a.1.1 10 3 2 ≤ d ≤ 11 d �= 6, 9 d = 6, 9
56 61 56.1152.25-56.bq.1.1 25 2 2 ≤ d ≤ 11 d �= 4, 6, 8, 10 d = 4, 6, 8, 10
60 57 60.1152.25-60.eb.2.1 25 2 2 ≤ d ≤ 7 d �= 4, 6 d = 4, 6
62 91 X1(31) 26 3 2 ≤ d ≤ 7 d �= 6 d = 6
64 93 64.1536.37-64.ef.1.1 37 2 d = 2 3 ≤ d ≤ 19, odd d 4 ≤ d ≤ 18 even d

66 81 X1(33) 21 3 2 ≤ d ≤ 9 d �= 6, 9 d = 6, 9
68 105 68.1728.49-68.ba.1.1 49 2 2 ≤ d ≤ 7 d �= 4, 6 d = 4, 6
70 97 X1(35) 25 3 2 ≤ d ≤ 11 d �= 6, 9 d = 6, 9

points on X0(N ) for N ∈ {41, 47, 59, 71}. Box, Gajović, and Goodman [10] have deter-

mined all cubic points on X0(N ) for N ∈ {53, 57, 61, 65, 67, 73}, and all quartic points on

X0(65). A famous theoremofOgg [34] asserts that there are 19 values ofN forwhichwhich

X0(N ) is hyperelliptic. Of these, the only one for which J0(N )(Q) is infinite isN = 37. The

remaining 18 values are

• genus 2: N = 22, 23, 26, 28, 29, 31, 50;

• genus 3: N = 30, 33, 35, 39, 40, 41, 48;

• genus 4: N = 47;

• genus 5: N = 46, 59;

• genus 6: N = 71.

For these N , the quadratic points on X0(N ) have been determined by Bruin and Najman

[11]. It is easy to apply Corollary 5 to these curves and derive conclusions about algebraic

points of degree 3 ≤ d ≤ g , where g is the genus of X0(N ). For example, consider

C = X0(71) with genus g = 6. By Corollary 5 we know that there are only finitely many

points on X0(71) of degrees 3 and 5, and finitely many primitive points of degrees 4, 6.

We point out that we can in fact go further and compute these finite sets of points, as

sketched in Remark 6.1. We illustrate this by giving some details of the computation of

primitive degree 6 points on X0(71), making use of information found in [11] concerning
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Table 2 This table gives the conclusions of our computations of primitive points on X0(N) of certain

low degrees d and for the values of N is the first column. Here g is the genus of X0(N), and J(Q) is in

fact the structure of the Mordell–Weil group where J = J0(N). The table gives the number of

primitive degree d points on X0(N) up to Galois conjugacy. The symbol − indicates that our method

is inapplicable for that particular N and d

Number of primitive degree

N g J(Q) d points on X0(N)

d = 3 d = 4 d = 5 d = 6

46 5 Z/11Z × Z/22Z 2 4 88 −
47 4 Z/23Z 2 12 − −
59 5 Z/29Z 1 2 16 −
60 7 Z/4Z × (Z/24Z)3 0 0 120 −
62 7 Z/5Z × Z/120Z 2 0 0 −
71 6 Z/35Z 0 0 0 22

the model and the Mordell–Weil group. A model for X0(71) is given by

X0(71) : Y 2 = X14 + 4X13 − 2X12 − 38X11 − 77X10 − 26X9 + 111X8

+148X7 + X6 − 122X5 − 70X4 + 30X3 + 40X2 + 4X − 11.

The only rational points are the two rational points at infinity which we denote by ∞+
and ∞− (these are in fact the two cusps of X0(71)). Write

D0 = ∞+ − ∞−, D∞ = ∞+ + ∞−.

Then,

J (Q) = (Z/35Z) · [D0],

where J = J0(71). Let P be a primitive degree 6 point on X0(71), and let D be the cor-

responding effective irreducible degree 6 divisor. Hence [D − 3D∞] ∈ J (Q). It follows

that

D ∈ |Da|, Da = a · D0 + 3D∞, −17 ≤ a ≤ 17.

Wefind that ℓ(Da) is 4 for a = 0, is 3 for a = ±1, is 2 for a = ±2 and is 1 for all other values

of a. If ℓ(Da) ≥ 2 then, by Corollary 16, we know that |Da| does not contain primitive

divisors. Thus D ∈ |Da| for −17 ≤ a ≤ −3 or 3 ≤ a ≤ 17 whence ℓ(Da) = 1. For each

of these values, L(Da) = Q · fa where fa is a non-zero function on X0(71). Moreover, if

D ∈ |Da| thenD = Da +div(fa). We obtain 30 potential possibilities for the divisorD. We

find that for a = ±3, the divisor Da + div(fa) is reducible, and for a = ±5, ±7, ±12, the

divisorDa +div(fa) is the Galois orbit of an imprimitive point. The remaining 22 values of

a yield the Galois orbit of a primitive degree 6 point. We conclude that there are precisely

22 primitive degree 6 points on X0(71) up to Galois conjugacy.

Wecarriedout similar computations for thehyperellipticX0(N )withN ∈ {46, 47, 59, 71},
and for degrees d in the range 3 ≤ d ≤ min(g, 6) where g is the genus of X0(N ). The out-

come of these computations is summarized in Table 2. Here we were helped by the fact

that these values of N , the Mordell–Weil group J0(N )(Q) has been computed by Bruin

and Najman [11]. Furthermore, models for the curves are readily available in Magma [6]

via the Small Modular Curve package.

In view of Corollary 11, it is natural to also consider bielliptic X0(N ). Bars [5] shows that

X0(N ) is bielliptic for precisely 41 values of N . Of these, J0(N ) has analytic rank 0 for 30

of these values:
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Table 3 For each pair (N, d), the table gives a description of the effective degree d divisors D with

ℓ(D) = 1 on the modular curve X0(N). We denote by nd,r the number of such divisors that are

reducible, nd,p the number of such divisors that are irreducible and primitive, and nd,i the number of

such divisors that are irreducible but imprimitive. The symbol − indicates that we did not carry out

the computation for the pair (N, d)

N d = 3 d = 4 d = 5 d = 6

n3,p n3,r n4,p n4,i n4,r n5,p n5,r n6,p n6,i n6,r

46 2 20 4 10 42 88 128 − − −
47 2 2 12 2 6 − − − − −
59 1 2 2 0 4 16 8 − − −
60 0 364 0 22 1349 120 4440 − − −
62 2 28 0 0 58 0 100 − − −
71 0 2 0 0 2 0 2 22 6 2

• genus 2: N = 22, 26, 28, 50;

• genus 3: N = 30, 33, 34, 35, 39, 40, 45, 48, 64;

• genus 4: N = 38, 44, 54, 81;

• genus 5: N = 42, 51, 55, 56, 63, 72, 75;

• genus 7: N = 60, 62, 69;

• genus 9: N = 95;

• genus 11: N = 94, 119.

Again, it is straightforward to apply Corollary 11 to these curves. We computed all prim-

itive points of certain low degrees on the genus 7 bielliptic curves X0(60) and X0(62). For

these two curves the size of the Mordell–Weil group has been computed by Najman and

Vukorepa [33].We computedmodels for these curves andMordell–Weil generators using

a Magma package developed by Ozman and Siksek [35], Adžaga, Keller, Michaud-Jacobs,

Najman, Ozman and Vukorepa [2], and Najman and Vukorepa [33]. All computations

were performed in Magma. We summarize our results in Table 2, and refer the reader to

https://github.com/MaleehaKhawaja/Primitive

for the supporting code as well as a description of the points.

We also give a description of all effective degree d divisors D with ℓ(D) = 1, and refer

the reader to Table 3 for this summary.

Dataavailability Thedata related to this paper is available at https://github.com/MaleehaKhawaja/

Primitive
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