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A B S T R A C T   

Departure time choice models quantify the relative impacts of the factors affecting travellers’ 
departure time selection and help design targeted peak-spreading policies. The departure time 
preference of travellers is traditionally captured using parameters associated with different al-
ternatives along three aspects – outbound, return, and duration. In reality, departure time de-
cisions for outbound and return legs, and the corresponding activity durations, are interrelated in 
most cases. However, none of the previous departure time choice models has explicitly investi-
gated the impact of this potential correlation on model outputs. To address this gap in the existing 
literature, we proposed a model structure with a novel polynomial functional form of alternative 
specific constants (ASCs) that captures this correlation in a joint (outbound and return) departure 
time choice model. A revealed preference (RP) dataset from Dhaka, Bangladesh, was used to 
model the joint departure time preferences of the car commuters. The proposed model was then 
compared with a state-of-the-art model that uses a trigonometric formulation of the ASCs. Results 
indicate that the proposed formulation yields more behaviourally realistic outputs compared to 
the trigonometric model by explicitly capturing the correlation between departure time and 
duration. While the specific outputs are applicable to car commuters residing in Dhaka, 
Bangladesh, the framework can be applied to better predict departure times and improve the 
formulations of the peak spreading policies in other contexts as well.   

1. Introduction 

Traffic congestion in dense urban areas primarily stems from the concentration of travel demand over the peak hours. This 
adversely affects the quality of urban life in various ways, including reduced travel speeds, greater variability in travel times, increased 
uncertainty in arrival times, higher operating costs (fuel consumption), heightened levels of air and noise pollution, and decreased 
safety (Li and Hensher, 2012; Newbery, 2005; Thorhauge et al., 2016). This challenge is further exacerbated by urban population 
growth leading to increased travel demand, a heavy reliance on cars for mobility, and inefficient demand management strategies 
(Batur and Koç, 2017; Hensher and Puckett, 2007; Pucher et al., 2007). Addressing the ever-increasing demand and mitigating the 
negative impacts of congestion necessitates a multifaceted approach, considering both supply and demand sides. Simply expanding 
infrastructure is not a sustainable solution, as it often leads to induced traffic due to increased capacity (Noland and Lem, 2002; 
Thorhauge et al., 2020). As a result, urban planners worldwide are placing growing emphasis on demand-side strategies to shift 
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transportation preferences (Geng et al., 2023; Guo et al., 2021). These strategies range from direct measures like congestion pricing 
(which can lead to changes in mode, departure time and destination (Börjesson and Kristoffersson, 2018; Li et al., 2018; Saleh and 
Farrell, 2005) to less restrictive ones like implementing flexible work hours (Munch and Proulhac, 2023; van der Loop et al., 2019), 
time-variant fares (Hightower et al., 2022) providing incentives to travel during off-peak hours and under-utilised routes (Pan et al., 
2016), promoting mixed land use to alter activity locations and channel traffic away from the downtown, etc. (Cervero, 1991). As 
reported by Thorhauge et al. 2016 “a number of studies have shown that people are more likely to change their departure time to reduce 
congestion rather than changing mode (e.g. Hendrickson and Planke, 1984, Bianchi et al., 1998, Hess et al., 2007), and are even less likely 
to change their work and residential location (Goulias et al., 2013)”. However, despite their effectiveness, the design of policies to shift 
departure time has received less attention compared to strategies targeting mode shift and route choice (Arellana et al., 2013; Azhdar 
and Nazemi, 2020; Hendrickson and Plank, 1984; Huan et al., 2021; Thorhauge et al., 2021; Zhou et al., 2020), particularly in cities 
from developing country (Zannat et al., 2022). This is often attributed to the challenges of quantifying the relative impacts of factors 
influencing travellers’ temporal demand, primarily due to a lack of dependable data sources and the synergies among various 
activity-travel related choice dimensions (Graham et al., 2020). 

Departure time choice models, mathematically or statistically formulated to define time-of-day choices as a function of trip and 
level of service attributes and socio-demographic characteristics, play a crucial role in determining the temporal distribution of urban 
transportation demand (Bhat and Steed, 2002; Habib, 2021). Researchers attempted to develop various departure time choice models 
influenced by Vickrey (1969). These models and their modelling frameworks vary based on their context of application. Some utilised 
continuous time choice models using hazard-based duration frameworks, like Bhat and Steed (2002) and Wang (1996). Others have 
adopted a discrete choice framework, dividing the continuous departure time variable into a finite set of discrete intervals and 
modelling utility as a function of level of service attributes, socio-demographic factors, and activity-related variables. (Anowar et al., 
2019; Bwambale et al., 2019; Chaichannawatik et al., 2019; Ding et al., 2015; Golshani et al., 2019). Small (1982), McCafferty and Hall 
(1982) and Holyoak (2008) used multinomial logit (MNL) model to understand commuters’ departure time choices. The MNL model 
has also been used to predict the time-of-day choice to explore the differences between the weekday and weekend or holiday travel 
patterns (Chaichannawatik et al., 2019; Yang et al., 2008). Approaches like nested logit (NL), cross-nested logit (CNL), continuous 
CNL, and mixed multinomial logit (MMNL) relaxed the independence of irrelevant alternatives (IIA) assumption of the MNL model to 
accommodate the correlation between adjacent time intervals (Ben-Akiva and Bierlaire, 1999; Börjesson, 2008; Chin, 1990; Lemp 
et al., 2010). Application of joint choice modelling, as estimated by Hendrickson and Plank (1984), and Hossain et al. (2021), 
simultaneously developed time-of-day choices alongside other travel decisions, such as mode choice. Habib et al. (2009) and Bhat 
(1998) used joint multinomial logit (MNL) and generalised extreme value (GEV) formulations for modelling mode and departure time 
choice models focusing on commuter and non-commuters’ trips, respectively. Moreover, Li et al. (2018), De Jong et al. (2003) and Hess 
et al. (2007) used a mixed multinomial logit (MMNL) model to investigate joint mode and departure time choices capturing the 
correlation between alternatives which are close to each other. Heterogeneity in time-of-day choice by different market segments is 
also captured by the latent class choice models (Thorhauge et al., 2021). Additionally, Bayesian network and machine learning models 
have been explored for time-of-day choice analysis (Zhu et al., 2018). 

The discrete choice models of departure time involve trade-offs between the time-of-day and associated travel time and costs. 
Outside of peak hours, the travel times are shorter, the congestion levels are lower, and the travel costs are often lower (e.g., off-peak 
public transport tickets). However, there can be an indirect cost associated with less convenient departure times, captured as ‘Schedule 
Delay’ (Börjesson, 2008, 2009). Due to the difficulties in simulating the preferred departure times, the schedule delay based technique 
performs well for exploratory modelling but is challenging for long-term forecasting applications (Hess et al., 2005). For the fore-
casting application, a more straightforward approach uses constants associated with different time periods to represent travellers’ time 
preferences. However, specifying these constants is complex due to the number and length of time periods considered, limiting its 
applicability (Ben-Akiva and Abou-Zeid, 2013). Previous studies have used either a small number of coarse time periods or a large 
number of fine time periods, leading to increased computational costs and parameter identification issues. To address such issues, 
different studies have proposed functional approximation of the alternative specific constants (ASCs) (Ben-Akiva and Abou-Zeid, 2013; 
Hess et al., 2005). This approach offers several benefits to the model such as 1) reducing the computational cost by lowering the 
number of parameters to be estimated, 2) avoiding the identification issues associated with the discontinuities in the utility function 
and the absence of observations for some arrival and departure time periods in the data, and 3) facilitating the interpretation of the 
results. Various functional forms, such as trigonometric, piecewise linear, and power series expansion functions, have been proposed to 
estimate the distribution of these constants (Abou-Zeid et al., 2006; Ben-Akiva and Abou-Zeid, 2013; Hess et al., 2005). The constants 
used in the previous studies to capture the time preferences of travellers were related to three dimensions — outbound, return, and 
duration. However, their proposed specification employs two separate functional forms for outbound and return (or duration) times, 
thus overlooking the interdependency and correlations among departure time, duration, and return time. Inappropriate assumptions 
regarding the functional form may result in specification errors and introduce uncertainties in the model predictions (De Jong et al., 
2007). 

To accurately model the time-of-day preference, consideration of correlations and interactions between departure time and 
duration is crucial. Positive associations between departure time and duration may suggest a preference for later time-of-day choices as 
duration requirements increase, while negative associations may indicate an inclination towards earlier time-of-day choices. This 
hypothesis is grounded in the understanding that varying schedule constraints and the flexibility of working hours influence the 
perceived utility of different departure times for comparable activity durations (Ashiru et al., 2004; Badiola et al., 2019). Testing this 
hypothesis will provide valuable insights into the nuanced dynamics of time-of-day preferences in urban travel behaviour. This is 
because the utility of departing at 9 am for an 8-hour work period is not expected to be the same as departing at 3 pm for the same 
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activity duration, owing to potential schedule constraints and the flexibility of working hours. Additionally, peak-hour outbound travel 
demand for 8–10 h of activity duration may lead to increased demand for return travel during peak hours. Similarly, the time-of-day 
choice during peak hours for a specific activity duration will not have the same impact on the network as it would during off-peak 
hours. 

Therefore, in this study we proposed a polynomial functional form of ASCs that captures the correlation among the constants of the 
outbound, return (or duration) with an aim to improve the behavioural realism of the departure time choice models. The proposed 
structure is calibrated with data from Dhaka, one of the fastest growing megacities in the world and the capital of Bangladesh. The 
results of the proposed model are compared with those derived from the state-of-the-art method for capturing time-of-day preferences 
(based on the trigonometric formulation proposed by Ben-Akiva and Abou-Zeid (2013). This article aims to make two key contri-
butions. Firstly, it introduces a flexible and efficient functional form of alternative specific constants (ASCs) that captures the inter-
action between departure time and duration preferences (which hasn’t been done before) exemplified with, but not limited to 
commuting trips using a discrete choice framework. The proposed model framework is expected to serve as an improved tool for 
planners and policy makers in better understanding the preferences of the travellers and designing effective peak-spreading policies to 
reduce peak hour travel demand or promote off-peak travel. Secondly, it focuses on Dhaka (the sixth largest megacity in the world in 
terms of population) as a case study and suggests specific planning and policy measures for to reduce peak hour car travel demand. 
Further, while the specific findings may not be transferable to other developing countries, the modelling approach will offer valuable 
insights to transport planners and policymakers in overcoming the challenges of developing robust departure time choice models 
amidst data scarcity and limited resources. 

The rest of the paper is organised as follows: the following section describes the data sources used in this study. The modelling 
issues are presented next, followed by the description of the model structure and the estimation results. The findings and forecasting 
analysis are summarised in the end, along with directions for future research. 

2. Data 

The review of the literature reveals that most of the previous departure time choice models have used stated preference (SP) 
(Arellana et al., 2012; Arellana et al., 2013; Azhdar and Nazemi, 2020; De Jong et al., 2003; Hess et al., 2007; Thorhauge et al., 2019) 
with a lower number using revealed preference (RP) datasets (Bhat, 1998; Chaichannawatik et al., 2019; Yang et al., 2008). Even 
though it is easier to specify the choice set and the preferred departure time in the SP, such data may be prone to hypothetical bias and 
behavioural incongruence (Ben-Akiva and Bierlaire, 2003; Bwambale et al., 2019). 

We conducted our empirical investigation in the greater Dhaka area, specifically the RAJUK area. The RP data used in our study was 
obtained from a secondary data source, which was originally collected for a feasibility study of the subway project in Dhaka by TYPSA 
(DHAKA SUBWAY − Grupo TYPSA). This dataset included information from 35,000 households and was systematically collected using 
stratified random sampling to represent the population characteristics of the RAJUK area. The data was collected from Monday to 
Saturday1 between 28th February 2019 to 4th May 2019. The survey form had two sections: (1) general household information (e.g., 
age, gender, education, occupation, income, car ownership), and (2) each household member’s trip-related information (e.g., de-
parture time, travel mode, travel time, trip purpose) who made any trips during the previous working day (Sunday to Thursday). The 
travel diary survey recorded trips for work, education, leisure, personal and other purposes. In the case where members of a selected 
household declined to participate in the interview, a nearby household with a similar socio-economic profile was chosen for the 
interview. This often involved selecting a household located in the same building as the one that declined to be interviewed. To 
enhance participation, a public awareness campaign was implemented for the household interview program. This campaign included 
strategies such as sending text messages to approximately 13 million people to encourage their participation, along with TV scrolls. The 
detailed methods employed by TYPSA to ensure that this sample accurately reflected the population characteristics can be found in 
(TYPSA, 2019). 

The 35,000-household travel diary survey data included 1,37,760 trip information, of which only 4,003 involved car travel or ride- 
hailing services. The focus of our study was on work-related trips, and among the 4,003 observed car trips, 1,217 were for work 
purposes. Also, for the estimation of the joint departure time choice model, we only considered the work trips that began and ended at 
home, 950 trips met this screening criterion. As our primary data sources accurately reflected the overall population characteristics, 
our specific target group as a subsample effectively represents the car user population in Dhaka. It may be noted we excluded work trips 
originating from locations other than one’s home and considered only car-based modes, as including all trips would have required a 
joint departure time, mode, and destination choice model, which was beyond the intended focus of this study. Since only a small 
number of individuals in the data reported multiple trips, we used one trip per person, with the earliest trips made by the commuters 
considered for this study. Commuting trips that had their origin outside Dhaka were not considered since that decision would be reliant 
on the traffic situation in the origin area. The socio-demographic characteristics of the commuters included in the sample are sum-
marised in Table 1. 

The observed departure time choices of commuters for their outbound and return trips, along with the corresponding duration 
(interval between outbound departure and return), are shown in Fig. 1 (a), Fig. 1(b), and Fig. 1(c). As seen in the figures, the departure 
time distribution for the return trips has a higher standard deviation compared to that of the outbound. For the outbound trips, the 

1 Friday is the weekly holiday in Bangladesh. 
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peak is observed at 8:00 and for the return trips, the peak is observed at 17:00. In terms of duration, for the majority of the travellers, 
the difference between the outbound and the return trips were between 6–10 h. The observed departure distribution indicates that for 
outbound trips, there is an earlier departure for longer durations, while for return trips, there is a later departure when the duration 
requirement is larger (Fig. 1(c)). 

3. Modelling issues 

3.1. Choice set specification 

The choice set specification is a complex step in developing a discrete choice-based departure time choice model. At this stage, the 
number and length of time periods are determined by subdividing the continuous time into a finite number of mutually exclusive time 
periods. Studies have used either a small number of the coarse time periods or a large number of fine time periods. Ben-Akiva and 
Bierlaire (2003) proposed a method to define the acceptable range of departure time intervals based on the preferred arrival time 
(PAT). However, in RP data, information related to PAT is typically not available and overestimation of the time interval may cause 
substantial errors. Further, in a usual specification of a joint model (simultaneous consideration of both outbound and return), a 
separate constant is recommended for each possible combination of home to work (outbound) and work to home (inbound) time 
periods. For example, 24 (N) 1-hour separate time periods for commuting trips would lead to a requirement of 300 constants (following 
the rule N(N + 1)/2), of which 299 (N(N + 1)/2–1) can be estimated (Hess et al., 2007)). Similarly, the required number of constants 
would be 1,176 if 30-minute time intervals are considered for 24 h. Thus, the increasing number of constants may lead to compounding 
problems of computational cost and parameter identification issues. Also, the correlation among the alternatives cannot be ignored 
when time intervals are short (Ben-Akiva and Bierlaire, 2003). Therefore, in this study, we have selected 9 time periods for outbound 
(6:00 – 7:00, 7:00 – 8:00, 8:00 – 9:00, 9:00 – 10:00, 10:00 – 11:00, 11:00 – 12:00, 12:00 – 14:00, 14:00 – 16:00, 16:00––17:00) and 9 
periods for return (11:00 – 12:00, 12:00 – 14:00, 14:00 – 16:00, 16:00––17:00, 17:00 – 18:00, 18:00 – 19:00, 19:00 – 20:00, 20:00 – 
22:00, 22:00–––24:00. These time periods were divided into ten 1-hour time periods (6:00 – 7:00, 7:00 – 8:00, 8:00 – 9:00, 9:00 – 
10:00, 10:00 – 11:00, 11:00 – 12:00, 16:00––17:00, 17:00 – 18:00, 18:00 – 19:00, 19:00 – 20:00) and four 2-hour time periods (12:00 – 
14:00, 14:00 – 16:00, 20:00 – 22:00, 22:00 – 24:00). We opted not to use a finer temporal resolution (e.g., 5 to 10 min) to avoid 

Table 1 
Summary of socio-demographic characteristics of the commuters in the sample.   

Percentage  

Total respondents (n ¼ 950) 
Gender  
Male  83.16 
Female  16.84 
Age  
<26  4.00 
26––40  37.68 
40–60  47.47 
>60  10.85 
Monthly income  
<10,000 BDT  1.08 
10,000–20,000 BDT  3.98 
20,000–30,000 BDT  5.38 
30,000–40,000 BDT  9.68 
40,000–60,000 BDT  18.06 
>60,000 BDT  61.82 
Level of education  
Below primary  3.81 
Six to ten  5.93 
SSC  5.93 
HSC  9.74 
BA  18.00 
MA  55.03 
Others  1.56 
Occupation  
Public Employee  20.63 
Private employee  35.58 
Self-employed  36.84 
Other  6.95 
Car ownership rate  
No car owned by the household*  12.11 
Have at least one car owned by the household  87.89 

Source: (TYPSA, 2019). 
* In this case, respondents were sharing cars with friends/colleagues or using cars provided from the 
office or ride-hailing services. 
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correlation among alternatives of a short time interval and reduce model complexity. A total of 75 alternative outbound and return 
combinations of choice were specified. The choice set used in this study is summarised in Table 3. In order to forecast the probability of 
unchosen alternatives, all the joint combination of alternatives shown in Table 3 were included in the model. 

Fig. 1. Observed departure time.  

Table 2 
Summary of observed duration.  

Duration window Percentage 

<2 h  3.01 
2 h – 4 h  9.76 
4 h – 6 h  14.64 
6 h – 8 h  26.17 
8 h – 10 h  27.12 
10 h – 12 h  11.32 
>=12 h  7.98  
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3.2. Factors influencing departure time choice 

Departure time choices depend on multiple factors that are interrelated to each other. Earlier studies examined the influence of 
travellers’ choice decisions as a function of transportation system characteristics and level of service attributes (e.g. travel time, travel 
cost), individual and household sociodemographic characteristics, activity-related attributes (e.g. mandatory vs. discretionary) (Bhat 
and Steed, 2002; Sasic and Habib, 2013). Findings of the previous studies show that the departure time choice of individuals is 
substantially affected by travel time, travel cost and travel distance which are often marked as the level of service attributes or network 
variables (Abou-Zeid et al., 2006; Arellana et al., 2012; Ben-Akiva et al., 1985; Zhu et al., 2018). Other studies have investigated the 
influence of schedule delay on departure time choice (Börjesson, 2008, 2009; Bwambale et al., 2019; Hess et al., 2005; Koppelman 
et al., 2008; Yang and Liu, 2018). Other contributing factors include individual (e.g. age, gender, level of education, having a driving 
license, working status, flexibility at work etc.) and household attributes (e.g. household size, income, vehicle ownership, house 
location) (Afandizadeh Zargari and Safari, 2020; Anowar et al., 2019; Arellana et al., 2013; Bhat and Steed, 2002; Rahman et al., 2021; 
Yang et al., 2008). 

Based on the review, the level of service attributes (travel time), individual (age, gender, occupation, education) and household 
(household income, house location, household size, having dependant within the household) sociodemographic characteristics and 
trip-related attributes (available mode, distance) were considered in both the proposed and trigonometric model by (Ben-Akiva and 
Abou-Zeid, 2013). 

3.3. Estimation of travel time 

One of the key challenges to model departure time choice is the estimation of travel time during the unchosen time periods. In many 
cities, Google Maps and, Open Street Maps provide reliable travel times for each alternative time period with adequate spatial and 
temporal granularity which can be used for deriving travel times during different time periods for different origin–destination pairs (e. 
g. Bwambale et al. (2019) and Dong and Cirillo (2020)). But in the context of Dhaka, the widely used network traffic model of Google 
Maps API (i.e., best guess) does not consistently reflect a reasonable travel time that matches the users’ experienced travel time. 
Instead, it offers three network travel times for each origin-destination pair within a given time period (best guess,2 pessimistic,3 

optimistic4). At some time period, the travel time from the pessimistic model appears to be more closely aligned with the user-stated 
travel time, while in other instances, the other two models demonstrate better alignment. Therefore, we estimated the travel time for 
both chosen and unchosen time period following the method proposed by Zannat et al. (2021) who hypothesised that the commuter 
stated travel time is linearly correlated with the predicted travel time of Google map direction API. The relationship between stated 
travel time and the best guess, pessimistic and optimistic travel times can be expressed as follows: 

Table 3 
Joint time periods (outbound and return) used for modelling.  

ID Outbound Return ID Outbound Return ID Outbound Return ID Outbound Return 

1 6:00 – 7:00 11:00 – 12:00 20 8:00 – 9:00 12:00 – 14:00 39 10:00 – 11:00 14:00 – 16:00 58 12:00 – 14:00 17:00 – 18:00 
2 6:00 – 7:00 12:00 – 14:00 21 8:00 – 9:00 14:00 – 16:00 40 10:00 – 11:00 16:00 – 17:00 59 12:00 – 14:00 18:00 – 19:00 
3 6:00 – 7:00 14:00 – 16:00 22 8:00 – 9:00 16:00 – 17:00 41 10:00 – 11:00 17:00 – 18:00 60 12:00 – 14:00 19:00 – 20:00 
4 6:00 – 7:00 16:00 – 17:00 23 8:00 – 9:00 17:00 – 18:00 42 10:00 – 11:00 18:00 – 19:00 61 12:00 – 14:00 20:00 – 22:00 
5 6:00 – 7:00 17:00 – 18:00 24 8:00 – 9:00 18:00 – 19:00 43 10:00 – 11:00 19:00 – 20:00 62 12:00 – 14:00 22:00 – 24:00 
6 6:00 – 7:00 18:00 – 19:00 25 8:00 – 9:00 19:00 – 20:00 44 10:00 – 11:00 20:00 – 22:00 63 14:00 – 16:00 14:00 – 16:00 
7 6:00 – 7:00 19:00 – 20:00 26 8:00 – 9:00 20:00 – 22:00 45 10:00 – 11:00 22:00 – 24:00 64 14:00 – 16:00 16:00 – 17:00 
8 6:00 – 7:00 20:00 – 22:00 27 8:00 – 9:00 22:00 – 24:00 46 11:00 – 12:00 11:00 – 12:00 65 14:00 – 16:00 17:00 – 18:00 
9 6:00 – 7:00 22:00 – 24:00 28 9:00 – 10:00 11:00 – 12:00 47 11:00 – 12:00 12:00 – 14:00 66 14:00 – 16:00 18:00 – 19:00 
10 7:00 – 8:00 11:00 – 12:00 29 9:00 – 10:00 12:00 – 14:00 48 11:00 – 12:00 14:00 – 16:00 67 14:00 – 16:00 19:00 – 20:00 
11 7:00 – 8:00 12:00 – 14:00 30 9:00 – 10:00 14:00 – 16:00 49 11:00 – 12:00 16:00 – 17:00 68 14:00 – 16:00 20:00 – 22:00 
12 7:00 – 8:00 14:00 – 16:00 31 9:00 – 10:00 16:00 – 17:00 50 11:00 – 12:00 17:00 – 18:00 69 14:00 – 16:00 22:00 – 24:00 
13 7:00 – 8:00 16:00 – 17:00 32 9:00 – 10:00 17:00 – 18:00 51 11:00 – 12:00 18:00 – 19:00 70 16:00 – 17:00 16:00 – 17:00 
14 7:00 – 8:00 17:00 – 18:00 33 9:00 – 10:00 18:00 – 19:00 52 11:00 – 12:00 19:00 – 20:00 71 16:00 – 17:00 17:00 – 18:00 
15 7:00 – 8:00 18:00 – 19:00 34 9:00 – 10:00 19:00 – 20:00 53 11:00 – 12:00 20:00 – 22:00 72 16:00 – 17:00 18:00 – 19:00 
16 7:00 – 8:00 19:00 – 20:00 35 9:00 – 10:00 20:00 – 22:00 54 11:00 – 12:00 22:00 – 24:00 73 16:00 – 17:00 19:00 – 20:00 
17 7:00 – 8:00 20:00 – 22:00 36 9:00 – 10:00 22:00 – 24:00 55 12:00 – 14:00 12:00 – 14:00 74 16:00 – 17:00 20:00 – 22:00 
18 7:00 – 8:00 22:00 – 24:00 37 10:00 – 11:00 11:00 – 12:00 56 12:00 – 14:00 14:00 – 16:00 75 16:00 – 17:00 22:00 – 24:00 
19 8:00 – 9:00 11:00 – 12:00 38 10:00 – 11:00 12:00 – 14:00 57 12:00 – 14:00 16:00 – 17:00     

2 Best guess model returns the duration in traffic using both historical traffic conditions and live traffic. Live traffic becomes more important the 
closer the departure time is to now.  

3 Pessimistic model returns the duration in traffic, usually that should be longer than the actual travel time on most days, though occasional days 
with particularly bad traffic conditions may exceed this value.  

4 Optimistic model returns the duration in traffic, usually that should be shorter than the actual travel time on most days, however, occasional 
days often with a good traffic condition could be faster than this value. 
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Tstated travel time i = Wi,1TBest guess i + Wi,2TOptimistic i + Wi,3TPessimistic i + ε (1)  

where, 
i is the alternative time period (i∊n, where n is 7 for home to work and 5 for work to home trip) 
Tstated travel time i = Stated travel time by the respondents at the time period i. 
TBest guess i = Measured travel time using best guess model of google direction API at the time period i. 
TOptimistic i = Measured travel time using optimistic model of google direction API at the time period i. 
TPessimistic i = Measured travel time using pessimistic model of google direction API at the time period i. 
Wi,t indicates the weights of measured travel time by different Google map models (t) for time period i, Wi,1, Wi,2, and Wi,3 were 

estimated assuming 
∑

Wi,t = 1. ε represents the error which is assumed to be normally distributed (0, σ). The relationship among Wi,t 

Table 4 
Calculated weights of the different model used for travel time calculation.  

(a) Home to Work Trip 

Home to Work Trip Google Maps Model Estimates (βi,t) Exp (βi,t) Weight (Åí,t)   

σ = 31.4626   
6:00 – 7:00 Best Guess 14.2567 1554555.173 0.9996(a) 

Optimistic 6.4678 644.0652237 0.0004 
Pessimistic 0 1 0.0000   

∑
1555200.238 1 

7:00 – 8:00 Best Guess − 15.9892 1.13757E-07 0.0000 
Optimistic 1.1985 3.315140481 0.7683 
Pessimistic 0 1 0.2317   

∑
4.315140594 1 

8:00 – 9:00 Best Guess − 12.567 3.48515E-06 0.0000 
Optimistic 0.239 1.269978537 0.5595 
Pessimistic 0 1 0.4405   

∑
2.269982022 1 

9:00 –10:00 Best Guess − 12.567 3.48515E-06 0.0000 
Optimistic 0.239 1.269978537 0.5595 
Pessimistic 0 1 0.4405   

∑
2.269982022 1 

10:00 – 11:00 Best Guess − 1.8409 0.158674555 0.0559 
Optimistic 0.5177 1.678163432 0.5916 
Pessimistic 0 1 0.3525   

∑
2.836837986 1 

11:00 – 12:00 Best Guess 0.0022 1.002202422 0.4997 
Optimistic − 5.6696 0.003449245 0.0017 
Pessimistic 0 1 0.4986   

∑
2.005651666 1 

12:00 and after 12:00 Best Guess − 0.7994 0.449598642 0.0000 
Optimistic 17.0538 25490082.17 1.0000(b) 

Pessimistic 0 1 0.0000   
∑

25490083.62 1 
(b) Work to Home Trip 
Work to Home trip Google Maps Model Estimates (βi,t) Exp (βi,t) Weight (Ǻi,t) 
11:00 – 12:00 Best Guess 0.0022 1.002202422 0.4997 

Optimistic − 5.6696 0.003449245 0.0017 
Pessimistic 0 1 0.4986   

∑
2.005651666 1 

12:00 – 14:00 Best Guess 1.763 5.829900889 0.0009 
Optimistic 8.7768 6482.101226 0.9989(c) 

Pessimistic 0 1 0.0002   
∑

6488.931127 1 
16:00 – 18:00 Best Guess − 9.1197 0.000109488 0.0001 

Optimistic − 1.7165 0.179693977 0.1523 
Pessimistic 0 1 0.8476   

∑
1.179803465 1 

18:00 – 19:00 Best Guess − 5.1375 0.005872352 0.0007 
Optimistic 2.0616 7.85853341 0.8865 
Pessimistic 0 1 0.1128   

∑
8.864405762 1 

19:00 – 24:00 Best Guess 7.1876 1322.924374 0.9880 
Optimistic 2.7108 15.04130375 0.0112 
Pessimistic 0 1 0.0007   

∑
1338.965678 1 

Note: Given the close to 1 weight, only the Best Guess model has been used in (a) and only the Optimistic model has been used in (b) and (c) instead of the weighted 
models.  
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and estimated parameters for different models (t) at time period i can be expressed as: 

Wi,t =
eβi,t

eβi,1 + eβi,2 + eβi,3
(2)  

Following the normal distribution, equation (1) and equation (2) was used to estimate βi,t for three Google maps models. Consequently, 
we calculated the weighted network travel time using the estimated weight ̊Aí,t corresponding to various network models rather than 
relying on the network travel time from the randomly selected network model (t) using the Google Map API. The network travel time 
for all alternatives was estimated using the Equation (3). Models and their corresponding weights used for the different alternative time 
periods are shown in Table 4.: 

Tnetwork travel time i = Ǻi,1TBest guess i + Å ́i,2TOptimistic i + Ǻi,3TPessimistic i (3)  

4. Model structure 

4.1. Framework 

The proposed model structure is based on random utility framework. Random utility theory suggests that individual decision is 
driven by rationality and complete information. Decision-makers choose the departure time that provides them with the highest utility, 
where the utility of an alternative i to a person n has the form: 

Uin = U(xin, sn) (4)  

where xin is the vector of the attribute of alternative i for individual n and sn is the vector of characteristics of individual n. 
McFadden (1973) proposed that this utility has the linear-in-parameters separable form: 

Uin = Vin + εin (5)  

where Vin is the observed component of utility. The unobserved variable εin expresses the contribution of unobserved attributes to the 
utility. In our model, εin is assumed to be independent and identically distributed across alternatives and respondents, following a Type 
I Extreme Value distribution (Gumbel). Therefore, the time preference of commuters is estimated using the multinomial logit model 
(MNL). 

Further, following our proposed polynomial formulation, for an alternative time period (departure time period for outbound o, 
departure time period for return r), the systematic utility for the home-based commuting trip can be specified as sum of three com-
ponents corresponding to the outbound departure time (Vin

dept), the duration (Vin
dur) and the interaction between two (Vin

int). 

Vin = Vin
dept +Vin

dur +Vin
int (6)  

where, Vin
dept, Vin

dur, Vin
int can be specified as follows: 

Vin
dept =

∑4

k=1
skfdept(to)+ β (TTo) (7)  

Vin
dur =

∑4

k=1
skfdur(tr − to)+ β (TTr) (8)  

Vin
int =

∑4

k=1
skf int(to)(tr − to) (9)  

where, to and tr are the departure times from home for outbound (midpoint of period o) and return 
respectively (midpoint of period r). Also, s1 = 1, s2 = office employee dummy, s3 = short distance dummy (<8 km), s4 = High 

income dummy (>60,000 BDT) and TTo and TTr are the corresponding travel time of outbound and return. 
The proposed polynomial formulation for departure time, duration and interaction can be expressed as follows: 

fdept(to) = α1
deptto + α2

dept to2 +⋯+ αa
dept toa (10)  

fdur(tr − to) = α1
dur(tr − to)+α2

dur(tr − to)2
+⋯+ αb

dur(tr − to)b (11)  

f int(to)(tr − to) = αi
int(to)(tr − to) (12)  

where a, and b are non-negative integer values defining truncation points and are determined empirically. 
The unknown parameter to be estimated in the polynomial formulation are: α1

dept ,⋯., αa
dept, α1

dur, ⋯, αb
dur and αi

int , for every 
variable sk that is interacted with fdept(to), fdur(tr − to) and f int(to)(tr − to) in the departure time, duration and interaction component of 
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utility function, and the travel time parameter β. However, for every variable sk, we estimated four different interaction parameters for 
— 1) alternatives with peak time at both legs (outbound and return), 2) alternatives with peak time at outbound leg, 3) alternatives 
with peak time at return leg and, 4) alternatives with off-peak time at both legs. Such specification enabled to capture the correlation 
between departure time and duration, and schedule delay effect simultaneously. 

The choice probabilities for each alternative i in MNL can be expressed as follows (for detail see Train (2009)): 

Pin =
exp

(
Vin

dept + Vin
dur + Vin

int)

∑
j∈Cn

exp
(
Vjn

dept + Vjn
dur + Vjn

int) (13)  

where, Cn is the choice set of n number of individuals (see section 3.1 for details). 
The estimation has been done using the “Apollo” package R, applying the Maximum Likelihood Estimation technique with the 

BFGS optimisation algorithm (Hess and Palma, 2019). 

4.2. Trigonometric model 

The trigonometric formulation proposed by Ben-Akiva and Abou-Zeid (2013) was used as the state-of-the-art model. Following this 
model, the systematic utility for the home-based commuting trip can be specified as sum of departure time component for outbound, 
departure time component for return and associated duration component. Hence, 

Vin = Vin
out +Vin

ret+Vin
dur (14)  

here, Vin
out , Vin

ret and Vin
dur are the outbound, return and duration component of utility. 

Vin
out and Vin

ret are then specified as follows: 

Vin
out =

∑4

k=1
skfout(to) + ln(number of 1 hour in period o) + β (TTo) (15)  

Vin
ret =

∑4

k=1
skf ret(tr) + +ln(number of 1 hour in period r) + β (TTr) (16)  

The trigonometric formulation for outbound and return can be expressed as follows: 

Table 5 
Estimates from the base MNL model.  

(a) State-of-the-art model (b) Proposed model 

Parameter Estimate Rob.t.rat.(0) Parameter Estimate Rob.t.rat.(0) 

α1
out 3.025 8.732 α1

dept 8.210 8.124 
α2

out 3.257 7.223 α2
dept − 0.683 − 7.647 

α3
out − 1.740 − 4.694 α3

dept 0.018 7.174 
α4

out − 1.729 − 6.543 α1
dur 1.748 8.555 

α5
out 0.970 5.045 α2

dur − 0.126 − 6.869 
α6

out − 1.970 − 10.403 α3
dur 0.004 5.269 

α7
out − 2.440 − 6.874 αintout&retoffpeak − 0.046 − 4.761 

α8
out − 1.016 − 5.470 αintoutpeak − 0.043 − 4.392 

α1
ret − 2.488 − 3.424 αint retpeak − 0.047 − 4.582 

α2
ret 2.291 4.206 αintout&retpeak − 0.034 − 3.333 

α3
ret − 0.319 − 2.678 βTT − 0.012 − 3.707 

α4
ret − 1.233 − 4.049    

α5
ret − 1.197 − 7.084    

α6
ret − 1.657 − 7.118    

α7
ret 1.878 4.381    

α8
ret − 1.300 − 2.658    

α1
dur 0.642 3.064    

α2
dur − 0.092 − 4.151    

α3
dur 0.003 3.665    

βTT ¡0.009 ¡2.515    
LL (0) − 4101.61 LL (0) − 4101.61   
LL (final) − 3651.42 LL (final) − 3655.72   
Rho-square (0) 0.1098 Rho-square (0) 0.1087   
Adj.Rho-square 0.1049 Adj.Rho-square 0.106   
AIC 7342.84 AIC 7333.43   
BIC 7439.97 BIC 7386.86   
RMSE 5.35 RMSE 4.58   
Estimated parameters 20 Estimated parameters 11    
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f out(to) = α1
outsin

(
2πto
24

)

+ α2
outsin

(
4πto
24

)

+α3
outsin

(
6πto
24

)

+α4
outsin

(
8πto
24

)

+ α5
outcos

(
2πto
24

)

+ α6
outcos

(
4πto
24

)

+ α7
outcos

(
6πto
24

)

+ α8
outcos(

8πto
24

)

(17)  

f ret(tr) = α1
retsin

(
2πtr
24

)

+α2
retsin

(
4πtr
24

)

+α3
retsin

(
6πtr
24

)

+α4
retsin

(
8πtr
24

)

+α5
retcos

(
2πtr
24

)

+ α6
retcos

(
4πtr
24

)

+ α7
retcos

(
6πtr
24

)

+α8
retcos(

8πtr
24

)

(18)  

The duration component Vin
dur is specified as a power series expansion as follows: 

Vin
dur = α1

dur(tr − to)+ α2
dur(tr − to)2

+⋯+αb
dur(tr − to)b (19)  

The unknown parameters to be estimated in the trigonometric formulation are: α1
out ,⋯.,α8

out and α1
ret ,⋯, α8

ret for every variable sk 
interacted with fout(to), f ret(tr) in the utility function, and the travel time parameter β. From the power expansion of duration utility, the 
estimated parameters are α1

dur,⋯, αb
dur. Here, the b value depends on empirical consideration. Also, the size variable is included for 

the outbound and return departure time period. Similar to our proposed model, the estimates are estimated using the Maximum 
Likelihood Estimation technique. 

Fig. 2. Values of ASCs for (a) outbound, (b) return, and (c) duration following the trigonometric formulation (while controlling travel time 
sensitivity). 
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5. Results and discussion 

5.1. Base MNL models 

Table 5 shows the estimates of the simple MNL models fitted to the RP data developed using the state-of-the-art method and 
proposed polynomial formulation. These two base models were used to investigate the performance and interpretation capabilities of 
the proposed polynomial functional form. The models included travel time as the main explanatory variable, while other covariates (e. 
g., socio-demographic characteristics) were excluded. When comparing the adjusted Rho-square, and BIC, the results showed that the 
polynomial model produced a slightly better model fit than the trigonometric model. Additionally, the proposed model’s RMSE value 
demonstrated that it had less error than the trigonometric model. This study also revealed that the polynomial approximation per-
formed better than the trigonometric model when evaluating how travel time affected decisions. In the trigonometric model as 
opposed to the proposed model, the estimated marginal utility of trip time was lower. Also, in the proposed model, the interaction 
parameters were found to be statistically significant in modelling the time choice of travellers (the null hypothesis of zero correlations 
between departure times and durations was rejected at a 95 % level of confidence). The estimated coefficients of interaction pa-
rameters demonstrated that, within a time budget of 24 h per day, if car travellers chose a longer duration (including travel time to 
workplace and activity duration), they were less likely to prefer a later time of the day for departing from home. Moreover, the 
relatively lower interaction effect on those alternatives having peak time in both legs (outbound and return) reflected the lower 
schedule delay compared to the other alternatives. 

The inferred shape of the ASCs’ value from the trigonometric formulation (Fig. 2 (a) and Fig. 2 (b)) indicated potential overfitting of 
the models during the afternoon for outbound, and late evening for return journeys. This is likely attributed to the observation that late 
night alternatives for returning were not as popular as the afternoon and morning alternatives, respectively. Similarly, for outbound, 
the evening was the least popular than the other alternatives (Fig. 1). On the other hand, the aggregated utility of the duration 
component (estimated using power expansion) of the state-of-the-art method revealed that the highest utility was likely to be at the 
duration window between 2–4 h (Fig. 2 (c)). But the observation shows that the highest percentage of respondents chose the duration 
between 8–10 h (Table 2). 

Fig. 3 shows a surface plot derived from the proposed polynomial formulation, to investigate the influence of outbound, duration 
and corresponding correlation, all together. All else being equal, the combination of time choices for outbound and return journeys 
were ranked as follows according to the level of preference: (1) 9:00 – 10:00 and 18:00 – 19:00, (2) 9:00 – 10:00 and 17:00 – 18:00, and 
(3) 8:00 – 9:00 and 17:00 – 18:00. Such results indicated that the utility of departure from home was higher between 8:00 – 10:00 and 
17:00 – 19:00 for departure from work, which complied with the observed departure times (Fig. 1(a) and Fig. 1 (b)). At the same time, 
the preferred duration was greater than 9 h (estimated from the mid-point difference of return and outbound alternatives) which 
included the travel time to the workplace and activity duration. This result is intuitive because, in Bangladesh, the earliest office 
starting time is between 9:00 to 10:00 and closing time is between 16:00 to 17:00 which gives an average of 8 working hours (including 

Fig. 3. Values of ASCs following the polynomial formulation while controlling travel time sensitivity (Highest utility at outbound 8:00 – 10:00 and 
return 17:00 – 19:00 combination). 
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lunch break). Therefore, from the base model, we can infer that our results comply with reality and the proposed model is appro-
priately fitted with the RP data of car commuters both in the morning and evening. 

5.2. Comprehensive MNL models with sociodemographic factors 

Separate MNL models were developed using both the trigonometric model by Ben-Akiva and Abou-Zeid (2013) and the proposed 
polynomial formulation where base models interacted with socio-demographic variables. Three different socio-demographic factors 
were considered using dummy variables that interacted with the constants of the base MNL models: occupation, trip-related attributes 
(e.g., trip length), and household income level. The resultant performance assessment indicators and estimates of both models are 
summarised in Table 6 and Table 7, respectively. The inclusion of socio-demographic variables with the base model led to a significant 
gain over the base model. The log-likelihood of trigonometric formulation increased by 121.46 over the base MNL model while 
incorporating 34 additional parameters for sociodemographic factors. On the other hand, the log-likelihood of the proposed poly-
nomial formulation increased by 110.68 over the base MNL model with 24 additional parameters. The log-likelihood ratio test (LR) 
shows a significant improvement compared to the base MNL model (Table 6). However, the significance of the proposed formulation 
was distinguishable while comparing the adjusted rho-square, BIC and RMSE of both models (Table 6). The RMSE of the proposed 
model was lower than the RMSE of the trigonometric model, showing that the proposed polynomial model had less error than the 
trigonometric model. The intrinsic preference of departure time for different socio-demographic group is shown graphically for both 
state-of-the-art model and proposed model (Fig. 4 and Fig. 5). 

5.2.1. Results from the model developed using trigonometric model 
Results of the trigonometric model are presented in Fig. 4a, Fig. 4b, and Table 7 (a). Fig. 4a,b shows that the utility of outbound 

travel for all car commuters was larger between 7:00 and 10:00. Compared to the self-employed travellers, the office employees had 
higher utilities of departure for outbound trips between 8:00 – 9:00, followed by 7:00 – 8:00. The highest utility of departure for 
outbound trips of short distance travellers was between 8:00 – 10:00 compared to the long-distance travellers. The high-income 
households were more likely to prefer the morning peak (8:00 – 9:00) and a later time in the morning (10:00 – 11:00) for 
outbound trips compared to the commuters with a monthly household income below 60,000 BDT. Fig. 4b shows the intrinsic pref-
erences of departure times for return trips among different socio-demographic groups formulated using the estimated values of ASCs 
using trigonometric formulation (while controlling travel time sensitivity). The return trips were less heterogeneous across different 
groups. The preference of departure was similar for short-distance car commuters and commuters from high-income households, while 
the pattern of the utility of office employees was different. For office employees, the utility of departure for return trips was higher 
between 17:00 – 18:00 than that of self-employed commuters. However, other groups such as short-distance travellers and high income 
had a higher utility of departure for return after 19:00. 

5.2.2. Results from the model developed using the proposed polynomial formulation 
Results from the model developed using the polynomial formulation are shown in Table 7 (b). Surface plots in Fig. 5 (a-d) show the 

preference of outbound, return, and duration for different socio-demographic groups while controlling travel time sensitivity. The 
results indicated that the interaction coefficients of outbound and duration varied across different socio-demographic groups. For 
example, office employees and people from high-income households were more sensitive to interaction effects compared to other 
groups. The inclusion of interaction parameters for different socio-demographics nulled the significance of the base interaction pa-
rameters, highlighting the heterogeneity in interaction effects among the different socio-demographic groups. 

The base surface plot (Fig. 5 (a)) indicates that, for the reference group (e.g., self-employed personnel, long distance commuters, 
and respondents from high-income households), the preferred time choice for the car commuters was 9:00 – 10:00 and 18:00 – 19:00, 
followed by 9:00 – 10:00 and 17:00–––18:00, 8:00 – 9:00 and 17:00–––18:00, 8:00 – 9:00 and 18:00–––19:00. In terms of activity 
duration, the preferred duration choice varied from 8 to 10 h (includes activity duration and travel time to work). More than 46 % of 
car commuters (among the selected respondents) chose a duration window of greater than 8 h (Table 2). 

Table 6 
Performance statistics of comprehensive MNL models.  

Model Parameters (a) State-of-the-art model (b) Proposed model 

Number of observations 950 950 
Number of estimated parameters 54 35 
LL (0) − 4101.61 − 4101.61 
LL (final) − 3529.96 − 3545.04 
Rho-square (0) 0.1374 0.1357 
Adj.Rho-square 0.1262 0.1272 
AIC 7167.92 7160.08 
BIC 7430.17 7330.05 
RMSE 4.70 4.43 
LR test result (Model with sociodemographic variables vs. base model) 
Likelihood ratio test-value (χ2) 242.92 221.36 
Degrees of freedom 34 24 
P-value 2.196e-33 7.259e-34  
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The utility of departure from home for office commuters was higher before 9:00, while the utility of departure from work was 
higher after 17:00, compared to self-employed personnel. (Fig. 5 (b)). Such a scenario was also found in the trigonometric model. As 
mentioned, the usual office starting and closing times in Bangladesh are from 9:00 – 10:00 and 16:00 – 17:00, respectively. These 
periods are also known to be morning and evening peak hours. Schedule delay within these periods is expected to be minimum for the 
office employees, but with a greater possibility to get a late arrival penalty. Hence, to avoid the penalty of a late arrival in the morning 
and evening peak hours, office employees tend to prefer the other alternative periods to depart from home and work. For outbound 
trips of office commuters, the proposed model found the highest utility at 8:00 – 9:00; similarly, the highest utility in the trigonometric 

Table 7 
Estimates from comprehensive MNL model.  

(a) State-of-the-art model (b) Polynomial formulation 

Parameter Estimate Rob.t.rat.(0) Parameter Estimate Rob.t.rat.(0) 

α1
out  2.393  5.762 α1

dept  7.508  3.555 
α2

out  2.889  5.887 α2
dept  − 0.640  − 3.445 

α3
out  − 1.443  − 3.477 α3

dept  0.017  3.208 
α4

out  − 1.280  − 3.740 α1
dur  0.416  1.422 

α5
out  0.585  2.192 α2

dur  − 0.039  − 1.53 
α6

out  − 1.330  − 5.542 α3
dur  0.001  1.221 

α7
out  − 2.051  − 5.038 αintout&retoffpeak  − 0.002  − 0.132 

α8
out  − 0.886  − 3.032 αintoutpeak  6.7493e-04  0.041 

α1
ret  − 2.794  − 2.999 αint retpeak  − 0.003  − 0.195 

α2
ret  2.549  3.676 αintout&retpeak  0.004  0.245 

α3
ret  − 0.360  − 2.871 α1

dept* s2  5.372  2.539 
α4

ret  − 1.029  − 2.722 α2
dept* s2  − 0.507  − 2.702 

α5
ret  − 0.795  − 3.614 α3

dept* s2  0.015  2.875 
α6

ret  − 1.384  − 4.772 α1
dur* s2  1.283  3.206 

α7
ret  2.307  4.138 α2

dur* s2  − 0.080  − 2.353 
α8

ret  − 1.848  − 2.922 α3
dur* s2  0.002  1.730 

α2
out* s2  0.690  4.166 αintout&retoffpeak* s2  − 0.049  − 2.404 

α3
out* s2  − 1.359  − 8.122 αintoutpeak* s2  − 0.046  − 2.210 

α4
out* s2  0.505  2.729 αint retpeak* s2  − 0.045  − 2.124 

α5
out* s2  − 0.610  − 2.684 αintout&retpeak s2  − 0.038  − 1.777 

α8
out* s2  − 1.209  − 3.185 α1

dept* s3  − 5.766  − 3.845 
α1

ret* s2  − 0.627  − 2.775 α2
dept* s3  0.499  3.625 

α2
ret* s2  0.672  3.463 α3

dept* s3  − 0.013  − 3.322 
α4

ret* s2  − 0.613  − 3.293 α1
dur* s3  0.768  2.686 

α5
ret* s2  − 0.538  − 3.807 α2

dur* s3  − 0.075  − 2.186 
α6

ret* s2  − 0.900  − 5.592 α3
dur* s3  0.002  1.935 

α7
ret* s2  0.634  2.762 α1

dept* s4  6.074  2.884 
α1

out* s3  0.242  1.559 α2
dept* s4  − 0.465  − 2.497 

α4
out* s3  − 0.213  − 1.495 α3

dept* s4  0.012  2.217 
α5

out* s3  0.121  0.919 α1
dur* s4  0.838  3.130 

α6
out* s3  − 0.342  − 3.220 α2

dur* s4  − 0.026  − 3.780 
α1

ret* s3  1.024  3.114 αintout&retoffpeak* s4  − 0.047  − 2.537 
α2

ret* s3  − 0.810  − 3.006 (αintoutpeak| (αintout&retpeak))* s4  − 0.054  − 2.767 
α4

ret* s3  0.505  2.722 αint retpeak* s4  − 0.050  − 2.517 
α5

ret* s3  0.246  1.640 βTT  ¡0.013  − 4.037 
α6

ret* s3  0.238  1.245    
α7

ret* s3  − 0.872  − 2.873    
α8

ret* s3  0.589  2.409    
α1

out* s4  0.886  3.877    
α3

out* s4  0.819  4.828    
α4

out* s4  − 0.980  − 3.319    
α5

out* s4  1.115  3.589    
α6

out* s4  − 0.970  − 3.798    
α7

out* s4  − 0.590  − 2.620    
α8

out* s4  0.553  1.483    
α1

ret* s4  0.524  2.200    
α2

ret* s4  − 0.444  − 2.348    
α5

ret* s4  − 0.423  − 3.490    
α7

ret* s4  − 0.544  − 2.779    
α8

ret* s4  0.466  2.254    
α1

dur  0.683  3.312    
α2

dur  − 0.096  − 4.580    
α3

dur  0.003  4.125    
βTT  − 0.012  − 3.336     
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model was during 8:00 – 9:00. The observation data indicated that the highest percentage of office employees (car commuters) started 
their outbound journey at 8:00 – 9:00 (Fig. S1(a)). Additionally, results from the polynomial model revealed that the highest duration 
preference of office commuters was between 9 and 10 h, with the highest utilities for outbound and return journeys at 8:00 – 9:00 and 
18:00 – 19:00, followed by 8:00 – 9:00 and 17:00 – 18:00, respectively. Since additional information about work flexibility and job 
type (full-time/part-time) was not available, no other additional experiment was carried out considering respondents’ job types. 

Furthermore, Fig. 5 (c) exhibits that short-distance travellers (<8km) were less likely to choose a limited number of alternatives 
compared to long-distance travellers. Though the intrinsic preference of departure time for outbound journeys of short-distance 
travellers was between 8:00 – 10:00, their departure time of return journeys was distributed from 17:00 to 24:00. Such a result 
from the proposed model agreed with the observed data (supplement Figure S1 (c and d)). Similarly, according to the state-of-the-art 
model, the distribution of departure time of car commuters for outbound was relatively skewered than the distribution for return. 
Hence, in Dhaka where major urban roads remain congested most of the time, congestion impacts on long-distance travellers are 

Fig. 4a. Intrinsic preference of departure time among different market shares following the trigonometric formulation while controlling travel time 
sensitivity (outbound). 

Fig. 4b. Intrinsic preference of departure time among different market shares following the trigonometric formulation while controlling travel time 
sensitivity (return). *These plots are prepared based on values of ASCs. 
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higher than the short distance travellers. 
For car commuters from high-income groups (monthly income > 60,000 BDT), the utility of departure time for outbound and 

return journeys was the highest during the morning peak (9:00 – 10:00) and evening peak (17:00 – 18:00) compared to other al-
ternatives (Fig. 5 (d)). A higher monthly income corresponds to a higher position in the corporate hierarchy, with less accountability 
for their actions. Therefore, such commuters are less likely to be affected by the consequences of a schedule delay and could prefer to 
travel during the peak time with a very minimal effect on their schedule. For the high-income commuters, the trigonometric 
formulation encountered an overfitting problem, predicting the highest utility of return trips between 19:00 and 20:00. However, the 
observation data indicated that a large share of high-income car commuters travelled between 17:00 – 18:00 (the supplement Figure S1 
(f)). 

5.3. Benefits of the proposed polynomial formulation over the state-of-the-art method 

The previous departure time choice models attempted to address different methodological issues and provided functional ap-
proaches to handle the associated modelling complexities. This study introduced a new approach for modelling departure time choices 
that addresses the challenge of incorporating interaction parameters, rather than treating outbound, return, and duration as separate 
and independent dimensions. This study proposed a novel polynomial functional approximation that considers departure time, 
duration, and the correlation between these two dimensions. Results highlighted that interactions between departure time and 
duration play a crucial role in estimating time preferences. The model fit and prediction accuracy of the estimated models highlighted 

(b) Intrinsic preference of departure for office employee 
compared to the self-employed personnel 
(highest utility at 8:00 –9:00 to 18:00 – 19:00)

(c) Intrinsic preference of departure for short distance 
commuters (<8km) compared to the long-distance commuters 
(highest utility at 8:00 – 9:00 to 18:00 – 19:00)

(d) Intrinsic preference of departure for commuters from 
high income households compared to other income groups 
(highest utility at 9:00 – 10:00 to 17:00 – 18:00)

Fig. 5. Heterogeneity in preference of departure time among different socio-demographic groups following the polynomial formulation while 
controlling travel time sensitivity. *These plots are prepared based on values of ASCs. 

K.E. Zannat et al.                                                                                                                                                                                                      



Transportation Research Part A 184 (2024) 104081

16

that the proposed integrated approach significantly improves the predictive accuracy of the model compared to the traditional 
approach of treating outbound, return, and duration as independent dimensions. Further, results revealed that the interaction pa-
rameters are significant in formulating the utility of different market shares such as office employees and high income (Table 7 (b)). It 
is noteworthy to mention that attempts to estimate the trigonometric model with interaction terms led to specification errors. This 
underscores the importance of the proposed functional approach in capturing correlations across different dimensions and their 
significance in predicting time-of-day preferences. 

Besides, the proposed polynomial functional form is more flexible and requires fewer parameters compared to the state-of-the-art 
method. As a result, the proposed polynomial functional form is computationally less expensive and does not have complex identi-
fication issues. The results of the study reinforced the finding from the previous studies, which demonstrated the level of service 
attributes, trip attributes, and socio-demographic factors significantly influence time-of-day choice (Ben-Akiva and Abou-Zeid, 2013; 
Bwambale et al., 2019; Hess et al., 2005; Palma et al., 2021; Zannat et al., 2021). This study noted that missing information (e.g., 
preferred activity duration, preferred arrival or departure time) in RP data caused difficulties in estimating the time-of-day choice. In 
such a case, overlooking the correlation between departure time and duration could affect the role of critical explanatory variables (e. 
g., travel time). For example, in the proposed model the use of interaction terms in the estimation process enabled to capture the larger 
effect of different independent factors (travel time) and dimensions (departure time and duration) of the systematic utility while 
comparing to the sum of the individual dimension. Also, the model used functional approximation instead of a full set of constants for 
alternatives using RP data. Eventually, the novelty of the proposed functional form stands on its powerful capacity to capture the 
heterogeneity associated with the utility of departure from home at the same time but for different durations. 

Fig. 6. Forecasting scenarios (details of choice of alternatives can be found it Table 3).  
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6. Policy insights 

To address congestion issues such as congestion in peak time, various studies have emphasised the necessity for incentives (reduced 
fare for public transport, congestion tax for private vehicles) that encourage changes in transportation modes, destinations, and de-
parture times (Kockelman and Kalmanje, 2005; Marshall and Banister, 2000; Moya-Gómez and García-Palomares, 2017). In Dhaka, 
where congestion reduction strategies are still in their infancy, primarily focusing on expanding capacity and encountering challenges 
during peak commuting hours, options such as relocating office locations or adopting remote work practices remain unpopular (Jamal 
et al., 2022). Additionally, other studies have demonstrated that car users exhibit strong resistance to mode switching due to factors 
like comfort and time sensitivity (Enam and Choudhury, 2011; Khan et al., 2011; Siddique et al., 2017). Given these constraints, 
adjusting departure times emerges as a viable option for mitigating peak-hour traffic congestion in major congested areas. 

To gain insights into departure time preferences, it is crucial to employ a modelling framework capable of capturing the sensitivity 
to various aspects of time preference. In this article, we introduced a novel modelling framework that addresses a level of complexity 
that was previously unexplored in departure time choice modelling. The implications of our proposed framework and results can be 
understood in two distinct ways. Firstly, our findings highlighted a significant correlation between departure time and duration, 
shedding light on its importance in understanding time-of-day choices. This methodological contribution has the potential to enhance 
our comprehension of travellers’ decision-making processes which can lead to a better policy intervention. Furthermore, the estimated 
model parameters have practical applications in formulating policies aimed at spreading peak-hour traffic to reduce congestion caused 
by car commuters in Dhaka, Bangladesh. 

To highlight the practical application of the proposed model, we carried out 3 different forecasting exercises, each involving a 
modification of a specific attribute influencing the time-of-day choice, as considered within the model. In the first scenario, we 
assumed that everybody in the sample would behave as an office employee using a car for commuting. In the second scenario, it was 
assumed everyone in the sample would be short-distance car traveller and in the third scenario everyone would be from a high-income 
household. The summary of the forecasting is summarised in Fig. 6. For each scenario, we presented the forecasted average probability 
for each time choice, along with the percentage change from the base scenario. The base prediction presented the choice context 
replicated by the proposed model and this prediction served as initial reference point for the forecasting. Furthermore, we presented in 
Table S1 the proportion of the sample that selected each alternative, in conjunction with the base prediction providing a validation of 
the model. In the first scenario (all car commuters office employee), a discernible rise in the likelihood of choosing morning and 
afternoon peaks, as opposed to other off-peak time periods, was observed. This shift was accompanied by a reduction of time choice 
during off-peak hours. A similar increase in peak-hour travel demand was observed when examining an increase in respondents from 
high-income households. However, their likelihood of shifting towards the peak hour was relatively lower compared to office em-
ployees. For these socio-demographic groups, the correlation between departure time and duration exerted a significant and dominant 
influence on the choice of earlier times of the day (around the time of morning and afternoon peak), especially when there was a longer 
duration requirement. In scenario 2, where a correlation between departure and duration was lacking, substantial shifts were noted 
during the morning and evening off-peaks. 

Based on our results and forecasting analysis, we outline different proposals for our case study (Table 8): 

7. Conclusions 

This study presented a novel polynomial approximation of alternative specific constants (ASCs) to model departure time choice. 
The proposed functional form captured the interaction among different dimensions of time preference such as outbound, return, and 
duration. To the best of our knowledge, this was the first attempt to investigate the correlation between departure and duration within 
a departure time choice model framework. A joint departure time choice model (outbound and return) of car commuters was 
developed based on RP data from Dhaka, Bangladesh. The results indicated that the choices were significantly affected by the travel 
times and socio-demographic profile of the respondents. The proposed model reasonably agreed with the observed pattern. 

The current study can be extended in several directions in the future. Firstly, the scope of this study was exclusively on car 
commuters. In the future research, it is crucial to apply our proposed modelling framework across various mode users and trip pur-
poses. Such investigation will help examine the presence or absence of correlation in their time-of-day choice. Further, a similar 
structure can provide additional insights about non commute trips as well. It may be noted that the departure time choice for non- 
commute trips is more complex as there may be more flexibility associated with the choice of activity destination and mode. In 
such cases potentially warranting a joint model for departure time, destination, and mode. Our proposed polynomial functional form 
will serve as a foundational starting point for developing models that address the complexity of joint choice scenarios, accommodating 
multiple correlations across various activity and travel dimensions. Secondly, a lack of observed data post-implementation of strategies 
aimed at shifting time-of-day choices hinders the testing of the prediction accuracy of the proposed model. It is worth noting that, as of 
now, Dhaka has not implemented strategies such as congestion pricing, flexible working hours, time variant fares, etc. that could 
provide relevant data for such testing. In the future, after the implementation of any peak-spreading policies, the temporal preferences 
of car commuters can be compared with observed data, following the approach proposed by West et al. (2016) and Eliasson et al. 
(2013), to assess the accuracy and effectiveness of the proposed model’s predictions. Thirdly, this study ignored the potential cor-
relation between adjacent departure times to retain simplicity for practical implication. Future research can focus on estimating 
correlations of alternatives by using a more complex modelling framework, such as a cross-nested logit model or mixed MNL model, to 
account for the correlation among the alternatives. Finally, the current departure time choice model can be linked to a network 
assignment model specific to car users to evaluate potential route choice under dynamic traffic situation. Also, the research findings 
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can be implemented in an agent-based simulation platform to take into account the interaction of car users with other mode users and 
test the impact of different peak spreading or congestion pricing policies. 

Nevertheless, the proposed functional form overcame several issues related to the time preference model. As such, the proposed 
model (1) did not have the overfitting problem and gave more behaviourally realistic outputs, (2) reduced the computational cost by 
reducing the number of constants required to model time preference with the full set of constants, (3) addressed the issues associated 
with the correlation between departure time and the activity duration, (4) could accommodate multiple peaks without a priori 
assumption, and (5) had the potentiality to fit with both RP and SP data. The findings can be practically useful for devising peak- 

Table 8 
Significance of direct model output to formulate peak-spreading policies targeting car commuters.  

Estimated parameters Outcomes Policy implication 

Correlation between departure 
time and duration (activity 
and travel combined) 

We found a negative correlation between departure time and 
duration, indicating that long duration requirements led to a 
preference for earlier departure times. 

To meet the needs of car commuters with requirements of 
longer durations, it is essential to recognise that they often 
need to begin their journeys early in the morning. 
particularly in morning peaks, to ensure they have enough 
time to meet their workplace requirements within standard 
opening and closing hours. We observed that a significant 
portion of car commuters, approximately 46 % of the 
respondents we selected, fall into this category, requiring a 
duration window of more than 8 h.To  
alleviate the demand during the morning rush hour for those 
who need to travel early for longer durations, it is vital to 
introduce flexibility in work hours and office starting times, 
whenever possible. This approach strengthens the findings of 
a study by Kockelman and Kalmanje (2005), which 
highlighted that congestion pricing policies face challenges 
when fixed office hour requirements are in place. 

Time dependent correlation During the morning and evening peak hours, the correlation 
between departure time and duration appeared to be 
relatively weak compared to other time periods. 

Results highlighted that there was a weaker association 
between departure time and duration during peak hours. This 
implies that at the morning and evening peak, the need for a 
longer duration had less impact on encouraging people to opt 
for an earlier departure before the peak hours. The potential 
reason can be the disutility of arriving early or late at work ( 
De Palma et al., 1990; Hendrickson and Plank, 1984). To 
complement this, peak spreading policies could promote off- 
peak travel by offering pricing incentives for travelling before 
or after peak hours. Additionally, implementing flexible work 
schedules, such as starting work before or after the usual 
office hours, can further mitigate the impact of early arrival 
waiting time. 

Effects of occupation type (office 
employees vs. self-employed 
personnel) 

Outbound and return office employees preferred morning 
and evening peak with a longer duration requirement. Also, 
the forecasting analysis shows that if there were an increase 
in car commuter office employees, there would be a shift 
from other off-peak alternatives to peak periods. 

The significant difference between the office employees and 
self-employed individuals highlighted the fixed work hours 
and strong schedule delay effect on office employees. This 
served as indirect evidence that the introduction of staggered 
work hours or teleworking options could motivate office 
employees to travel during the off-peak hours. 

Effects of distance (short vs long 
distance) 

The preference of short-distance travellers exhibited a more 
distributed patterns of departure times across different time- 
of-the-day, compared to long-distance travellers. Moreover, 
the forecasting analysis shows a major shift of short distance 
car travellers towards off-peak hours as the number of short- 
distance travellers increased. 

These findings suggest that policies aimed at managing 
congestion and optimising transportation resources may need 
to vary based on travel distance. For short-distance car 
travellers, strategies should focus on reducing travel time 
during off-peak hours and providing incentives to encourage 
off-peak travel, thus shifting demand away from peak 
periods. For long-distance travellers, it may be beneficial to 
implement strategies to reduce the need for longer car travel 
(such as park-and-ride facilities) (Marshall and Banister, 
2000) or encourage teleworking and help spread out their 
departure times to reduce congestion during peak hours. 

Effect of Income Significant differences in correlations between departure 
times and durations among different income groups were 
found. Like the office employee, an increase in respondents 
from high-income households would result in higher 
demand around peak times. 

High-income car commuters were more likely to choose peak 
travel times. This group has higher affordability and is less 
likely to be price sensitive. This result complied with the 
findings from the study by Kockelman and Kalmanje (2005) 
in the context of global south. 

Sensitivity to travel time Increase in travel time negatively impacted the utility (i.e., 
travellers prefer shorter travel times over longer ones) of car 
commuters. 

To motivate car commuters to avoid peak hours and choose 
different times, it is important that travel during off-peak 
hours is consistently faster. If there is hardly any difference in 
travel times between peak and off-peak hours, it will become 
challenging to encourage people to explore other alternative 
times of the day as potential alternatives. In such cases, 
intervention to change departure time may not be an effective 
congestion management strategy.  
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spreading policies for car commuters in Dhaka — either as a stand-alone tool to test the impact of varied start times of offices in 
different locations or within an agent-based simulation tool to test the impact of different congestion reduction demand management 
policies. 
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