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A B S T R A C T 

The evolution of many astrophysical systems depends strongly on the balance between heating and cooling, in particular star 
formation in giant molecular clouds and the evolution of young protostellar systems. Protostellar discs are susceptible to the 
gravitational instability, which can play a key role in their evolution and in planet formation. The strength of the instability 

depends on the rate at which the system loses thermal energy. To study the evolution of these systems, we require radiative cooling 

approximations because full radiative transfer is generally too expensive to be coupled to hydrodynamical models. Here, we 
present two new approximate methods for computing radiative cooling that make use of the polytropic cooling approximation. 
This approach invokes the assumption that each parcel of gas is located within a spherical pseudo-cloud, which can then be 
used to approximate the optical depth. The first method combines the methods introduced by Stamatellos et al. and Lombardi 
et al. to o v ercome the limitations of each method at low and high optical depths, respectively. The second method, the ‘modified 

Lombardi’ method, is specifically tailored for self-gravitating discs. This modifies the scale height estimate from the method 

of Lombardi et al. using the analytical scale height for a self-gravitating disc. We show that the modified Lombardi method 

provides an excellent approximation for the column density in a fragmenting disc, a regime in which the existing methods fail 
to reco v er the clumps and spiral structures. We therefore recommend this impro v ed radiativ e cooling method for more realistic 
simulations of self-gravitating discs. 
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 I N T RO D U C T I O N  

adiative transfer is an important aspect of many hydrodynamical
imulations. Accurate treatment of heating and cooling is particularly
mportant for systems undergoing gravitational instability or frag-

entation, such as star-forming clouds and young, self-gravitating
rotoplanetary discs, in which the strength of the gravitational
nstability is a function of the thermal balance between shock heating
nd radiative cooling (Gammie 2001 ). This determines whether
he disc develops spiral arms, fragments, or maintains a smooth,
xisymmetric structure. 

Early work using isothermal simulations suggested that a self-
ravitating phase should be v ery short-liv ed, with either the disc
ragmenting quickly or spiral instabilities acting to stabilize the disc’s
ensity profile (Laughlin & Bodenheimer 1994 ). Ho we ver, simula-
ions that implemented more detailed thermodynamics demonstrated
hat this was mostly a consequence of the isothermal assumption and
 E-mail: alison.young@ed.ac.uk 

i  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
hat a self-gravitating phase may persist for many orbits (Lodato &
ice 2004 ). Now that we expect planet formation to be gin v ery early
hen discs are likely to be self-gravitating (Nixon, King & Pringle
018 ), we need robust models of self-gravitating discs to address
ey questions including how planetesimals grow in young discs.
o we ver, directly implementing radiative transfer in 3D simulations

s by no means trivial. A full treatment would require the follow-
ng: wavelength-dependent and potentially anisotropic absorption,
cattering, and emission of photons; tracing of the photons’ paths
hrough the system; and variable opacities and emissivities for both
ust and gas components. Additionally, e xplicit radiativ e transfer
ime-steps are prohibitively short relative to hydrodynamical time-
cales, particularly in optically thick locations, greatly increasing
omputation time (Castor 2004 ; Brandenburg & Das 2020 ). These
ifficulties have prompted the development of a number of approxi-
ate radiative transfer methods, each depending on some simplifying

ssumptions and approximations. Such methods are naturally limited
n accuracy and scope compared to a full radiative transfer scheme,
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ut allow for the simultaneous simulation of both hydrodynamical 
nd radiative processes. 

One such method that has been used to study the effects of
ooling in protoplanetary discs is the so-called β-cooling model, 
eveloped by Gammie ( 2001 ). This approach parametrizes the local 
ooling time t c in terms of a β parameter and the local Keplerian
ngular velocity ω K , such that t c = β/ ω K . The simplicity of this
arametrization and ease of implementation in hydrodynamical 
odes have made it a popular choice for studying the relationship 
etween cooling and fragmentation in discs (e.g. Rice et al. 2003 ;
ossins, Lodato & Clarke 2009 ; Meru & Bate 2011 ; Boss 2017 ), but

t does not paint a complete picture. There is no compelling argument
or the β parameter remaining constant throughout the extent of 
he disc (Mercer, Stamatellos & Dunhill 2018 ), and more realistic 
ooling methods yield significantly different results (Johnson & 

ammie 2003 ; Vorobyov et al. 2020 ). 
There are two main classes of more physically moti v ated cooling
ethods for protoplanetary disc simulations: those that impose an 

xternal radiation field and calculate radiation transport through 
he disc, and those that make use of local parameters to estimate
he thermal balance at a given location in the disc. Examples of
he first approach include codes that make use of the flux-limited 
if fusion approximation (Le vermore & Pomraning 1981 ), such as
yliffe & Bate ( 2011 ) and Meru & Bate ( 2010 ) with fixed prescribed

emperatures at the edge of the model, or Monte Carlo methods to
ransport photon ‘packets’ throughout the disc, such as the coupled 

CFOST + PHANTOM model (Pinte et al. 2006 ; Price et al. 2018 ;
ealon, Price & Pinte 2020 ). For the coupled radiative transfer

nd hydrodynamics approach, a radiative equilibrium calculation 
s performed every few hydrodynamical time-steps (this is chosen 
o be as infrequent as possible to reduce the o v erheads), after which
he temperatures are updated. Although the radiative transfer is more 
ccurate than under the flux-limited diffusion approximation and can, 
or example, reproduce the effects of shadowing, the coupled method 
s not time-dependent due to the radiative equilibrium assumption. 
he outcome of this is that temperatures are likely to be under- or
 v erestimated in different regions. The second approach – estimating 
he cooling rate based on local properties – is the focus of this paper.
xisting methods are sufficient for modelling symmetrical systems, 

.e. spherical cloud collapse, but are less accurate for modelling 
iscs since the y o v erestimate the optical depth in the disc. This then
hanges the cooling time, which in turn affects the evolution of self-
ravitating discs. The use of Monte Carlo radiative transfer would 
llow for irregular structures but is very costly and currently imposes
adiative equilibrium. As discussed above, it is crucial to have a 
obust cooling model for studying gravito-turbulent discs; therefore, 
 more accurate approximation for the optical depth within discs 
nd therefore the cooling rate is needed, without adding a large 
omputational expense. 

In Section 2 , we first describe the methods that are currently used to
pproximate radiative cooling by assuming that each parcel of gas, 
r smoothed particle hydrodynamics (SPH) particle, is embedded 
ithin a spherical gas cloud (‘polytropic cooling’) and using this 

o estimate the optical depth. The limitations of these methods are 
etailed in Section 2.5 and we further moti v ate the development
f our new techniques. In Section 3.1 , we introduce the first of
ur impro v ed methods for approximating radiativ e cooling in discs,
hich combines the two. We present our second method in Section 
.2 that provides an alternative means of regularizing the Lombardi, 
cInally & Faber ( 2015 ) method in the mid-plane by making use

f disc-specific geometry. In Section 4, we present tests of the new
ethods with a collapsing sphere and a self-gravitating disc and show 

hat the approximations obtain a good fit to the column density. 
 EXISTING  POLY TROPI C  C O O L I N G  

E T H O D S  

uch of what we present here will be based on simulations using
PH (e.g. Monaghan 1992 ), but it is also applicable to other
ydrodynamical formalisms. In SPH, each particle represents a 
arcel of gas and to estimate its radiative cooling rate we need to know
ts optical depth. Physically, this involves integrating the opacity and 
ensity along the path from the particle to the edge of the particle
istribution (e.g. in the case of a disc, to the disc surface). The cooling
pproximations described below instead estimate a mean column 
ensity from the particle to the surface and combine this with mean
pacity estimates. Two different approaches for estimating this mean 
olumn density are described, first using the gravitational potential 
Stamatellos et al. 2007 ) and secondly using the pressure gradient
Lombardi et al. 2015 ). 

.1 The Stamatellos method: the gravitational potential 
pproach 

tamatellos et al. ( 2007 ) introduced a method for approximating the
ptical depth of an SPH particle from its gravitational potential. 
he gravitational potential energy is already calculated in SPH 

imulations that include the gas self-gravity, hence minimizing 
dditional computational expense. This approach treats each parcel 
f gas as if it were embedded within a spherically symmetric ‘pseudo-
loud’ with polytropic density and temperature profiles. The scale 
ength of the polytrope is determined by the gravitational potential at
he location of the SPH particle. Because we do not know where this
as parcel lies within the pseudo-cloud, we must calculate a mass-
eighted average of the pseudo-column density o v er all possible
ositions within it. The mean column density for particle i is then
iven by 

¯
 i = ζn 

[−ψ i ρi 

4 πG 

]1 / 2 

, (1) 

here ζ n is a constant that depends on the polytropic index (which is
elated to n ; see Stamatellos et al. 2007 for the full deri v ation), and ψ i 

nd ρ i are the gravitational potential and density at the position of the
article, respectiv ely. F ollowing Stamatellos et al. ( 2007 ) and Forgan
t al. ( 2009 ), we use ζ 2 = 0.368. We now require a pseudo-mean
ass opacity κ̄i ( ρ, T ) to estimate the mass-weighted optical depth.
he pseudo-mean opacity for particle i is calculated by averaging 
 v er locations in the pseudo-cloud in the same manner as for the
ean column density. This allows us to estimate the optical depth

sing 

ī = �̄ i κ̄i . (2) 

.2 The Lombardi method: the pr essur e gradient approach 

 slightly different approach was introduced by Lombardi et al. 
 2015 ) in which the pressure scale height is used to estimate the
ptical depth rather than the gravitational potential. This method still 
ssumes that each particle is embedded within a polytropic pseudo- 
loud but by using the pressure gradient at the location of the particle,
t performs better for non-spherical gas distributions. 

The pressure scale height, H p, i , of particle i is given by 

 p ,i ≡ P i / | ∇P i | , (3) 

here P i is the pressure at the location of particle i , and ∇P i is the
ressure gradient. 
MNRAS 531, 1746–1755 (2024) 
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The hydrodynamical acceleration excluding the contributions
rom artificial (and real) viscosity and gravity is 

a h ,i = −∇P i 

ρi 

. (4) 

In SPH, the hydrodynamical acceleration a h ,i is already computed
uring the force calculation. For particle i , this is calculated via the
ollowing sum o v er j neighbour particles: 

a h ,i ≡ d v i 
d t 

= −
∑ 

j 

[ 

m j P i 

ρ2 
i �i 

∇ W i + 

m j P j 

ρ2 
j �j 

∇ W j 

] 

, (5) 

n which m j is the particle mass, ρ i ( ρ j ) is the gas density e v aluated
t particle i ( j ), and the gradient of the smoothing kernel is ∇W . � is
elated to the gradient of the smoothing length h i as 

i ≡ 1 − ∂ h i 

∂ ρi 

∑ 

j 

m j 

∂ W ij ( h i ) 

∂ h i 

. (6) 

We can then obtain the pressure scale height via 

 p ,i = 

P i 

ρi 

∣∣a h ,i ∣∣ . (7) 

Calculating the mass-weighted pseudo-mean column density in
he same manner as Stamatellos et al. ( 2007 ), Lombardi et al. ( 2015 )
btain 

¯
 i = ζ ′ ρi H p ,i = 

ζ ′ P i ∣∣a h ,i ∣∣ , (8) 

ith ζ ′ = 1.014. The optical depth can then be estimated using
quation ( 2 ). 

.3 Equation of state 

e employ an identical approach to Stamatellos et al. ( 2007 ) in
hich values of the pseudo-mean opacity κ̄i , Planck mean opacity
i , mean molecular weight μi , and specific internal energy u i 
re pre-computed for the required density and temperature ranges
nd stored in a look-up table to reduce computational expense.
hese were calculated following Bell & Lin ( 1994 ). The Rosse-

and mean and Planck mean opacities are assumed to be the
ame and to depend only on density and temperature and are
iven by 

R ( ρ, T ) = κP ( ρ, T ) = κ0 ρ
a T b , (9) 

here the constants κ0 , a , and b are chosen for each main physical
rocess contributing to the total opacity in that temperature and
ensity range (see Bell & Lin 1994 ; Stamatellos et al. 2007 , for
urther details). The tabulated values are then interpolated during the
ive hydrodynamical computation and the ideal gas approximation is
sed to obtain the gas pressure. 

.4 Updating the energy 

oth methods give us a mass-weighted column density and tabulated
alues of the pseudo-mean opacity. These quantities are now used
o calculate the radiative heating rate of gas parcel represented by
article i : 

d u i 

d t 

∣∣∣
rad 

= 

4 σ
[
T 4 0 ( r i ) − T 4 i 

]
�̄ 

2 κ̄i ( ρi , T i ) + κ−1 
i ( ρi , T i ) 

, (10) 

here T 0 is a minimum temperature determined by background
adiation and κ−1 

i ( ρi , T i ) is the Planck mean opacity, which is
NRAS 531, 1746–1755 (2024) 
abulated along with the mass-weighted opacity κ̄i ( ρi , T i ). External
eating from nearby stars can be included by calculating T 0 for
ach gas particle to prevent the gas cooling radiati vely belo w this
inimum temperature. 1 

The equilibrium temperature of particle i is found by assuming
hat the radiative cooling and the compressive and viscous heating
re in balance: 

d u i 

d t 

∣∣∣
hydro 

+ 

d u i 

d t 

∣∣∣
rad 

= 0 . (11) 

ubstituting the equilibrium temperature T eq, i for T i in equation ( 10 )
ives 

 

4 
eq ,i = 

1 

4 σ

[
�̄ 

2 κ̄i ( ρi , T i ) + κ−1 
i ( ρi , T i ) 

] d u i 

d t 

∣∣∣
hydro 

+ T 4 0 ( r i ) . (12) 

In the case that T 4 eq ,i ≤ T 4 0 ( r i ), we set T 4 eq ,i = T 4 0 ( r i ). The equi-
ibrium energy is then u eq, i = u ( T eq, i , ρ i ). The energy is updated by
onsidering the approach towards the equilibrium temperature with
hermal time-scale 

 therm ,i = 

(
u eq ,i − u i 

) [
d u i 

d t 

∣∣∣
hydro 

+ 

d u i 

d t 

∣∣∣
rad 

]−1 

. (13) 

or implementation within a typical SPH code, the cooling rate is
hen given by 

d u i 
d t 

∣∣∣
cool 

= 

1 

δt 

[
u i exp 

( −δt 

t therm ,i 

)
+ u eq ,i 

(
1 − exp 

( −δt 

t therm ,i 

))
− u i 

]
.

(14)

he energy equation is then updated via 

 i ( t + δt) = u i ( t) + δt 
d u i 

d t 

∣∣∣
cool 

. (15) 

.5 Limitations of these methods 

n both cases, given the estimate is based only on local parameters
lready used in hydrodynamical calculations in SPH, there is no need
or communication of information with other fluid elements, and
here is therefore a minor computational cost when compared with

ethods that utilize a radiation field or photon packets. Ho we ver,
ny local approximation of optical depth will necessarily require
ssumptions about the system’s global geometry. In the case where
ne wishes to study systems with multiple geometries co-occurring
for example, discs with spherical clumps and spiral waves, or with

ow-density envelopes or streamer tails – accurately estimating the
ooling rate in all regions of the disc with just one method can be
roblematic. 
The Stamatellos et al. ( 2007 ) method significantly o v erestimates

he optical depth in lower density regions of the disc but performs
etter towards the disc mid-plane and in spherical clumps. The
ombardi et al. ( 2015 ) method is more accurate o v erall in disc
imulations (Mercer et al. 2018 ), but breaks down in regions where
he pressure gradient approaches zero, such as in the disc mid-plane
r the centre of clumps. By combining the two methods, one can
ake advantage of the strengths of each approach to achieve more
ccurate cooling throughout the whole of the disc. It is also possible
o impro v e on the Lombardi et al. ( 2015 ) method in the regions where
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t fails by using another means of estimating the optical depth that
akes use of a disc-specific density distribution assumption, as there 

s a simple relationship between mid-plane density, scale height, and 
olumn density in discs. 

 M E T H O D  

n this section, we detail two new methods for estimating the optical
epth of a particle. First, in Section 3.1 , we combine the estimates
rom the methods of Stamatellos et al. ( 2007 ) and Lombardi et al.
 2015 ), and secondly, in Section 3.2 , we modify the method of
ombardi et al. ( 2015 ) specifically tailored for modelling self-
ravitating discs. 

.1 The combined method: combining estimates of optical 
epth 

hile Lombardi et al. ( 2015 ) and Mercer et al. ( 2018 ) showed
hat the pressure scale height and density can be used to provide
 good estimate of the column density (equation 8 ), this estimate
reaks down in regions where the pressure gradient is close to 
ero, such as at the centre of a fragment or close to a disc mid-
lane. Since a large part of the mass can be found under such
onditions, the average cooling rate can be affected and we are 
oti v ated to find a way to impro v e the estimate under these

onditions. 
Here, we explore replacing the Lombardi method with a surface 

ensity estimated by the Stamatellos method in regions where ∇P 

 0 as the Stamatellos method remains well defined in such 
egions. 

First, we define a scale height based on the Stamatellos method 
ia 

 S = 

ζn 

ζ ′ 

[ −ψ 

4 πGρ

]1 / 2 

, (16) 

hich we combine with the Lombardi estimate H P in inverse 
uadrature, i.e. 

 C = 

(
H 

−2 
P + H 

−2 
S 

)−1 / 2 
. (17) 

his selects the smaller of the two estimates, chosen because the 
tamatellos method is known to o v erestimate the surface density in
isc geometries and therefore generally we will only want to use 
his estimate when the Lombardi method is also failing, producing 
 v erestimates itself. 
As a first test of this combined method, we consider a polytrope as

n approximation to the structure of a self-gravitating fragment, and 
how �( z) for an n = 3/2 polytrope and also the different column
ensity estimates in Fig. 1 . As previously stated, the Lombardi 
ethod works well away from the centre of the polytrope but 
 v erestimates the column density once the density and pressure
radients tend to zero close to the centre of the polytrope. The
ombined method offers an impro v ement o v er the Lombardi method
lone near the core, but it does lead to a moderate underestimate
f the column density. This follows because the Stamatellos method 
ses an estimate of the column density that is averaged over the entire
olytrope and therefore must underestimate the column density at the 
entre, where the column is highest. 

Next, we consider how the combined method works in a disc 
eometry. To this end, we consider a thin, self-gravitating disc. 
igh-resolution simulations show that self-gravitating discs have 
 temperature structure that is typically close to vertically isothermal 
Shi & Chiang 2014 ; Booth & Clarke 2019 ), so we choose a vertically
sothermal structure. Then, vertical hydrostatic equilibrium implies 

1 

P 

d P 

d z 
= 

1 

ρ

d ρ

d z 
= −ω 

2 
K z + 4 πGρ0 ̃  � 

c 2 s 

= − 1 

H 

2 ∗

(
z + 

˜ � 

Q 3D 

)
= −H 

−1 
P , (18) 

here we have assumed that the disc’s self-gravity can be calculated 
sing a slab approximation, as in Wilkins & Clarke ( 2012 ) for
xample. Here, H ∗ = c s / ω K , where c s is the isothermal sound speed,
 K is the Keplerian angular frequency, and ˜ � = 

∫ z 
0 ρ( z) /ρ(0) d z. For

he last equality, we have introduced Q 3D = ω 

2 
K / 4 πGρ(0), which is

he 3D definition of the Toomre Q parameter (e.g. Mamatsashvili &
ice 2010 ; Lin & Kratter 2016 ). 
To compute the potential, we need to extend this 1D model to

 global disc because the potential of an infinitely extended self-
ravitating slab is undefined. We choose a disc that has a constant Q 3D 

ith radius so that the vertical structure is given by the same solution
o equation ( 18 ) everywhere. The definition of Q 3D then enforces
he mid-plane density scaling as ρ0 ∝ R 

−3 . Specifying the scale
eight, H ∗, fixes the surface density and the disc model is complete.
ere, we choose H ∗/ R = 0.1. We then compute the potential by
irect integration of Green’s function for Poisson’s equation in 3D. 
e assume that the disc extends from 5 to 100 au for consistency
ith the discs used in the SPH simulations. We note that while the
nal potential is not perfectly consistent with the disc structure, the
ifference is small when the disc is thin (e.g. Bertin & Lodato 1999 ;
ilkins & Clarke 2012 ). 
In Fig. 2 , we compare the surface density for the analytical

isc model to the Lombardi estimate using the exact H P from
quation ( 18 ). The estimate works well at large z but, as expected, it
 v erestimates the surface density at z = 0. To regularize the Lombardi
ethod, we e v aluate the potential assuming a point 50 au from

he star. Here, we see that the combined method impro v es on the
ombardi estimate, as expected. In this case, the combined method 
oderately o v erestimates the column density at the mid-plane, which

s expected since the Stamatellos method has been shown previously 
o o v erestimate the column density in disc geometries (Wilkins &
larke 2012 ; Lombardi et al. 2015 ; Mercer et al. 2018 ). 
MNRAS 531, 1746–1755 (2024) 
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M

Figure 2. Top: The column density from z to infinity for the analytical 
self-gravitating disc model. Also shown are different estimates based on the 
Lombardi method and combined method, as well as a modified Lombardi 
method applicable to discs (see Section 3.2 ). Bottom: The ratio of the 
estimated column density to the exact column density. 
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Figure 3. A comparison between the half thickness of a self-gravitating disc 
for different Q 3D and the fit formula given in equation ( 19 ). 
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These two simple tests demonstrate that combining the Lombardi
nd Stamatellos methods should offer a significant impro v ement o v er
sing either method alone. In Section 4 , we explore this for more
ealistic scenarios that arise in SPH simulations. 

.2 The modified Lombardi method: an impro v ed Lombardi 
ethod for disc simulations 

he Stamatellos method is not the only viable option for regularizing
he Lombardi method. Since the Lombardi method only fails in
egions where ∇P ≈ 0, such as the mid-plane of discs or the centre
f polytropes, we only need to replace the estimate at such locations.
ere, we explore an alternative that makes use of the fact that there

s a simple relationship between the mid-plane density, scale height,
nd column density in a disc geometry. 

For a non-self-gravitating disc, the (half) column density and
id-plane density are related via �/ 2 = ρ0 

√ 

π/ 2 H ∗, and so H 0 =
 

π/ 2 H ∗ could be used in the place of H S . Away from the mid-plane,
 P < 

√ 

π/ 2 H ∗, so the Lombardi method would take o v er. Ho we ver,
sing 

√ 

π/ 2 H ∗ o v erestimates the column density for self-gravitating
iscs or in fragments because self-gravity further compresses the
as, reducing the scale height. Fortunately, it is possible to estimate
 0 for a disc with an y Q 3D . F or Q 3D � 1, H 0 = 

√ 

π/ 2 H ∗ suffices.
n the regime Q 3D � 1, the second term in equation ( 18 ) dominates
nd the equation can be made dimensionless by substituting z with
 

′ λ, where λ = H ∗
√ 

Q 3D . We therefore expect H 0 / H ∗ to scale with
 

Q 3D when Q 3D is small, and indeed find that the fitting formula, 

H 0 

H ∗
= 

t √ 

1 + 1 / ( tQ 3D ) 
, (19) 

escribes �(0)/ ρ(0) well, where t = 

√ 

π/ 2 (Fig. 3 ). 2 
NRAS 531, 1746–1755 (2024) 

 In the SPH model, we implement ω K,i = 

√ 

GM ∗/ | r K,i | 3 , where r K,i = 

r i − r ∗ is the separation between the gas particle i and the sink particle (star). 

I
f
p

An advantage of equation ( 19 ) is that it can be e v aluated using
uantities local to the disc mid-plane only (i.e. ρ, c s , and ω K ). Further,
hile equation ( 19 ) is only strictly meaningful at the mid-plane it can
e e v aluated anywhere as it only depends on local quantities. Since
 0 increases away from the mid-plane (because ρ decreases) and H P 

ecreases, replacing H S with equation ( 19 ) in equation ( 17 ) results
n a method that produces similar estimates to the Lombardi method
way from the mid-plane, which is generally quite accurate. Indeed,
ig. 2 shows that this ‘modified Lombardi’ method outperforms the
ormal Lombardi and combined Lombardi + Stamatellos methods
n discs. For the method to be robust, ho we ver, we need it to work
ell when the geometry deviates significantly from a disc. 
Next, we apply this modified Lombardi method to a polytrope

s a model for a fragment in a self-gravitating disc. Under such
onditions, we expect Q 3D � 1, such that H 0 ≈ 2 c s / 

√ 

4 πGρ0 . We
pply this estimate of H 0 to the polytrope in Fig. 1 , which shows that
quation ( 19 ) provides an estimate of �( z) that is accurate to within
 factor of 2, in a spherical geometry. Since the size of a polytrope
cales with c s 

√ 

( n + 1) / 4 πGρ(0) (e.g. Clarke & Carswell 2014 ), the
ccuracy of this estimate is independent of Q 3D as long as Q 3D � 1.
ince the modified Lombardi method works well for disc geometries

n general and for polytropic clumps when Q 3D � 1, we expect it to
e widely applicable to the structures present in self-gravitating discs
nd it also works well for spherical geometries. Finally, it should be
oted that in deriving equation ( 19 ) we have assumed hydrostatic
quilibrium. As a result, the modified Lombardi method may not
ffer a significant impro v ement a way from hydrostatic equilibrium. 

 TESTS  

e now present tests using the SPH code PHANTOM (Price et al.
018 ). For comparisons with previous work, we first simulate the
ollapse of a uniform density sphere and then consider both low- and
igh-mass discs. For the collapse of the uniform density sphere, we
nly consider the combined method, but for the low- and high-mass
rotoplanetary discs we consider both the combined method and
he modified Lombardi method. The key factor that determines how
ccurately the cooling rate is estimated and the difference between
he methods is how well the column density at each position is
stimated. The column density estimates are therefore the focus of
his section. 
f there is no sink particle, ω K, i = 0. This approach would need to be adapted 
or simulations with multiple stars, for example, by adding ω K, i for each sink 
article in quadrature. 
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Figure 4. The evolution of the maximum density and temperature during the 
collapse of a uniform density sphere with three radiative cooling methods: 
Stamatellos method (yellow line), Lombardi method (red dotted line), and 
the combined method (blue dashed line). The results from the simulation 
of Masunaga & Inutsuka ( 2000 ) are plotted (black dash–dotted line) for 
comparison. The initial mass and radius are 1.5 M 
 and 10 4 au, respectively, 
and the temperature is initially 5 K throughout. The evolution under the 
combined method lies almost exactly on top of the results obtained using the 
Stamatellos method. 
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method (yellow open circles), the Lombardi method (red open squares), the 
combined method (blue stars), and the modified Lombardi method (green 
triangles). The dashed line is the ‘true’ column density profile, determined 
by integrating the density in the SPH simulation from the centre of the cloud 
to the surface. 
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.1 Collapse of a uniform density sphere 

he gravitational collapse of a uniform density sphere represents the 
ollapse of a protostellar cloud core and forms a useful benchmark 
see Masunaga & Inutsuka 2000 for the first radiation hydrodynami- 
al simulation of such a collapse). For this test, we use 2 × 10 6 SPH
articles to simulate a cloud core of mass 1.5 M 
, with an initial
adius of 10 4 au, and an initially uniform temperature of 5 K. 

Fig. 4 shows the evolution of the maximum density and temper- 
ture of the cloud core using the Stamatellos method, the Lombardi 
ethod, and the combined method. For the Stamatellos and com- 

ined methods, this is simply the density and temperature of the SPH
article with the highest density. For the Lombardi method, there 
s considerable scatter, so we average the 200 SPH particles with 
he highest density. The evolution of models with the Stamatellos, 
ombardi, and combined methods are very similar. Moreover, Fig. 
 shows that these methods produce results that are close to what
s expected (black dash–dotted line from Masunaga & Inutsuka 
000 ). As mentioned in Stamatellos et al. ( 2007 ), the differences
ith respect to Masunaga & Inutsuka ( 2000 ) are likely due to the
ifferent opacities implemented. 
The small differences in the evolution between the models are due 

o the methods used to estimate the column density. Therefore, we 
ow examine the column density estimates in each case. For this
nalysis, we used a single simulation (using the combined cooling 
ethod) and determined the column density estimate for all three 

ooling methods at different times in this simulation. 
Fig. 5 shows the resulting column density estimates as a function 

f radius for two snapshots during the collapse. We compare these 
stimates with the ‘true’ column density (black dashed lines), 
alculated by integrating the density outwards from the specified 
loud radius to the surface. Near the cloud core centre, the Lombardi
ethod initially o v erestimates the column density and Fig. 5 displays
 lot of scatter. This is because the pressure gradient will initially be
lose to zero near the core centre, and so the Lombardi method will
ot produce reliable estimates of the column density. It is because of
his scatter that it is necessary to average the 200 particles with the
ighest density when producing the results for the Lombardi method 
hown in Fig. 4 . 

On the other hand, near the cloud centre, the Stamatellos method,
he combined method (which tends to the Stamatellos method in these 
egions), and the modified Lombardi method initially underestimate 
he column density, but avoid the large scatter seen in the Lombardi

ethod. Ho we ver, at larger radii, the Stamatellos method clearly
 v erestimates the column density, while the Lombardi and modified
ombardi methods produce values much closer to the real column 
ensity. In these regions, the combined method tends to the Lombardi
ethod and produces a reliable estimate of the column density. 
The right-hand panel of Fig. 5 shows that as the cloud collapse

rogresses, the combined method tends to the Lombardi method 
hroughout most of the cloud core and both return reasonable 
stimates of the column density. The modified Lombardi method 
lso provides a reasonable estimate of the column density, despite 
eing designed for a disc geometry. 

.2 Evolution of a protoplanetary disc 

.2.1 Low-mass disc 

e first consider a low-mass disc, similar to that presented in Mercer
t al. ( 2018 ). The disc has an initial surface density profile of � ∝
 

−1 , extending from r = 5 au to r = 100 au, and an initial sound
peed profile of c s ∝ r −0.25 . The total disc mass is M disc = 0.01 M 
,
nd the aspect ratio at r = 5 au is initially H / r = c s / � = 0.05. The
isc gas is represented by 2 × 10 6 SPH particles and the central star
as a mass of M ∗ = 0.8 M 
 and is represented by a sink particle.
he artificial viscosity parameters are αSPH = 1.0 and βSPH = 2.0. 
We run the simulation for t = 1200 yr to allow the disc to settle

nd specify a minimum disc temperature of T 0 = 25 K. The column
ensity snapshot of the disc at t = 1200 yr (Fig. 6 ) shows that the disc
as a smooth structure. We then consider a thin azimuthal ring within
he disc at r = 75 au. Fig. 7 shows the vertical density structure at r =
5 au with a by-eye fit to the particle plot. Fitting with the expected
rofile of ρ = ρ0 exp( −z 2 /2 H 

2 ) demonstrates that the scale height at
 = 75 au is about H = 6.7 au. 

We now compare this value obtained directly from the simulation 
o estimates obtained using each of the Stamatellos, Lombardi, 
MNRAS 531, 1746–1755 (2024) 
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M

Figure 6. Snapshot of the disc column density at t = 1200 yr for the M disc 

= 0.01 M 
 (low-mass) disc discussed in Section 4.2.1 . 

Figure 7. By-eye fit to the vertical profile, at r = 75 au, of the SPH simulation 
of a 0.01 M 
 (low-mass) disc around a 0.8 M 
 central star. 

Figure 8. Estimates for the disc scale height at r = 75 au of the low-mass disc 
calculated with the Stamatellos method (yellow circles), the Lombardi method 
(red open squares), the combined method (blue stars), and the modified 
Lombardi method (green triangles). The dotted line is H = 6.7 au, the ‘true’ 
scale height obtained from the fit shown in Fig. 7 . 
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Figure 9. Estimates for the column density against z at r = 75 au of 
the 0.01 M 
 (low-mass) disc using the Stamatellos method (yellow open 
circles), the Lombardi method (red open squares), the combined method 
(blue stars), and the modified Lombardi method (open green triangles). The 
dashed line shows the column density determined directly from the simulation 
by integrating the density from z to the nearest disc surface. The total column 
density at r = 75 au (equi v alent to the surface density) is indicated by the 
dotted line and will be twice the column density from the mid-plane to the 
nearest surface. We are looking to obtain estimates as close to the dashed line 
as possible. 
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ombined, and modified Lombardi methods. Estimates of the scale
eight, H , for a randomly selected sample of SPH particles are
resented in Fig. 8 , along with the value obtained directly from the
imulation ( H = 6.7 au, dotted line, cf. Fig. 7 ). Near the mid-plane,
NRAS 531, 1746–1755 (2024) 
he Stamatellos method (open yellow circles) produces a reasonable
stimate for the scale height, but at higher altitudes is clearly far
oo large. The Lombardi method is, again, unreliable near the mid-
lane, since this is a region where the pressure gradient is tending
owards zero, but appears to produce more reasonable estimates at
igher altitudes. Combining the two methods (Fig. 8 , blue stars) then
roduces estimates that tend to the Stamatellos method near the mid-
lane, and to the Lombardi method at higher altitudes. The modified
ombardi method is an almost exact match to the expected scale
eight in the mid-plane, and then follows the Lombardi method at
igher altitudes. 
Fig. 9 shows the column density estimates found using equations

 1 ) and ( 8 ) at r = 75 au as a function of the height abo v e the
id-plane, z, for the four methods together with the full surface

ensity from the SPH simulation (dotted line) and column densities
etermined directly from the SPH simulation (dashed line). Again,
or the Lombardi, Stamatellos, combined, and modified Lombardi
ethods, we plot a random sample of the estimates. The full SPH

urface density (dotted line) is determined by integrating the SPH
ensity at r = 75 au o v er the full disc column, while the column
ensity against z (dashed line) is determined by integrating the SPH
ensity from z to the nearest disc surface. 
The column density estimates from the Stamatellos, Lombardi,

nd combined methods are determined by multiplying the scale
eight, H , in Fig. 8 by the local gas density. It should be noted
hat the column density estimates from the four methods are one-
ided column densities (i.e. from the z to the nearest disc surface)
nd, hence, at the mid-plane are about a factor of 2 smaller than the
ull column/surface density (dotted line in Fig. 9 ). 

Comparing the column densities from the SPH simulation itself
ith the various estimates shows that the Lombardi method is again
nreliable near the mid-plane ( z ∼ 0) but produces reliable estimates
t higher z, while the Stamatellos method produces reasonable
stimates near the mid-plane but produces column density estimates
hat are much too high at higher z. Both the combined method and
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Figure 10. Column density estimates against disc radius for the 0.01 M 

(low-mass) disc. For the Stamatellos (yellow open circles), Lombardi (red 
open squares), combined (blue stars), and modified Lombardi (open green 
triangles) methods, we plot a random sample of estimates that are within 0.05 
au of the mid-plane ( z = 0). 
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Figure 11. Column density renderings of the SPH simulations of high-mass 
discs with masses of M disc = 0.2 M 
 (left-hand panel) and M disc = 0.25 M 

(right-hand panel). Both were evolved using the combined method. 

Figure 12. Column density against radius along a thin strip on the x -axis 
of the M disc = 0.2 M 
 disc shown in the left-hand panel of Fig. 11 , close 
to the mid-plane. The black crosses show the column density determined by 
integrating the gas density in the SPH simulation, while the other symbols 
are column densities from the Stamatellos method (yellow open circles), the 
Lombardi method (red open squares), combined method (blue stars), and 
modified Lombardi method (open green triangles). 
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he modified Lombardi method produce reasonable estimates of the 
olumn density throughout the disc column. 

Finally, Fig. 10 shows the mid-plane column density estimates 
¯
 ( r) and half the disc surface density determined directly from

he SPH simulation, which we take as a reasonable estimate of
he column density from the disc mid-plane to the surface. For the
ombardi, Stamatellos, combined, and modified Lombardi method 
stimates, we plot a random sample of column density estimates that 
re within 0.05 au of the mid-plane ( z = 0). Again, the Lombardi
ethod shows a lot of scatter, while the combined method remo v es
ost of this scatter and produces reasonable estimates for the column 

ensity at almost all radii. Ho we ver, it is clear that the Stamatellos,
ombardi, and combined methods all slightly o v erestimate the mid-
lane column densities, with the discrepancy becoming large at small 
isc radii. The modified Lombardi method matches the expected 
olumn density at all radii, illustrating how this is a particularly 
eliable method for disc-like geometries. 

.2.2 High-mass disc 

e now consider two different high-mass discs, both evolved using 
he combined method. Both discs initially extend from r = 5 au to
 = 100 au, have surface density profiles of � ∝ r −1 , sound speed
rofiles of c s ∝ r −1/4 , initial scale heights at r = 5 au of H = 0.275
u (i.e. H / r = 0.055), and have central star masses of M ∗ = 0.8 M 
.
he disc masses are M disc = 0.2 M 
 and M disc = 0.25 M 
, and each
isc is represented by 2 × 10 6 SPH particles. The artificial viscosity
arameters are αSPH = 1.0 and βSPH = 2.0 and a floor temperature of
 0 = 10 K was imposed. Fig. 11 shows that the M disc = 0.2 M 
 settles

nto a quasi-steady state with spirals, while the M disc = 0.25 M 
 disc
ecomes violently unstable and undergoes fragmentation. 
We now consider how well the different methods for estimating 

he column density represent structures within the disc. Fig. 12 shows
he mid-plane column density along a thin strip along the positive 
 -axis of the M disc = 0.2 M 
 disc shown in the left-hand panel of
ig. 11 . The region considered is x > 0 au, | y | < 1 au. The black
rosses show the ‘true’ column density determined by integrating 
he gas densities in the SPH simulation, while the symbols are the
stimates from the Lombardi, Stamatellos, combined, and modified 
ombardi methods for | z| < 0.1 au. 
Since the mid-plane is a region where the pressure gradient 
ill tend to zero, the Lombardi method again shows a lot of

catter. The combined method (blue stars) remo v es most of this
catter and seems to do reasonably well at capturing the spiral
tructure in the disc; for example, it captures the trough at r ∼
5 au and the peak at r ∼ 55 au. Ho we ver, as in Fig. 10 , the
tamatellos, Lombardi, and combined methods tend to o v erestimate 

he mid-plane column density, generally by a factor of about 2.
he modified Lombardi method not only captures the mid-plane 
ensity structures, but also mostly matches the expected column 
ensity. 
Turning now to fragmenting discs, we examine how well the 
ethods can reco v er the structure of clumps within a disc. The

lump considered here formed in the M disc = 0.25 M 
 disc (Fig. 11 ,
ight-hand panel) and is located at x ∼ 45 au, y ∼ 45 au in the
napshot. The column density as a function of the radius from the
entre of this clump is presented in Fig. 13 . Since we do not know
he exact boundary of the clump, we calculate the ‘true’ column
ensity (black dashed line) by integrating the gas density out to a
lump radius of 10 au, which could slightly o v erestimate the column
ensity as it may include some of the surrounding gas disc. The
ombardi method o v erestimates the column density near the clump
MNRAS 531, 1746–1755 (2024) 
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M

Figure 13. Column density of one of the clumps in the fragmenting high- 
mass disc shown in the right-hand panel of Fig. 11 . The dashed line is the 
SPH density integrated from the clump centre to r clump = 10 au. The symbols 
are, again, a randomly selected sample of the column density estimates using 
the Stamatellos method (yellow open circles), Lombardi method (red open 
squares), combined method (blue stars), and the modified Lombardi method 
(open green triangles). The combined and modified Lombardi methods give 
very similar values near the centre of the clump and they agree with the 
Stamatellos method. 

Figure 14. Cut through the disc along a radial line that includes the clump 
shown in Fig. 13 (the M disc = 0.25 M 
) showing the column densities from 

the SPH simulation (black crosses) and the estimates from the Stamatellos 
method (yellow open circles), the Lombardi method (red open squares), the 
combined method (blue stars), and the modified Lombardi method (open 
green triangles). For r > 50 au, the points for the modified Lombardi method 
mostly lie on top of those of the combined method. 
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entre, while at larger radii the Stamatellos method produces column
ensity estimates that are too high. Combining the two methods
eems to produce estimates that are reasonably close to that expected.
n this case, the modified Lombardi method produces estimates very
imilar to those from the combined method. 

Finally, Fig. 14 shows a radial cut through the M disc = 0.25 M 

isc (Fig. 11 , right-hand panel) that includes the clump at r ∼
5 au, the column density of which was shown in Fig. 13 . All
he methods capture the clump but, again, the Lombardi method
 v erestimates the column density near the clump centre, while the
tamatellos method slightly o v erestimates the column density in

he wings of the clump. The combined and modified Lombardi
ethods both closely reco v er the peak of the clump and the clump

rofile. 
NRAS 531, 1746–1755 (2024) 
 SUMMARY  

e have described and tested two new methods for approximating
adiative cooling in hydrodynamical models in discs. The Stamatellos
ethod, estimating the optical depth via the gravitational potential,

as been shown to o v erestimate the column density, and therefore
nderestimate the cooling rate in discs (Mercer et al. 2018 ). The
ombardi method, in which the column density derives from the

ocal quantity of the pressure gradient, provides a more accurate
stimate of the radiative cooling rate (Lombardi et al. 2015 ), but we
how that the column density estimates become unreliable close to
he disc mid-plane. These issues are resolved by combining the two

ethods, to achiev e impro v ed estimates in re gions of both high and
ow optical depths. This method is particularly suited to spherical
eometries. For disc geometries, we present the modified Lombardi
ethod, in which the Lombardi estimate is adjusted close to the disc
id-plane using an estimate of the scale height in a self-gravitating

isc. Whereas Mercer et al. ( 2018 ) show that the Lombardi and
tamatellos methods both fail to provide accurate estimates of the
ptical depth in a disc with clumps, the modified Lombardi method
losely reco v ers the column density throughout a clumpy disc and
races the peaks and troughs associated with clumps and spirals
ell. Of course, since the optical depth is estimated from local disc
roperties, more complex geometries will not be modelled well. Full
adiative transfer is required to include the effects of shadowing, for
xample. 

It is straightforward to include the effects of a central star or stars,
xternal stellar companions, and/or a variable interstellar radiation
eld since the background temperature can incorporate arbitrary
 xternal heating. Radiativ e transfer can be incorporated via the
ux-limited diffusion approximation as formulated by Forgan et al.
 2009 ), since the implementation of the new methods is identical
o that of Stamatellos et al. ( 2007 ). A future development will be
o consider the heating and gravitational influence of multiple sink
articles. 
The modified Lombardi method is ideal for modelling self-

ravitating discs and presents exciting prospects for studying young
rotoplanetary discs with a physical treatment of cooling. 
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