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ABSTRACT 

A key issue for automatic speaker recognition (ASR), 

particularly for forensics, is our lack of understanding about 

why certain voices prove more or less of a challenge for 

systems. In this paper, we focus on variability in individual 

speaker performance within an x-vector ASR system and 

examine this variability as a function of the phonetic content 

within speech samples. The inclusion of vowels generally 

improved performance, but not for all speakers. Indeed, some 

speakers produced broadly the same Cllr irrespective of the 

phonetic content in the speech samples. Poor ASR performance 

was not well correlated with long-term laryngeal features (f0 

and laryngeal voice quality) and these features may provide 

additional speaker discriminatory information for some 

speakers. We discuss the implications of these findings in terms 

of developing a speaker quality metric for flagging potentially 

problematic speakers prior to ASR comparison. 

1. INTRODUCTION 

1.1. Forensic automatic speaker recognition 

Automatic speaker recognition (ASR) systems are increasingly 

used in forensic voice comparison (FVC) [1,2] casework 

around the world. ASR systems have many benefits over 

traditional linguistic and phonetic analysis conducted by a 

forensic speech scientist. Firstly, ASR is relatively quick and 

efficient. This reduces the amount of time needed to conduct 

FVC casework (where linguistic and phonetic analysis would 

take 10-15 hours per case for a typical 1:1 comparison). The 

speed of ASR also facilitates large-scale validation of systems. 

Secondly, ASR systems are considered, to some extent, to be 

more objective than linguistic and phonetic analysis. This is 

true in the sense that, given the same system with the same 

settings and input data, the output will be exactly reproducible. 

That is not to say, however, that ASR does not involve any 

subjectivity (see [3]). Further, calibrated ASR systems provide 

a statistically-grounded, numerical LR as output, where 

typicality is estimated empirically rather than based 

subjectively on the knowledge and experience of the analyst (as 

it is in linguistic and phonetic analysis). 

Despite these advantages, the application of ASR to 

forensic materials remains challenging. In part, this is because 

of practical issues with the availability of large enough sets of 

recordings that are representative of the conditions of casework 

in order to train calibration models and conduct meaningful 

case-specific validation [4]. There are also broader issues 

around interpretability and explainability [5]. Development of 

ASR systems has typically focused on advances in modelling 

and algorithms in order to handle different types of technical 

challenges that may be encountered in real case materials. Such 

development has seen considerable improvement in overall 

ASR performance with new generations of systems [6], 

especially for state-of-the-art approaches that utilise deep 

learning to generate an embedding-based representation of the 

voice in a recording. The improvements in performance 

necessarily reflect the fact that state-of-the-art systems capture 

more speaker-specific information in their speaker 

representations than ever before. However, relatively little is 

yet known about why certain voices would or would not 

perform well within a system. Principally, this is because we do 

not know precisely which linguistic and phonetic properties are 

captured by systems - and crucially, which are missed - when 

generating speaker embeddings. 

Such information is often overlooked because testing of 

ASR systems, even in forensic contexts [6], tends to focus on 

overall performance metrics, which average over the results of 

a large number of comparisons from a large number of 

speakers. In this way, progress within the field is measured by 

improvements in the overall performance metric, with less 

concern given to the specific causes of contrary-to-fact results 

(i.e. which speakers or samples are responsible for the errors).  

1.2. Importance of the speaker factors for forensics 

Relatively little work has considered the effect of speaker 

factors on ASR performance. There are two principal reasons 

why more research is needed in this area, particularly in the 

context of forensic evaluation. Firstly, it may be possible to 



 

 

leverage information about the behaviour of individuals or sub-

sets of speakers within systems in order to improve overall 

performance; for example, if analysis reveals that speakers who 

produce contrary-to-fact results all share a given phonetic 

property, it may be that efforts should go into ensuring that 

systems better capture this feature (see [7], also discussed in 1.3 

below). However, this relies on being able to identify 

particularly problematic voices or speech samples, and to utilise 

that information to expand data sets for training embedding 

extraction or for use as adaptation or calibration sets. Secondly, 

in the forensic domain, it is important that the analysis and 

conclusion provided by an analyst are transparent. This is true 

from the perspective of understanding whether the output of the 

system is consistent with what is known about the voice or the 

speech sample, and ensuring that different methods capture 

independent information (i.e. not double counting evidence). It 

is, therefore, essential that the analyst understands how 

decisions made about system architecture and choice of datasets 

(e.g. for calibration) affect performance for a given voice or 

speech sample. Transparency is also crucial from the 

perspective of having to explain, at some level of abstraction, 

how the system works and behaves to an end-user, such as a 

judge and/or jury [8]. 

1.3. Previous work 

A small body of work has considered these issues. [7] examined 

the phonetic properties of a set of false-acceptances produced 

by an i-vector ASR system. Post-hoc analysis was conducted 

by phoneticians, who were generally able to separate the 

different-speaker pairs on the basis of laryngeal voice quality 

(amongst other features). This is consistent with other studies 

which suggest that MFCC-based ASR systems tend not to 

capture properties of laryngeal voice quality [9,10]. [11] 

expands this work, examining a novel ‘binary-attribute-based’ 
LR architecture [12] which is able to evaluate the contribution 

of different acoustic-phonetic variables (e.g. f0, vowel 

formants, voice quality) to speaker separation. An alternative 

approach is proposed in [13] which uses phonetically controlled 

input to explicitly test the effects of voice quality match and 

mismatch on system output. Very good performance was found 

with voice quality-matched samples, but when using voice 

quality-mismatched samples, a large increase in false rejections 

was found. This was most marked in comparisons involving 

supralaryngeal vocal settings which affected vocal tract length 

(e.g. lowered larynx and backed tongue body) as well as 

whisper (as in [14]). Work by the speaker recognition group at 

the University of Avignon has focused specifically on by-

speaker variability in ASR performance. [15] presents by-

speaker log likelihood ratio cost (Cllr) values from a test set of 

30 speakers. Performance ranges from less than 0.02 to over 

0.8, despite the overall system-level Cllr being around 0.17. The 

causes of the variability are different for different speakers; 

some of the variability is driven by same-speaker pairs (which 

is neatly explained in [16] as a function of the acoustic 

homogeneity between pairs), and some by different-speaker 

pairs; some by discrimination error, and some by calibration 

error. [15] also examines individual speaker performance as a 

function of the segmental phonetic make-up of samples. The 

removal of oral vowels generally had the biggest negative effect 

on individual speaker performance (i.e. performance with both 

same- and different-speaker pairs was better by as much as 

160% with the addition of oral vowels compared with when 

they were removed), although for some speakers it actually led 

to improved performance. Similarly, the removal of fricatives 

improved performance for seven of the 30 speakers, but made 

performance worse for the remaining 23. For some speakers, it 

appears that performance is relatively consistent irrespective of 

the phonetic content of the speech samples. 

1.4. This study 

The present study builds on the work described in 1.3 to address 

key issues around the performance of ASR systems in terms of 

individual speakers, utilising linguistic, phonetic, and forensic 

knowledge to examine ASR behaviour. We do this by 

conducting an initial validation exercise of the kind described 

in [4] to assess the overall performance of an x-vector ASR 

system using a forensically realistic dataset. We then 

interrogate the results in two ways. Firstly, we assess the extent 

of variability in individual performance, both in terms of 

discrimination and calibration error. Secondly, we attempt to 

explain the variability across speakers as a function of the 

phonetic content within the speech samples, based on broad 

phone-level categories. This involves replicating the 

methodology in [15], but using a more recent x-vector 

architecture. We also conduct a detailed examination of the 

results in order to assess why certain speakers are more or less 

affected by the removal of certain phone categories. To do this, 

we principally focus on those speakers who perform poorest 

overall. The long-term aim is to use knowledge of the key 

phonetic variables which affect performance to develop a 

metric for predicting, a priori, which speakers are likely to be 

problematic within an ASR-based FVC case. 

2. METHODS 

2.1. Data 

For this study, we utilise GBR-ENG; a dataset of forensically-

realistic recordings provided by the UK Government. The 

dataset is ideal for forensic evaluation as it contains a very large 

number of both male and female speakers (1,946 total; 906 

male, 1,040 female) of British English, with considerable 

variability in regional and social backgrounds, as well as age. 

Each speaker has multiple speech samples (average of 10 

samples per speaker; 12,483 files in total) many of which were 

recorded across multiple days. Speech samples contain 

spontaneous conversations lasting between 181 and 373 

seconds. There is also a mix of mobile and landline telephone 

recordings available. 

2.2. Test and calibration sets 

Analysis was conducted using sets of male and female speakers 

separately. We identified subsets of 48 male (160 files total) 

and 46 female (154 files total) speakers to act as test sets. 

Speakers were chosen based on the availability of at least three 

non-contemporaneous samples (defined as samples made on 

different days). Speakers ranged from having three to seven 

samples each. We also limited the analysis to good quality 

(determined based on over 30s of net speech, WADA SNR of 

over 24dB, and less than 1% clipping), mobile phone samples, 

in order to reduce the number of confounding variables across 

speakers. The calibration sets contained 50 male and 50 female 

speakers selected at random, with two samples recorded on 



 

 

separate days that were of good quality and both made via 

mobile phone.  

2.3. Orthographic transcription and forced alignment 

In order to extract phone-level information from the speech 

samples, orthographic transcripts were created using the large 

V2 model in Whisper-timestamped [17,18], an extension to 

Whisper [19], with word-level timestamps. The transcripts and 

audio files were then processed via the Montreal Forced 

Aligner [20] to produce time-aligned phone boundaries.  

Phones were categorised into five broad categories: (a) 

vowels, (b) nasals, (c) approximants, (d) fricatives, and (e) 

plosives. The classification is described in the MFA phone sets 

for UK English [21] below (affricates were excluded as there 

are far fewer tokens than for other categories): 

(a) vowels: [i, ɪ, e, ɛ, æ, a, ɑ, ʊ, ʉ, ɐ, ɒ, ə, ɜ, ɒː, iː, ɑː, ʉː, 
ɜː, ɛː, əw, aw, aj, ej, ɔj] 

(b) nasals: [m̩, m, mʲ, ɱ, n, n̩, ŋ, ɲ] 

(c) approximants: [ɫ, l, ʎ, ɹ, j, w, ɫ̩, ʎ̩, ɹ̩] 
(d) fricatives: [f, v, fʲ, vʲ, fʷ, vʷ, θ, ð, s, z, ʃ, ʒ, ç, h] 

(e) plosives: [p, b, t̪, d̪, t, d, c, ɟ, k, g, ʔ] 

The choice of these categories is based on the fact that the 

phones within them have similar phonetic properties. This in 

turn means that there is more material to assess category-level 

patterns, rather than focusing on individual segments, which 

may in total have extremely short durations. Using broad phone 

categories also mitigates the effect of potential errors produced 

during the automatic transcription and alignment stages. 

2.4. Extraction of phonetic data 

2.4.1. Phone-level analysis 

To test the effects of the phonetic content within the speech 

samples, we replicated the approach taken in [15]. This 

involved creating versions of the original speech samples where 

the target category (see 2.3) had been removed (referred to in 

[15] as the specific condition). To account for the fact that there 

is an unbalanced amount of material for each phone category 

within a sample (i.e. generally more vowels than other 

segments), we also created random samples where we 

removed the same proportion of speech at random from the 

original files. The duration of these removed speech intervals 

was randomly drawn from a distribution where the mean and 

standard deviation are the same as the segments in the 

corresponding specific condition. For each phonetic class, five 

random samples were produced to account for any skew that 

might occur in randomly removing speech content that could 

affect the ASR scores.   

2.4.2. Long-term phonetic analyses 

From each of the original speech samples, acoustic-phonetic 

data were also extracted which capture long-term, laryngeal 

properties of the voices. This provides an additional source of 

phonetic information to examine individual speaker 

performance, which may be complementary to that captured by 

the phone-level analysis described in 2.4.1. Specifically, this 

involved extracting fundamental frequency (f0) from 25ms 

windows shifted by 10ms across the voiced portions of the 

recordings using VoiceSauce [22]. The pitch range was set to 

40-300Hz for the male speakers and 75-350Hz for the female 

speakers. The mean and standard deviation of the f0 values 

were then used as summary statistics for each sample. 

Laryngeal voice quality acoustics were also extracted from 

25ms windows shifted by 10ms across the entire file; namely 

the amplitude of harmonics (H1*, H2*, H4*, A1*, A2*, A3*, 

H2k*), spectral tilt measures (H1*-A2*, H1*-A3*, H4*-H2k*, 

and H2k-H5k*), energy-related measures (RMS energy), 

harmonics-to-noise ratios within certain frequency bands 

(HNR05, HNR15. HNR25, HNR35), formant frequencies and 

bandwidths, subharmonic-to-harmonic ratio, and cepstral peak 

prominence. These measures, together, broadly capture 

differences between modal, breathy and creaky voice qualities.  

Feature extraction was conducted in VoiceSauce [22] with the 

default settings. Given the multidimensionality of the measures, 

linear discriminant analysis (LDA) was used to produce a two-

dimensional voice quality vector for each sample. The LDA 

model was trained with the speaker labels in order to maximise 

the ratio of between-speaker distance to within-speaker 

distance. This was done using the scikit-learn package in 

Python. 

2.5. Automatic speaker recognition system 

ASR testing was conducted using VOCALISE 2021 (version 

3.0.0.1746, [23]), which has been widely used across the world 

for FVC casework [2]. VOCALISE is an x-vector-based system 

[24] utilising MFCCs to produce 512-dimensional speaker 

embeddings, which are then subjected to LDA in order to 

reduce dimensionality. Scoring was conducted using a pre-

trained PLDA model, and no additional condition adaptation 

was applied. Tests were initially conducted using the whole file 

for each speaker. Separate tests were then conducted for the 

specific and random conditions for each of the five phone 

categories. For each set of tests we ran, same-speaker (SS) and 

different-speaker (DS) scores were computed for the test and 

calibration sets. The calibration scores were used to train a 

logistic regression model [25]. The coefficients from the 

calibration model were then applied to the test scores to produce 

calibrated log likelihood ratios (LLRs; males: 200 SS, 12,520 

DS; females: 190 SS, 11,591 DS). These LLRs were used as the 

basis of the evaluation of individual speakers’ results. 

2.6. Evaluation 

Performance was evaluated using Cllr [26], made up of its two 

constituents, Cllr
min (discrimination loss) and Cllr

cal (calibration 

loss; although see [27]), and equal error rate (EER). Overall 

system performance based on the full recordings for both male 

and female test sets was first evaluated, followed by by-speaker 

performance.  

The phone-level analysis was evaluated using the ratio of 

the average Cllr for the random condition (across the five 

randomisations) and the Cllr for the specific condition expressed 

as a percentage. This metric is defined in [15] as Cllr
R and was 

chosen as a means of comparing effects across segment 

categories whilst not skewing results due to the amount of 

phonetic material included or excluded. A positive Cllr
R 

indicates that the specific condition, where a given phone 

category is excluded, provides better performance (i.e. lower 

Cllr) compared with the random condition. In such cases, the 

inclusion of a given phone category makes performance worse. 

Conversely, a negative Cllr
R means that the random condition, 

with all available segmental categories, produces better 

performance than the specific condition. In such cases, the 



 

 

inclusion of a given phone category makes performance better. 

The Cllr
R value was calculated both overall and for each speaker 

individually.  

3. RESULTS 

Table 1 displays overall system performance for the male and 

female sets based on the full samples. Performance is generally 

very good. For both the male and female sets, Cllr
cal is relatively 

low, indicating that the system produces well calibrated LLRs.  

Table 1. Overall system performance based on the 

male and female sets  

Set EER (%) Cllr Cllr
min Cllr

cal 

Male 3.03 0.13 0.10 0.03 

Female 2.61 0.11 0.08 0.03 

 

We found additional improvements in overall performance 

by applying S-norm [28] reference normalisation in 

VOCALISE (using normalisation sets of 100 files per sex) 

which reduces EER to 1.49% for the male speakers and to 

1.53% for the female speakers. For further analysis, 

however, we use the baseline output of VOCALISE 

without normalisation as this removes an additional source 

of variability in individual speaker results. 

3.1. By-speaker performance 

Figure 1 displays by-speaker Cllr, Cllr
min, and Cllr

cal values for 

the male (above) and female (below) speaker sets. As is 

expected from the very good overall performance reported in 

Table 1, the system performs extremely well for most speakers, 

with Cllrs of less than 0.2 and in the majority of cases, no 

discrimination error. However, for both sets around 15% of 

speakers produce Cllrs above 0.2, with non-linear increases in 

Cllr after this point. These speakers may, therefore, be 

considered more problematic.

 

 
Figure 1. By-speaker and overall Cllr

cal (green) and Cllr
min (pink) values (Cllr is the overall height of the bar) for males (above) and 

females (below) (*note differences in the scales on the y-axes). 

 

 



 

 

For a very small number of those speakers (around 3 or 4 per 

sex), performance is actually relatively poor, with Cllrs of 

around 0.5 or, in some cases, even higher. There appears to be 

one outlier speaker (#244 in the male set) whose Cllr is over 1.2; 

we return to this speaker in 3.3.  

3.2. Phone-level analysis 

Figure 2 displays a stacked barchart of Cllr
R values for each 

speaker (male, above; female, below) and each phone category. 

As a reminder, a negative value for Cllr
R indicates that the 

inclusion of a given phone category improves performance (i.e. 

leads to an decrease in Cllr). Across both datasets, and for almost 

all speakers, vowels contribute the most towards speaker 

discrimination, producing the largest negative Cllr
R of any 

phone category. This is perhaps unsurprising given that vowels 

are known to carry considerable speaker-specific information. 

Further, vowels make up the highest proportion of speech; the 

speech-active portions of samples consisted of around 39% 

vowel material, compared with between 8-10% for the other 

phone categories. This natural skew towards vowels also likely 

means that vowels are weighted more strongly in terms of the 

representation learned by the DNN in producing speaker 

embeddings during the initial training stage. For males, the 

other phone categories offered little towards improving overall 

performance. For females, however, nasals and approximants 

made some small contribution, with some improvements in Cllr 

found for most speakers with the inclusion of these categories. 

The inclusion of stops and fricatives makes performance worse 

for most speakers. There is also considerable variability across 

speakers in terms of the contributions of different phone 

categories. Some speakers display considerably higher than 

average contributions from the vowel material, while in some 

cases vowels contribute nothing to speaker discrimination. 

Indeed, in some extreme cases, the inclusion of vowel material 

actually makes a speaker’s Cllr worse (note four male speakers 

towards the right of Figure 1; #139, #244, #766, #871).

 

 

 

 
Figure 2. Stacked barchart of by-speaker (speaker numbers on the x-axis) and overall Cllr

R values (negative Cllr
R indicates that a 

given category contributes to improving Cllr
 while positive Cllr

R values indicate that performance gets worse with the inclusion of a 

given category) for each of the five phone categories for the male (above) and female (below) sets (*note differences in the scales on 

the y-axes); speakers are arranged in the same order as Figure 1. 
 



 

 

Comparison of Figures 1 and 2 suggests a correlation between 

a speaker’s Cllr
R and their overall Cllr. That is to say, those 

speakers who show limited improvement in performance 

irrespective of the phonetic content of the samples are also the 

speakers that generally perform worse overall. This is also 

reflected in relatively strong correlations between the sum of 

the Cllr
R and mean SS LLRs (R = -0.63) and DS LLRs (R = 

0.54) for each speaker; i.e. those speakers with an overall Cllr
R 

closer to zero (or even positive) are more likely to produce 

LLRs closer to zero. 

3.3. Exploring problematic samples and speakers 

In this section, we consider why certain speakers perform so 

poorly. We initially focus on male speaker #244 given the 

extremely poor performance relative to any other speaker. 

Analysis of the individual comparisons for this speaker reveals 

contrary-to-fact LLRs primarily for SS comparisons involving 

one sample (#04). Based on listening, this sample is 

phonetically very different from the other two samples. More 

samples were available for this speaker than we used in this 

paper (but were lower in quality based on our heuristics). 

Contextual information indicates that this is not a speaker 

mislabelling. However, sample #04 involves a conversation 

with the speaker’s mother, whereas in the other samples he is 

speaking with a peer. The phonetic differences could, therefore, 

be attributed to style shifting. Determining whether this could 

account for ASR errors, however, would require more detailed 

analysis of the style variability across a larger number of 

speakers. 

On the basis of the results in 3.1 and 3.2, it appears that for 

the worst performing speakers, the phonetic information 

captured within the different phone categories is not useful for 

the ASR in terms of discrimination (i.e. performance remains 

poor irrespective of the phonetic content within a sample). This 

means that in order to assess why these speakers are performing 

poorly, we need to look beyond segmental information. For this 

purpose, we looked at long-term laryngeal features of the voice, 

namely voice quality (note, this does not include information 

about supralaryngeal vocal setting) and f0. Figure 3 displays a 

two-dimensional representation of the voice quality space 

based on LDA (described in 2.4.2), with data points coloured 

according to each speaker’s Cllr. There appears to be no clear 

correlation between a speaker’s position within the voice 
quality space and Cllr, with good performing speakers in the 

ASR situated both within busy clusters of speakers and at the 

peripheries of the voice quality space – this was also the case 

for f0. For some of the poorer performing speakers within the 

ASR system (e.g. male speakers #139, #1101; female speakers 

#176, #1150), good separation is revealed based on voice 

quality. This suggests that for some speakers (but not 

necessarily all), analysis of voice quality may be beneficial in 

addition to the baseline ASR analysis. Interestingly, the three 

samples for male speaker #244 are fairly close to each other 

within the voice quality space (the orange data points in the top 

plot of Figure 3). This indicates that the phonetic differences 

between the samples for this speaker are not related to voice 

quality (which is consistent with our evaluation based on 

listening). 

4. DISCUSSION 

Examination of individual speaker behaviour has provided a 

rich source of information for better understanding and 

contextualising the overall performance of the ASR system 

tested in this study. Despite good overall performance, and 

additional improvements through reference normalisation, 

there remains considerable performance variability across 

speakers. Many speakers perform extremely well, producing 

Cllr
min values of 0 (i.e. no discrimination error). For the best 

performing speakers, there is still often some, albeit small, 

calibration loss which may be resolved through more careful 

selection of calibration data (as would be done in a forensic 

case; see e.g. [29]). While it is difficult to identify a hard 

threshold for defining whether a speaker is problematic (i.e. the 

poorer performers), we see non-linear increases in by-speaker 

Cllr by around 0.2. This accounts for around 15% of our 

speakers, for both the male and female datasets. In [15], similar 

non-linear patterns of by-speaker Cllr are also observed from 

around 0.2 (despite using an i-vector system, rather than x-

vectors as in the present study), accounting for 17% of the 

speakers in their dataset. 

 

 
Figure 3. Each sample (dots) and speaker (numbers) for the 

male (above) and female (below) sets within a two-dimensional 

representation of the voice quality space (based on LDA 

projections) coloured according to the Cllr calculated based on 

the output of the ASR system with the original files (note 

different scales for Cllr for the male and female sets). 

 



 

 

A crucial question, especially in the context of a single 

comparison in an FVC case, is whether it is possible to predict, 

based on linguistic and phonetic properties, whether a speaker 

is likely to be in the 15% of problematic speakers. The analysis 

of ASR performance as a function of phonetic content provides 

more fine-grained insights into speaker behaviour. For the most 

part, the inclusion of vowel material unsurprisingly leads to 

considerable improvements in performance, although there are 

exceptions where vowels actually make performance slightly 

worse. For most speakers, the inclusion of fricatives and stops 

makes performance worse. It may be that exclusion of these 

phone categories at the feature extraction stage leads to better 

overall system performance. In terms of trying to predict 

problematic speakers, our results suggest that speaker 

performance is related to the extent of the sensitivity to the 

phonetic content of a sample. That is, speakers who show big 

improvements in performance when certain phone categories, 

particularly vowels, are included in the speech samples, 

generally display the best overall performance. Those speakers 

who remain consistent in their performance irrespective of the 

phonetic make-up of the speech samples, are also generally 

those speakers who perform worse overall. It may be that this 

can be utilised to develop a speaker quality metric in the future. 

Having identified the problematic speakers based on the 

output of the system, diagnosing the specific causes of poor 

performance is challenging because the variability may have 

multiple sources. There may, for example, be sources of 

technical variability that aren’t revealed through overall 
heuristics such as net speech, SNR, and clipping. Long-term 

laryngeal measures of f0 and voice quality are not well 

correlated with the output of the ASR system and so are not 

good predictors of poor performance. On the contrary, as found 

in [7,9], laryngeal measures appear to capture complementary 

speaker-specific information which helps to separate some 

otherwise problematic speakers. However, methods for 

identifying which speakers would benefit from additional 

analysis of laryngeal features, especially for forensic casework, 

remains a challenge. 

5. CONCLUSION 

This study has provided a detailed analysis of individual 

speaker behaviour and attempted to understand that behaviour 

through the phonetic properties of each speaker. Results reveal 

interesting patterns related to the phonetic make-up of samples 

which could be used to screen problematic speakers prior to 

comparison. Future work will continue to examine the phonetic 

causes of poor performance within ASR systems. 
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