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 A B S T R A C T

We explore time-varying networks for high-dimensional locally stationary time series, using the 
large VAR model framework with both the transition and (error) precision matrices evolving 
smoothly over time. Two types of time-varying graphs are investigated: one containing directed 
edges of Granger causality linkages, and the other containing undirected edges of partial 
correlation linkages. Under the sparse structural assumption, we propose a penalised local linear 
method with time-varying weighted group LASSO to jointly estimate the transition matrices and 
identify their significant entries, and a time-varying CLIME method to estimate the precision 
matrices. The estimated transition and precision matrices are then used to determine the time-
varying network structures. Under some mild conditions, we derive the theoretical properties 
of the proposed estimates including the consistency and oracle properties. In addition, we 
extend the methodology and theory to cover highly-correlated large-scale time series, for which 
the sparsity assumption becomes invalid and we allow for common factors before estimating 
the factor-adjusted time-varying networks. We provide extensive simulation studies and an 
empirical application to a large U.S. macroeconomic dataset to illustrate the finite-sample 
performance of our methods.

1. Introduction

In recent years, the network analysis has become an effective tool to explore inter-connections among a large number of variables, 
with applications to various disciplines such as epidemiology, economics, finance, and social networks (e.g., Newman, 2002; Burt 
et al., 2013; Diebold and Yilmaz, 2014, 2015; Hautsch et al., 2014; Scott, 2017; Barigozzi and Brownlees, 2019; Zhu et al., 2019). 
The so-called graphical model is commonly used in the network analysis to visualise the connectedness of a large panel with 
vertices representing variables in the panel and the presence of an edge indicating appropriate (conditional) dependence between the 
variables. In the past decades, most of the existing literature on statistical estimation and inference of network data limits attention to 
the static network, which is assumed to be invariant over time (e.g., Yuan and Lin, 2007; Fan et al., 2009; Loh and Wainwright, 2013; 
Basu et al., 2015; Zhao et al., 2022). However, such an assumption may be too restrictive and often fails in practical applications 
where the underlying data generating mechanism is dynamic. There have been some attempts in the recent literature to relax the 
static network assumption, allowing the connectivity structure to exhibit time-varying features. For example, Kolar et al. (2010) 
and Zhou et al. (2010) study dynamic network models with smooth time-varying structural changes; whereas Wang et al. (2021) 
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consider change-point detection and estimation in dynamic networks. However, most of the aforementioned literature typically 
assumes that the network data are independent, which often becomes invalid in practice. We aim to relax this restrictive assumption 
and model large-scale network data under a general temporal dependence structure.

Vector autoregression (VAR) is a fundamental modelling tool for multivariate time series data (e.g., Lütkepohl, 2006). In recent 
years, there has been increasing interest in extending the finite-dimensional VAR to the high-dimensional setting. Under appropriate 
sparsity restrictions on the transition (or autoregressive coefficient) matrices, various regularised methods have been proposed to 
estimate high-dimensional VAR models and identify non-zero entries in the transition matrices (e.g., Basu and Michailidis, 2015; 
Han et al., 2015; Kock and Callot, 2015; Davis et al., 2016). Zhu et al. (2017) introduce a network VAR model by incorporating 
the adjacency matrix to capture the network effect and estimate the model via ordinary least squares. More recently, Chen et al. 
(2023) and Miao et al. (2023) further study high-dimensional VAR and network VAR with latent common factors, allowing strong 
cross-sectional dependence in large panel time series. The methodology and theory developed in these papers heavily rely on the 
stationarity assumption with both transition and volatility matrices being time-invariant.

The stable VAR model cannot capture smooth structural changes and breaks in the underlying data generating process, two 
typical dynamic features in time series data collected over a long time span. To address this problem, Ding et al. (2017) consider 
a time-varying VAR model for high-dimensional time series (allowing the number of variables to diverge at a sub-exponential rate 
of the sample size), and estimate the time-varying transition matrices by combining the kernel smoothing with 𝓁1-regularisation, 
whereas Safikhani and Shojaie (2022) simultaneously detect breaks and estimate transition matrices in high-dimensional VAR via 
a three-stage procedure using the total variation penalty. Xu et al. (2020) detect structural breaks and estimate smooth changes 
(between breaks) in the covariance and precision matrices of high-dimensional time series (covering VAR as a special case). In 
the present paper, we aim to estimate the time-varying transition and precision matrices in the high-dimensional VAR under the 
local stationarity framework. Motivated by the stable network time series analysis in Barigozzi and Brownlees (2019), we use the 
estimated transition and precision matrices to further construct two time-varying networks: one containing directed edges of Granger 
causality linkages, and the other containing undirected edges of partial correlation linkages.

The proposed time-varying network via VAR is naturally connected to the locally stationary models, which have been 
systematically studied in the literature for low-dimensional time series. Dahlhaus (1997) is among the first to introduce a locally 
stationary time series model via a time-varying spectral representation. Dahlhaus and Subba Rao (2006) study a time-varying ARCH 
model and propose a kernel-weighted quasi-maximum likelihood estimation method. Hafner and Linton (2010) further consider a 
time-varying version of GARCH model and introduce a semiparametric method to estimate both the parametric and nonparametric 
components involved. Vogt (2012) and Zhang and Wu (2012) study nonparametric kernel-based estimation and inference in a 
general class of locally stationary time series. Koo and Linton (2012) extend the locally stationary model framework to the diffusion 
process. Yan et al. (2020) develop a kernel estimation method and theory for time-varying vector moving average models. The 
present paper complements the locally stationary time series literature by further exploring the high-dimensional dynamic network 
structure.

We study the time-varying VAR and network models for large-scale time series, allowing the number of variables to be much 
larger than the time series length. Under the sparsity assumption on the transition and precision matrices with smooth structural 
changes, we introduce a three-stage estimation procedure: (i) preliminary local linear estimation of the transition matrices and their 
derivatives with time-varying LASSO; (ii) joint local linear estimation and feature selection of the time-varying transition matrices 
with weighted group LASSO; (iii) estimation of the precision matrix via time-varying CLIME. To guarantee the oracle property, 
the weights of LASSO in the second estimation stage are constructed via a local linear approximation to the SCAD penalty (e.g., 
Zou and Li, 2008) using the consistent preliminary estimates obtained in the first stage. Our penalised estimation methodology for 
the time-varying transition matrices is connected to various nonparametric screening and shrinkage methods developed for high-
dimensional functional-coefficient models (e.g., Wang and Xia, 2009; Lian, 2012; Fan et al., 2014a; Liu et al., 2014; Li et al., 2015), 
whereas the time-varying CLIME is a natural extension of the conventional CLIME for static precision matrix estimation (e.g., Cai 
et al., 2011). The theoretical properties of the techniques developed in the aforementioned literature (such as the oracle property 
and minimax optimal convergence rates) rely on the independent data assumption. Extension of the methodology and theory to 
the high-dimensional locally stationary time series is non-trivial, requiring new technical tools such as the concentration inequality 
for time-varying VAR. Under some regularity conditions, we show that the proposed local linear estimates with weighted group 
LASSO equal to the infeasible oracle estimates with prior information on the significant entries of time-varying transition matrices, 
and the precision matrix estimate with time-varying CLIME is uniformly consistent with sensible convergence rates under various 
matrix norms. The estimated transition matrices are used to consistently estimate the uniform network structure with directed 
Granger causality linkages, whereas the estimated precision matrix is used to construct the network structure with undirected partial 
correlation linkages.

We further consider highly-correlated large-scale time series, for which the sparsity model assumption is no longer valid and the 
methodology and theory need to be substantially modified. The approximate factor model (e.g., Chamberlain and Rothschild, 1983) 
or its time-varying version (e.g., Su and Wang, 2017) is employed to accommodate the strong cross-sectional dependence among 
a large number of time series. In particular, we assume that the high-dimensional idiosyncratic error process in the approximate 
factor model satisfies the time-varying VAR structure with the sparsity restriction imposed on its transition and precision matrices. 
The latent common and idiosyncratic components need to be estimated consistently. With the approximated idiosyncratic error 
vectors, the penalised local linear estimation method with weighted group LASSO and time-varying CLIME are applied to estimate 
the time-varying transition and precision matrices. Subsequently, the factor-adjusted time-varying network estimates with directed 
Granger causality and undirected partial correlation linkages are obtained. By considering both time-varying transition matrices and 
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time-varying precision matrices in the VAR structure, our paper extends the recent work on the factor-adjusted stable VAR model 
estimation (e.g., Krampe and Margaritella, 2022; Barigozzi et al., 2024; Fan et al., 2023).

Our simulation studies demonstrate that the proposed methodology can accurately estimate the time-varying Granger and partial 
correlation networks when the number of time series variables is comparable to the sample size. In particular, for the time-varying 
transition matrix estimation, the penalised local linear method with weighted group LASSO outperforms the conventional local 
linear method (which often fails in the high-dimensional time series setting) and produces numerical results similar to those of the 
oracle estimation. For the time-varying error precision matrix estimation, the numerical performance of the proposed time-varying 
CLIME is comparable to that of the time-varying graphical LASSO. We further apply the developed methodology to the FRED-MD 
macroeconomic dataset and estimate both the Granger causality and partial correlation networks via the proposed time-varying 
VAR model. Through additional analysis of the time-varying coefficients during the pre- and post-global financial crisis periods, 
we demonstrate that the proposed method has the potential to enhance our understanding of the time-varying structure of the 
macroeconomy.

The rest of the paper is organised as follows. Section 2 introduces the time-varying VAR and network model structures. Section 3 
presents the estimation procedures for the time-varying transition and precision matrices and Section 4 gives the asymptotic 
properties of the developed estimates. Section 5 considers the factor-adjusted time-varying VAR model and network estimation. 
Sections 6 and 7 report simulation studies and an empirical application, respectively. Section 8 concludes the paper. A supplemental 
document contains proofs of the main theorems, some technical lemmas with proofs, verification of a key assumption, discussions on 
tuning parameter selection, and additional simulation and empirical results. Throughout the paper, we let | ⋅ |0, | ⋅ |1, ‖ ⋅‖ and | ⋅ |max

denote the 𝐿0, 𝐿1, 𝐿2 (Euclidean) and maximum norms of a vector, respectively. Let 𝐈𝑑 and 𝐎𝑑×𝑑 be a 𝑑 × 𝑑 identity matrix and 
null matrix, respectively. For a 𝑑 × 𝑑 matrix 𝐖 = (𝑤𝑖𝑗 )𝑑×𝑑 , we let ‖𝐖‖ = 𝜆

1∕2
max

(
𝐖

⊺
𝐖

) be the operator norm, ‖𝐖‖𝐹 =
[
𝖳𝗋

(
𝐖

⊺
𝐖
)]1∕2

the Frobenius norm, ‖𝐖‖1 = max1≤𝑗≤𝑑
∑𝑑

𝑖=1 |𝑤𝑖𝑗 |, ‖𝐖‖max = max1≤𝑖≤𝑑 max1≤𝑗≤𝑑 |𝑤𝑖𝑗 |, and |𝐖|1 = ∑𝑑
𝑖=1

∑𝑑
𝑗=1 |𝑤𝑖𝑗 |, where 𝜆max(⋅) is the 

maximum eigenvalue of a matrix and 𝖳𝗋(⋅) is the trace. Denote the determinant of a square matrix as 𝖽𝖾𝗍(⋅). Let 𝑎𝑛 ∼ 𝑏𝑛, 𝑎𝑛 ∝ 𝑏𝑛 and 
𝑎𝑛 ≫ 𝑏𝑛 denote that 𝑎𝑛∕𝑏𝑛 → 1, 0 < 𝑐 ≤ 𝑎𝑛∕𝑏𝑛 ≤ 𝑐 < ∞ and 𝑏𝑛∕𝑎𝑛 → 0, respectively.

2. Time-varying VAR and network models

In this section, we first introduce a locally stationary VAR model with time-varying transition and precision matrices, and then 
define two types of time-varying network structures with Granger causality and partial correlation linkages, respectively. Section 5 
will further generalise them to factor-adjusted time-varying VAR and network settings.

2.1. Time-varying VAR models

Suppose that (𝑋𝑡 ∶ 𝑡 = 1,…, 𝑛) with 𝑋𝑡 = (𝑥𝑡,1,…, 𝑥𝑡,𝑑 )
⊺  is a sequence of 𝑑-dimensional random vectors generated by a time-varying 

VAR model of order 𝑝:

𝑋𝑡 =

𝑝∑
𝑘=1

𝐀𝑡,𝑘𝑋𝑡−𝑘 + 𝑒𝑡 with 𝑒𝑡 = 𝜮
1∕2
𝑡 𝜀𝑡, 𝑡 = 1,…, 𝑛, (2.1)

where 𝐀𝑡,𝑘 = 𝐀𝑘(𝑡∕𝑛), 𝑘 = 1,…, 𝑝, are 𝑑×𝑑 time-varying transition matrices with each entry being a smooth deterministic function of 
scaled times, 𝜮𝑡 = 𝜮(𝑡∕𝑛) is a 𝑑 × 𝑑 time-varying volatility matrix, and (𝜀𝑡) is a sequence of independent and identically distributed 
(i.i.d.) 𝑑-dimensional random vectors with zero mean and identity covariance matrix. Define 𝜴𝑡 = 𝜴(𝑡∕𝑛) as the inverse of 𝜮𝑡, 
the time-varying precision matrix. We consider the ultra large time series setting, i.e., the dimension 𝑑 is allowed to diverge at an 
exponential rate of the sample size 𝑛. The time-varying VAR model (2.1) is a natural extension of the finite-dimensional time-varying 
VAR to high-dimensional time series. If 𝜮𝑡 is replaced by a time-invariant covariance matrix, (2.1) becomes the same model as that 
considered by Ding et al. (2017). Furthermore, when both 𝐀𝑡,𝑘, 𝑘 = 1,…, 𝑝, and 𝜮𝑡 are time-invariant constant matrices, (2.1) 
becomes the high-dimensional stable VAR:

𝑋𝑡 =

𝑝∑
𝑘=1

𝐀𝑘𝑋𝑡−𝑘 +𝜮1∕2𝜀𝑡, (2.2)

which has been extensively studied in the recent literature (e.g., Basu and Michailidis, 2015; Han et al., 2015; Kock and Callot, 
2015; Barigozzi and Brownlees, 2019; Liu and Zhang, 2021). Throughout the paper, we assume that the following conditions are 
satisfied.

Assumption 1. (i) Uniformly over 𝜏 ∈ [0, 1], it holds that 𝖽𝖾𝗍 (𝐈𝑑 −
∑𝑝

𝑘=1
𝐀𝑘(𝜏)𝑧

𝑘
)
≠ 0 for any 𝑧 ∈ C with modulus no larger than 

one, where C denotes the set of complex numbers. Each entry in 𝐀𝑘(⋅) is second-order continuously differentiable over [0, 1]. 
(ii) The precision matrix 𝜴(𝜏) is positive definite uniformly over 𝜏 ∈ [0, 1], and the operator norm of 𝜮(𝜏) is uniformly bounded over 

𝜏 ∈ [0, 1]. Furthermore, each entry in 𝜮(𝜏) and 𝜴(𝜏) is second-order continuously differentiable over [0, 1].
(iii) For any 𝑑-dimensional vector 𝑢 satisfying ‖𝑢‖ = 1, 𝖤 [exp{𝜄1(𝑢⊺𝜀𝑡)2

}]
≤ 𝐶0 < ∞, where 𝜄1 and 𝐶0 are positive constants.

The first condition in Assumption  1(i) is a natural extension of the stability assumption imposed on the constant transition 
matrices (e.g., Lütkepohl, 2006), indicating that the time-varying VAR process is locally stationary/stable. Without loss of generality, 
we assume the following Wold representation:

𝑋𝑡 =

∞∑
𝑘=0

𝜱𝑡,𝑘𝑒𝑡−𝑘, (2.3)
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with the coefficient matrices 𝜱𝑡,𝑘 satisfying that, for 𝑘 sufficiently large,
max
0≤𝑡≤𝑛

‖𝜱𝑡,𝑘‖ ≤ 𝐶1𝜌
𝑘, (2.4)

where 𝐶1 is a positive constant and 0 < 𝜌 < 1. A similar assumption can be found in Ding et al. (2017). In some special model settings, 
(2.4) may be violated, and we refer the interested readers to the discussions in Basu and Michailidis (2015) and Liu and Zhang (2021). 
In fact, the condition (2.4) may be removed by imposing some high-level conditions (e.g., the sub-Gaussian condition on 𝑥𝑡,𝑖 proved 
in Lemma B.1). The smoothness conditions in Assumption  1(i)(ii) are common in kernel-based local estimation method and theory. 
The sub-Gaussian moment condition in Assumption  1(iii) is not uncommon in the literature of high-dimensional feature selection 
and covariance/precision matrix estimation (e.g., Wainwright, 2019), and is weaker than the Gaussian assumption frequently used 
in the high-dimensional VAR literature (e.g., Basu and Michailidis, 2015; Kock and Callot, 2015).

2.2. Time-varying network structures

Write 𝐀𝑡,𝑘 =
(
𝑎𝑘,𝑖𝑗|𝑡

)
𝑑×𝑑

, 𝜴𝑡 =
(
𝜔𝑖𝑗|𝑡

)
𝑑×𝑑

, 𝐀𝑘(𝜏) =
(
𝑎𝑘,𝑖𝑗 (𝜏)

)
𝑑×𝑑

 and 𝜴(𝜏) =
(
𝜔𝑖𝑗 (𝜏)

)
𝑑×𝑑

, where 1 ≤ 𝑡 ≤ 𝑛 and 0 ≤ 𝜏 ≤ 1. 
We define the network structure via a time-varying graph G𝑡 = (V,E𝑡), where V = {1, 2,…, 𝑑} denotes a set of vertices, and 
E𝑡 =

{
(𝑖, 𝑗) ∈ V × V ∶ 𝑐𝑖𝑗|𝑡 ≠ 0, 𝑖 ≠ 𝑗

} denotes a time-varying set of edges. The choice of 𝑐𝑖𝑗|𝑡 is determined by the definition of 
linkage. The construction of G𝑡 is similar to that in Kolar et al. (2010) and Zhou et al. (2010) for independent network data. 
Following the stable network analysis in Barigozzi and Brownlees (2019) and Barigozzi et al. (2024), we next consider two types 
of time-varying linkages: the directed Granger causality linkage and undirected partial correlation linkage.

The definition of Granger causality is first introduced by Granger (1969) to investigate the causal relations in small economic 
time series systems. In the context of stable VAR (with order 𝑝), we say that 𝑥𝑡,𝑗 Granger causes 𝑥𝑡,𝑖 if there exists 𝑘 ∈ {1, 2,…, 𝑝} such 
that 𝑥𝑡−𝑘,𝑗 improves predictability of 𝑥𝑡,𝑖 by reducing the forecasting error. It is a natural idea to use the stable transition matrices 
𝐀𝑘 =

(
𝑎𝑘,𝑖𝑗

)
𝑑×𝑑

 in (2.2) to determine the Granger causality structure, i.e., if there exists at least one 𝑘 such that 𝑎𝑘,𝑖𝑗 ≠ 0, then 𝑥𝑡,𝑗
Granger causes 𝑥𝑡,𝑖. We may extend the stable Granger causality structure to a more general time-varying version using (2.1). At 
a given time point 𝑡, we say that lags of 𝑥𝑡,𝑗 Granger cause 𝑥𝑡,𝑖 if there exists at least one 𝑘 such that 𝑎𝑘,𝑖𝑗|𝑡 ≠ 0. Hence, for given 
𝜏 ∈ (0, 1), we define the time-varying local graph G𝐺

𝜏 =
(
V,E𝐺

𝜏

) with
E
𝐺
𝜏 =

{
(𝑖, 𝑗) ∈ V × V ∶ ∃ 𝑘 ∈ {1, 2,…, 𝑝}, 𝑎𝑘,𝑖𝑗 (𝜏) ≠ 0

}
. (2.5)

The partial correlation is a commonly-used conditional dependence measure for network time series. We next extend it to the 
time-varying setting using 𝜴𝑡 = 𝜴(𝑡∕𝑛) in (2.1). Let 𝜌𝑖𝑗|𝑡 = 𝖼𝗈𝗋(𝑒𝑡,𝑖, 𝑒𝑡,𝑗 |𝑒𝑡,𝑘, 𝑘 ≠ 𝑖, 𝑗) be the time-varying (contemporaneous) partial 
correlation between the innovations 𝑒𝑡,𝑖 and 𝑒𝑡,𝑗 , where 𝑒𝑡,𝑖 is the 𝑖th element of 𝑒𝑡. Following Dempster (1972), we may show that 
𝜌𝑖𝑗|𝑡 ≠ 0 is equivalent to 𝜔𝑖𝑗|𝑡 ≠ 0 for 𝑖 ≠ 𝑗. Hence, we can construct the set of edges by collecting the index pairs of the non-zero 
entries in the time-varying precision matrix. For 𝜏 ∈ (0, 1), define the local graph G𝑃

𝜏 =
(
V,E𝑃

𝜏

) with
E
𝑃
𝜏 =

{
(𝑖, 𝑗) ∈ V × V ∶ 𝜔𝑖𝑗 (𝜏) ≠ 0, 𝑖 ≠ 𝑗

}
. (2.6)

In practice, the primary interest often lies in the full network structures over the entire time interval. This requires the 
construction of a uniform version of G𝐺

𝜏  and G𝑃
𝜏 . Denote the uniform graphs by G𝐺 =

(
V,E𝐺

) and G𝑃 =
(
V,E𝑃

)
, with

E
𝐺 =

{
(𝑖, 𝑗) ∈ V × V ∶ ∃ 𝑘 ∈ {1, 2,…, 𝑝} and 𝜏 ∈ (0, 1), 𝑎𝑘,𝑖𝑗 (𝜏) ≠ 0

}
(2.7)

and

E
𝑃 =

{
(𝑖, 𝑗) ∈ V × V ∶ ∃ 𝜏 ∈ (0, 1), 𝜔𝑖𝑗 (𝜏) ≠ 0, 𝑖 ≠ 𝑗

}
. (2.8)

It is easy to verify that E𝐺
𝜏 ⊂ E𝐺 and E𝑃

𝜏 ⊂ E𝑃  for any 𝜏 ∈ (0, 1). Section 3.4 below defines the discrete versions of the above uniform 
networks and provides their estimates.

3. Methodology

Let 𝐴⊺

𝑘,𝑖
(⋅) and 𝐶⊺

𝑖
(⋅) be the 𝑖th row of 𝐀𝑘(⋅) and 𝜴−1∕2(⋅), respectively,

𝜶𝑖∙(⋅) =
[
𝐴

⊺

1,𝑖
(⋅),…, 𝐴

⊺

𝑝,𝑖(⋅)
]⊺

, 𝐗𝑡 =
(
𝑋

⊺

𝑡 ,…, 𝑋
⊺

𝑡−𝑝+1

)⊺

, (3.1)

and 𝜏𝑡 = 𝑡∕𝑛. The time-varying VAR model (2.1) can be equivalently written as
𝑥𝑡,𝑖 = 𝜶

⊺

𝑖∙(𝜏𝑡)𝐗𝑡−1 + 𝑒𝑡,𝑖 with 𝑒𝑡,𝑖 = 𝐶
⊺

𝑖 (𝜏𝑡)𝜀𝑡, 𝑖 = 1,…, 𝑑, (3.2)

which is a high-dimensional time-varying coefficient autoregressive model with a scalar response and 𝑝𝑑 candidate predictors for 
each 𝑖. As the dimension of the predictors is allowed to be ultra large, we need to impose an appropriate sparsity restriction on the 
vector of time-varying parameters 𝜶𝑖∙(⋅) to limit the number of its significant elements. High-dimensional varying-coefficient models 
have been systematically studied in the literature and various nonparametric screening and shrinkage methods have been proposed 
to select the significant covariates, estimate the coefficient functions and identify the model structure under the independent data 
assumption (e.g., Wang et al., 2008; Wang and Xia, 2009; Lian, 2012; Cheng et al., 2014; Fan et al., 2014a; Liu et al., 2014; Li et al., 
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2015). In this section, under the high-dimensional locally stationary time series framework, we propose a three-stage procedure 
to estimate the Granger causality and partial correlation network structures: (i) first obtain preliminary local linear estimates of 
𝜶𝑖∙(⋅) (and its derivatives) using time-varying LASSO, which serves as a first-stage screening of the predictors in 𝐗𝑡−1; (ii) conduct 
local linear estimation and feature selection using weighted group LASSO, where the weights are constructed via a local linear 
approximation to the SCAD penalty using the preliminary estimates of 𝜶𝑖∙(⋅) from Stage (i); (iii) estimate the error precision matrix 
𝜴(⋅) via the time-varying CLIME method. The estimated transition and precision matrices are finally used to construct the uniform 
network structures.

3.1. Preliminary time-varying LASSO estimation

For 𝜏 ∈ (0, 1), under the smoothness condition on the transition matrices in Assumption  1(i), we have the following local linear 
approximation to 𝜶𝑖∙(𝜏𝑡):

𝜶𝑖∙(𝜏𝑡) ≈ 𝜶𝑖∙(𝜏) + 𝜶′
𝑖∙(𝜏)(𝜏𝑡 − 𝜏), 𝑖 = 1,…, 𝑑,

when 𝜏𝑡 falls within a small neighbourhood of 𝜏, where 𝜶′
𝑖∙
(⋅) is a (𝑝𝑑)-dimensional vector of the first-order derivatives of the elements 

in 𝜶𝑖∙(⋅). Hence, for each 𝑖 ∈ {1, 2,…, 𝑑} and a given 𝜏 ∈ (0, 1), we define the following local linear objective function (e.g., Fan and 
Gijbels, 1996):

L𝑖(𝜶, 𝜷 | 𝜏) = 1

𝑛

𝑛∑
𝑡=1

{
𝑥𝑡,𝑖 −

[
𝜶 + 𝜷(𝜏𝑡 − 𝜏)

]⊺
𝐗𝑡−1

}2

𝐾ℎ(𝜏𝑡 − 𝜏), (3.3)

where 𝐾ℎ(⋅) =
1

ℎ
𝐾(⋅∕ℎ) with 𝐾(⋅) being a kernel function and ℎ being a bandwidth or smoothing parameter. The estimates of 𝜶𝑖∙(𝜏)

and 𝜶′
𝑖∙
(𝜏) are obtained by minimising L𝑖(𝜶, 𝜷 | 𝜏) with respect to 𝜶 and 𝜷. However, this local linear estimation is only feasible 

when the dimension of the predictors is fixed or significantly smaller than the sample size 𝑛 (e.g., Cai, 2007; Li et al., 2011). In our 
high-dimensional setting, as the number of predictors may exceed 𝑛, it is challenging to obtain satisfactory estimation by directly 
minimising L𝑖(𝜶, 𝜷 | 𝜏). To address this issue, we assume that the number of significant components in 𝜶𝑖∙(𝜏) is much smaller than 
𝑛 and then incorporate a LASSO penalty term in the local linear objective function (3.3).

The LASSO estimation was first introduced by Tibshirani (1996) in the context of linear regression and has become one of the 
most commonly-used tools in high-dimensional variable and feature selection. We next adopt a time-varying version of the LASSO 
estimation. Define

L∗
𝑖 (𝜶, 𝜷 | 𝜏) = L𝑖(𝜶, 𝜷 | 𝜏) + 𝜆1

(|𝜶|1 + ℎ|𝜷|1
)
, (3.4)

where 𝜆1 is a tuning parameter. Let 𝜶̃𝑖∙(𝜏) and 𝜶̃′
𝑖∙(𝜏) be the solution to the minimisation of L∗

𝑖
(𝜶, 𝜷 | 𝜏) with respect to 𝜶 and 𝜷. 

We call them the preliminary time-varying LASSO estimates. This LASSO estimation may not accurately identify the true significant 
predictors, but can remove a large number of irrelevant predictors and hence, serves as a preliminary screening step. Furthermore, 
the first-stage estimates will be used to construct weights in the weighted group LASSO in the second stage to more precisely estimate 
the time-varying parameters and accurately select the significant predictors.

3.2. Penalised local linear estimation with weighted group LASSO

In order to estimate the uniform Granger causality network, we next introduce a global penalised method to simultaneously 
estimate the time-varying parameters at 𝜏𝑡, 𝑡 = 1,…, 𝑛, and identify the non-zero index sets J𝑖 =

⋃𝑛
𝑡=1 J𝑖(𝜏𝑡) and J′𝑖 =

⋃𝑛
𝑡=1 J

′
𝑖
(𝜏𝑡), 

where

J𝑖(𝜏) =
{
1 ≤ 𝑗 ≤ 𝑝𝑑 ∶ 𝛼𝑖,𝑗 (𝜏) ≠ 0

}
and J′𝑖(𝜏) =

{
1 ≤ 𝑗 ≤ 𝑝𝑑 ∶ 𝛼′𝑖,𝑗 (𝜏) ≠ 0

}

with 𝛼𝑖,𝑗 (⋅) and 𝛼′𝑖,𝑗 (⋅) being the 𝑗th element of 𝜶𝑖∙(⋅) and 𝜶′
𝑖∙
(⋅), respectively. For each 𝑖, note that identifying the zero elements in 

𝜶′
𝑖∙
(𝜏𝑡) (uniformly over 𝑡) is equivalent to identifying the indices 𝑗, 1 ≤ 𝑗 ≤ 𝑝𝑑, such that 𝐷𝑖,𝑗 = 0, where

𝐷2
𝑖,𝑗 =

𝑛∑
𝑡=1

[
𝛼𝑖,𝑗 (𝜏𝑡) −

1

𝑛

𝑛∑
𝑠=1

𝛼𝑖,𝑗 (𝜏𝑠)

]2

.

In practice, 𝐷2
𝑖,𝑗
 can be approximated by

𝐷̃2
𝑖,𝑗 =

𝑛∑
𝑡=1

[
𝛼𝑖,𝑗 (𝜏𝑡) −

1

𝑛

𝑛∑
𝑠=1

𝛼𝑖,𝑗 (𝜏𝑠)

]2

,

using the preliminary time-varying LASSO estimates 𝛼𝑖,𝑗 (𝜏𝑡), 𝑡 = 1,… , 𝑛. Let 𝐀 = (𝜶∙1,…,𝜶∙𝑛)
⊺  with 𝜶∙𝑡 = (𝛼1|𝑡,…, 𝛼𝑝𝑑|𝑡)

⊺
, and 

𝐁 = (𝜷∙1,…, 𝜷∙𝑛)
⊺  with 𝜷∙𝑡 = (𝛽1|𝑡,…, 𝛽𝑝𝑑|𝑡)

⊺
. We define a global version of the penalised objective function with weighted group 

LASSO:

Q𝑖(𝐀,𝐁) =

𝑛∑
𝑡=1

L𝑖(𝜶∙𝑡, 𝜷∙𝑡 | 𝜏𝑡) +
𝑝𝑑∑
𝑗=1

𝑝′
𝜆2

(‖‖‖𝜶̃𝑖,𝑗
‖‖‖
)
‖𝜶𝑗‖ +

𝑝𝑑∑
𝑗=1

𝑝′
𝜆2

(
𝐷̃𝑖,𝑗

)
‖ℎ𝜷𝑗‖, (3.5)

where

5
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𝜶̃𝑖,𝑗 =
[
𝛼𝑖,𝑗 (𝜏1),…, 𝛼𝑖,𝑗 (𝜏𝑛)

]⊺
, 𝜶𝑗 =

(
𝛼𝑗|1,…, 𝛼𝑗|𝑛

)⊺
, 𝜷𝑗 =

(
𝛽𝑗|1,…, 𝛽𝑗|𝑛

)⊺
,

while 𝜆2 is a tuning parameter and 𝑝′𝜆(⋅) is the derivative of the SCAD penalty function:
𝑝′
𝜆
(𝑧) = 𝜆

[
𝐼(𝑧 ≤ 𝜆) +

(𝑎0𝜆 − 𝑧)+

(𝑎0 − 1)𝜆
𝐼(𝑧 > 𝜆)

]
,

with 𝑎0 = 3.7 as suggested in Fan and Li (2001) and 𝐼(⋅) being the indicator function. The penalty terms in (3.5) are motivated 
by the local linear approximation to the SCAD penalty function (Zou and Li, 2008). The terms 𝑝′

𝜆2

(‖‖‖𝜶̃𝑖,𝑗
‖‖‖
)
 and 𝑝′

𝜆2

(
𝐷̃𝑖,𝑗

)
 in (3.5) 

serve as the weights for the group LASSO, and their values are determined by the preliminary estimates in Section 3.1, i.e., the 
corresponding weight is heavy when ‖‖‖𝜶̃𝑖,𝑗

‖‖‖ or 𝐷̃𝑖,𝑗 is close to zero, whereas it is light or equal to zero when ‖‖‖𝜶̃𝑖,𝑗
‖‖‖ or 𝐷̃𝑖,𝑗 is large. 

An advantage of using 𝐷̃𝑖,𝑗 in the second penalty term over the 𝐿2-norm of 𝜶̃′
𝑗 =

[
𝛼′
𝑖,𝑗
(𝜏1),…, 𝛼′

𝑖,𝑗
(𝜏𝑛)

]⊺
 is that the estimates of the 

time-varying parameters involved in 𝐷̃𝑖,𝑗 often perform more stably than their derivative counterparts.
Let 𝐀̂𝑖 and 𝐁̂𝑖 be the minimiser of Q𝑖(𝐀,𝐁) with respect to 𝐀 and 𝐁, where

𝐀̂𝑖 =
(
𝜶̂𝑖,1,…, 𝜶̂𝑖,𝑝𝑑

)
with 𝜶̂𝑖,𝑗 =

[
𝛼𝑖,𝑗 (𝜏1),…, 𝛼𝑖,𝑗 (𝜏𝑛)

]⊺
,

𝐁̂𝑖 =
(
𝜶̂
′
𝑖,1,…, 𝜶̂

′
𝑖,𝑝𝑑

)
with 𝜶̂

′
𝑖,𝑗 =

[
𝛼′𝑖,𝑗 (𝜏1),…, 𝛼′𝑖,𝑗 (𝜏𝑛)

]⊺
.

The index set J𝑖 is estimated by ̂J𝑖 =
{
𝑗 ∶ 𝜶̂𝑖,𝑗 ≠ 𝟎𝑛

}
, and J′

𝑖
 is estimated by ̂J′

𝑖
=
{
𝑗 ∶ 𝜶̂

′
𝑖,𝑗 ≠ 𝟎𝑛

}
, where 𝟎𝑘 is a 𝑘-dimensional vector 

of zeros. A similar shrinkage estimation method is used by Li et al. (2015) and Chen et al. (2021) to identify a high-dimensional 
semi-varying coefficient model structure for independent data. So far as we know, there is no work on such a penalised technique 
and its relevant theory for high-dimensional locally stationary time series data.

3.3. Estimation of the time-varying precision matrix

In this section, we study the estimation of 𝜴(⋅) in model (2.1), which is crucial to uncover the time-varying and uniform network 
structures based on partial correlations. Estimation of large static precision matrices has been extensively studied under the sparsity 
assumption, and various estimation techniques, such as the penalised likelihood, graphical Danzig selector and CLIME, have been 
proposed in the literature (e.g., Lam and Fan, 2009; Yuan, 2010; Cai et al., 2011). Xu et al. (2020) further introduce a time-
varying CLIME method for high-dimensional locally stationary time series which are observable. Note that in this paper, 𝜴(⋅) is the 
time-varying precision matrix for the high-dimensional unobservable error vector 𝑒𝑡 and hence, its estimation requires substantial 
modification of the time-varying CLIME methodology and theory.

With ̂𝜶𝑖∙(⋅), 𝑖 = 1,…, 𝑑, from Section 3.2, we can then extract estimates of the time-varying transition matrices, denoted by ̂𝐀𝑘(𝜏𝑡), 
𝑡 = 1,…, 𝑛, 𝑘 = 1,…, 𝑝, and approximate 𝑒𝑡 by

𝑒𝑡 =
(
𝑒𝑡,1,…, 𝑒𝑡,𝑑

)⊺
= 𝑋𝑡 −

𝑝∑
𝑘=1

𝐀̂𝑘(𝜏𝑡)𝑋𝑡−𝑘, 𝑡 = 1,…, 𝑛. (3.6)

The approximation accuracy depends on the uniform prediction rates of the time-varying weighted group LASSO estimates. In order 
to apply the time-varying CLIME, we assume that 𝜴(⋅) satisfies a uniform sparsity assumption, a natural extension of the classic 
sparsity assumption to the locally stationary time series setting. Specifically, we assume {𝜴(𝜏) ∶ 0 ≤ 𝜏 ≤ 1} ∈ S(𝑞, 𝜉𝑑 ), where

S(𝑞, 𝜉𝑑 ) =

{
𝐖(𝜏) =

[
𝑤𝑖𝑗 (𝜏)

]
𝑑×𝑑

, 0 ≤ 𝜏 ≤ 1 ∶ 𝐖(𝜏) ≻ 0, sup
0≤𝜏≤1

‖𝐖(𝜏)‖1 ≤ 𝐶2, sup
0≤𝜏≤1

max
1≤𝑖≤𝑑

𝑑∑
𝑗=1

|𝑤𝑖𝑗 (𝜏)|𝑞 ≤ 𝜉𝑑

}
, (3.7)

where 0 ≤ 𝑞 < 1, “𝐖 ≻ 0’’ denotes that 𝐖 is positive definite, and 𝐶2 is a bounded positive constant. Specially, we adopt the 
definition 00 = 0. Define

𝜮̂(𝜏) =
[
𝜎𝑖𝑗 (𝜏)

]
𝑑×𝑑

with 𝜎𝑖𝑗 (𝜏) =

𝑛∑
𝑡=1

𝜛𝑛,𝑡(𝜏)𝑒𝑡,𝑖𝑒𝑡,𝑗∕

𝑛∑
𝑡=1

𝜛𝑛,𝑡(𝜏), (3.8)

where the weight function 𝜛𝑛,𝑡(⋅) is constructed via the local linear smoothing:
𝜛𝑛,𝑡(𝜏) = 𝐾

( 𝜏𝑡 − 𝜏

𝑏

)
𝑠𝑛,2(𝜏) −𝐾1

( 𝜏𝑡 − 𝜏

𝑏

)
𝑠𝑛,1(𝜏),

in which 𝑠𝑛,𝑗 (𝜏) =
∑𝑛

𝑡=1 𝐾𝑗

(
𝜏𝑡−𝜏

𝑏

)
, 𝐾𝑗 (𝑥) = 𝑥𝑗𝐾(𝑥), and 𝑏 is a bandwidth. With the uniform sparsity assumption (3.7), we estimate 

𝜴(𝜏) via the time-varying CLIME method:
𝜴̃(𝜏) =

[
𝜔̃𝑖𝑗 (𝜏)

]
𝑑×𝑑

= argmin
𝜴

|𝜴|1 subject to
‖‖‖𝜮̂(𝜏)𝜴 − 𝐈𝑑

‖‖‖max
≤ 𝜆3, (3.9)

where 𝜆3 is a tuning parameter. As the underlying time-varying precision matrix is symmetric, the matrix estimate obtained from 
(3.9) needs to be symmetrised to obtain the final estimate, denoted as 𝜴̂(𝜏) =

[
𝜔̂𝑖𝑗 (𝜏)

]
𝑑×𝑑

, where
𝜔̂𝑖𝑗 (𝜏) = 𝜔̂𝑗𝑖(𝜏) = 𝜔̃𝑖𝑗 (𝜏)𝐼

(|𝜔̃𝑖𝑗 (𝜏)| ≤ |𝜔̃𝑗𝑖(𝜏)|
)
+ 𝜔̃𝑗𝑖(𝜏)𝐼

(|𝜔̃𝑖𝑗 (𝜏)| > |𝜔̃𝑗𝑖(𝜏)|
)
. (3.10)
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3.4. Estimation of uniform time-varying networks

In practice, when the sample size 𝑛 is sufficiently large, it is often sensible to approximate the uniform edge sets, E𝐺 and E𝑃 , by 
the following discrete versions:

E
𝐺
𝑛 =

{
(𝑖, 𝑗) ∈ V × V ∶ ∃ 𝑘 ∈ {1, 2,…, 𝑝} and 𝑡 ∈ {1,…, 𝑛}, 𝑎𝑘,𝑖𝑗 (𝜏𝑡) ≠ 0

}
(3.11)

and

E
𝑃
𝑛 =

{
(𝑖, 𝑗) ∈ V × V ∶ ∃ 𝑡 ∈ {1,…, 𝑛}, 𝜔𝑖𝑗 (𝜏𝑡) ≠ 0, 𝑖 ≠ 𝑗

}
. (3.12)

Hence, we next estimate E𝐺
𝑛  and E𝑃

𝑛  instead of E𝐺 and E𝑃 . With the time-varying transition and precision matrix estimates in 
Sections 3.2 and 3.3, we can estimate E𝐺

𝑛  by

Ê
𝐺
𝑛 =

{
(𝑖, 𝑗) ∈ V × V ∶ ∃ 𝑘 ∈ {1, 2,…, 𝑝},

𝑛∑
𝑡=1

𝑎2
𝑘,𝑖𝑗

(𝜏𝑡) > 0

}
, (3.13)

where 𝑎𝑘,𝑖𝑗 (𝜏𝑡) denotes the (𝑖, 𝑗)-entry of 𝐀̂𝑘(𝜏𝑡), and estimate E𝑃
𝑛  by

Ê
𝑃
𝑛 =

{
(𝑖, 𝑗) ∈ V × V ∶ ∃ 𝑡 ∈ {1,…, 𝑛},

|||𝜔̂𝑖𝑗 (𝜏𝑡)
||| ≥ 𝜆3, 𝑖 ≠ 𝑗

}
, (3.14)

where 𝜆3 is the tuning parameter used in the time-varying CLIME.

4. Main theoretical results

To ease the notational burden, throughout this section, we focus on the time-varying VAR(1) model:
𝑋𝑡 = 𝐀(𝜏𝑡)𝑋𝑡−1 +𝜮

1∕2
𝑡 𝜀𝑡, (4.1)

where 𝐀(𝜏) = [
𝛼𝑖𝑗 (𝜏)

]
𝑑×𝑑

. For a general time-varying VAR(𝑝) model (2.1), it can be equivalently re-written as a (𝑝𝑑)-dimensional 
VAR(1) model as follows:

𝐗𝑡 = 𝐀
∗
𝑡 𝐗𝑡−1 + 𝐞𝑡,

where 𝐗𝑡 is defined in (3.1), 𝐞𝑡 =
(
𝑒
⊺

𝑡 , 0
⊺

𝑑
,…, 0

⊺

𝑑

)⊺
, and 𝐀∗

𝑡  is a (𝑝𝑑) × (𝑝𝑑) time-varying transition matrix:

𝐀
∗
𝑡 =

⎛⎜⎜⎜⎜⎝

𝐀𝑡,1 𝐀𝑡,2 … 𝐀𝑡,𝑝−1 𝐀𝑡,𝑝

𝐈𝑑 𝐎𝑑×𝑑 … 𝐎𝑑×𝑑 𝐎𝑑×𝑑

⋮ ⋮ ⋮ ⋮ ⋮

𝐎𝑑×𝑑 𝐎𝑑×𝑑 … 𝐈𝑑 𝐎𝑑×𝑑

⎞⎟⎟⎟⎟⎠
.

4.1. Uniform consistency of the time-varying LASSO estimates

Define

𝜳 (𝜏) =

[
𝜳 0(𝜏) 𝜳 1(𝜏)

𝜳 1(𝜏) 𝜳 2(𝜏)

]
with 𝜳 𝑘(𝜏) =

1

𝑛

𝑛∑
𝑡=1

( 𝜏𝑡 − 𝜏

ℎ

)𝑘

𝑋𝑡−1𝑋
⊺

𝑡−1
𝐾ℎ(𝜏𝑡 − 𝜏), 𝑘 = 0, 1, 2, (4.2)

and

B𝑖(𝜏) =

⎧
⎪⎨⎪⎩

(
𝑢
⊺

1
, 𝑢

⊺

2

)⊺

∶ ‖𝑢1‖2 + ‖𝑢2‖2 = 1,

𝑑∑
𝑗=1

(|𝑢1,𝑗 | + |𝑢2,𝑗 |
)
≤ 3

⎛⎜⎜⎝
∑

𝑗∈J𝑖(𝜏)

|𝑢1,𝑗 | +
∑

𝑗∈J′
𝑖
(𝜏)

|𝑢2,𝑗 |
⎞⎟⎟⎠

⎫
⎪⎬⎪⎭
,

where 𝑢1 = (𝑢1,1,… , 𝑢1,𝑑 )
⊺  and 𝑢2 = (𝑢2,1,… , 𝑢2,𝑑 )

⊺  are two 𝑑-dimensional vectors and J𝑖(𝜏) and J′𝑖(𝜏) are defined as in Section 3.2 
but with 𝑝 = 1. To derive the uniform consistency property of the preliminary time-varying LASSO estimates defined in Section 3.1, 
we need the following assumptions, some of which may be weakened at the cost of lengthier proofs.

Assumption 2. (i) The kernel 𝐾(⋅) is a bounded, continuous and symmetric probability density function with a compact support 
[−1, 1].

(ii) The bandwidth ℎ satisfies
𝑛ℎ∕ log2(𝑛 ∨ 𝑑) → ∞ and 𝑠ℎ2 log(𝑛 ∨ 𝑑) → 0,

where 𝑠 = max1≤𝑖≤𝑑 𝑠𝑖 with 𝑠𝑖 being the cardinality of the index set J𝑖. 

Assumption 3. (i) The tuning parameter 𝜆1 satisfies 
𝜁𝑛,𝑑 ∶= log(𝑛 ∨ 𝑑)

[
(𝑛ℎ)−1∕2 + 𝑠ℎ2

]
= 𝑜(𝜆1) and

√
𝑠𝜆1∕ℎ → 0.

7
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(ii) There exists a positive constant 𝜅0 such that, with probability approaching one (w.p.a.1),
min
1≤𝑖≤𝑑

min
1≤𝑡≤𝑛

inf
𝑢∈B𝑖(𝜏𝑡)

𝑢
⊺
𝜳 (𝜏𝑡)𝑢 ≥ 𝜅0. (4.3)

Assumption  2(i) is a mild restriction which can be satisfied by some commonly-used kernels such as the uniform kernel and the 
Epanechnikov kernel. The compact support assumption on the kernel function is not essential and can be replaced by appropriate tail 
conditions. The bandwidth conditions in Assumption  2(ii) are crucial for deriving the uniform convergence properties of the kernel-
based quantities. When 𝑠 is bounded and 𝑑 diverges at a polynomial rate of 𝑛, the conditions can be simplified to 𝑛ℎ∕ log2 𝑛 → ∞ and 
ℎ2 log 𝑛 → 0. Assumption  3(ii) can be seen as a uniform version of the so-called restricted eigenvalue condition widely used in high-
dimensional linear regression models (e.g., Bickel et al., 2009; Basu and Michailidis, 2015). Appendix D in the supplement provides 
sufficient conditions for the high-dimensional locally stationary Gaussian time series to satisfy Assumption  3(ii). Furthermore, 
with the Hanson-Wright inequality for time-varying (non-Gaussian) VAR processes (e.g., Proposition 6.2 in Zhang and Wu, 2021), 
we may show that max1≤𝑡≤𝑛

‖‖𝜳 (𝜏𝑡) − 𝖤[𝜳 (𝜏𝑡)]
‖‖max = 𝑂𝑃

(√
log(𝑛 ∨ 𝑑)∕(𝑛ℎ)

)
. Then, using Lemma D.1 in Appendix A and assuming 

𝑠
√
log(𝑛 ∨ 𝑑)∕(𝑛ℎ) = 𝑜(1), a sufficient condition for (4.3) is

min
1≤𝑖≤𝑑

min
1≤𝑡≤𝑛

inf
𝑢∈B𝑖(𝜏𝑡)

𝑢
⊺
𝖤
[
𝜳 (𝜏𝑡)

]
𝑢 ≥ 𝜅0.

Theorem 4.1. Suppose that Assumptions  1–3 are satisfied. Then we have
max
1≤𝑖≤𝑑

max
1≤𝑡≤𝑛

‖‖𝜶̃𝑖∙(𝜏𝑡) − 𝜶𝑖∙(𝜏𝑡)
‖‖ = 𝑂𝑃

(√
𝑠𝜆1

)
. (4.4)

Theorem  4.1 shows that the preliminary time-varying LASSO estimates of the transition matrices are uniformly consistent with 
the convergence rate relying on 𝑠 and 𝜆1. Although the dimension 𝑑 is allowed to diverge at an exponential rate of 𝑛, the number 
of significant elements in 𝜶𝑖∙(⋅) cannot diverge too fast in order to guarantee the consistency property. Furthermore, the uniform 
convergence result (4.4) can be strengthened to

max
1≤𝑖≤𝑑

sup
0≤𝜏≤1

‖‖𝜶̃𝑖∙(𝜏) − 𝜶𝑖∙(𝜏)
‖‖ = 𝑂𝑃

(√
𝑠𝜆1

)
. (4.5)

A similar uniform convergence property holds for the first-order derivative function estimates, see (A.1) in the proof of Theorem 
4.1.

4.2. The oracle property of the weighted group LASSO estimates

Denote the complement of J𝑖 and J′𝑖 as J𝑖 and J
′

𝑖 , respectively, i.e., J𝑖 =
⋂𝑛

𝑡=1

{
𝑗 ∶ 𝛼𝑖,𝑗 (𝜏𝑡) = 0

} and J′𝑖 =
⋂𝑛

𝑡=1

{
𝑗 ∶ 𝛼′

𝑖,𝑗
(𝜏𝑡) = 0

}
. 

Let 𝐀𝑜 =
(
𝜶𝑜
∙1
,…,𝜶𝑜

∙𝑛

)⊺  and 𝐁𝑜 =
(
𝜷𝑜
∙1
,…, 𝜷𝑜

∙𝑛

)⊺
, where 𝜶𝑜

∙𝑡 = (𝛼𝑜
1|𝑡,…, 𝛼𝑜

𝑑|𝑡)
⊺  with 𝛼𝑜

𝑗|𝑡 = 0 for 𝑗 ∈ J𝑖 and 𝜷𝑜
∙𝑡 = (𝛽𝑜

1|𝑡,…, 𝛽𝑜
𝑑|𝑡)

⊺  with 𝛽𝑜
𝑗|𝑡 = 0

for 𝑗 ∈ J
′

𝑖 . Define the (infeasible) oracle estimates:
𝐀̂
𝑜
𝑖 =

(
𝜶̂
𝑜
𝑖,1,…, 𝜶̂

𝑜
𝑖,𝑑

)
with 𝜶̂

𝑜
𝑖,𝑗 =

[
𝛼𝑜𝑖,𝑗 (𝜏1),…, 𝛼𝑜𝑖,𝑗 (𝜏𝑛)

]⊺
, (4.6)

𝐁̂
𝑜
𝑖 =

(
𝜶̂
′𝑜
𝑖,1,…, 𝜶̂

′𝑜
𝑖,𝑑

)
with 𝜶̂

′𝑜
𝑖,𝑗 =

[
𝛼′𝑜𝑖,𝑗 (𝜏1),…, 𝛼′𝑜𝑖,𝑗 (𝜏𝑛)

]⊺
, (4.7)

as the values of 𝐀𝑜 and 𝐁𝑜 that minimise Q𝑖(𝐀
𝑜,𝐁𝑜). We need to impose the following condition on the tuning parameter 𝜆2 and the 

lower bounds for the significant time-varying coefficients in the transition matrix.

Assumption 4. (i) The tuning parameter 𝜆2 satisfies√
𝑛𝑠 log(𝑛 ∨ 𝑑)𝜁𝑛,𝑑 +

√
𝑛𝑠𝜆1 = 𝑜(𝜆2),

where 𝜁𝑛,𝑑 is defined in Assumption  3(i).
(ii) It holds that

min
1≤𝑖≤𝑑

min
𝑗∈J𝑖

(
𝑛∑

𝑡=1

𝛼2𝑖,𝑗 (𝜏𝑡)

) 1
2

≥ (𝑎0 + 1)𝜆2 and min
1≤𝑖≤𝑑

min
𝑗∈J′

𝑖

𝐷𝑖,𝑗 ≥ (𝑎0 + 1)𝜆2,

where 𝑎0 = 3.7 is defined in the SCAD penalty.
When 𝑠 is a fixed positive integer, ℎ ∝ 𝑛−1∕5, 𝜆1 ∝ 𝑛−2∕5+𝜂0  with 0 < 𝜂0 < 1∕5, and 𝑑 ∼ exp {𝑛𝜂1} with 0 < 𝜂1 < 𝜂0, it is easy to verify 

Assumption  4(i) by setting 𝜆2 ∝ 𝑛1∕2−𝜂2  with 0 < 𝜂2 < 2∕5 − [𝜂0 ∨ (2𝜂1)]. Assumption  4(ii) imposes restrictions on the lower bounds 
for the time-varying coefficient functions and their deviations from the means. These restrictions are weaker than Assumption 6(ii) 
in Li et al. (2015) and Assumption 8 in Chen et al. (2021), and they ensure that the significant coefficient functions and derivatives 
can be detected w.p.a.1.

Theorem 4.2. Suppose that Assumptions  1–4 are satisfied. The minimiser to the objective function of the weighted group LASSO, Q𝑖(𝐀,𝐁), 
exists and equals the oracle estimates defined in (4.6) and (4.7) w.p.a.1. In addition, we have the following mean squared convergence 

8
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result:

max
1≤𝑖≤𝑑

1

𝑛

𝑛∑
𝑡=1

𝑑∑
𝑗=1

[
𝛼𝑖𝑗 (𝜏𝑡) − 𝛼𝑖𝑗 (𝜏𝑡)

]2
= 𝑂𝑃

(
𝑠𝜁2

𝑛,𝑑

)
, (4.8)

where 𝑠 is defined in Assumption  2(ii) and 𝜁𝑛,𝑑 is defined in Assumption  3(i).
Since the penalised local linear estimates are identical to the infeasible oracle estimates defined in (4.6) and (4.7) w.p.a.1, the 

sparsity property holds for the global model selection procedures proposed in Section 3.2, i.e., the zero elements in the time-varying 
transition matrix can be estimated exactly as zeros. When 𝑠 is a fixed positive integer, ℎ ∝ 𝑛−1∕5, 𝜆1 ∝ 𝑛−2∕5+𝜂0  with 0 < 𝜂0 < 1∕5, 
and 𝑑 ∼ exp {𝑛𝜂1} with 0 < 𝜂1 < 𝜂0, it is easy to show that the convergence rate in Theorem  4.2 is 𝑂(𝑛−4∕5+2𝜂1 ). Following the proof 
of Theorem  4.2, we may verify properties (i)–(iv) for the folded concave penalty function discussed in Fan et al. (2014b) w.p.a.1. 
Hence, Theorem  4.2 may be regarded as a generalisation of Theorem 1 in Fan et al. (2014b) and Theorem 3.1 in Li et al. (2015) to 
high-dimensional locally stationary time series.

With the oracle property in Theorem  4.2, it is straightforward to derive the following consistency property of the network 
estimates for the directed edges of Granger causality linkages.

Corollary 4.1. Under the assumptions of Theorem  4.2, we have
𝖯

(
Ê
𝐺
𝑛 = E

𝐺
𝑛

)
→ 1. (4.9)

4.3. Uniform consistency of the time-varying CLIME estimates

To derive the uniform consistency property of the time-varying CLIME estimates, we need the following conditions on the tuning 
parameters 𝑏 and 𝜆3.

Assumption 5. (i) The bandwidth 𝑏 satisfies
𝑏 → 0 and 𝑛𝑏∕[log(𝑛 ∨ 𝑑)]3 → ∞.

In addition, 𝑠𝜁𝑛,𝑑
√
log(𝑛 ∨ 𝑑) → 0, where 𝜁𝑛,𝑑 is defined in Assumption  3(i).

(ii) There exists a sufficiently large constant 𝐶3 such that 𝜆3 = 𝐶3

(
𝜈⋄
𝑛,𝑑

+ 𝜈∗
𝑛,𝑑

)
, where 

𝜈⋄
𝑛,𝑑

=

[
log(𝑛 ∨ 𝑑)

𝑛𝑏

]1∕2
+ 𝑏2 and 𝜈∗

𝑛,𝑑
= 𝑠𝜁𝑛,𝑑

√
log(𝑛 ∨ 𝑑).

The following theorem gives the uniform convergence rates of the time-varying precision matrix estimate 𝜴̂(𝜏) under various 
matrix norms.

Theorem 4.3. Suppose Assumptions  1–5 are satisfied and {𝜴(𝜏) ∶ 0 ≤ 𝜏 ≤ 1} ∈ S(𝑞, 𝜉𝑑 ). Then we have
sup

0≤𝜏≤1

‖‖‖𝜴̂(𝜏) −𝜴(𝜏)
‖‖‖max

= 𝑂𝑃

(
𝜈⋄
𝑛,𝑑

+ 𝜈∗
𝑛,𝑑

)
, (4.10)

sup
0≤𝜏≤1

‖‖‖𝜴̂(𝜏) −𝜴(𝜏)
‖‖‖ = 𝑂𝑃

(
𝜉𝑑 (𝜈

⋄
𝑛,𝑑

+ 𝜈∗
𝑛,𝑑

)1−𝑞
)
, (4.11)

sup
0≤𝜏≤1

1

𝑑

‖‖‖𝜴̂(𝜏) −𝜴(𝜏)
‖‖‖
2

𝐹
= 𝑂𝑃

(
𝜉𝑑 (𝜈

⋄
𝑛,𝑑

+ 𝜈∗
𝑛,𝑑

)2−𝑞
)
, (4.12)

where 𝜉𝑑 is defined in (3.7), 𝜈⋄𝑛,𝑑 and 𝜈∗𝑛,𝑑 are defined in Assumption  5(ii).

The uniform convergence rates in Theorem  4.3 rely on 𝜈⋄
𝑛,𝑑

 and 𝜈∗
𝑛,𝑑
. The first rate 𝜈⋄

𝑛,𝑑
 is the conventional uniform convergence 

rate for nonparametric kernel-based quantities, whereas the second rate 𝜈∗
𝑛,𝑑

 is from the approximation errors of 𝑒𝑡 to the latent 
VAR errors 𝑒𝑡. Note that the dimension 𝑑 affects the uniform convergence rates via 𝜉𝑑 and log(𝑛 ∨ 𝑑), and the uniform consistency 
property holds in the ultra-high dimensional setting when 𝑑 diverges at an exponential rate of 𝑛. For example, when 𝑠 is a fixed 
positive integer, ℎ ∝ 𝑛−1∕5, 𝑏 ∝ 𝑛−1∕5, and 𝑑 ∼ exp {𝑛𝜂1} with 0 < 𝜂1 < 𝜂0, it is easy to verify that 𝜈⋄𝑛,𝑑 + 𝜈∗

𝑛,𝑑
∝ 𝑛−2∕5+3𝜂1∕2. Theorem 

4.3 can be seen as an extension of Theorem 1 in Cai et al. (2011) to the high-dimensional locally stationary time series setting.
From Theorem  4.3, we readily have the following consistency property for the network estimates of the undirected edges of 

partial correlation linkages.

Corollary 4.2. Under the assumptions of Theorem  4.3, if min(𝑖,𝑗)∈E𝑃 min1≤𝑡≤𝑛 |𝜔𝑖𝑗 (𝜏𝑡)| ≫ 𝜆3, we have
𝖯

(
Ê
𝑃
𝑛 = E

𝑃
𝑛

)
→ 1. (4.13)

9
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5. Factor-adjusted time-varying VAR and networks

In this section, we let (𝑍𝑡 ∶ 𝑡 = 1,…, 𝑛) with 𝑍𝑡 = (𝑧𝑡,1,…, 𝑧𝑡,𝑑 )
⊺  be an observed sequence of 𝑑-dimensional random vectors. To 

accommodate strong cross-sectional dependence which is not uncommon for large-scale time series collected in practice, we assume 
that 𝑍𝑡 is generated by an approximate factor model:

𝑍𝑡 = 𝜦𝐹𝑡 +𝑋𝑡, 𝑡 = 1,…, 𝑛, (5.1)

where 𝜦 = (𝛬1,…, 𝛬𝑑 )
⊺  is a 𝑑 × 𝑘 matrix of factor loadings, 𝐹𝑡 is a 𝑘-dimensional vector of latent factors and (𝑋𝑡) is assumed to 

satisfy the time-varying VAR model (2.1). More generally, we may assume the following time-varying factor model structure:
𝑍𝑡 = 𝜦𝑡𝐹𝑡 +𝑋𝑡, 𝑡 = 1,…, 𝑛, (5.2)

where 𝜦𝑡 = 𝜦(𝑡∕𝑛) is a time-varying factor loading matrix with each entry being a smooth function of scaled times. The approximate 
factor model and its time-varying generalisation have been extensively studied in the literature (e.g., Chamberlain and Rothschild, 
1983; Bai and Ng, 2002; Stock and Watson, 2002; Motta et al., 2011; Su and Wang, 2017). Model (5.2) can be seen as a special case 
of the time-varying dynamic factor model (e.g., Eichler et al., 2011; Barigozzi et al., 2021). The primary interest of this section is 
to estimate the time-varying networks for the idiosyncratic error vector 𝑋𝑡. Even though the components of 𝑍𝑡 may be highly 
correlated, those of 𝑋𝑡 are often only weakly correlated. Hence, it is sensible to impose the sparsity assumption on the time-
varying transition and precision matrices of the idiosyncratic error process, making it possible to apply the estimation methodology 
proposed in Section 3. However, this is non-trivial as neither the common components (𝜦𝐹𝑡 or 𝜦𝑡𝐹𝑡) nor the idiosyncratic error 
components are observable. Motivated by recent work on bridging factor and sparse models for high-dimensional data (e.g., Krampe 
and Margaritella, 2022; Fan et al., 2023), we next use the principal component analysis (PCA) or its localised version to remove 
the common components driven by latent factors in the observed time series data.

Let 𝐙 =
(
𝑍1,…, 𝑍𝑛

)⊺
, 𝐅 =

(
𝐹1,…, 𝐹𝑛

)⊺  and 𝐗 =
(
𝑋1,…, 𝑋𝑛

)⊺
. For the conventional factor model (5.1), we conduct an 

eigenanalysis on the 𝑛 × 𝑛 matrix 𝐙𝐙⊺
. The estimate of 𝐅, denoted as ̂𝐅 =

(
𝐹1,…, 𝐹𝑛

)⊺

, is obtained as the 𝑛 × 𝑘 matrix consisting of 
the eigenvectors (multiplied by √𝑛) corresponding to the 𝑘 largest eigenvalues of 𝐙𝐙⊺

. The factor loading matrix is estimated by 
𝜦̂ =

(
𝛬1,…, 𝛬𝑑

)⊺

= 𝐙
⊺
𝐅̂∕𝑛. Consequently, the common component 𝜦𝐹𝑡 is estimated by 𝜦̂𝐹𝑡 and the idiosyncratic error component 

𝑋𝑡 is estimated by
𝑋𝑡 = 𝑍𝑡 − 𝜦̂𝐹𝑡, 𝑡 = 1,…, 𝑛. (5.3)

For the time-varying factor model (5.2), the above PCA estimation procedure needs some amendments. Specifically, let
𝐾𝑡,ℎ∗

(𝜏) =
𝐾ℎ∗

(𝜏𝑡 − 𝜏)
∑𝑛

𝑠=1 𝐾ℎ∗
(𝜏𝑠 − 𝜏)

, 0 < 𝜏 < 1,

where ℎ∗ is a bandwidth and 𝐾ℎ∗
(⋅) is defined as in Section 3.1, and define the localised data matrix:

𝐙(𝜏) =
[
𝑍1(𝜏),…, 𝑍𝑛(𝜏)

]⊺
with 𝑍𝑡(𝜏) = 𝑍𝑡𝐾

1∕2

𝑡,ℎ∗
(𝜏).

Through an eigenanalysis on the matrix 𝐙(𝜏)𝐙⊺
(𝜏), we can obtain the local PCA estimates of the factors and factor-loading matrix, 

denoted by ̂𝐅(𝜏) =
[
𝐹1(𝜏),…, 𝐹𝑛(𝜏)

]⊺
 and 𝜦̂(𝜏), respectively. Then, the idiosyncratic error vector 𝑋𝑡 is approximated by

𝑋𝑡 = 𝑍𝑡 − 𝜦̂(𝜏𝑡)𝐹𝑡(𝜏𝑡), 𝑡 = 1,…, 𝑛, (5.4)

where we keep the same notation 𝑋𝑡 as in (5.3) to avoid notational burden.
As in Section 4, we only consider the time-varying VAR(1) model for the idiosyncratic error vector. With the approximation 𝑋𝑡, 

we can apply the three-stage estimation procedure proposed in Section 3. Denote the preliminary time-varying LASSO estimate as 
𝛼†
𝑖𝑗
(⋅), the second-stage weighted group LASSO estimate as ̂𝛼†

𝑖𝑗
(⋅), and the factor-adjusted time-varying precision matrix estimate as 

𝜴̂
†
(⋅) =

[
𝜔̂†
𝑖𝑗
(⋅)
]
𝑑×𝑑

. Subsequently, we may construct the uniform network estimates ̂E𝐺,†
𝑛  and ̂E𝑃 ,†

𝑛 , defined similarly to ̂E𝐺
𝑛  and ̂E𝑃

𝑛  in 
(3.13) and (3.14), but with ̂𝛼𝑖𝑗 (⋅) and 𝜔̂𝑖𝑗 (⋅) replaced by ̂𝛼†𝑖𝑗 (⋅) and 𝜔̂†

𝑖𝑗
(⋅), respectively. To derive the convergence properties of these 

factor-adjusted estimates, we need the following assumption, which modifies Assumptions  3–5 to incorporate the approximation 
error of the idiosyncratic error components.

Assumption 6. (i) Denote 𝛿𝑋 = max1≤𝑡≤𝑛
|||𝑋𝑡 −𝑋𝑡

|||max
. It holds that [log(𝑛 ∨ 𝑑)]1∕2𝑠𝛿𝑋 = 𝑜𝑃 (1).

(ii) Assumption  3(i) holds when 𝜁𝑛,𝑑 is replaced by 𝜁†𝑛,𝑑 = 𝜁𝑛,𝑑 + [log(𝑛 ∨ 𝑑)]1∕2𝑠𝛿𝑋 .

(iii) Assumption  4(i) holds when 𝜁𝑛,𝑑 is replaced by 𝜁†𝑛,𝑑 .
(iv) Assumption  5 holds when 𝜁𝑛,𝑑 and 𝜈∗𝑛,𝑑 are replaced by 𝜁†𝑛,𝑑 and 𝜈†𝑛,𝑑 = 𝑠𝜁†

𝑛,𝑑

√
log(𝑛 ∨ 𝑑), respectively.

Assumption  6(i) imposes a high-level condition on the approximation of latent 𝑋𝑡 in the factor model, i.e., the approximation 
error 𝛿𝑋 uniformly converges to zero with a rate faster than 𝑠−1[log(𝑛 ∨ 𝑑)]−1∕2. By Corollary 1 in Fan et al. (2013), a typical rate 
for the approximation error from PCA estimation of the conventional factor model (5.1) is

𝛿𝑋 = 𝑂𝑃

(
(log 𝑛)1∕2

[
(log 𝑑)1∕2𝑛−1∕2 + 𝑛1∕𝜐𝑑−1∕2

])
, (5.5)

10
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where 𝜐 > 2 is a positive number related to moment restrictions. From Theorem 3.5 in Su and Wang (2017), we may obtain the typical 
uniform rate for 𝛿𝑋 under the time-varying factor model (5.2) when the local PCA estimation is used. In Assumption  6(ii)–(iv), we 
amend Assumptions  3(i), 4(i) and 5(ii) to incorporate the approximation error 𝛿𝑋 . However, if we further assume that ℎ ∝ 𝑛−1∕5 and 𝑑
diverges at a polynomial rate of 𝑛 satisfying 𝑑 ≫ 𝑛1+2∕𝜐, then the rate in (5.5) can be simplified to 𝛿𝑋 = 𝑂𝑃

(
(log 𝑑)𝑛−1∕2

)
= 𝑜𝑃 (ℎ

2) and 
thus 𝜁𝑛,𝑑 ∝ 𝜁†

𝑛,𝑑
. Consequently, we may remove Assumption  6(ii)–(iv) and 𝛿𝑋 would not be involved in the estimation convergence 

rates under model (5.1).
The following two propositions extend the theoretical results in Section 4 to the factor-adjusted time-varying VAR and networks.

Proposition 5.1. Suppose that the factor model (5.1) or (5.2), and Assumptions  1, 2 and 3(ii) are satisfied.
(i) Under Assumption  6(i)(ii), we have

max
1≤𝑖≤𝑑

max
1≤𝑡≤𝑛

𝑑∑
𝑗=1

[
𝛼†
𝑖𝑗
(𝜏𝑡) − 𝛼𝑖𝑗 (𝜏𝑡)

]2
= 𝑂𝑃

(
𝑠𝜆2

1

)
. (5.6)

(ii) Under Assumption  6(i)–(iii), the oracle property holds for the second-stage weighted group LASSO estimates and furthermore,

max
1≤𝑖≤𝑑

1

𝑛

𝑛∑
𝑡=1

𝑑∑
𝑗=1

[
𝛼†
𝑖𝑗
(𝜏𝑡) − 𝛼𝑖𝑗 (𝜏𝑡)

]2
= 𝑂𝑃

(
𝑠
(
𝜁†
𝑛,𝑑

)2
)
. (5.7)

(iii) Under Assumption  6 and the sparsity condition that {𝜴(𝜏) ∶ 0 ≤ 𝜏 ≤ 1} ∈ S(𝑞, 𝜉𝑑 ), we have
sup

0≤𝜏≤1

‖‖‖‖𝜴̂
†
(𝜏) −𝜴(𝜏)

‖‖‖‖max

= 𝑂𝑃

(
𝜈⋄
𝑛,𝑑

+ 𝜈†
𝑛,𝑑

)
, (5.8)

sup
0≤𝜏≤1

‖‖‖‖𝜴̂
†
(𝜏) −𝜴(𝜏)

‖‖‖‖ = 𝑂𝑃

(
𝜉𝑑 (𝜈

⋄
𝑛,𝑑

+ 𝜈†
𝑛,𝑑

)1−𝑞
)
, (5.9)

sup
0≤𝜏≤1

1

𝑑

‖‖‖‖𝜴̂
†
(𝜏) −𝜴(𝜏)

‖‖‖‖
2

𝐹
= 𝑂𝑃

(
𝜉𝑑 (𝜈

⋄
𝑛,𝑑

+ 𝜈†
𝑛,𝑑

)2−𝑞
)
. (5.10)

Proposition 5.2. (i) Under the assumptions of Proposition  5.1(ii), we have
𝖯

(
Ê
𝐺,†
𝑛 = E

𝐺
𝑛

)
→ 1. (5.11)

(ii) Under the assumptions of Proposition  5.1(iii) and min(𝑖,𝑗)∈E𝑃 min1≤𝑡≤𝑛 |𝜔𝑖𝑗 (𝜏𝑡)| ≫ 𝜆3, we have
𝖯

(
Ê
𝑃 ,†
𝑛 = E

𝑃
𝑛

)
→ 1. (5.12)

6. Monte-Carlo simulation

In this section, we provide four simulated examples to examine the finite-sample numerical performance of the proposed high-
dimensional time-varying VAR and network estimates. Throughout this section, we denote the proposed time-varying weighted 
group LASSO method as tv-wgLASSO and the time-varying CLIME method as tv-CLIME. We compare the performance of the tv-
wgLASSO with the time-varying oracle estimator, denoted as tv-Oracle, which estimates only the true significant coefficient functions 
(assuming the zero coefficient functions were known), and the full time-varying estimator, denoted as tv-Full, which estimates all 
the coefficient functions without penalisation. We compare the performance of tv-CLIME with the time-varying graphical LASSO 
method, denoted as tv-GLASSO, which is implemented using the R package ‘‘glassoFast’’ on the VAR residuals. In addition, to 
investigate the loss of estimation accuracy due to the VAR model error approximation, we also report results from the infeasible 
tv-CLIME, which directly uses the true VAR errors (rather than residuals) in the estimation of precision matrices.

In the simulation, we use the Epanechnikov kernel 𝐾(𝑡) = 0.75(1 − 𝑡2)+ with bandwidth ℎ = 𝑏 = 0.75[log(𝑑)∕𝑛]1∕5 as in Li et al. 
(2015). The bandwidth for the local PCA is set as ℎ∗ = (2.35∕

√
12)[

√
𝑑∕𝑛]1∕5 as in Su and Wang (2017). The sample size 𝑛 is 200 and 

400, and the dimension 𝑑 is 50 and 100. Although such dimensions are smaller than the sample size, when 𝑛 = 200 and 𝑑 = 100, the 
‘‘effective sample size’’ used in each local linear estimation in (3.3) is approximately 2𝑛ℎ ≈ 140, which is smaller than the combined 
number of unknown coefficient functions and their derivatives, 2𝑑 = 200, to be estimated from (3.3). Consequently, in this case we 
fail to implement the naive tv-Full estimation. There are three tuning parameters in the proposed estimation procedure: 𝜆1 in the 
first stage of preliminary time-varying LASSO estimation, 𝜆2 in the second stage of time-varying weighted group LASSO, and 𝜆3 in 
the third stage of time-varying CLIME. They are selected by the Bayesian information criterion (BIC), the generalised information 
criterion (GIC), and the extended Bayesian information criterion (EBIC), respectively. Appendix A in the supplement gives definitions 
of these information criteria.

To evaluate whether the time-varying network structure is accurately uncovered, we report the false positive (FP), the false 
negative (FN), the true positive rate (TPR), the true negative rate (TNR), the positive predictive value (PPV), the negative predictive 
value (NPV), the F1 score (F1), and the Matthews correlation coefficient (MCC). Definitions of these measures are provided in 
Appendix A of the supplement. To evaluate the performance of the functional coefficient estimators, we report the average R squared 
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(average 𝑅2) of the regressions in (3.2), the average scaled Frobenius norm of estimation errors of functional coefficients (EE𝐴), 
and the root-mean-squared error of the VAR residuals towards the errors (RMSE𝑒). Taking our proposed tv-wgLASSO estimator for 
time-varying VAR(1) as an example, EE𝐴 and RMSE𝑒 are defined, respectively, as

EE𝐴 =
1

𝑛
√
𝑑

𝑛∑
𝑡=1

‖‖‖𝐀̂1(𝜏𝑡) − 𝐀1(𝜏𝑡)
‖‖‖𝐹 and RMSE𝑒 =

√√√√ 1

𝑛𝑑

𝑑∑
𝑖=1

𝑛∑
𝑡=1

(𝑒𝑡,𝑖 − 𝑒𝑡,𝑖)
2. (6.1)

To evaluate the performance of the precision matrix estimators, we report the average scaled Frobenius norm of estimation errors 
(EE𝛺), defined as

EE𝛺 =
1

𝑛
√
𝑑

𝑛∑
𝑡=1

‖‖‖𝜴̂(𝜏𝑡) −𝜴(𝜏𝑡)
‖‖‖𝐹 . (6.2)

All the above measures are calculated for each Monte Carlo replication and then averaged over 100 replications. Except for exact 
values of 0’s and 1’s, the FP and FN values are rounded to 2 decimal places, while the others are rounded to 3 decimal places.

Example 1. The data is generated from a time-varying VAR(1) model with 𝐀1(𝜏) being a diagonal matrix for all 𝜏 ∈ [0, 1]. Each 
diagonal entry of 𝐀1(𝜏) independently takes the value of either 0.64𝛷(5(𝜏−1∕2)) or 0.64−0.64𝛷(5(𝜏−1∕2)) with an equal probability 
of 0.5, where 𝛷(⋅) is the standard normal distribution function. We set 𝜴(𝜏) to be a block diagonal matrix: 𝜴(𝜏) = 𝐈𝑑∕2 ⊗ 𝜴∗(𝜏), 
where 𝜴∗(𝜏) =

[
𝜔𝑖𝑗,∗(𝜏)

]
2×2

 with 𝜔11,∗(𝜏) = 𝜔22,∗(𝜏) ≡ 1, and 𝜔12,∗(𝜏) = 𝜔21,∗(𝜏) = 1.4𝛷(5(𝜏 − 1∕2)) − 0.7. The diagonal structure 
of 𝐀1(𝜏) implies that no Granger causality exists between variables, whereas the block diagonal structure of 𝜴(𝜏) results in weak 
cross-sectional dependence between the components of 𝑋𝑡.

Table  1 reports the estimation results of the time-varying transition matrices and Granger networks. For the proposed tv-
wgLASSO, the FP and FN values are very small compared with 𝑑2, which is the total number of potential directed Granger causality 
linkages or entries of the transition matrix. This leads to large values of the TPR, TNR, PPV, NPV, F1 and MCC measures, all of which 
are close to 1. We can also see that the FP and FN values double when 𝑑 increases from 50 to 100, but decrease substantially when 
𝑛 grows from 200 to 400. These results clearly show that tv-wgLASSO can accurately uncover the time-varying Granger network as 
long as the sample size is moderately large. The average 𝑅2 of tv-wgLASSO is close to that of tv-Oracle, but the naive tv-Full method 
tends to have large 𝑅2 due to model over-fitting. Although the EE𝐴 values of tv-wgLASSO are larger than those of tv-Oracle when 
𝑛 = 200, they drop significantly and are even slightly smaller than those of tv-Oracle when 𝑛 = 400. A similar pattern can be observed 
in RMSE𝑒, indicating that the proposed tv-wgLASSO is capable of providing good approximations to VAR errors, which are used 
in the subsequent time-varying precision matrix estimation. Unsurprisingly, the tv-Full method fails to estimate the time-varying 
transition matrix when 𝑑 = 100 and 𝑛 = 200.

Table  2 reports the estimation results for the time-varying precision matrices and partial correlation networks. When 𝑛 = 200, both 
tv-CLIME and tv-GLASSO have zero FP values, whereas tv-CLIME has smaller FN than tv-GLASSO. Hence, the proposed tv-CLIME 
performs better than tv-GLASSO in terms of the F1 and MCC measures. When 𝑛 = 400, both tv-CLIME and tv-GLASSO correctly 
uncover the time-varying partial correlation networks. In terms of the precision matrix estimation accuracy (EE𝛺), tv-GLASSO 
performs slightly better than tv-CLIME. In addition, by comparing the tv-CLIME and the infeasible tv-CLIME, we may conclude 
that the VAR error approximation has negligible impact on the precision matrix and partial correlation network estimation.

Example 2. The data is generated from a time-varying VAR(1) model with 𝐀1(𝜏) being an upper triangular matrix for all 𝜏 ∈ [0, 1]. 
Each diagonal entry of 𝐀1(𝜏) takes the value of 0.7𝛷(5(𝜏 − 1∕2)), each super-diagonal entry takes the value of 0.7 − 0.7𝛷(5(𝜏 − 1∕2)), 
and the remaining entries take the value of 0. We set 𝜴(𝜏) =

[
𝜔𝑖𝑗 (𝜏)

]
𝑑×𝑑

 to be a banded symmetric matrix for all 𝜏 ∈ [0, 1] with 
𝜔𝑖𝑖(𝜏) ≡ 1, 𝜔𝑖,(𝑖+1)(𝜏) = 0.7𝛷(5(𝜏 − 1∕2)) − 0.7, 𝜔𝑖,(𝑖+2)(𝜏) = 0.7 − 0.7𝛷(5(𝜏 − 1∕2)), and 𝜔𝑖,𝑗 (𝜏) ≡ 0 if |𝑖 − 𝑗| > 2.

Table  3 reports the estimation results for the time-varying transition matrices and Granger networks. Note that the time series 
variables in this example are more correlated to each other than those in Example  1, which affects the network estimation accuracy. 
When 𝑑 = 100 and 𝑛 = 200, the FP and FN values of tv-wgLASSO reach their maximum at 20.73 and 37.55, respectively, whereas the 
F1 and MCC values are around 0.85. As in Example  1, the F1 and MCC values increase when 𝑛 increases from 200 to 400, and again 
the average 𝑅2 of tv-wgLASSO is close to that of tv-Oracle. However, tv-wgLASSO has much larger EE𝐴 and RMSE𝑒 than tv-Oracle.

Table  4 reports the estimation results for the time-varying precision matrices and partial correlation networks. It follows from the 
EE𝐴 and RMSE𝑒 results in Table  3 that the VAR error approximation is poorer than that in Example  1. Consequently the proposed 
tv-CLIME performs worse than the infeasible tv-CLIME using the true VAR errors in the estimation. In particular, FN of the tv-CLIME 
is much larger than that of the infeasible tv-CLIME when 𝑛 = 200. Due to the same reason, the infeasible tv-CLIME also outperforms 
the tv-GLASSO. In addition, we find that the tv-CLIME is better than the tv-GLASSO in uncovering the time-varying precision network 
when 𝑛 = 200, and they perform equally well when 𝑛 = 400.

Example 3. The data is generated from a VAR(1) model with 𝐀1(𝜏) =
[
𝑎𝑖𝑗 (𝜏)

]
𝑑×𝑑

 being a Toeplitz matrix and 𝑎𝑖𝑗 (𝜏) = (0.4−0.1𝜏)|𝑖−𝑗|+1. 
The precision matrix 𝜴(𝜏) =

[
𝜔𝑖𝑗 (𝜏)

]
𝑑×𝑑

 is also a Toeplitz matrix with 𝜔𝑖𝑗 (𝜏) = (0.8−0.1𝜏)|𝑖−𝑗|. In this example, both the transition and 
precision matrices are non-sparse so that we can examine how our proposed methods perform when the (exact) sparsity assumption 
fails.

As all the entries of the transition and precision matrices are nonzero, all possible linkages between any two nodes in the Granger 
and partial correlation networks exist. Hence, it is not as useful to calculate network discovery measures such as FP and TNR as 
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Table 1
Transition matrix and Granger network estimation in Example 1: a comparison of the methods of tv-wgLASSO, tv-Oracle, and 
tv-Full. The top panel presents results for Granger network estimation using measures of FP, FN, TPR, TNR, PPV, NPV, F1, and 
MCC∗. The middle panel reports the average 𝑅2 of the regressions in (3.2). The bottom panel reports the estimation error for 
the transition matrix 𝐀1(⋅), EE𝐴, and the root-mean-squared error, RMSE𝑒, of the residuals for estimating VAR errors.
 Measure Dimension tv-wgLASSO tv-Oracle tv-Full

 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 
 FP 𝑑 = 50 0.97 0.04 0 0 2450 2450  
 𝑑 = 100 1.73 0.08 0 0 – 9900  
 FN 𝑑 = 50 3.53 0.08 0 0 0 0  
 𝑑 = 100 8.55 0.15 0 0 – 0  
 TPR 𝑑 = 50 0.929 0.998 1 1 1 1  
 𝑑 = 100 0.915 0.999 1 1 – 1  
 TNR 𝑑 = 50 1.000 1.000 1 1 0 0  
 𝑑 = 100 1.000 1.000 1 1 – 0  
 PPV 𝑑 = 50 0.980 0.999 1 1 0.02 0.02  
 𝑑 = 100 0.982 0.999 1 1 – 0.01  
 NPV 𝑑 = 50 0.999 1.000 1 1 1 1  
 𝑑 = 100 0.999 1.000 1 1 – 1  
 F1 𝑑 = 50 0.953 0.999 1 1 0.039 0.039  
 𝑑 = 100 0.947 0.999 1 1 – 0.020  
 MCC 𝑑 = 50 0.953 0.999 1 1 0 0  
 𝑑 = 100 0.947 0.999 1 1 – 0  
 Average 𝑅2 𝑑 = 50 0.289 0.296 0.296 0.297 0.933 0.721  
 𝑑 = 100 0.296 0.306 0.305 0.307 – 0.959  
 EE𝐴 𝑑 = 50 0.214 0.160 0.185 0.163 54.29 1.410  
 𝑑 = 100 0.224 0.163 0.189 0.166 – 112.8  
 RMSE𝑒 𝑑 = 50 0.203 0.115 0.162 0.120 1.119 0.876  
 𝑑 = 100 0.213 0.113 0.159 0.119 – 1.145  
∗ The FP, FN, TPR, TNR, PPV, NPV, F1, and MCC stand for, respectively, the false positive, the false negative, the true positive 
rate, the true negative rate, the positive predictive value, the negative predictive value, the F1 score, and the Matthews correlation 
coefficient, whose definitions can be found in Appendix A.

Table 2
Precision matrix and partial correlation network estimation in Example 1: a comparison of the methods of tv-CLIME, infeasible 
tv-CLIME, and tv-GLASSO. The top panel presents results for partial correlation network estimation using measures of FP, FN, 
TPR, TNR, PPV, NPV, F1, and MCC. The bottom panel reports the estimation error for the precision matrix 𝜴(⋅), EE𝛺 .
 Measure Dimension tv-CLIME infeasible tv-CLIME tv-GLASSO

 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 
 FP 𝑑 = 50 0 0.02 0 0.02 0 0  
 𝑑 = 100 0 0.03 0 0.01 0 0  
 FN 𝑑 = 50 5.06 0 3.49 0 9.24 0  
 𝑑 = 100 13.25 0 9.01 0 28.31 0  
 TPR 𝑑 = 50 0.798 1 0.860 1 0.630 0  
 𝑑 = 100 0.735 1 0.820 1 0.434 0  
 TNR 𝑑 = 50 1 1.000 1 1.000 1 1  
 𝑑 = 100 1 1.000 1 1.000 1 1  
 PPV 𝑑 = 50 1 0.999 1 0.999 1 1  
 𝑑 = 100 1 0.999 1 1.000 1 1  
 NPV 𝑑 = 50 0.996 1 0.097 1 0.992 1  
 𝑑 = 100 0.997 1 0.998 1 0.994 1  
 F1 𝑑 = 50 0.884 1.000 0.922 1.000 0.768 1  
 𝑑 = 100 0.845 1.000 0.899 1.000 0.600 1  
 MCC 𝑑 = 50 0.889 1.000 0.925 1.000 0.788 1  
 𝑑 = 100 0.855 1.000 0.904 1.000 0.653 1  
 EE𝛺 𝑑 = 50 0.510 0.436 0.503 0.435 0.451 0.407  
 𝑑 = 100 0.481 0.421 0.473 0.419 0.433 0.397  

in Examples  1 and 2. Instead, we report only the Average R2, EE𝐴, RMSE𝑒, and EE𝛺 for this example in Table  5. The tv-Oracle is 
equivalent to tv-Full and both have a large number of parameters to be estimated relative to the effective sample size in the local 
linear estimation (see (3.3)) for the time-varying transition matrices, especially when 𝑑 = 100 and 𝑛 = 200. Consequently, the EE𝐴
and RMSE𝑒 of the tv-wgLASSO are much smaller than those of the tv-Oracle. The EE𝛺 results of the tv-CLIME are very close to those 
of the infeasible tv-CLIME, suggesting that the VAR error approximation has little impact on the tv-CLIME performance as discussed 
in Example  1. In addition, the EE𝛺 results of the tv-CLIME and infeasible tv-CLIME are generally close to those of tv-GLASSO. This 
simulation shows that the proposed tv-wgLASSO and tv-CLIME perform reasonably well when the sparsity assumptions on transition 
and precision matrices are not satisfied.

13



J. Chen, D. Li, Y.-N. Li et al. Journal of Econometrics 249 (2025) 105941

Table 3
Transition matrix and Granger network estimation in Example 2: a comparison of the methods of tv-wgLASSO, tv-Oracle, and 
tv-Full. The top panel presents results for Granger network estimation using measures of FP, FN, TPR, TNR, PPV, NPV, F1, and 
MCC. The middle panel reports the average 𝑅2 of the regressions in (3.2). The bottom panel reports the estimation error for the 
transition matrix 𝐀1(⋅), EE𝐴, and the root-mean-squared error, RMSE𝑒, of the residuals for estimating VAR errors.
 Measure Dimension tv-wgLASSO tv-Oracle tv-Full

 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 
 FP 𝑑 = 50 13.53 12.75 0 0 2401 2401  
 𝑑 = 100 20.73 7.73 0 0 – 9801  
 FN 𝑑 = 50 18.56 11.11 0 0 0 0  
 𝑑 = 100 37.55 13.90 0 0 – 0  
 TPR 𝑑 = 50 0.813 0.888 1 1 1 1  
 𝑑 = 100 0.811 0.930 1 1 – 1  
 TNR 𝑑 = 50 0.994 0.995 1 1 0 0  
 𝑑 = 100 0.998 0.999 1 1 – 0  
 PPV 𝑑 = 50 0.859 0.875 1 1 0.040 0.040  
 𝑑 = 100 0.888 0.960 1 1 – 0.020  
 NPV 𝑑 = 50 0.992 0.995 1 1 0 0  
 𝑑 = 100 0.996 0.999 1 1 – 0  
 F1 𝑑 = 50 0.834 0.881 1 1 0.076 0.076  
 𝑑 = 100 0.847 0.945 1 1 – 0.039  
 MCC 𝑑 = 50 0.828 0.876 1 1 0 0  
 𝑑 = 100 0.846 0.943 1 1 – 0  
 Average 𝑅2 𝑑 = 50 0.465 0.448 0.477 0.462 0.963 0.829  
 𝑑 = 100 0.473 0.467 0.483 0.471 – 0.978  
 EE𝐴 𝑑 = 50 0.328 0.250 0.171 0.122 58.44 1.510  
 𝑑 = 100 0.323 0.204 0.168 0.122 – 82.60  
 RMSE𝑒 𝑑 = 50 0.631 0.476 0.417 0.305 1.673 1.414  
 𝑑 = 100 0.613 0.390 0.414 0.309 – 1.720  

Table 4
Precision matrix and partial correlation network estimation in Example 2: a comparison of the methods of tv-CLIME, infeasible 
tv-CLIME, and tv-GLASSO. The top panel presents results for partial correlation network estimation using measures of FP, FN, 
TPR, TNR, PPV, NPV, F1, and MCC. The bottom panel reports the estimation error for the precision matrix 𝜴(⋅), EE𝛺 .
 Measure Dimension tv-CLIME infeasible tv-CLIME tv-GLASSO

 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 
 FP 𝑑 = 50 0.03 0.04 0.02 0.03 0 0.01  
 𝑑 = 100 0.01 0 0 0.01 0 0.01  
 FN 𝑑 = 50 12.62 0.82 2.34 0 20.84 0.06  
 𝑑 = 100 24.71 0.23 6.21 0.01 49.73 0.43  
 TPR 𝑑 = 50 0.742 0.983 0.952 1 0.575 0.997  
 𝑑 = 100 0.750 0.998 0.937 1.000 0.498 0.996  
 TNR 𝑑 = 50 1.000 1.000 1.000 1.000 1 1.000  
 𝑑 = 100 1.000 1 1 1.000 1 1.000  
 PPV 𝑑 = 50 0.999 0.999 1.000 0.999 1 1.000  
 𝑑 = 100 1.000 1 1 1.000 1 1.000  
 NPV 𝑑 = 50 0.989 0.999 0.998 1 0.983 1.000  
 𝑑 = 100 0.995 1.000 0.999 1.000 0.990 1.000  
 F1 𝑑 = 50 0.850 0.991 0.975 1.000 0.725 0.998  
 𝑑 = 100 0.857 0.999 0.967 1.000 0.662 0.998  
 MCC 𝑑 = 50 0.856 0.991 0.975 1.000 0.749 0.998  
 𝑑 = 100 0.864 0.999 0.967 1.000 0.701 0.998  
 EE𝛺 𝑑 = 50 0.598 0.533 0.526 0.485 0.560 0.514  
 𝑑 = 100 0.560 0.489 0.486 0.458 0.536 0.496  

Example 4. The data is generated from a factor-adjusted time-varying VAR model in the form of (5.2). The idiosyncratic errors 
𝑋𝑡 are generated from the VAR(1) model in Example  2. There are two factors, i.e., 𝐹𝑡 = (𝐹𝑡,1, 𝐹𝑡,2)

⊺
, generated from two 

univariate AR(1) processes: 𝐹𝑡,1 = 0.6𝐹𝑡−1,1 +
√
1 − 0.62𝑢𝐹

𝑡,1
 and 𝐹𝑡,2 = 0.3𝐹𝑡−1,2 +

√
1 − 0.32𝑢𝐹

𝑡,2
, where 𝑢𝐹

𝑡,1
 and 𝑢𝐹

𝑡,2
 are independently 

drawn from a standard normal distribution. The 𝑑 × 2 factor loading matrix is generated as 𝜦𝑡 =
(
𝛬𝑡,1, 𝛬𝑡,2

)
, where 𝛬𝑡,1 ≡ 𝛬1

is a time-invariant vector drawn from a standard 𝑑-dimensional normal distribution and 𝛬𝑡,2 = (𝛬1𝑡,2,…, 𝛬𝑑𝑡,2)
⊺  with 𝛬𝑖𝑡,2 =

2∕ (1 + exp{−2[10(𝑡∕𝑛) − 5(𝑖∕𝑑) − 2]}) for 𝑖 = 1,…, 𝑑.

As the error vectors 𝑋𝑡 in this factor-adjusted VAR model are generated from the same DGP as Example  2, in which we have 
compared the different methods, we report results only for our tv-wgLASSO and tv-CLIME to assess how the initial factor estimation 
affects their estimation accuracy. Table  6 reports the results for the time-varying transition matrices and Granger networks for the 
idiosyncratic errors, and the time-varying precision matrices and partial correlation networks. Comparing results with Tables  3 and 4 
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Table 5
Transition and precision matrix estimation in Example 3. The top panel presents the average R2, EE𝐴, and RMSE𝑒 from the 
three methods of tv-wgLASSO, tv-Oracle, and tv-Full for the estimation of the transition matrix. The bottom panel presents the 
estimation error, EE𝛺 , for the precision matrix from the methods of tv-CLIME, infeasible tv-CLIME, and tv-GLASSO.
 Measure Dimension tv-wgLASSO tv-Oracle tv-Full

 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 
 Average 𝑅2 𝑑 = 50 0.009 0.029 0.891 0.588 0.891 0.588  
 𝑑 = 100 0.005 0.020 – 0.930 – 0.930  
 EE𝐴 𝑑 = 50 0.383 0.348 56.66 1.927 56.66 1.927  
 𝑑 = 100 0.388 0.364 – 97.60 – 97.60  
 RMSE𝑒 𝑑 = 50 0.515 0.463 1.716 1.300 1.716 1.300  
 𝑑 = 100 0.523 0.486 – 1.776 – 1.776  
 tv-CLIME infeasible tv-CLIME tv-GLASSO

 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 
 EE𝛺 𝑑 = 50 1.669 1.601 1.613 1.572 1.584 1.570  
 𝑑 = 100 1.674 1.615 1.616 1.580 1.587 1.588  

Table 6
Factor-adjusted transition matrix and Granger network estimation using tv-wgLASSO and factor-adjusted precision 
matrix and partial correlation network estimation using tv-CLIME in Example 4. The top panel presents results 
for Granger network and partial correlation network estimation using measures of FP, FN, TPR, TNR, PPV, NPV, 
F1, and MCC. The middle panel reports the average 𝑅2 of the regressions in (3.2) estimated using tv-wgLASSO. 
The bottom panel reports the estimation error for the factor-adjusted transition matrix 𝐀1(⋅), EE𝐴, the root-mean-
squared error, RMSE𝑒, of the factor-adjusted VAR residuals for estimating true errors, and the estimation error 
for the factor-adjusted precision matrix 𝜴(⋅), EE𝛺 .
 Measure Dimension tv-wgLASSO tv-CLIME

 𝑛 = 200 𝑛 = 400 𝑛 = 200 𝑛 = 400 
 FP 𝑑 = 50 11.35 10.60 0.01 0.01  
 𝑑 = 100 20.40 10.41 0 0.02  
 FN 𝑑 = 50 35.97 14.77 38.22 5.36  
 𝑑 = 100 65.45 20.68 65.99 2.21  
 TPR 𝑑 = 50 0.637 0.851 0.220 0.891  
 𝑑 = 100 0.671 0.896 0.333 0.978  
 TNR 𝑑 = 50 0.995 0.996 1.000 1.000  
 𝑑 = 100 0.998 0.999 1 1.000  
 PPV 𝑑 = 50 0.852 0.890 0.999 1.000  
 𝑑 = 100 0.869 0.945 1 1.000  
 NPV 𝑑 = 50 0.985 0.994 0.969 0.995  
 𝑑 = 100 0.993 0.998 0.987 1.000  
 F1 𝑑 = 50 0.725 0.869 0.349 0.941  
 𝑑 = 100 0.756 0.920 0.496 0.989  
 MCC 𝑑 = 50 0.725 0.865 0.448 0.941  
 𝑑 = 100 0.759 0.919 0.570 0.988  
 Average 𝑅2 𝑑 = 50 0.298 0.350 – –  
 𝑑 = 100 0.339 0.389 – –  
 EE𝐴 𝑑 = 50 0.413 0.283 – –  
 𝑑 = 100 0.396 0.241 – –  
 RMSE𝑒 𝑑 = 50 1.319 1.025 – –  
 𝑑 = 100 1.230 0.856 – –  
 EE𝛺 𝑑 = 50 – – 0.670 0.585  
 𝑑 = 100 – – 0.628 0.534  

for Example  2, we can observe that the factor-adjusted estimation introduces additional estimation errors, leading to smaller values 
of F1 and MCC. The impact is more marked when 𝑛 = 200 but reduces substantially when 𝑛 = 400. As in the previous examples, the 
F1 and MCC values increase when 𝑛 increases from 200 to 400. Thus we may conclude that, although the factor model estimation 
errors are passed on to the subsequent three-stage estimation procedure, their impact on the estimation of networks is not significant 
when the sample size is moderately large (𝑛 = 400).

7. Application

In this section, we employ the proposed methods to estimate the Granger causality and partial correlation networks for variables 
from the FRED-MD macroeconomic dataset. Our method holds particular relevance for economists and decision-makers in three 
aspects: (i) it provides insight into the dynamic relationships among a large number of economic variables in terms of which variables 
would change due to a past change in a specific variable and by how much. This information will enable policy makers to make more 
effective policies by taking a broader view of how economic variables interact dynamically; (ii) it provides information about the 
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contemporary pairwise dependencies among a large set of variables in which the effects of all other variables have been controlled 
for; (iii) it improves our understanding about how the dynamic relationships and contemporary dependencies among economic 
variables evolve over time, which may aid timely policy adjustment in response to changing economic conditions.

Accessible from the Fred-MD website,1 the dataset comprises 127 U.S. macroeconomic variables observed monthly from January 
1959, making it an important data source for both academic and policy studies. These macroeconomic variables are classified into 
eight groups: consumption, orders and inventories; housing; interest and exchange rates; labour market; money and credit; output 
and income; prices; and the stock market. More detailed description can be found in McCracken and Ng (2016).

7.1. Estimation of Granger causality and partial correlation networks

Our sample spans January 1959–July 2022 with a total of 763 observations. We follow McCracken and Ng (2016, 2020) to 
remove outliers, fill missing values, and standardise each variable so that they have zero mean and unit variance. We consider the two 
factor modelling methods in Section 5 to accommodate strong cross-sectional dependence: the approximate factor model (5.1) with 
constant factor loadings and the time-varying factor model (5.2) with dynamic factor loadings. The information criteria proposed 
by Bai and Ng (2002) and Su and Wang (2017) are used to determine the number of factors in these two models (see Appendix A in 
the supplement for a description of the criteria). Seven factors are selected for the factor model with constant loadings, whereas only 
four are selected for the time-varying factor model. Since the latter provides a more parsimonious model specification, we hereafter 
report network estimation results only for this model. The estimated idiosyncratic errors from the factor model, denoted as 𝑥𝑡,𝑖, 
𝑖 = 1,…, 127, 𝑡 = 1,…, 763, are then used for our VAR modelling and network analysis. Miao et al. (2023) propose to determine 
the optimal order of a high-dimensional VAR model via a ratio criterion, which compares the Frobenius norms of the estimated 
transition matrices over different lags. We extend their criterion to our time-varying VAR model setting (see Appendix A in the 
supplement for detail) and subsequently select the time-varying VAR(1) model.

Fig.  1 plots the estimated Granger networks from the factor-adjusted static VAR(1) and time-varying VAR(1) models. From the 
estimated time-varying transition matrices, we uncover 190 directed linkages in the Granger causality network, among which 78
are self-linkages and 143 are linkages within the same category. In particular, the self-linkages, which correspond to the significant 
diagonal entries of the transition matrices, indicate that the macroeconomic variables in the following four categories: consumption, 
orders and inventories; interest and exchange rates; money and credit; and prices, are more persistent than the others, even though 
all the variables have been transformed into stationary series in the preliminary analysis. By contrast, we find 155 directed linkages 
for the Granger network estimated via static VAR(1) and hence, our time-varying VAR(1) model is able to uncover more linkages in 
the network, some existing at only some time points but not all. If no factor-adjustment is undertaken, unsurprisingly more linkages 
in the Granger causality network are uncovered (see Appendix A in the supplement for detail).

We further explore the smooth dynamic evolvement of the VAR(1) coefficients and Granger causality network. Taking the 
logarithmic growth rate of S&P PE ratio (S&P PE ratio)2 as an example, there are four directed linkages to this variable from the 
acceleration of the logarithmic monetary base (BOGMBASE), the logarithmic return of S&P 500 index (S&P 500), the logarithmic 
return of S&P 500 industrials index (S&P: indust), and the S&P PE ratio (which gives a self-linkage). We re-estimate the corresponding 
functional coefficients using the autoregressive model with only the four predictors, and draw their 90% confidence bands using 
the R package ‘‘tvReg’’. Fig.  2 shows the estimated curves and confidence bands. We can find that S&P PE ratio is persistent and in 
general positively correlated with BOGMBASE in the preceding month. The estimated time-varying coefficient of S&P: indust is close 
to zero and significant at some time periods. It is thus unsurprising that the static VAR(1) model with classic LASSO penalisation 
does not detect the Granger causality linkage from this variable. In fact, LASSO tends to select only one variable in a group of 
highly-correlated predictors. Due to high correlation between S&P: indust and S&P 500, only the linkage from S&P 500 is selected 
in the static VAR(1) based network. By contrast, the proposed preliminary time-varying LASSO selects both series at different time 
periods, and the second-stage weighted group LASSO aggregates the information over time and selects both series.

We plot the estimated partial correlation networks in Fig.  3. It can be seen that the partial correlation networks are more sparse. 
Using the factor-adjusted time-varying CLIME, 234 undirected linkages are detected, among which 205 are linkages within the same 
category. In contrast, the estimated network without factor adjustment contains 236 linkages with 211 within the same category. 
Unlike the Granger network, it seems that whether to make factor adjustment has little impact on the resulting partial correlation 
network.

To examine the time-varying pattern of the partial correlation network, we consider, as an example, the partial correlation 
linkages between S&P PE ratio and the four variables: S&P 500, S&P: indust, the increment of S&P composite common stock: 
dividend yield (S&P div yield), and the spread between Moody’s seasoned baa corporate bond and effective federal funds rate 
(BAAFFM). We re-estimate the relevant elements in the time-varying precision matrix with a 200-month moving window (Jankova 
and van de Geer, 2015), and draw 90% confidence bands using R package ‘‘SILGGM’’. These are presented in Fig.  4. Note that 
each partial correlation has the opposite sign to the corresponding entry in the precision matrix. Hence, Fig.  4 suggests that S&P 
PE ratio is positively (partially) correlated with S&P 500 and S&P: indust, whilst negatively (partially) correlated with S&P div 
yield. Partial correlation linkage with BAAFFM is insignificant in most time periods except the years between 1995–2010. The 
time evolving patterns observed in Fig.  4 suggest that a time-varying model can better describe the network structure among the 
FRED-MD variables.

1 https://research.stlouisfed.org/econ/mccracken/fred-databases/
2 We show in the parentheses the variable names used in the FRED-MD dataset. Variable transformation is conducted following the guideline for the dataset.
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Fig. 1. Estimated Granger causality networks using the factor-adjusted static VAR(1) model (top left) and time-varying VAR(1) model (top right) along with 
their corresponding adjacency matrices (bottom left and right). Each node in the network represents one of the 127 U.S. macroeconomic variables, which are 
categorised into eight groups shown as the eight circles in different colours. In the adjacency matrices, linkages within each group are colour-coded to match 
the group colour, while linkages across groups are shown in grey.

7.2. Analysis of time-varying networks for pre- and post-global financial crisis

In accordance with the sample period and break location identified by Duan et al. (2023), we examine the sub-sample period 
spanning December 2001–January 2013, which is further split into the pre-global financial crisis (pre-GFC) period, spanning 
December 2001–July 2007, and the post-global financial crisis (post-GFC) period, spanning August 2007–January 2013. The number 
of observations for the two periods are 68 and 66, respectively.

Table  7 highlights the five most substantial changes in the coefficients of the transition matrix of the time-varying VAR(1) model 
before and after the global financial crisis (GFC), as measured by the difference in the rescaled mean coefficients (RMCs) in the two 
periods, where for a sub-period [𝑡1, 𝑡2] of [1, 𝑛], the RMC of an estimated coefficient ̂𝛼†𝑖𝑗 (⋅) is defined as

RMC(𝛼†
𝑖𝑗
)[𝑡1 ,𝑡2] =

1

max1≤𝑡≤𝑛 |𝛼†𝑖𝑗 (𝜏𝑡)|
⋅

1

(𝑡2 − 𝑡1 + 1)

𝑡2∑
𝑡=𝑡1

𝛼†
𝑖𝑗
(𝜏𝑡).

We see the biggest change (i.e., increase) in the sensitivity of AAA bond yields (AAA) to changes in the effective federal funds 
rate (FEDFUNDS) after GFC. The second biggest change is in the autoregressive coefficient of housing starts in the northeastern 
U.S. (HOUSTNE), showing a big drop in the persistency of the variable after GFC. Table  7 also reveals a drop to negative value 
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Fig. 2. Estimated time-varying VAR(1) coefficients linked to S&P PE ratio with 90% confident bands.

Table 7
The five coefficients in the transition matrix of the factor-adjusted time-varying VAR(1) model that have undergone the most 
substantial changes from the pre-GFC (December 2001–July 2007) period to the post-GFC (August 2007–January 2013) period, 
as measured by the absolute difference between the rescaled mean coefficients (RMCs) in the two periods. Each coefficient 
corresponds to a directed linkage in the Granger causality network from each of the variables in the ‘‘From’’ column to the 
variables in the ‘‘To’’ column.
 Rank From To RMC (Pre-GFC) RMC (Post-GFC) Difference 
 1 FEDFUNDS AAA 0.120 0.603 0.482  
 2 HOUSTNE HOUSTNE 0.618 0.194 −0.424  
 3 CES3000000008 CMRMTSPLx 0.034 −0.361 −0.395  
 4 M1SL TOTRESNS 0.948 0.600 −0.348  
 5 BOGMBASE NONBORRES 0.355 0.014 −0.340  

Table 8
The five pairwise partial correlations that have undergone the most substantial changes from the pre-GFC period (December 2001 
– July 2007) to the post-GFC (August 2007 – January 2013) period, as measured by the absolute difference between the rescaled 
mean coefficients (RMCs) of the partial correlations in the two periods. Each partial correlation corresponds to an undirected 
linkage in the partial correlation network between ‘‘Variable 1‘‘ and ‘‘Variable 2’’.
 Rank Variable 1 Variable 2 RMC (Pre-GFC) RMC (Post-GFC) Difference 
 1 CUMFNS T1YFFM −0.601 −0.012 0.589  
 2 INDPRO IPBUSEQ 0.595 0.019 −0.576  
 3 TB6MS TB6SMFF 0.617 0.084 −0.533  
 4 CUSR0000SA0L5 PCEPI 0.698 0.204 −0.494  
 5 CPIULFSL PCEPI 0.646 0.160 −0.486  

in the relationship between labour earnings in the manufacturing sector (CES3000000008) and the subsequent sales performance 
of manufacturing and trade industries (CMRMTSPLx). The last two rows of Table  7 show the diminishing effects of M1 money 
stock (M1SL) on the subsequent total reserves of depository institutions (TOTRESNS) and of the monetary base (BOGMBASE) on 
the subsequent non-borrowed reserves of depository institutions (NONBORRES) after GFC.

We also consider changes in the pairwise partial correlations between the FRED-MD variables before and after GFC. Table  8 
highlights the five most substantial changes in the partial correlations, as measured by the absolute difference in the RMCs of 
the partial correlations in the pre-GFC and post-GFC periods. Given the relation between partial correlations and elements of the 
precision matrix (i.e., 𝜌𝑖𝑗 = −𝜔𝑖𝑗∕

√
𝜔𝑖𝑖𝜔𝑗𝑗), the RMC of the estimated (i,j)th partial correlation 𝜌†𝑖𝑗 (⋅) in a sub-period [𝑡1, 𝑡2] of [1, 𝑛], 

is calculated as

RMC(𝜌†
𝑖𝑗
)[𝑡1 ,𝑡2] =

1

max1≤𝑡≤𝑛

[|||𝜔̂
†
𝑖𝑗
(𝜏𝑡)

||| ∕
√

𝜔̂†
𝑖𝑖
(𝜏𝑡)𝜔̂

†
𝑗𝑗
(𝜏𝑡)

] ⋅
1

(𝑡2 − 𝑡1 + 1)

𝑡2∑
𝑡=𝑡1

−𝜔̂†
𝑖𝑗
(𝜏𝑡)√

𝜔̂†
𝑖𝑖
(𝜏𝑡)𝜔̂

†
𝑗𝑗
(𝜏𝑡)

.
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Fig. 3. Estimated partial correlation networks with (top left) and without (top right) factor adjustment along with their corresponding adjacency matrices (bottom 
left and right). Each node in the network represents one of the 127 U.S. macroeconomic variables, which are categorised into eight groups shown as the eight 
circles in different colours. In the adjacency matrices, linkages within each group are colour-coded to match the group colour, while linkages across groups are 
shown in grey.

The biggest change is observed in the negative partial correlation between capacity utilisation in manufacturing (CUMFNS) and 
the spread of 1-year treasury bond (T1YFFM), which becomes much weaker after GFC. The next four biggest changes are in the 
positive partial correlations between the industrial production index (IP) and the specific segment of industrial production related 
to business equipment (IPBUSEQ), the 6-month treasury bill rate (TB6MS) and the spread of 6-month treasury bill (TB6SMFFM), 
the consumer price index for all items less medical care (CUSR0000SA0L5) and the personal consumption expenditure price index 
(PCEPI), and the consumer price index for all items less food (CPIULFSL) and the personal consumption expenditure price index 
(PCEPI), all becoming weaker after GFC although still being positive.

8. Conclusion

In this paper we consider a general time-varying VAR model for high-dimensional locally stationary time series, which allows for 
smooth structural changes over time. A three-stage estimation procedure combining time-varying LASSO, weighted group LASSO 
and time-varying CLIME is developed to estimate both the transition and error precision matrices. The estimated transition and 
precision matrices are then used to construct networks with directed Granger causality linkages and undirected partial correlation 
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Fig. 4. Estimated time-varying elements in the precision matrix linked to S&P PE ratio with 90% confident bands..

linkages, respectively. Under the sparse structural assumption and other technical conditions, we derive the uniform consistency 
and oracle properties of the proposed estimators. For large-scale time series with high cross-sectional dependence, which are likely 
to violate the sparsity assumption, we extend our methodology and theory to a more general factor-adjusted time-varying VAR 
and networks. The simulation study shows that the developed methodology has reliable finite-sample performance. The empirical 
application showcases the potential of our network model and method in enhancing understanding of the time evolving relationships 
among economic variables on a large scale.
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