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Abstract A too‐weak eddy feedback in models has been proposed to explain the signal‐to‐noise paradox in
seasonal‐to‐decadal forecasts of the winter Northern Hemisphere. We show that the “eddy feedback parameter”
(EFP) used in previous studies is sensitive to sampling andmultidecadal variability.When these uncertainties are
accounted for, the EFP diagnosed from CMIP6 historical simulations generally falls within the reanalysis
uncertainty. We find the EFP is not independent of the sampled North Atlantic Oscillation (NAO). Within the
same dataset, a sample containing largerNAOvariabilitywill show a larger EFP, suggesting that the link between
eddy feedbacks and the signal‐to‐noise paradox could be due to sampling effects with the EFP. An alternative
measure of eddy feedback, the barotropic energy generation rate, is less sensitive to sampling errors and
delineates CMIP6 models that have weak, strong, or unbiased eddy feedbacks, but shows little relation to NAO
variability.

Plain Language Summary Model forecasts on seasonal‐to‐decadal timescales have recently been
shown to have significant skill in predicting the North Atlantic Oscillation (NAO, a large‐scale pattern of
variability). However, these forecasts are undermined by signal‐to‐noise ratios that are lower than expected
given the skill, meaning the models are underconfident. This problem is known as the “signal‐to‐noise paradox”.
Previous work has shown that models underestimate the strength of feedback from atmospheric eddies onto the
midlatitude circulation, but models with a stronger eddy feedback suffer less from the signal‐to‐noise paradox.
However, we find that the “eddy feedback parameter” (EFP) used in these studies exhibits large sampling
uncertainty that has not previously been taken into account. When accounting for this sampling uncertainty, the
EFP in models is generally consistent with reanalysis data. Furthermore, across samples, the EFP correlates with
the variability of the NAO, meaning they are not independent, which makes the EFP problematic for
understanding the causes of the signal‐to‐noise paradox. Samples with larger NAO variability are diagnosed
with a larger EFP, even within the same dataset. An alternative measure of eddy feedback is less sensitive to
sampling and better identifies models which have weak, strong, or unbiased eddy feedbacks.

1. Introduction
The winter North Atlantic Oscillation (NAO) has been shown to be predictable on seasonal (Scaife et al., 2014)
and decadal (Smith et al., 2019) timescales. However, the predictable NAO signal in models (variability of the
ensemble mean) is weaker than expected given the skill, meaning forecasts are underconfident (Scaife &
Smith, 2018). This underconfidence occurs despite models having a relatively good representation of total NAO
variability and has been coined the signal‐to‐noise paradox (Scaife et al., 2014; Scaife & Smith, 2018). This
underconfidence could be a manifestation of a too‐large component of forecast noise or a too‐weak predictable
signal (Eade et al., 2014; Scaife & Smith, 2018).

Several studies have investigated whether predictable NAO signals are poorly captured in models, including the
representation of teleconnections from the tropics to the North Atlantic (O’Reilly et al., 2019; Williams
et al., 2023), the response toArctic sea ice anomalies (Smith et al., 2022), the response toNorthAtlantic sea surface
temperature (SST) anomalies (Simpson et al., 2018), the response to solar cycle variability (Gray et al., 2013; Scaife
et al., 2014) and the response to predictable tropical stratospheric variability (Andrews et al., 2019).

There are currently two main hypotheses to explain the NAO signal‐to‐noise problem.

1. Weak air‐sea coupling in the North Atlantic. This has been shown to contribute to an underestimation of winter
North Atlantic eddy‐driven jet variability on multidecadal timescales (Bracegirdle et al., 2018; Simpson
et al., 2018) and summer NAO variability on decadal timescales (Ossó et al., 2020).

RESEARCH LETTER
10.1029/2024GL108861

Key Points:
• The “eddy feedback parameter” is a

highly non‐stationary quantity, making
reanalysis and model comparisons
problematic on short time periods

• Sampling uncertainty in the eddy
feedback parameter from reanalysis
data is comparable to the intermodel
spread

• Barotropic energy generation rate is a
more stable quantity, but does not
explain model spread in North Atlantic
climate variability

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
L. Saffin,
l.saffin@reading.ac.uk

Citation:
Saffin, L., McKenna, C. M., Bonnet, R., &
Maycock, A. C. (2024). Large
uncertainties when diagnosing the “eddy
feedback parameter” and its role in the
signal‐to‐noise paradox. Geophysical
Research Letters, 51, e2024GL108861.
https://doi.org/10.1029/2024GL108861

Received 16 FEB 2024
Accepted 29 APR 2024

© 2024. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

SAFFIN ET AL. 1 of 11

https://orcid.org/0000-0002-6744-7785
https://orcid.org/0000-0002-9677-4582
https://orcid.org/0000-0002-9267-674X
https://orcid.org/0000-0002-6614-1127
mailto:l.saffin@reading.ac.uk
https://doi.org/10.1029/2024GL108861
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024GL108861&domain=pdf&date_stamp=2024-06-03


2. Weak eddy feedbacks in midlatitudes. Eddy momentum fluxes can act to reinforce the zonal‐mean flow and
increase the persistence of jets (Lorenz & Hartmann, 2001, 2003) and the NAO is known to be driven by
momentum forcing from synoptic and stationary eddies (Luo et al., 2007). Smith et al. (2022) calculated an
“eddy feedback parameter” (EFP) to quantify the relationship between eddy forcing and the midlatitude jet
(see Section 2.2.1). Smith et al. (2022) showed the EFP in present day climate correlated with the amplitude of
the midlatitude zonal wind response to projected Arctic sea ice loss across a set of climate models. They
showed that models underestimated the EFP compared to reanalyzes and used an emergent constraint approach
to derive a constrained spread of the modeled jet shift. Hardiman et al. (2022) found that models with a weaker
EFP (further from reanalysis) generally have less skill and worse signal‐to‐noise errors for predicting the
Arctic Oscillation (AO).

Eddy momentum fluxes are both a driver of, and a response to, mean flow variability (e.g., Trenberth (1984);
Karoly (1990)). Quantifying the eddy feedback on the mean flow requires a separation of these components, for
example, using lagged approaches or time filtering (e.g., Lorenz & Hartmann, 2001; Lorenz & Hartmann, 2003;
Simpson et al., 2013). However, the EFP as calculated in (Smith et al., 2022) does not separate the timescales of
eddies and the mean flow, so it is not clear that it does diagnose eddy feedbacks.

The EFP is based on zonal‐mean data and therefore blends together variability from separate regions which may
make it more difficult to link to the NAO which is focused on a specific region. Therefore, we also analyze a
spatially‐resolved diagnostic of eddy forcing, the barotropic energy generation rate (Mak & Cai, 1989), which
allows us to investigate the relationship between North‐Atlantic eddies and NAO variability using time‐filtered
data. Although the barotropic energy generation rate includes time filtering, it also does not formally separate the
eddy feedback from the response to the mean flow, so we refer to it as an eddy forcing rather than a feedback.

Most of the work on the NAO signal‐to‐noise problem has focused on seasonal‐to‐decadal timescales; it remains
an open question as to whether similar issues manifest in multidecadal projections of the NAO including
externally forced trends (McKenna & Maycock, 2021). The initial motivation of this work was to test the eddy
feedback hypothesis in climate simulations by examining whether the EFP is related to multidecadal NAO
variability. However, we found that our results were strongly affected by sampling issues with the EFP not
accounted for in past studies. In this study, we address the sampling uncertainty in the EFP within reanalysis and
climate model datasets, as well as the inherent relationship between the EFP and NAO characteristics within a
sample.

This study is laid out as follows: Section 2 describes the datasets used in the study and methods for quantifying
eddy‐mean flow feedback, Section 3 presents the results and Section 4 presents a summary of the key findings.

2. Methods
2.1. Data Sets

Climate model data is taken from Phase 6 of the Coupled Model Intercomparison Project (CMIP6) (Eyring
et al., 2016). We use the historical experiment (1850–2014) from 12 CMIP6 models that provide the required
variables (monthly‐mean mean‐sea‐level pressure, and daily‐mean zonal (u) and meridional (v) wind on pressure
levels) for at least 10 ensemble members (see Table S6 in Supporting Information S1). We select models that
provide large ensembles in order to quantify sampling effects and the role of internal variability in calculating the
EFP and its relationship with the NAO. Diagnostics are calculated from data regridded to the coarsest resolution
climate model (CanESM5, roughly 2.8°). All diagnostics are for Northern hemisphere winter (DJF) with the year
labeled by the JF (e.g., 2009/10 is labeled 2010).

We use the ERA5 (Hersbach et al., 2020) and ERA20 C (Poli et al., 2016) reanalysis datasets. The back extension
of ERA5 covers the period 1940 to 1978 and the standard ERA5 covers 1979 to present. ERA20 C covers 1900–
2010 and only assimilates surface pressure and surface marine wind observations. For ERA5 and ERA20 C
winds, we aggregate 6 hourly data (00, 06, 12, 18) to daily means to provide an equivalent comparison to the
CMIP6 data. We also use monthly‐mean mean‐sea‐level pressure data from 20CRv3 (Slivinski et al., 2019), a
reanalysis with a longer record (1836–2015) that only assimilates surface pressure, and HadSLP (Allan &
Ansell, 2006), a gridded dataset produced from surface pressure observations, to calculate NAO timeseries in the
supplement.
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2.2. Diagnostics

2.2.1. Eddy Feedback Parameter

Smith et al. (2022) defined the eddy feedback parameter (EFP) as the squared correlation coefficient (r2) between
the DJF‐mean zonal‐mean zonal wind (ū) and the DJF‐mean of the horizontal component of the Eliassen‐Palm
flux (EP‐flux) divergence, calculated as a function of latitude and pressure, and then averaged over 25–72°N, and
200–600 hPa. Hardiman et al. (2022) used a similar formulation, but calculated the EFP at a single level (500 hPa)
and only included the quasi‐geostrophic component of EP‐flux divergence, expressed as a zonal acceleration:
Equation 1 from Hardiman et al. (2022),

∇.FH
ρa cos(ϕ)

= −
1

acos2ϕ

d(u′v′ cos2ϕ)

dϕ
, (1)

where ρ is density, ϕ is latitude, a is Earth's radius. Overbars represent a zonal mean, and primes represent local
deviations from the zonal mean. Here, we calculate the EFP following Hardiman et al. (2022). The differences in
methodology for calculating the EFP can give a different absolute value, but give similar results for the uncer-
tainty (see Fig. S1 in Supporting Information S1).

2.2.2. Barotropic Energy Generation Rate

The barotropic energy generation rate (G) diagnoses the exchange of energy between eddies and the large‐scale
flow based on an energy equation for the ageostrophic perturbation flow in quasi‐geostrophic dynamics (Mak &
Cai, 1989). If (U, V) describes the large‐scale geostrophic wind and (u′, v′) the eddies, then the barotropic energy
generation rate is given by

G = E ⋅D, (2)

where

E = cos(ϕ)(
1
2
(v′2 − u′2), − u′v′), (3)

is the E‐vector, which describes the elongation of the eddy, and

D =
1

a cos(ϕ)
(
∂U
∂λ
−
∂V cos(ϕ)

∂ϕ
,
∂V
∂λ
+
∂U cos(ϕ)

∂ϕ
), (4)

is the deformation of the large‐scale flow (Mak & Cai, 1989), where λ is latitude. Note that we use the spherical
coordinate version of these equations from Fukotomi and Yasunari (2002). We diagnose G using daily‐mean
winds at 250 hPa that are separated into a high frequency (2–6 days) eddy component and a slowly varying
(>10 days) large‐scale component using Lanczos filters with a window of 61 days. We then average the daily
values of G to a seasonal mean.

In comparison to the EFP, G is spatially‐resolved, giving a measure of the local energy exchange. To provide a
comparison with the EFP and relateG to NAO variability, we average seasonal‐mean values ofG over a box in the
North Atlantic (60°–25°W, 30°–45°N) giving GNA. This region is where the models and reanalysis show
climatological negative values (see Fig. S2 in Supporting Information S1), indicating exchange of energy from
the eddies to the large scale flow.

2.2.3. North Atlantic Oscillation Index

The NAO index is calculated as the difference in DJF area‐averaged mean‐sea‐level pressure between a southern
box (90°W–60°E, 20°N–55°N) and a northern box (90°W–60°E, 55°N–90°N) following Stephenson et al. (2006).
From the NAO timeseries we calculate variance. Multidecadal NAO variance is also calculated by first applying a
20‐year running mean.
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The NAO has not been detrended, which could lead to an overestimation of NAO variance in the CMIP6 models
compared to ERA5 because we are retaining longer‐timescale variability. However, multidecadal variability is
only a small part of the total NAO variance (see Section 3.3), so the difference in NAO variance due to including
these longer timescales is small.

2.3. Statistics

To estimate sampling uncertainty, we recalculate the EFP in ERA5 by resampling winters with replacement
(bootstrapping) using the same sample size as the input dataset (e.g., for 1940–2022, each sample is 82 years),
repeating 1,000 times. We also recalculate the EFP, NAO variance, and GNA in ERA5 in the same way, but
with a sample size matching the historical simulation length (164 years) to compare with the CMIP6 simu-
lations. Each diagnostic is calculated using the same sample years, allowing us to assess relationships between
these diagnostics due to sampling. Relationships between variables are estimated using linear least squares
regression.

3. Results
3.1. Uncertainties in Reanalysis Derived Eddy Feedback Parameter

In this section, we show how the EFP is affected by sampling uncertainty and multidecadal variability. Figure 1
shows the calculation of the EFP in ERA5 broken into constituent steps. Figures 1a and 1b show the DJF‐mean
input variables as a function of latitude and year: ū and the acceleration of ū diagnosed from the quasigeostropic
component of the horizontal EP‐flux divergence. The EFP is calculated by calculating the correlation coefficient
(r) between these two variables at each latitude and then averaging r2 across latitudes. r is defined as the
covariance of two variables normalized by their standard deviations. To understand how different years and
latitudes contribute to the EFP, Figure 1c shows the anomalies of the input variables, relative to the time mean at
each latitude, multiplied together, so the time mean is the covariance as a function of latitude. Figure 1d shows the
same, but normalized by the standard deviations of the input variables at each latitude, so the time mean is r as a
function of latitude.

Figure 1. Calculation of the EFP using ERA5. Variables used to calculate the EFP as a DJF mean, (a) zonal‐mean zonal wind
and (b) the acceleration of the zonal‐mean zonal wind diagnosed from the quasi‐geostrophic component of the horizontal EP‐
flux divergence. (c) The product of anomalies of (a) and (b), where the anomalies are calculated against the time mean (mean
across rows) by latitude. (d) shows the same as (c), but normalized by the standard deviations, at each latitude, of (a) and (b).
The time mean of (c) and (d) give the covariance and correlation as a function of latitude, respectively.
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Figure 1 reveals two potential issues with the EFP.

1. Calculating r at each latitude and then taking a spatial average overemphasizes latitudes with weaker vari-
ability. This can be seen by comparing Figures 1c and 1d: anomalies are weaker closer to the equator for the
covariance but have a larger contribution to r because the standard deviation at those latitudes is smaller.

2. A single outlier season can make a large contribution to the EFP (e.g., 2009/2010 in Figure 1d). This un-
dermines comparisons of the EFP in reanalysis data and climate models when they do not span a common
period and do not sample the same internal variability. For example, if a model with inherently weak eddy
feedback happens to simulate a season like 2009/2010, it may appear to have a larger EFP than a model with a
strong eddy feedback that by chance does not simulate a season like 2009/2010.

Building on point 2, to quantify the sampling uncertainty we recalculate the EFP by sampling years from ERA5
with replacement (see Section 2.3). Figure 2a shows results with the resampling period varied to show the
dependence of “observed” EFP on time period: the full ERA5 period (1940–2022); the pre‐satellite backward
extension period only (1940–1979); and the satellite period only (1979–2022). In all cases, the sampling un-
certainty in the EFP (≈0.2–0.3) is comparable to the median value based on the 95% confidence interval. This
sampling effect represents a substantial uncertainty that has not been acknowledged in previous studies (e.g.,
Smith et al. (2022); Hardiman et al. (2022); Screen et al. (2022)).

Figure 2a also shows the EFP is dependent on time period: the satellite period has a larger EFP than the pre‐
satellite back extension period, with no overlap of the 95% intervals. To better understand the dependence of
EFP on time period, we calculate the EFP using a rolling 23‐year window (consistent with the 1993–2016 period
used in Hardiman et al. (2022)). ERA5 shows a systematic increasing trend in the 23‐year EFP (Figure 2b)). A
long‐term trend in the EFP could be spurious if the reanalysis is poorly constrained by observations and behaves
more like the underlying atmospheric model further back in time. Figure 2b also shows the EFP from ERA20 C,
which extends back to 1900. Longer‐term reanalyzes that only assimilate a limited set of surface observations,
such as ERA20 C, have been shown to produce unrealistic trends as the density of the observation network
evolves with time (Befort et al., 2016; Bloomfield et al., 2018; Krueger et al., 2013; Oliver, 2016). However,
ERA20 C actually shows a larger EFP in the 1930s/1940s when there is less observation data and reproduces the
increase in EFP over the late twentieth century. This shows the apparent EFP trend is unlikely to be due to an
intrinsic bias of weak eddy feedback in the model that produces ERA5 and instead is related to multidecadal
variability in the input parameters.

Figure 2. Uncertainties in the EFP identified from reanalysis data. (a) The EFP calculated by resampling ERA5 over different
periods. Orange lines show the median, crosses show the EFP from the original set of years, boxes show the 25%–75% range,
whiskers show the 2.5%–97.5% range, and circles show points outside this range. (b) The EFP and NAO variance calculated
over 23‐year rolling windows for ERA5 and ERA20C data. The x‐axis shows the middle year in each sample. The vertical
line is for 1993–2016, the years used in Hardiman et al. (2022).
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Interestingly, the increase in EFP over the late twentieth century closely mirrors the positive trend in NAO
variance over this period, though this common temporal behavior is weaker in the earlier period covered only by
ERA20 C. It makes sense that the NAO and EFP are related. Eddy‐driven jet latitude is related to the NAO
(Woollings et al., 2010) and NAO predictability (Parker et al., 2019; Strommen, 2020), and zonal‐mean zonal
wind is one of the inputs to the EFP calculation. The EFP calculation also emphasizes large seasonal deviations in
jet latitude. For example, winter 2009/10 had a strongly southward shifted jet and negative NAO (Santos
et al., 2013). Figure 1d showed how the shift in jet in 2009/10 is emphasized in the correlation calculation and
Figure 2b shows a step increase of almost 0.1 when 2009/10 is included in the rolling window.

The time period used by Hardiman et al. (2022) (1993–2016) is very close to the maximum EFP over the entire
twentieth century due to the inclusion of 2009/10 and being close to the peak of multidecadal variability in the
EFP. The results in this section show that previous studies have likely overestimated the long‐term mean EFP in
reanalysis data.

3.2. Comparison of Climate Models and Reanalysis Eddy Feedback Parameter

We next address the comparison of EFP in climate models with reanalysis data in the context of the sampling
uncertainties described in the previous section. Figure 3 shows the range of EFP calculated from the CMIP6
ensembles (a, c) and from repeatedly sampling 164 years from ERA5 with replacement (b), as well as the
relationship with NAO variance (discussed in the following section). In contrast to previous results, we do not find
that the EFP is weaker in models than in reanalysis. The EFP diagnosed from CMIP6 models is generally within
the uncertainty from ERA5, with some models potentially having too large EFP (CanESM5, CESM2, CMCC‐
CM2‐SR5). If we only considered the EFP and its associated uncertainty from the satellite period of ERA5

Figure 3. The relationship between the EFP and NAO variance for (a), (c) CMIP6 historical simulations (1850–2014) and
(b) ERA5 (full period, 1940–2022). (a) The EFP and NAO variance for CMIP6 ensemble members and mean for each model
ensemble (outlined symbols). (b) EFP and NAO variance calculated using 164 years sampled from ERA5 with replacement
(repeated 1000 times). The outlined dot shows the EFP and NAO variance for the full ERA5 data. (c) The same as (a), but for
NAO variance calculated after applying a 20‐year running‐mean filter. The lines on each subfigure show linear regressions
calculated from each set of data in the subfigures (see text for details). The lines from (a) are duplicated in (b) for comparison.
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(Figure 2a), then we would conclude that some CMIP6 models underestimate the EFP. This highlights the
importance of considering longer‐timescale variability, as well as sampling uncertainty, when quantifying the
EFP and the limitation of using the EFP as a diagnostic for model performance.

3.3. Relationship Between the Eddy Feedback Parameter and the North Atlantic Oscillation

Section 3.1 highlighted a relationship between long‐term variations in the EFP and the NAO. We next show how
this relationship can lead to correlations that should be interpreted as a sample with larger NAO variability giving
a larger EFP, rather than stronger eddy feedbacks leading to stronger NAO variability. Most CMIP6 models
capture NAO variability well (Figure 3a) compared to ERA5 (Figure 3b). Only MIROC‐ES2L is systematically
too weak. Some models are potentially too weak (MIROC6, INM‐CM5‐0) or too strong (IPSL‐CM6A‐LR,
CESM2), but still overlap with the uncertainty from ERA5.

The lines in Figure 3 show linear regressions calculated from the data in each panel in different ways.

1. For “ERA5” (gray line in Figure 3b) the regression is across the bootstrap samples. Because EFP and NAO
variance are calculated using the same sets of sample years, this tells us how the EFP relates to NAO variability
purely due to sampling.

2. “Mean” is the regression across the ensemble mean points of all models. This relates to model biases and is
what would typically be used for emergent constraints (e.g., Smith et al. (2022))

3. “Weighted” is a weighted average regression across all models. For each model, a regression is calculated
across ensemble members. The average slope and intercept are then calculated from these individual model
regressions, weighted by the number of ensemble members for each model. This indicates whether a sampling
relationship between EFP and NAO variability is present, on average, in individual models.

4. “All” is the regression across all ensemble members of all models with each sample treated independently.
This gives a mix between “Mean” and “Weighted”.

The full set of results from the linear regressions are given in the supplement (Tables S1–S5 in Supporting In-
formation S1). Note that many of the individual model regressions in 3) are not significant due to low sample sizes
and the p‐value test is less meaningful for the “ERA5” and “All” regressions because the points are not inde-
pendent. However, the analysis is intended to show how sampling issues with the EFP can produce spurious
relationships with the NAO rather than identifying significant relationships.

All three regressions in Figure 3a show a similar relationship between EFP and NAO variance and are well
reproduced by sampling ERA5 (r = 0.34–0.55). This means that the across model relationship between the EFP
and NAO variance (“Mean”), which could have been interpreted as physically related model biases, is most likely
an extension of the sampling relationship found in ERA5: a model with stronger NAO variability is diagnosed
with a larger EFP.

Although total NAO variability is relatively well represented for models exhibiting the signal‐to‐noise paradox
(Scaife & Smith, 2018), weak multidecadal NAO variability Bracegirdle (2022); Bonnet et al. (2024) could be
evidence of signal‐to‐noise issues in climate models. However, similar relationships are found when multidecadal
variability is isolated (Figure 3c), suggesting this is still only identifying sampling relationships. We haven't
estimated the reanalysis relationship between the EFP and multidecadal NAO variance because ERA5 is too short
for sampling and longer‐timescale reanalyzes give less consistent values of NAO further back in time (see Figs.
S3 and S4 in Supporting Information S1).

3.4. Alternative Measure of Eddy Forcing

We next show that an alternative measure of eddy forcing targeted at the North Atlantic (GNA, see Section 2.2.2)
suffers much less from the sampling issues identified for the EFP. Figure 4 shows GNA for ERA5 and the CMIP6
ensembles and its relationship to NAO variance and the EFP. GNA is better able to identify models that are weak
(CanESM5, CESM2, IPSL‐CM6A‐LR, CMCC‐CM2‐SR5, INM‐CM5‐0, MIROC6, MIROC‐ES2L), strong
(MPI‐ESM1‐2‐LR/HR), or unbiased (UKESM1‐0‐LL, CNRM‐CM6‐1, CNRM‐ESM2‐1) compared to ERA5 due
to having much smaller sampling uncertainty.

The sampling relationship between GNA and NAO variability in ERA5 is much weaker (r = 0.07) in contrast to
that of the EFP and NAO variability (r = 0.55). Furthermore, the relationship differs from the (nonsignificant)
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across model relationship. Similar results are found for multidecadal NAO variability. Interestingly GNA shows
no sampling relationship to the EFP and very little relationship across the models used here (Figures 4d and 4e).
This suggests that either the EFP is capturing different aspects of eddies, due toGNA being more localized, or that
the EFP is a poor measure of eddies due to the sampling issues shown in earlier.

G shows similar uncertainty when averaged over the same region as used for the EFP (see Fig. S6 in Supporting
Information S1). This suggests that the uncertainties in the EFP are due to the sensitivities in how the EFP is
diagnosed (identified in Section 3.1) rather than variability in the underlying behavior of the eddies.

4. Conclusions
Previous studies have suggested that seasonal prediction systems and free running climate models systematically
underestimate Northern hemisphere midlatitude eddy feedbacks (Screen et al., 2022; Smith et al., 2022), and that
this bias may explain the signal‐to‐noise paradox (Hardiman et al., 2022; Scaife et al., 2019). However, we find
that the eddy feedback parameter (EFP) used by Smith et al. (2022), Screen et al. (2022), and Hardiman
et al. (2022) exhibits large sampling uncertainty which can impede model‐reanalysis comparisons and makes
determining physical mechanisms difficult.

Figure 4. The same as Figure 3, but with North‐Atlantic DJF‐mean barotropic energy generation rate (GNA) on the x‐axis
instead of EFP and extra panels (d) and (e) with EFP on the y‐axis for CMIP6 models and ERA5, respectively.
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We have shown that the EFP is sensitive to individual outlier seasons and also exhibits strong multidecadal
variability. This makes the EFP problematic to interpret as an intrinsic property of a model or the real world
because very large sample sizes are needed to produce an estimate with sufficiently small uncertainties. Previous
published estimates of the EFP in modern reanalysis data are close to the maximum value derived within the
1940–2022 period because of the pronounced effect of an outlier season (2009/2010) and the phasing of mul-
tidecadal variability in the EFP. When sampling uncertainty is taken into account, the EFP in CMIP6 historical
simulations is largely consistent with ERA5. Previous results using the EFP as an emergent constraint (Screen
et al., 2022; Smith et al., 2022) should have much larger error bars to account for these sampling uncertainties.
These uncertainties may be the reason that Screen et al. (2022) found that the reanalysis EFP in the Southern
Hemisphere is roughly in the middle of the model values, while the Northern Hemisphere EFP appeared too weak
in models.

We have also shown that the sample EFP correlates with sample NAO variability and this can lead to spurious
across‐model correlations between the EFP and NAO variability. The across model correlation could have been
interpreted as a stronger model eddy feedback causing stronger NAO variability, but is actually due to a sample
with stronger NAO variability being diagnosed with a stronger EFP because the EFP and NAO are not inde-
pendent. The relation between the EFP and NAO makes sense because both variables have an underlying rela-
tionship with jet latitude. For example, winter 2009/10 had an anomalously southward shifted jet and negative
NAO (Santos et al., 2013) and makes the largest single contribution to the EFP in ERA5. It could be argued that
models with stronger eddy feedbacks would produce more years like 2009/10; however, it is clear that we need a
much larger sample of data than is available for reanalyzes to determine if this is the case.

Wehave investigated anothermeasure of eddy forcing, the barotropic energy generation rateG, whichmore cleanly
separates eddy forcing andmean flow terms and can be calculated locally for the NorthAtlantic region (GNA).GNA
shows much smaller sampling uncertainty than the EFP and a much weaker sampling relationship with NAO
variability, suggesting that it is better at describing intrinsic properties of the models and reanalysis. We find no
systematic bias in GNA, but GNA does better distinguish which models are too weak, too strong or unbiased.

In summary, our results raise questions about previous interpretations that weak eddy feedbacks can explain the
signal‐to‐noise paradox. Firstly, we find that models do not systematically underestimate the EFP when ac-
counting for sampling uncertainty or using an alternative, better constrained, diagnostic (GNA). Secondly, the
diagnosed EFP from a sample is dependent on the sample NAO variability, which makes it difficult to interpret
differences associated with the EFP as being caused by eddy feedbacks rather than some confounding variable.
Therefore previous results should be re‐examined with a diagnostic of eddy forcing that is more robust to climate
variability and where clearer causality can be determined, such as the barotropic energy generation rate or a more
in depth lead‐lag approach that formally isolates the feedback of eddies on the mean flow (e.g., Lorenz and
Hartmann (2001)).

Data Availability Statement
The ERA5 reanalysis data is available from the Copernicus Climate Data Store (Hersbach et al., 2023a, 2023b).
ERA20C was accessed from the NCAR research data archive (European Centre for Medium‐Range Weather
Forecasts., 2014). The CMIP6 data used in the study was accessed from the Earth System Grid Federation
((Boucher et al., 2018; Byun, 2020; Danabasoglu, 2019; Hajima et al., 2019; Jungclaus et al., 2019; Lovato &
Peano, 2020; Seferian, 2018; Swart et al., 2019; Tang et al., 2019; Tatebe & Watanabe, 2018; Voldoire, 2018;
Volodin et al., 2019; Wieners et al., 2019)). The diagnostics calculated for each CMIP6 simulation are given in
Supporting Information S1 (Table S6). The code used for calculating the diagnostics is available at Saffin (2024a)
and the code for further processing and making the figures is available at Saffin (2024b).
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