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Abstract
A novel metric that describes the vulnerability of the measurements in power systems to
data integrity attacks is proposed. The new metric, coined vulnerability index (VuIx),
leverages information theoretic measures to assess the attack effect in terms of the
fundamental limits of the disruption and detection tradeoff. The result of computing the
VuIx of the measurements in the system yields an ordering of their vulnerability based on
the degree of exposure to data integrity attacks. This new framework is used to assess the
measurement vulnerability of IEEE 9‐bus and 30‐bus test systems and it is observed that
power injection measurements are significantly more vulnerable to data integrity attacks
than power flow measurements. A detailed numerical evaluation of the VuIx values for
IEEE test systems is provided.
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1 | INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) systems
and more recently advanced communication systems facilitate
efficient, economic and reliable operation of power systems [1].
For instance, the communication system transmits the mea-
surements to a state estimator that evaluates the operational
status of the system accurately [2]. However, the integration
between the physical layer and the cyber layer exposes the
system to cybersecurity threats. Cyber incidents highlight the
vulnerability of power systems to sophisticated attacks. To
ensure the security and reliability of power system operation, it
is essential to quantitatively characterise the vulnerabilities of
the system in order to set up appropriate security mechanisms
[3]. To that end, security metrics provide operationally mean-
ingful vulnerability descriptors and identify the impact that
security threats pose to the system. Moreover, security metrics
enable operators to assess the defence mechanisms re-
quirements to be embedded into cybersecurity policies, pro-
cesses, and technology [4]. For example, the Common
Vulnerability Scoring System (CVSS) is one of the typical
systems that provides security metrics [5]. Typical security

metrics for power systems focus on integrity, availability, and
confidentiality as envisioned by the cybersecurity working
group in the NIST Smart Grid interoperability panel [6]. Sys-
tem security objectives are categorised into system vulnera-
bility, defence power, attack severity, and situations to develop
security metrics in a systematic manner [7]. A cyberphysical
security assessment metric (CP‐SAM) based on quantitative
factors is proposed to assess the specific security challenges of
microgrid systems in ref. [8].

This fragmented landscape showcases a wide variety of
metrics available that depend on the security services, threat
characteristics, and system parameters. Remarkably, there is a
lack of general data integrity vulnerability metrics for power
systems. For instance, the impact of data injection attacks (DIAs)
[9] can be assessed with a wide variety of criteria that depend on
the objectives of the attackers [10–13]. A large body of literature
addresses DIAs that compromise both the confidentiality and
integrity of the information contained by the system measure-
ments [14]. With the unprecedented data acquisition capabilities
available in cyberphysical systems, attackers can learn the sta-
tistical structure of the system and incorporate the underlying
stochastic process to launch the attacks [15, 16]. DIAs that
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operate within a Bayesian framework by leveraging stochastic
models of the system are studied in refs. [17, 18]. From the
perspective of the operator, the introduction of stochastic de-
scriptors opens the door to information theoretic quantification
of the measurement vulnerability.

In this paper, we propose a novel information theoretic
metric to assess the vulnerability of measurements in power
systems to data integrity attacks. Specifically, we characterise
the fundamental information loss induced by data integrity
attacks via mutual information and the stealthiness of the
attack via Kullback–Leibler divergence. Our aim is to provide a
metric that is grounded on fundamental principles, and
therefore, informs the vulnerabilities of the measurements in
the system to a wide range of threats. This is enabled by the use
of information theoretic measures which characterise the
amount of information acquired by the measurements in the
system in fundamental terms.

The rest of the paper is organised as follows: In Section 2,
we introduce a Bayesian framework with linearised dynamics
for DIAs. Information theoretic attacks are presented in Sec-
tion 3. The vulnerability metric on information theoretic at-
tacks is proposed in Section 4. In Section 5, we characterise the
vulnerability of measurements in uncompromised systems and
propose an algorithm to evaluate the vulnerability of mea-
surements. The vulnerability of measurements of the IEEE
test systems is presented in Section 6. The paper concludes in
Section 7.

The main contributions of this paper is as follows: (1) A
notion of vulnerability for the measurements in the system is
proposed. The proposed notion is characterised by the infor-
mation theoretic cost induced by random attacks. Specifically,
mutual information and KL divergence are used to construct a
quantitative measure of vulnerability. (2) The vulnerability
assessment of the measurements is posed as a minimisation
problem and closed‐form expressions are obtained for the case
in which the initial state of the system is uncompromised. (3) An
algorithm that computes the proposed vulnerability indices for
general state estimators in power systems is proposed. (4) The
proposed framework is numerically evaluated in IEEE9‐bus and
30‐bus test systems to obtain qualitative characterisations of the
vulnerability of the measurements in the systems.

Notation We denote the number of state variables on a given
system by n and the number of the measurements by m. The
set of positive semidefinite matrices of size n � n is denoted
by Snþ. The n‐dimensional identity matrix is denoted as In. For
a matrix A 2 Rm�n, we denote by (A)ij the entry in row i and
column j and diag(A) denotes the vector formed by the diag-
onal entries of A. The elementary vector ei 2 Rn is a vector of
zeros with a one in the ith entry. Random variables are denoted
by capital letters and their realisations by the corresponding
lower case, for example, x is a realisation of the random vari-
able X. Vectors of n random variables are denoted by a su-
perscript, for example, Xn ¼ ðX1;…;XnÞT with corresponding
realisations denoted by x. Given an n‐dimensional vector
μ 2 Rn and a matrix Σ 2 Snþ, we denote by Nðμ;ΣÞ the

multivariate Gaussian distribution of dimension n with mean μ

and covariance matrix Σ. The mutual information between
random variables X and Y is denoted by I(X; Y) and the
Kullback‐Leibler (KL) divergence between the distributions P
and Q is denoted by D(P‖Q).

2 | SYSTEM MODEL

2.1 | Observation model

In a power system, the state vector x 2 Rn that contains the
voltages and phase angles at all the buses describes the oper-
ational state of the system. State vector x is observed by the
acquisition function F : R

n
→ R

m. A linearised observation
model is considered for state estimation, which yields the
observation model

Ym ¼Hxþ Zm; ð1Þ

where H 2 Rm�n is the Jacobian of the function F at a given
operating point and is determined by the parameters and to-
pology of the system. The vector of measurements Ym is
corrupted by additive white Gaussian noise introduced by the
sensors [1, 2]. The noise vector Zm follows a multivariate
Gaussian distribution, that is,

Zm � N
�

0; σ2Im
�

; ð2Þ

where σ
2 is the noise variance.

In a Bayesian estimation framework, the state variables are
described by a vector of random variables Xn with a given
distribution. In this study, we assume Xn follows a multivari-
able Gaussian distribution [19] with zero mean and covariance
matrix ΣXX 2 Snþ, that is,

Xn � Nð0;ΣXXÞ: ð3Þ

From Equation (1), it follows that the vector of measure-
ments is with zero mean and covariance matrix ΣYY 2 Smþ ,
that is,

Ym � Nð0;ΣYY Þ; ð4Þ

where

ΣYY ¼Δ HΣXXHT þ σ2Im: ð5Þ

2.2 | Attack setting

Let us denote the measurements corrupted by the malicious
attack given by the random vector Am taking values in Rm,
that is,

2 - YE ET AL.

 2
5

1
5

2
9

4
7

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

4
9

/stg
2

.1
2

1
6

3
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
4

/0
5

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



YmA ¼HXn þ Zm þ Am; ð6Þ

where YmA 2 Rm random vector of measurements. With a fixed
covariance matrix ΣAA � Smþþ, when the additive disturbance
to the system, that is, Zm þ Am follows a multivariate Gaussian
distribution, the mutual information between the state vari-
ables Xn and the compromised measurements YmA denoted by
I
�

Xn;YmA
�

is minimised [20]. Hence, from the Lévy‐Cramér
decomposition theorem [21, 22], it holds that the sum
Zm þ Am is Gaussian, given that Zm satisfies Equation (2), and
therefore, Am is Gaussian. In view of this, in the following, we
assume that

Am � Nð0;ΣAAÞ; ð7Þ

where 0 = (0, 0, …, 0) and ΣAA 2 Smþ are the mean vector and
the covariance matrix of the random attack vector Am. The
assumption in Equation (7) is further discussed in Section 3.
Consequently, the vector of compromised measurements YmA
follows a multivariate Gaussian distribution with zero mean
and covariance matrix ΣYAYA 2 Smþ , that is,

YmA � Nð0;ΣYAYAÞ; ð8Þ

with

ΣYAYA ¼Δ HΣXXHT þ σ2Im þ ΣAA: ð9Þ

3 | INFORMATION THEORETIC
ATTACKS

The aimof the attack is twofold. Firstly, the attack aims to disrupt
the state estimation procedure. Secondly, it aims to stay unde-
tected. For the first objective, we minimise the mutual infor-
mation between the vector of state variables Xn in Equation (3)
and the vector of compromised measurements YmA in Equa-
tion (6), that is, I

�

Xn;YmA
�

. In other words, the attack yields less
information about the state variables contained by the
compromised measurements. The stealth constraint in the sec-
ond objective is captured by the Kullback–Leibler (KL) diver-
gence between the distribution PYmA in Equation (6) and the

distribution PYm in Equation (1), that is,D
�

PYmA kPYm
�

. For the
observation model and attack setting described in Section 2, and
assuming optimal detection, the Chernoff‐Stein Lemma [23]
states that the minimisation of KL divergence leads to the
minimisation of the asymptotic detection probability.

The following propositions characterise mutual informa-
tion and KL divergence with Gaussian state variables and at-
tacks, respectively [24], Prop. 1, 2.

Proposition 1 The mutual information between the random
vectors Xn in Equation (3) and YmA in Equation (8) is

I
�

Xn;YmA
�

¼
1
2
log

jΣXXkΣYAYAj
jΣj ; ð10Þ

where the matrices ΣX X and ΣYAYA are in Equations (3) and
(9), respectively; and the matrix Σ is the covariance matrix of
the joint distribution of Xn and YmA , that is,
�

Xn;YmA
�

� Nð0;ΣÞ with

Σ¼

�

ΣXX ΣXXHT

HΣXX HΣXXHT þ σ2Im þ ΣAA

�

; ð11Þ

where σ 2 Rþ is in Equation (2); and matrices H and ΣAA are
in Equations (1) and (7), respectively.

Proposition 2 The KL divergence between the distribution of
random vector YmA in Equation (8) and the distribution of
random vector Ym in Equation (4) is as follows:

D
�

PYmA kPYm
�

¼
1
2

�

log
jΣYY j
jΣYAYA j

−mþ tr
�

Σ−1
YYΣYAYA

�

�

;

ð12Þ

where the matrices ΣYY and ΣAA are in Equations (5) and (7),
respectively.

The information theoretic attack construction is proposed
in the following optimisation problem [17, 24]:

min
PAm
I
�

Xn;YmA
�

þ λD
�

PYmA kPYm
�

; ð13Þ

where λ 2 Rþ is the weighting parameter that determines the
tradeoff between mutual information and KL divergence. Note
that the optimisation domain in Equation (13) is the set of m‐
dimensional Gaussian multivariate distributions. The optimal
Gaussian attack for λ ≥ 1 as a solution to Equation (13) is
given by the following [24]:

Am � N
�

0; λ−1=2HΣXXHT
�

: ð14Þ

Note that the attack realisations from Equation (14) are
non‐zero with probability one, that is, P½jsuppðAmÞj¼m� ¼ 1,
where

suppðAmÞ ¼Δ fi : P½Ai ¼ 0� ¼ 0g: ð15Þ

The attack implementation requires access to the sensing
infrastructure of the industrial control system (ICS) operating
the power systems. For that reason, the attack construction
incorporates a sparsity constraint that limits the optimisation
domain over the attack vector Am in Equation (6) to the dis-
tributions with cardinality of the support satisfying |supp
(Am)| = k ≤ m, that is,
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Pk ¼
Δ ⋃

k

i¼1
fAm � Nð0;ΣÞ : jsuppðAmÞj ¼ ig: ð16Þ

The resulting sparse attack construction is [18]

min
Pk
I
�

Xn;YmA
�

þ λD
�

PYmA kPYm
�

: ð17Þ

The following theorem provides the optimal single sensor
attack construction.

Theorem 1 [17], Th. 1 The solution to the sparse stealth attack
construction problem in Equation (17) for the case k = 1 is

Σ∗ ¼ veieTi ; ð18Þ

where

i¼ arg min
j2f1;2;…;mg

n

�

Σ−1
YY
�

jj

o

; ð19Þ

v¼ −
σ2

2
þ

1
2

0

B

B

@

σ4 −

4
�

w σ2 − 1
�

λw2

1

C

C

A

1
2

; ð20Þ

with w ¼Δ
�

Σ−1
YY
�

ii.

4 | VULNERABILITY METRIC FOR
INFORMATION THEORETIC ATTACKS

4.1 | Attack structure with sequential
measurement selection

To assess the impact of the attacks to different measurements,
we model the entries of the random attack vector Am as in-
dependent, that is,

PAm ¼ ∏
m

i¼1
PAi; ð21Þ

where Ai is the ith entry of Am and for all i 2 {1, 2, …,m}, the
distribution PAi is Gaussian with zero mean and variance
v 2 Rþ, that is, Ai � Nð0; vÞ. Consider that k sensors have
been attacked with k2 {0, 1, 2,…,m− 1} and let the covariance
matrix of the corresponding attack vectorAm in Equation (6) be

Σ 2 Sk; ð22Þ

where Sk is the set of m‐dimensional positive semidefinite
matrix with k positive entries in the diagonal, that is,

Sk ¼Δ
�

S 2 Smþ : kdiagðSÞk0 ¼ k
�

: ð23Þ

Let the set of measurements that have not been compro-
mised be

Ko ¼Δ
�

i 2 f1; 2;…;mg : ðΣÞii¼0
�

; ð24Þ

where (Σ)ii is the entry of Σ in row i and column i. The
sequential measurement selection imposes the following
structure in the covariance matrix of the attack vector in
Equation (7):

ΣAA ¼ Σþ veieTi ; ð25Þ

where i 2 Ko and v 2 Rþ. From Equation (25), the cost
function f : Sk � Rþ � Rþ �Ko → Rþ defined by adding
Equations (10) and (12) is as follows:

f ðΣ; λ; v; iÞ ð26Þ

¼Δ I
�

Xn;YmA
�

þ λD
�

PYmA kPYm
�

ð27Þ

¼
1
2
log

jΣXXkΣYAYAj
jΣj

þ
1
2

λ

�

log
jΣYY j
jΣYAYA j

−mþ tr
�

Σ−1
YYΣYAYA

�

�

ð28Þ

¼
1
2
log

jΣYAYAj
jσ2Im þ ΣAAj

þ
1
2

λ

�

log
jΣYY j
jΣYAYA j

þ tr
�

Σ−1
YYΣAA

�

�

;

ð29Þ

¼
1
2
ð1 − λÞlog

�

�ΣYY þ Σþ veieTi
�

� −
1
2
log
�

�Σþ veieTi þ σ2Im
�

�

þ
1
2

λ
�

tr
�

Σ−1
YY
�

Σþ veieTi
��

þ logjΣYY j
�

; ð30Þ

where the inequality in Equation (28) holds from plugging
Equations (10) and (12) into Equation (27); the equality in
Equation (29) follows from cancelling |ΣX X| in the first term
[25], [Section 14.17] and noting that ΣYAYA ¼ ΣYY þ ΣAA in
Equation (9); and the equality in Equation (30) holds from
plugging Equation (25) into Equation (29).

4.2 | Information theoretic vulnerability of a
measurement

We propose a notion of vulnerability that is linked to the in-
formation theoretic cost function proposed in ref. [24] to
characterise the disruption and detection tradeoff incurred by
the attacks. Taking the state of the system with k compromised
measurements as the baseline, we quantify the vulnerability of
measurement i 2 Ko in terms of the cost decrease that i in-
duces. In the following, we define the vulnerability of a mea-
surement according to this idea.
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Definition 1 The function Δ : Smþ � Rþ � Rþ �Ko → Rþ,
where Ko is in Equation (24), defines the vulnerability of
measurement i in the following form:

ΔðΣ; λ; v; iÞ ¼Δ f ðΣ; λ; v; iÞ − f ðΣ; λ; 0; iÞ; ð31Þ

where the function f is defined in Equation (26).

Note that the attacker aims to minimise Equation (26) by
choosing an index i and a variance v, and therefore, the defi-
nition above implies that given that k measurements in
f1; 2;…;mgnKo are already under attack in the system, the
most vulnerable measurement is obtained by solving the
following minimisation problem

min
i2Ko

ΔðΣ; λ; v; iÞ; ð32Þ

where Ko is defined in Equation (24).

5 | VULNERABILITY OF
MEASUREMENTS

5.1 | Vulnerability analysis of
uncompromised systems

We first consider the case in which no measurements are under
attacks, that is, k = 0, for which the following holds

Σ¼ 0; ð33Þ

Ko ¼ f1; 2;…;mg: ð34Þ

The attacker selects a single measurement with a given
variance budget v ≤ v0. We quantify the vulnerability of
measurement i in terms of Δ(Σ, λ, v, i) defined in Equa-
tion (31). For the uncompromised system case, the optimisa-
tion problem in Equation (32) can be solved in closed form
expression. The following theorem provides the solution.

Theorem 2 The solution to the problem in Equation (32),
with Ko ¼ f1; 2;…;mg, is

i¼ arg min
j2f1;2;…;mg

n

�

Σ−1
YY
�

jj

o

; ð35Þ

where ΣY Y is in Equation (5).

Proof We start by noting that Equation (33) establishes that
the vulnerability of measurement i in Equation (31) is Δ(0, λ, v,
i). From the equality in Equation (30), the function f(0, λ, 0, i)
is constant with respect to i. Hence, for Σ = 0, the optimi-
sation problem in Equation (32) is equivalent to

min
i2Ko

f ð0; λ; v; iÞ; ð36Þ

where Ko is defined in Equation (34). Recall that λ 2 Rþ and
v 2 Rþ. From Equation (30), the resulting problem in
Equation (36) is equivalent to the following optimisation
problem:

min
i2f1;2;…;mg

ð1 − λÞlog
�

�ΣYY þ veieTi
�

� − log
�

�veieTi þ σ2Im
�

�

þ λvtr
�

Σ−1
YY eie

T
i
�

ð37Þ

¼ min
i2f1;2;…;mg

ð1 − λÞlog
�

�Im þ vΣ−1
YY eie

T
i

�

� − log
�

vþ σ2�

þ λvtr
�

Σ−1
YY eie

T
i
�

ð38Þ

¼ min
i2f1;2;…;mg

ð1 − λÞlog
�

1þ vtr
�

Σ−1
YY eie

T
i
��

þ λvtr
�

Σ−1
YY eie

T
i
�

;
ð39Þ

where the equivalence in Equation (37) holds from plugging
Σ = 0 into the equality in Equation (30); the equality
in Equation (38) follows from removing a constant
ð1 − λÞlogjΣYY j from the first term; and the equality in Equa-
tion (39) follows from the fact thatΣ−1

YY eieTi is amatrix with non‐
zero entries in the ith column and all the other entries are zero.

We now proceed by defining t¼Δ vtr
�

Σ−1
YY eieTi

�

, with
t 2 Rþ, and rewriting the equality in Equation (39) as

min
t2Rþ

ð1 − λÞlogð1þ tÞ þ λt: ð40Þ

Note that Equation (40) increases monotonically with t.
Therefore, the cost function in Equation (39) is monotonically
increasing with t. This completes the proof. ◻

From Theorem 2, it follows that the identification of the
most vulnerable measurement is independent of λ, introduced
in Equation (26), and the value of the variance v. That is, it
only depends on the system topology and parameters denoted
by ΣY Y defined in Equation (5). This result coincides with
Theorem 1 in the sense that in the attack construction for
k = 1, the most vulnerable measurement is characterised in
Equation (19), which is independent of the value of λ. The
following corollary formalises this observation.

Corollary 1 Let Σ = 0. The vulnerability ranking for mea-
surement indices

s¼Δðs1; s2;…; smÞ ð41Þ

is such that for all measurement index i, with i 2 {1, 2, …,m},
si 2 {1, 2, …, m} and

tr
�

Σ−1
YY es1e

T
s1

�

≤ tr
�

Σ−1
YY es2e

T
s2

�

≤ … ≤ tr
�

Σ−1
YY esme

T
sm

�

: ð42Þ

For all i 2 {1, 2, …,m}, the ith most vulnerable measurement
index is si.
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5.2 | Vulnerability index (VuIx)

The vulnerability analysis of uncompromised systems in Sec-
tion 5.1 is constrained to k = 0. To generalise the vulnerability
analysis to systems compromised with k > 0, in the following
we propose a novel metric, coined vulnerability index.

Definition 2 For k 2 {1, 2, …, m − 1} and Sk in Equa-
tion (23), let the parameters be Σ 2 Sk, v 2 Rþ, λ 2 Rþ.
Consider the set fði;ΔÞ : i 2 Kog, with Ko in Equa-
tion (24) and

Δi ¼Δ ΔðΣ; λ; v; iÞ: ð43Þ

Let the vulnerability ranking

r¼
�

r1; r2;…; rjKoj
�

ð44Þ

be such that for all i 2 f1; 2;…; jKojg, ri 2 Ko and moreover,

Δr1 ≤ Δr2 ≤ … ≤ ΔrjKo j: ð45Þ

The vulnerability index (VuIx) of measurement rj 2 Ko is j,
that is, VuIx(rj) = j.

Note that the measurement with the smallest VuIx is the
most vulnerable measurement and corresponds to the solution
of the optimisation problem in Equation (32). The proposed
VuIx for i 2 Ko is obtained by Algorithm 1.

Algorithm 1 Computation of Vulnerability Index
(VuIx)
Input: H in Equation (1);

σ2 in Equation (2);
ΣX X in Equation (3);
Σ 2 Sk in Equation (22);
λ 2 Rþ and v 2 Rþ.

Output: the VuIx for all i 2 Ko.
1: Set Ko in Equation (24)
2: for i 2 Ko do
3: Compute Δ(Σ, λ, v, i) in Equation (31)
4: end for
5: Sort Δ(Σ, λ, v, i) in ascending order
6: Set r¼

�

r1;r2;…;rjKoj

�

7: Set the VuIx of measurement rj 2 Ko as j.

6 | NUMERICAL RESULTS

In this section, we numerically evaluate the VuIx of the mea-
surements on a direct current (DC) setting for the IEEE Test
systems [26]. The voltage magnitudes are set to 1.0 per unit,
that is, the measurements of the systems are active power flow
between the buses that are physically connected and active

power injection to all the buses. The Jacobian matrix H in
Equation (1) determined by the topology of the system and the
physical parameters of the branches is generated by MAT-
POWER [27]. We adopt a Toeplitz model for the covariance
matrix ΣXX that arises in a wide range of practical settings, such
as autoregressive stationary processes. Specifically, we model
the correlation between state variable Xi and Xj with an
exponential decay parameter ρ 2 Rþ, which results in the en-
tries of the matrix ðΣXXÞij ¼ ρji−jj with (i, j) 2 {1, 2, …, n} �

{1, 2, …, n}. In this setting, the VuIx of the measurements is
also a function of the correlation parameter ρ, the noise vari-
ance σ

2, and the Jacobian matrix H. The noise regime in the
observation model is characterised by the signal to noise ratio
(SNR) defined as follows:

SNR ¼Δ 10log10

 

tr
�

HΣXXHT
�

mσ2

!

: ð46Þ

For all λ 2 Rþ and v 2 Rþ, we generate a realisation of k
attacked indices Ka ⊆ f1; 2;…;mg that is uniformly sampled
from the set of sets given by the following:

K
�

¼ fA ⊆ f1; 2;…;mg : jAj ¼ kg: ð47Þ

We then construct a random covariance matrix describing
the existing attacks on the system as follows:

Σ
�
¼
X

i2Ka

eieTi ; ð48Þ

with Ka 2 K
�
. In the numerical simulation, we obtain the

vulnerability of measurement i by computing

Δ
�

Σ
�
; λ; 1; i

�

; ð49Þ

where i 2 Ko is in Equation (24) and Δ is defined in
Equation (31).

6.1 | Assessment of vulnerability index
(VuIx)

Figures 1 and 2 depict the mean and variance of the VuIx
obtained by Algorithm 1 for all the measurements with
SNR = 10 dB, λ = 2 and ρ = 0.1 on the IEEE 9‐bus system
when k = 1 and k = 2, respectively. Therein, it is observed
that in general power injection measurements take higher
vulnerability indices. Note that the vulnerability index captures
the threat posed by an attack on sensor i expressed in terms
of the vulnerability of the measurement as described by Δ(Σ,
λ, v, i) in Algorithm 1. A larger value of Δ(Σ, λ, v, i) indicates
a larger potential for an stealthy data integrity disruption
induced by an attacker. Figures 1–6 depict a prevalence of
higher vulnerability indices assigned to power injection

6 - YE ET AL.

 2
5

1
5

2
9

4
7

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

4
9

/stg
2

.1
2

1
6

3
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
4

/0
5

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



measurements for different system settings. This implies that
corrupting the sensor data of power injection measurements
is linked to larger information losses about the state of the
grid, regardless of the attack construction used by the mali-
cious attacker. Most power injection measurements corre-
spond to higher ranked vulnerability indices but there are
instances of power flow measurements with a higher ranked
VuIx than that of power injection measurements. Interest-
ingly, the power injection measurements with lower vulnera-
bility indices correspond to the buses that are more isolated in
the system, that is, the buses with a lower number of con-
nections. On the other hand, the power flow measurements
with higher ranked vulnerability indices correspond to the
branches with higher admittance. The VuIx for k = 0 ob-
tained in Corollary 1 is depicted for the purpose of serving as
a reference to assess the deviation when k > 0. In this setting,
the VuIx of most measurements does not change substantially
for different values of k, which suggests that the VuIx is
insensitive to the state of the system.

Figures 3 and 4 depict the mean and variance of the VuIx
from Algorithm 1 for all the measurements with SNR = 30 dB,
λ = 2 and ρ = 0.1 on the IEEE 9‐bus system when k = 1 and
k = 2, respectively. Similar to what is observed above, the mean
of the VuIx for most of the measurements does not deviate
significantly from the case when k = 0. However, most of the
variance values deviate significantly in comparison with the
cases in Figures 1 and 2 with SNR = 10 dB. Figures 5 and 6
depict the results on IEEE 30‐bus systems with the same
setting as in Figures 1 and 2, respectively. Figures 7 and 8
depict the results on IEEE 30‐bus systems with the same
setting as in Figures 3 and 4, respectively. Surprisingly, the
mean of the VuIx in larger systems coincides with that ob-
tained for the case k = 0, which suggests that the VuIx is a
robust security metric for large systems. In line with the pre-
vious observation, the power injection measurements corre-
sponding to the least connected buses decrease in the VuIx
when SNR = 10 dB.

6.2 | Comparative vulnerability assessment
of power flow and power injection
measurements

In Section 6.1, we have established that power injection mea-
surements and power flow measurements are qualitatively
different in terms of the VuIx. To provide a quantitative
description of this difference, Figure 9 depicts the probability
of a given VuIx i 2 f1; 2;…;m − jKajg being taken by a po-
wer injection measurement or a power flow measurement for
the IEEE 9‐bus and 30‐bus systems when λ = 2, k = 2,
SNR = 30 dB and ρ = 0.1. Specifically, Figure 9 depicts the
probability of the following events:

Flowi : VuIx i corresponds to a power flow measurement;
Inji : VuIx i corresponds to a power injection measurement:

F I GURE 1 Vulnerability index (VuIx) when k = 1, SNR = 10 dB,
λ = 2 and ρ = 0.1 on the IEEE 9‐bus system.

F I GURE 2 Vulnerability index (VuIx) when k = 2, SNR = 10 dB,
λ = 2 and ρ = 0.1 on the IEEE 9‐bus system.

F I GURE 3 Vulnerability index (VuIx) when k = 1, SNR = 30 dB,
λ = 2 and ρ = 0.1 on the IEEE 9‐bus system.
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It is observed that in both systems, small VuIx are more
likely to correspond to power injection measurements than to
power flow measurements, that is, P

�

Inji
�

> P½Flowi� for
small values of i. Conversely, it holds that P

�

Inji
�

< P½Flowi�

for large values of i. In fact, small VuIx correspond to power
injection measurements with probability one, which suggests
that the most vulnerable measurements in the system tend to
be power injection measurements. Conversely, the larger VuIx
values correspond to power flow measurements with proba-
bility one, which indicates that the least vulnerable measure-
ments tend to be power flow measurements. Interestingly,
there is a clear demarcation for each system for which P

�

Inji
�

and P½Flowi� change rapidly with the VuIx value, which points
to a phase transition type phenomenon for measurement
vulnerability.

The probability of VuIx taken by power injection mea-
surements concentrates higher probability mass for higher
priority vulnerability indices. One the other hand, power flow
measurements with higher probability mass coincide with low
ranked VuIx values. Precisely, the probability of the vulner-
ability indices with higher priority taken by power injection
measurements is one in both IEEE 9‐bus and 30‐bus sys-
tems. Meanwhile, the probability of the lower ranked
vulnerability indices taken by power flow measurements is
one. Note that the probability of mid‐ranked vulnerability
indices taken by power injection measurements drops signif-
icantly, which indicates that there are some power flow
measurements that are equally as vulnerable as power injec-
tion measurements. We observe that these power flow mea-
surements correspond to the branches with higher
admittance. The power injection measurements with lower
vulnerability indices correspond with the buses that are iso-
lated in the systems.

Figure 10 depicts the distribution of VuIx for power in-
jection measurements and power flow measurements on the
IEEE 9‐bus and 30‐bus systems when λ = 2, k = 2,
SNR = 30 dB and ρ = 0.1. Specifically, Figure 10 depicts the
probability mass function of the following events:

VuIxðFlowÞ ¼ i: VuIx for power flow measurements is i;
VuIxðInjÞ ¼ i: VuIx for power injection measurements is i:

Power injection measurements have a higher probability
with high ranked VuIx, whereas power flow measurements
have much higher probability with low ranked VuIx. It is worth
noting that the probability mass functions are close to uniform
for high and low vulnerability index ranges. This suggests that
the most vulnerable measurements in the system are contained
with high probability in a subset of the power injection mea-
surements. Conversely, the least vulnerable measurements
comprise the majority of the power flow measurements with
no apparent preference over the majority. Surprisingly, in the
30‐bus system, the probability of lowest ranked VuIx for po-
wer flow measurements experiences a sharp increase.

F I GURE 4 Vulnerability index (VuIx) when k = 2, SNR = 30 dB,
λ = 2 and ρ = 0.1 on the IEEE 9‐bus system.

F I GURE 5 Vulnerability index (VuIx) when k = 1, SNR = 10 dB,
λ = 2 and ρ = 0.1 on the IEEE 30‐bus system.

F I GURE 6 Vulnerability index (VuIx) when k = 2, SNR = 10 dB,
λ = 2 and ρ = 0.1 on the IEEE 30‐bus system.
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7 | CONCLUSION

In this paper, we have proposed, from a fundamental
perspective, a novel security metric referred to as vulnerability
index (VuIx) that characterises the vulnerability of power sys-
tem measurements to data integrity attacks. We have achieved
this by embedding information theoretic measures into the
metric definition. The resulting VuIx framework evaluates the
vulnerability of all the measurements in the systems and en-
ables the operator to identify those that are more exposed to
data integrity threats. We have tested the framework for IEEE
test systems and concluded that power injection measurements
are more vulnerable to data integrity attacks than power flow
measurements.
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