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A B S T R A C T   

This work reports preliminary-stage studies demonstrating the highly selective conversion of polypropylene to 
short-chained olefins via hydrothermal catalytic processing. The production of such monomer species from waste 
polymers is highly desirable and has the potential to play a key role in plastics recycling and in the circular 
economy more broadly. Addition polymers such as polypropylene are, however, known to be particularly 
challenging to recycle into propene or other short-chained alkenes. Herein, we have compared and contrasted 
acid- and base-catalysed hydrothermal processing at a temperature of 360 ◦C, analysing the products of reaction 
by gas chromatography – mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. 
Employing the basic catalyst K2CO3, results in a 95 % yield of gas-phase products of which 52 % are propene and 
9 % butenes on a mole basis. The solid acid catalyst HZSM-5 also selectively yields gaseous products, 21 % of 
which are propene and 22 % are butenes, the reaction proceeding via β-scission of the starting oligomers. These 
results represent a potential step-change in the production of monomer units from addition polymers, high-
lighting the potential value of catalytic hydrothermal processing in the field of polymer recycling.   

1. Introduction 

Plastics are ubiquitous in modern life to the extent that they have 
been suggested as the potential key geological makers of the Anthro-
pocene, identifying the present era as the ‘plastic age’ [1]. Global plastic 
production doubled in the first 20 years of this century, reaching 460 Mt 
in 2019, with only 9 % of this being recycled after losses are accounted 
for [2]. The development of effective and efficient recycling routes for 
plastics and polymers is therefore an issue of paramount importance. 
The present work is an initial proof-of-concept investigation, high-
lighting a potential step-change in the use of hydrothermal processing 
for the recovery of monomers and other valuable species from plastics, 
employing polypropylene as an exemplar feedstock. 

Physical recycling and pyrolysis represent the most widely 
researched avenues for polymer recycling [3–5]; for instance, Val-
anciene et al. have studied the zeolite catalysed pyrolysis of poly-
propylene [6]. Both of these approaches however have limitations. 
Physical recycling results in products with inferior physical properties to 
the original material [7], while pyrolysis requires high energy inputs 
and harsh reaction conditions [8]. Hydrothermal processing represents a 
promising alternative for the recycling of waste polymers, including 
polypropylene [9,10]. Hydrothermal processing describes a thermo-
chemical conversion technology, which operates at relatively low 

temperatures (180–360 ◦C) and at sufficient pressure (<50 bar) such 
that the water which comprises the reaction medium remains in the 
liquid phase. Depending on reaction conditions the products may be 
solid (carbonisation), liquid (liquefaction) or gaseous (gasification) 
[11–15]. 

Previous studies have shown that polypropylene is particularly 
recalcitrant to conversion under hydrothermal conditions, with, e.g., 
long processing times required even to achieve relatively low conver-
sions [10,16]. Herein, we aim to demonstrate the successful conversion 
of polypropylene to propene and other monomer species, e.g. butene, 
through the use of two different catalysts: K2CO3 and HZSM-5. The 
former catalyst is an alkaline material that has previously been suc-
cessfully employed in the hydrothermal processing of biomass, while the 
latter is an acidic catalyst that has been employed, e.g., in the cracking of 
waste plastics [5,10,17,18]. This therefore allows a comparison of both 
acidic and basic catalysts which have shown efficacy in reactions and 
processes closely related to those discussed herein. 

2. Experimental 

2.1. Materials 

For the purposes of this study and in order to investigate the 
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mechanism of reaction without interference from, e.g. unknown impu-
rities, pristine polypropylene (isotactic, average Mw ~250,000, average 
Mn ~67,000, particle size 2.4 mm ± 0.2 mm) (Sigma-Aldrich, 99.5 %) 
was used to simulate waste polymer. K2CO3 (Sigma-Aldrich, ≥ 99 %), 
and HZSM-5 (SiO2:Al2O3 ratio 38:1, surface area ≥250 m2g−1, pore 
volume ≥0.25 ml g−1; 30 wt% binder (pseudo-boehmite)) (ACS Mate-
rial, Pasadena, USA) were employed as catalysts and used without 
further modification. Other materials used were compressed helium 
(BOC, 99.99 %) and distilled water. 

2.2. Reaction studies 

The catalytic hydrothermal liquefaction of polypropylene was con-
ducted in a 100 ml EZE-Seal reactor constructed from Hastelloy-C 
(Parker Autoclave Engineers) described previously [19,20]. The 
reactor was charged with polymer and water in the ratio 1:10, i.e. 2 g 
polymer: 20 g water. The catalyst was introduced at either 10 wt% in the 
case of H-ZSM-5, or 0.9 M in the case of K2CO3. Prior to reaction the 
system was purged four times with He. The reactor was then heated at 6 
◦C min−1 to the desired reaction temperature of 360 ◦C. Upon reaching 
this temperature the impeller was initiated at 500 rpm and the reaction 
then proceeded for a period of 2 h. The total reaction time will, in reality, 
exceed 2 h as some conversion will take place during the initial heating 
period. After this time, the reactor was cooled to room temperature by 
immersing it in water ice. Gaseous products were vented via a valve to 1 l 
sample bag. The solid and liquid products were then removed from the 
catalyst and the reactor was rinsed twice with 10 ml dichloromethane in 
order to dissolve any remaining soluble components; this solution was 
then added to the removed sample. The liquid and solid phases present 
were then separated by filtration for subsequent analysis, with the solid 
product being dried overnight in an oven. 

2.3. Product analysis 

The reaction has the potential to produce liquid- (either aqueous- 
soluble or insoluble), gaseous- and solid-phase products. Suitable 
analytical techniques were therefore selected in order to characterise the 
species formed in each phase; these are described in Sections 2.3.1 – 

2.3.3. 

2.3.1. Liquid-phase products 
Gas chromatography – mass spectrometry (GC-MS) (Shimadzu 

QP2010SE) was employed to analyse the liquid samples collected. A DB- 
5MS column of length 25 m and internal diameter 0.23 mm was used. 
The temperature was ramped from 30 – 60 ◦C at 6 ◦C min−1, and then to 
300 ◦C at a rate of 5 ◦C min−1 before being held at this temperature for 
10 min. Quantification was conducted through the generation of cali-
bration curves using solutions of known concentration of analyte. The 
yield of liquid-phase reaction products was calculated as a percentage on 
a mass-basis as: 

%Yield =
Cprod × Vt

mpoly
× 100  

where Cprod is the concentration of the product determined after reac-
tion, Vt is the total volume of liquid and m0,poly is the initial mass of 
polymer added to the reactor. 

2.3.2. Gas-phase products 
The formation of gas-phase species was quantified through 

comparing the increase in pressure at the end of reaction to the increase 
in pressure when no reactants or catalyst were present. The collected gas 
samples were manually injected in the GC-MS (Shimadzu QP2010SE) 
equipped with a Rt-Q-Bond plot column (length 30 m, internal diameter 
0.32 mm). The temperature programme entailed ramping the temper-
ature from 40 – 250 ◦C at 15 ◦C min−1 and then holding at this final 

temperature for 5 min. 

2.3.3. Solid-phase products 
Fourier transform-infrared (FTIR) spectrometry performed on a 

Shimadzu IR Affinity-1S equipped with a Specac attenuated total 
reflectance (ATR) accessory. Spectra were acquired over a 
4000–400 cm−1 range, averaged over 16 scans and with a resolution of 
4 cm−1. Additionally, the stability of the stability of the zeolite catalyst 
under hydrothermal conditions was evaluated by X-ray diffraction 
(XRD) as detailed in the Supplementary Information. 

3. Results and discussion 

Two different catalysts have been compared and contrasted to 
determine their efficacy in the hydrothermal reduction of poly-
propylene. The results of reaction in the presence of the alkaline 
solution-phase catalyst K2CO3 are presented in Section 3.1, while those 
employing the acidic solid-phase catalyst HZSM-5 are presented in 
Section 3.2. 

3.1. K2CO3 catalyst 

The use of K2CO3 as a catalyst resulted in the highly selective pro-
duction of gas-phase products, in particular propene - the constituent 
monomer. In addition, a small quantity of liquid-phase products were 
produced. After reaction no solid-phase products were identified, indi-
cating the complete conversion of polypropylene had occurred. This 
compares to a conversion of only 12 % in the absence of a catalyst. This 
latter value is a similar conversion to that achieved previously by dos 
Passos et al. who obtained ~15 % conversion, predominately to liquid- 
phase products, in a 20 ml reaction vessel operating in a heating pro-
file designed to mimic continuous HTL processes [16]. Two distinct 
liquid phases were present: an oil-like organic phase and a water-rich 
aqueous phase, alongside the gaseous products. 

Gas-phase products comprised 95 % of the material produced from 
the hydrothermal processing of polypropylene, as determined through 
observing the pressure increase after reaction as compared to the pres-
sure increase in the absence of reactants (30 bar at 633 K) and deter-
mining the total number of moles of gas present via the ideal gas law. 
The high yield of gaseous species is attributed to the use of K2CO3 as a 
catalyst, which has previously been associated with high gasification 
activity in the hydrothermal processing of biomass [21–23]. Previous 
studies of the hydrothermal conversion of polypropylene at higher 
temperature (400–500 ◦C) and longer reaction times (4–6 h), but in the 
absence of a catalyst, resulted in gas yields of only 20–28 % [24]. dos 
Passos and co-workers investigated the KOH-catalysed hydrothermal 
conversion of polypropylene [16]. In contrast to the results presented 
herein where K2CO3 was employed as the catalyst, that work showed no 
identifiable change in the structure in the polymer, with >90 % of the 
solid remaining after reaction, while formation of liquid- and gas-phase 
products was retarded when compared to the reaction in the absence of a 
catalyst. This stark difference, despite the variations in operating con-
ditions between the two studies, suggests that K2CO3 is a superior 
catalyst for polypropylene conversion than KOH. The efficacy of K2CO3 
may arise from its conversion to potassium bicarbonate, KHCO3, in the 
presence of water. The formed KHCO3 then acts as a secondary catalyst 
in hydrothermal processing [25,26]. 

The major component of the gas-phase produced was the constituent 
monomer of the polymer substrate, i.e. propene. Propene comprises 
52 % of the gas-phase on a mole basis. Other species observed were 2- 
butenes (9 %), pentane (8 %) and carbon dioxide (31 %). The selec-
tive production of the monomer is highly desirable but also highly 
challenging; typically, addition polymers such polypropylene do not 
undergo depolymerisation and hence other approaches such as (cata-
lytic) thermal cracking are employed to recycle them [27,28]. Catalytic 
hydrothermal processing may therefore represent a promising avenue 
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for future exploration in the selective depolymerisation of polyolefins 
including polypropylene. The CO2 observed in the gas-phase is likely to 
be produced through the water-gas-shift reaction via a formate inter-
mediate [18,29]. This reaction will also yield H2, which acts as an 
additional reducing agent in the conversion of the hydrocarbonaceous 
material [30,31]. 

Considering the liquid products detected, only trace amounts of 
organic material are observed in the aqueous phase. This indicates that 
liquid-phase products exist preferentially in the organic phase. Table 1 
shows the range of hydrocarbons identified in the organic-phase and the 
chromatogram peak area. Olefins, cyclic species, linear paraffins and 
alcohols are all observed in the range C8-C20. Previous studies employing 
K2CO3 as a catalyst and supercritical water as the reaction medium, 
rather than subcritical water as employed herein, have also shown the 
formation of branched olefins and cyclic hydrocarbons in this carbon 
number range [24]. The product distribution in the present work is 
dominated by two species: 2,4-dimethyl-1-heptene (28.3 mole% of the 
organic-phase) and 1-pentyl-2-propyl cyclopentane (23.4 mole% of the 
organic phase). The mechanism of formation of 2,4-dimethyl-1-heptene 
is well established in the thermal pyrolysis of propylene [32,33]. It is 
proposed that the same mechanism operates here in the hydrothermal 
conversion of the polyolefin. Specifically, reaction occurs through the 
scission of carbon-carbon bonds at position 1 and 3, and the cleavage of 
C-H bonds at position 4, as shown in Fig. 1. One key difference between 
pyrolysis and hydrothermal processing is however that the former is 
typically less selective, producing a broader range of products [34]. 
Notably, no 2-methyl-1-pentene is observed in the present work; this is 
commonly reported as a product of the thermal degradation of poly-
propylene and is typically formed via a similar mechanism to 2,4-dime-
thyl-1-heptene but with carbon-carbon bond scission resulting in a C6 
species as opposed to a C9 species [35,36]. The lack of 2-methyl-1-pen-
tene is attributed to the fact that the reaction medium in the present 
study is high-temperature water. Conducting the same study in a hy-
drocarbon solvent (toluene) for comparison did yield significant quan-
tities of the C6 species, albeit that 2,4-dimethyl-1-heptene remained the 
major product [37]. The reason for the inhibition of one pathway under 
hydrothermal requires further investigation. 

3.2. HZSM-5 catalysts 

Employing HZSM-5 as the catalyst in the hydrothermal conversion of 
polypropylene yielded gas-phase products and a solid residue. No 
products were detected in the liquid-phase by GC-MS, while FTIR 
spectroscopy indicated only the presence of water, i.e. the reaction 

medium. This indicates an exceptional selectivity of this catalyst to 
produce a very narrow distribution of hydrocarbonaceous products. A 
comparison of the yield to different phases of material for the H-ZSM-5 
and K2CO3 catalysed reactions is presented in Table 2. 

GC-MS analysis of the gas-phase products obtained from the hydro-
thermal conversion of polypropylene with HZSM-5 were butene (22 %), 
propene (21 %) and CO2 (57 %), with an overall yield of 80 % to gas- 
phase species. In contrast no gas-phase species were formed in the 
control reaction in the absence of a catalyst, consistent with previous 
studies of catalyst-free polymer hydrothermal liquefaction [38,39]. The 
alkenes produced in the presence of HZSM-5 are formed via the pathway 
described in Fig. 1, analogous the process employing K2CO3 as the 
catalyst (Section 3.1), albeit that propene was the dominant product 
produced over the basic catalyst. Previous studies on the catalytic py-
rolysis of polypropylene have also reported that the use of ZSM-5 in-
creases selectivity to C3-C5 hydrocarbons [40], with more acidic 
catalysts favouring gaseous products [41]. An advantage of the hydro-
thermal reaction medium utilised in the present work is the enhanced 
selectivity and narrower product distribution than that observed from 
pyrolysis. The CO2 detected is, again analogous to when K2CO3 is used, 
produced via the water gas shift reaction, also yielding hydrogen which 
acts as a reductant in the process. Although similar products are pro-
duced over both catalysts, as is commonly observed when comparing the 
action of acidic and basic catalysts in hydrothermal processing [42], 
notable difference are observed. A significant difference between the 
gas-phase reaction products observed with HZSM-5 and those produced 
using K2CO3 is that no cyclic species or alkanes are observed for the solid 
acid catalyst. This is ascribed to HSM-5 catalysing β-scission of the 
oligomers forming light alkenes. Solid acid catalysts possessing Brønsted 
acidity, such as HSZM-5, are well-established to preferentially crack 
alkene oligomers to smaller alkene units through reaction at those 
Brønsted sites [43,44]. It is therefore proposed that a similar reaction 
network operates during hydrothermal processing of polypropylene 
over HSZM-5. 

FTIR spectroscopy analysis of the solid residue present after reaction 
showed that the signal was dominated by the framework stretching vi-
brations of HZSM-5 (Fig. 2). A small quantity of hydrocarbonaceous 
material is evidenced by the presence of C-H stretching vibrations in the 
region 2750–3000 cm−1. This may be coke on the surface of the zeolite 
or unreacted polypropylene. The carbonyl stretch at 1750 cm−1 in-
dicates that some oxygen has been incorporated into the hydrocarbon 
product. While framework stretches associated with HZSM-5 are iden-
tified by FTIR spectroscopy, a comparison of the X-ray diffractograms of 
the fresh catalyst and that after exposure to the hydrothermal processing 
environment reveal a significant loss of crystalline structure. This sug-
gests that while the solid acid catalyst is highly active for this reaction 
future research endeavours should be directed towards identifying ma-
terials with similar catalytic properties but with greater stability under 
these reaction conditions. 

4. Conclusions 

In this preliminary work the base (K2CO3) and acid (HZSM-5) con-
version of polypropylene under hydrothermal conditions has been 
investigated. Both catalysts yield gaseous products with high selectivity, 
with K2CO3 preferentially producing the monomer propene (52 % of 
gas-phase products), with smaller quantities of butenes (9 %). Employ-
ing HZSM-5, 21 % of the gaseous products are propene and 22 % are 
butenes, with the majority of the gas-phase being made of CO2 (57 %). 
The ability to selectively produce light alkenes from the starting polymer 
is of particular value, and hence this work demonstrates the potential 
role of hydrothermal catalytic processing of waste polymers in the future 
circular economy. 

Table 1 
Products observed in the hydrothermal conversion of polypropylene at 360◦C 
for 2 h after heating at 6◦C min−1, employing K2CO3 as the catalyst. The polymer 
to water ratio 1:10. Species comprising <1 % of the organic liquid-phase are 
excluded.  

Compound Mole fraction in (organic) liquid-phase 
4,4,5-Trimethyl-2-hexene  1.5 
2,4-Dimethyl-1-heptene  28.3 
1,3,5-Trimethylcyclohexane  4.1 
2,2-Dimethyl-3-octene  1.7 
2,5-Dimethyl-1,6-octadiene  1.2 
4-Methyldecane  2.2 
1,2-Diethyl-3-methylcyclohexane  1.7 
2,3,6,7-Tetramethyloctane  1.9 
7-Methyl-1-undecene  2.5 
1-Isopropyl-1,4,5-trimethylcyclohexane  1.6 
1-Pentyl-2-propyl cyclopentane  23.4 
11-Methyldodecanol  7.8 
3-Hexadecene  9.7 
3-Octadecene  1.8 
2-Hexyl-1-dodecanol  6.0 
3-Eicosene  1.5  
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