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ABSTRACT In this paper, we propose a robust design for an intelligent reflecting surface (IRS)-assisted

multiple-input single output non-orthogonal multiple access (NOMA) system. By considering channel

uncertainties, the original robust design problem is formulated as a sum-rate maximization problem under

a set of constraints. In particular, the uncertainties associated with reflected channels through IRS elements

and direct channels are taken into account in the design and they are modelled as bounded errors. However,

the original robust problem is not jointly convex in terms of beamformers at the base station and phase

shifts of IRS elements. Therefore, we reformulate the original robust design as a reinforcement learning

problem and develop an algorithm based on the twin-delayed deep deterministic policy gradient agent (also

known as TD3). In particular, the proposed algorithm solves the original problem by jointly designing

the beamformers and the phase shifts, which is not possible with conventional optimization techniques.

Numerical results are provided to validate the effectiveness and evaluate the performance of the proposed

robust design. In particular, the results demonstrate the competitive and promising capabilities of the proposed

robust algorithm, which achieves significant gains in terms of robustness and system sum-rates over the

baseline deep deterministic policy gradient agent. In addition, the algorithm has the ability to deal with fixed

and dynamic channels, which gives deep reinforcement learning methods an edge over hand-crafted convex

optimization-based algorithms.

INDEX TERMS MISO-NOMA, power allocation, non-convex optimization, reinforcement learning, robust

design.

I. INTRODUCTION

N
ON-ORTHOGONAL multiple access (NOMA) has

been identified as one of the promising multiple access

(MA) techniques for future wireless communications. This

novel multiple access technique has the ability to support

more than one user in the same resource block [1]. In addition,

NOMA utilizes superposition coding (SC) at the transmit-

ter and successive interference cancellation (SIC) at the

receiver. This enables NOMA to offer higher spectral and

energy efficiencies, massive connectivity, and better fair-

ness while meeting the unprecedented requirements of future

wireless networks. It has been demonstrated that NOMA
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can achieve superior performance over orthogonal multiple

access (OMA) by efficiently utilizing the available radio

resources [2], [3].

NOMA systems with multiple antennas have been sub-

ject to extensive studies recently, thanks to their additional

degrees of freedom over single antenna systems [4], [5], [6],

[7], [8]. Several contributions have been made for various

system objectives including transmit power minimization [9],

max-min rate optimization and sum-rate maximization [10].

In [10], Hanif et al. proposed an iterative algorithm to solve

the sum-rate maximization problem for downlink multiple-

input single-output (MISO)-NOMA system.

Recently, intelligent reflecting surfaces (IRS) have been

identified as another promising technology to combat the

effects of channel fading, which improves the reliability of

wireless systems [11]. The IRS consists of multiple passive

elements with programmable phase-shift surfaces which can

redirect incoming signals towards the desired direction [12].

The beamforming design for IRS-assisted multiple-antenna

NOMA systems with various objectives has been developed

in [13], [14], and [15].

The non-convex nature of many resource allocation prob-

lems inmultiple antennaNOMA systemsmakes conventional

convex optimization approaches less attractive, especially for

real-time applications with stringent delay requirements.

Artificial intelligence-driven algorithms, on the other hand,

have shown great potential in solving various challenging

problems in wireless communications. A deep learning-based

beamforming framework was proposed in [16] which can be

applied to ultra-low latency communication systems. How-

ever, since deep learning models require training data and

labelled solutions to effectively learn the problem, they are

restricted to problems solved a priori, using hand-crafted

optimization algorithms. Deep reinforcement learning (DRL)

which combines RL with deep learning, on the other hand,

can be leveraged to solve hard optimization problems that

have not been solved beforehand, i.e., it does not require

labelled data for training and learning. Instead, it gener-

ates its own policy and training data by interacting with

the environment. Therefore, DRL methods are not simply

mimicking agents, but active agents which aim to maximize

their reward in a given environment through trial and error.

In [17], Meng et al. proposed a DRL-based solution for

sum-rate maximization in multi-cell networks. Xiao et al.

proposed a deep deterministic policy gradient (DDPG) based

solution to jointly optimize the beamforming and phase shifts

of IRS elements for sum-ratemaximization in an IRS-assisted

MISO-NOMA system [18]. In [19], Gao et al. proposed

a deep Q-network (DQN) based algorithm to jointly opti-

mize IRS phase shifts and cluster power allocation in a

NOMA system using the zero forcing approach. Multi-agent

DRL-based design was proposed in [20] for solving the

resource allocation problem in IRS-assisted semi-grant-free

NOMA transmissions. Furthermore, Benfaid et al. proposed

a resource allocation framework for unmanned aerial vehicles

(UAV)-NOMA systems based on DQN [21]. In [22], Ding

et al. applied a DDPG agent to maximize the long-term sum-

rate for energy-constrained cognitive radio NOMA networks

by optimizing the transmit power and the time-sharing coeffi-

cient of the system. More recently, authors in [23] proposed a

DDPG-based solution to jointly optimize the IRS phase shifts

and power allocation for a single antenna NOMA systemwith

the assumption of imperfect SIC at the receivers. However,

in all aforementioned studies, it is assumed a perfect channel

state information at the transmitter (CSIT), which is seldom

the case in practice. While the assumption of perfect CSIT is

useful to derive upper bounds on the performance of different

schemes, it often leads to overly optimistic results.

In this paper, we propose a robust design for the downlink

of an IRS-assisted MISO NOMA system. By taking into

account the channel uncertainties, the beamformers at the

base station (BS) and phase shifts at IRS elements are jointly

designed based on the twin delayedDDPG (TD3). This robust

design is developed based on the worst-case approach. Both

partial and full uncertainty models are considered. In the

partial model, the errors are only considered for the links

through IRS elements (cascaded channels) whereas the full

uncertainty model considers the errors in both the direct and

the cascaded channels. To the best of the authors’ knowledge,

this is the first work on the TD3-based robust design for a

downlink MISO-NOMA system. The contributions of this

work are summarized as follows:

• We consider the partial and full channel uncertainty

models, where the true channels lie within a bounded

error region around the estimated CSIT. This type

of channel uncertainty is due to quantization errors.

We then formulate the original robust design as an

optimization problem. The objective of the optimization

problem is to maximize the long-term system sum-rate

under a set of QoS, total power, IRS amplitude and phase

shift constraints.

• The original robust design problem is not convex jointly

in terms of the beamformers and the phase shifts.

Therefore, we reformulate the problem into an RL

environment such that a TD3 agent can learn the envi-

ronment and solve the original robust design problem.

This reformulation allows for utilizing DRL agents to

solve the challenging non-convex problem. Since RL

agents cannot perform constrained optimization, we use

normalization to ensure that actions taken by the agent

fall within the feasible region of the original problem.

In order to formulate the problem as an RL environ-

ment, the state, action and reward functions are defined

appropriately. Then, we propose a TD3-based algorithm

to solve the original non-convex joint robust optimiza-

tion problem for the IRS-assistedMISO-NOMA system.

By incorporating multiple error bounds within the orig-

inal worst-case bound during training, the agent learns

to design robust beamforming and IRS phase shifts for

any error bound within the bounded error region. This
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enhances the sum-rate performance in the case of chang-

ing feedback quality during deployment.

• Unlike the conventional optimization approaches, the

proposed novel design distributes the computational

complexity of solving the joint design problem between

the training and learning stages. Therefore, the result

is a trained agent that generates competitive solu-

tions with much lower complexity compared to the

conventional optimization techniques. Such an advan-

tage becomes particularly important in the case of

highly dynamic-channels environments where conven-

tional schemes need to execute the whole algorithm

for each new channel realization, leading to increased

system latency and computational overhead at the BS.

• We provide extensive numerical simulation results to

demonstrate the performance of the proposed TD3-

based robust design. These results confirm the superior

convergence properties of the proposed TD3-based

algorithm. In addition, we benchmark the proposed

agent against the baseline DDPG used in the literature,

and the random algorithm for fixed and dynamic channel

scenarios. The proposed agent outperforms the bench-

mark schemes in terms of achieved system sum-rates

and robustness for both fixed and dynamic channel

cases.

The rest of the paper is organized as follows. Section II

presents the systemmodel and the channel uncertaintymodel,

and formulates the original robust design into an optimization

problem. In Section III, brief overviews of RL and DRL

agents are provided focusing on the TD3 agent. In addition,

the original problem is reformulated as a DRL environment

and an algorithm is developed to solve the original robust

design problem. Section IV presents numerical results to

demonstrate the superior performance of the proposed TD3

algorithm. Section V concludes this paper.

Bold upper case and lower case letters are used to represent

matrices and vectors, respectively. Standard normal letters

denote scalar quantities. xH is the hermitian transpose of vec-

tor x. ∥.∥2 and | . | represent the Euclidean norm of a vector

and the absolute value of a complex number, respectively.

||.||F and ||.||2 denote the Frobenius norm and the L2 norm,

respectively. Card(x) refers to the cardinality of vector x. R

denotes the set of real numbers, whereas C represents the set

of complex numbers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink transmission of an IRS-assisted

MISO-NOMA system, in which a BS equipped with T trans-

mit antennas serves N single antenna user equipment (UEs).

The IRS consists of M reflecting elements. Furthermore, the

effect of inter-cell interference is assumed to be either absent

or accounted for in the noise at the receiver end. Such a system

model setup can be utilized for various wireless communi-

cation systems in future wireless networks [24], [25], [26].

As shown in Figure 1, the BS establishes communications

with UEs through a direct link and an indirect link through

the IRS. In this NOMA system, the transmitted signal from

the BS can be written as

x =

N
∑

i=1

wisi, ∀i ∈ N , (1)

where si is the information-bearing symbol for UEi, wi ∈

C
Tx1 is the beamforming vector designed for UEi, and N =

{1, . . . ,N } is the set of all active UEs in the system. The

power of the symbol is assumed to be 1, i.e., E{sis
∗
i } = 1.

Assuming flat fading channel conditions, the received signal

at UEi can be represented as

yi = hHi x+ gHi ϒHx+ zi, ∀i ∈ N , (2)

where hi ∈ C
Tx1 is the direct link channel vector between the

BS and the UEi. gi ∈ C
Mx1 represents the channel between

the IRS and UEi and ϒ = diag(v1, . . . , vM ) ∈ C
MxM is

a diagonal matrix that represents the phase shifts of IRS

elements. The phase shift of each IRS element is modelled

by vm = αme
jθm , m ∈ M, where M is the set of all

IRS elements, αm ∈ [0, 1] and θm ∈ [0, 2π ], represent

the amplitude and the phase shift of the m-th IRS element,

respectively.Furthermore,m ∈MWe assume an ideal reflec-

tion with no energy losses by considering only the first-order

reflection, i.e., |vm|
2 = 1,∀m ∈ M . The phase shift values

are determined at the BS and then communicated to the IRS

through a feedback link [27]. H ∈ C
MxT is the channel

matrix between the BS and the IRS. Note that we assume that

the IRS is located on a fixed base (on top of a building for

example) and therefore, the distance between the BS and IRS

is a constant. We further assume that there exist line-of-sight

(LoS) paths from the BS to the IRS, as well as from the IRS to

the N UEs [28]. The zi is the noise experienced by UEi and is

modelled as an additive white Gaussian noise (AWGN) with

zeros mean and variance σ 2
i . The received signal in (2) can

be written in a more compact form as follows:

yi =
(

hHi + vHQi)x+ zi, ∀i ∈ N , (3)

yi = h̃ix+ zi, ∀i ∈ N , (4)

where v = vec(ϒ) ∈ C
Mx1 and Qi = diag(gHi )H ∈ C

MxT is

the reflected (cascaded) channel matrix for UEi.

Since NOMA utilizes SIC at the receiver end in the down-

link [9], [10], determining an adequate decoding order is

crucial in order to unlock the full potential benefits of NOMA.

Channel strength is usually used as the criterion for decid-

ing a decoding order that is optimal in the single antenna

case, which is not the case for the multiple-antenna NOMA

systems [9], [29]. Nevertheless, we will adopt the channel

strength-based decoding order here, as optimal decoding

order design is beyond the scope of this paper. According

to channel strength-based decoding order, the UE with the

strongest channel (referred to as the strongest UE), will be

able to successively decode and subtract other UEs’ signals,

then proceed to decode its own signal. The UE with the
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FIGURE 1. IRS-assisted Downlink MISO-NOMA system.

weakest channel (referred to as the weakest UE), will directly

decode its signal while considering interference from other

UEs’ signals as noise. To further clarify this decoding order,

suppose that there are N users in the system and their esti-

mated channels at the BS are ||
ˆ̃
h1||

2
2 ≥ ||

ˆ̃
h2||

2
2 ≥ . . . ≥

||
ˆ̃
hN ||

2
2, where

ˆ̃
hi is the estimated version of h̃i at the BS;

then, the decoding order set is ζ = {1, 2, . . . ,N } where

UE1 decodes UE2, . . . ,UEN signals before decoding its own,

UE2 decodes UE3, . . . ,UEN signals before decoding its own

signal while treating UE1’s signal as noise, and so on. The

weakest user, UEN , will not carry out any SIC operations and

will directly decode its own signal while treating interference

from other UEs as noise [9], [10], [29].

A. CHANNEL UNCERTAINTY MODEL

Channel uncertainties are inevitable in wireless communica-

tions due to channel estimation and quantization errors. These

two main sources of imperfect CSIT are, in fact, modelled

differently. Channel estimation errors are unbounded and

normally expressed using statistical models [30]. The error

vectors from this type of error form a normal distribution with

a known mean and covariance matrix. Quantization errors,

on the other hand, originate from imperfect CSI reporting

from the receiver side. A good example where quantization

errors are encountered is in frequency division duplex (FDD)

systems where the receiver uses a rate-limited feedback

channel to report its channel information after quantization.

However, given the constrained resolution quantizers used in

UEs, additional errors are introduced in the estimated sig-

nal during quantization. The quantized channel coefficients

transmitted by the UE through the uplink feedback link are

affected by some quantization errors. Assuming the UE is

using a uniform quantizer, the quantization errors can be

modelled using a bounded error model [31], [32], [33], [34],

[35]. In this paper, we aim to study the effects of imperfect

CSIT due to quantization errors on the beamforming design at

the BS, and consequently, on the achievable system sum-rate.

In particular, we develop a worst-case beamforming design

approach that guarantees the minimum rates requested by

the UEs for any value of errors within the bounded region.

Furthermore, since there are two links from the BS to the

UEs, namely, a direct link and a reflected link through the

IRS elements, we consider the following two error models:

1) Partial error model: In this error model, we assume

that the direct link between the BS and UEi,∀i, has

negligible quantization error effects, while the reflected

link is plagued by quantization errors. This scenario

is motivated by the fact that the reflected channel is

more challenging to obtain than the direct channel due

to the passive elements of the IRS [35], [36]. The true

reflected channel Qi, can be modelled as

Qi = Q̂i +1Qi, ∀i ∈ N , (5)

where Q̂i is the reflected CSI estimate at the BS and

1Qi is the unknown error.

2) Full error model: In this model, we consider a full

uncertainty scenario where both the direct and the

reflected links are plagued by quantization errors. The

true reflected channel expression is the same as in (5),

while the true direct channel can be expressed as

[5] and [35]

hi = ĥi +1hi, ∀i ∈ N , (6)

where ĥi is the estimate of direct CSI at the BS and1hi
is the unknown error.

The unknown errors are norm-bounded such that ||1Qi||F ≤

ei,r , ||1hi||2 ≤ ei,d , for the reflected and the direct channels,

VOLUME 2, 2024 427



FIGURE 2. Norm bound of uncertainty region versus the number

of IRS elements for different system parameters.

respectively. The error bounds ei,r , ei,d of UEi are known at

the BS and expressed as [35]

ei,r =

√

β2i,r Ŵ
−1
2MT

2
, ∀i ∈ N , (7)

ei,d =

√

β2i,d Ŵ
−1
2T

2
, ∀i ∈ N , (8)

where β2i,r = λ2r ||qi||
2
2, qi = vec(Q̂i) ∈ C

MTx1 and β2i,d =

λ2d ||ĥi||
2
2 are the variances of 1Qi and 1hi, respectively.

λr , λd ∈ (0, 1] are scalars that indicate the relative value

of the error boundaries. Ŵ−12MT , Ŵ
−1
2T are the inverse of the

cumulative distribution function (CDF) for the Chi-square

distribution with 2MT , 2T degrees of freedom for the

reflected and the direct links, respectively. As seen from (7),

the error boundary of the reflected channel ei,r is a function

of the number of transmit antennas T , the number of IRS

elements M , and the quality of the reflected CSI feedback

represented by λr . According to (8), the error boundary of the

direct channel ei,d is only related to the number of transmit

antennas T and λd . Figure 2 illustrates how different system

parameters of (7) have an impact on the error bounds of the

uncertainty region.

Note that we assume perfect channel state information at

the receiver (CSIR), and thus, ideal SIC at the receivers, there

is no contradiction between these assumptions and the error

model considered in this work. To elaborate, we consider

the imperfect CSIT to be due to feedback errors, not due to

channel estimation errors, as we show in the next subsection.

Therefore, the SINR expressions above do not account for

any SIC residuals.

B. SINR AND ACHIEVABLE RATE EXPRESSIONS

Taking into account the error model and the decoding order

discussed in the previous subsections, we can now proceed

to the signal-to-interference-plus-noise (SINR) expressions.

Without loss of generality, the SINR of UEi’s signal at UEj is

expressed as [9]

γ
j
i =

|h̃Hj wi|
2

∑i−1
j=1 |h̃

H
j wj|2 + σ

2
j

, ∀j ∈ Bi, (9)

where Bi is the set of interfering users with higher decoding

order ranks than UEi according to their channel strengths.

Therefore, the received SINR of UEi when decoding its own

signal can be expressed as [10]

γ ii =
|h̃Hi wi|

2

∑i−1
j=1 |h̃

H
i wj|2 + σ

2
i

, ∀j ∈ Bi. (10)

To guarantee the smoothness of the SIC operation at stronger

UEs, UEi’s SINR is [9]

γi = min
(

γ
j
i , . . . , γ

i
i

)

, ∀j ∈ Bi. (11)

As a result, the achievable rate at UEi can be written as

Ri = log2
(

1+ γi
)

, ∀i ∈ N . (12)

Note that despite the beamforming vectors and the phase

shifts of the IRS elements being designed at the BS based on

the estimated channel
ˆ̃
hi, the SINR expressions in (9) and (10)

are evaluated using the true channel h̃i, which contains the

unknown norm-bounded error elements [5], [35]. Hence, the

considered robust beamforming design is more challenging

to the BS in this case due to the unknown errors. The next

subsections discuss the robust design problem in detail.

C. IMPLICATIONS OF ERROR MODEL ON NOMA

SYSTEMS

In the previous section, we explained the bounded error

model we consider in this work. However, it is worthwhile

to explain the implications of using bounded and unbounded

error models on the SINR expressions. In the case of a

bounded error model, the CSIT imperfection is caused by

the quantization errors in the uplink CSI report transmitted

by the UE, not channel estimation errors. The quantization

error region can therefore be approximated by a ball [31],

[37]. Channel estimation error, on the other hand, is mod-

elled statistically where the error vector is drawn from a

complex Gaussian distribution with a known mean vector

and covariance matrix [30], [35]. Therefore, considering a

channel estimation error model leads to taking into consid-

eration imperfect SIC as well, since there is going to be an

SIC residual when the stronger UE is trying to decode the

weaker UE’s signal. Hence, the assumption of a bounded

error model because of channel uncertainty is inconsistent

for NOMA systems, as channel estimation and SIC errors are

described using an unbounded error model [38]. In this work,

however, we focus on imperfect CSIT due to quantization

errors. Therefore, the assumptions of CSIR and ideal SIC do

not conflict with the channel uncertainty model we use.
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D. PROBLEM FORMULATION

In this paper, we consider a robust design to maximize the

long-term sum-rate of an IRS-assisted MISO-NOMA system

under minimum QoS requirements. This robust design is

developed based on the worst-case performance approach.

In other words, the robust design should meet the required

QoS regardless of the experienced channel uncertainties.

We define the beamforming matrix W = [w1, . . . ,wN ],

where W ∈ C
TxN , which containts the beamforming vectors

of all UEs. The original long-term robust design can be

formulated as the following optimization problem:

max
ϒ,W

E

{
∞
∑

t=1

N
∑

i=1

δt−1Rti

∣

∣πt , st

}

(13a)

s.t.

∣

∣

∣

(

ĥHj +1hHj + vH(Q̂j +1Qj)
)

wi

∣

∣

2

∑i−1
j=1

∣

∣

∣

(

ĥHj +1hHj + vH(Q̂j +1Qj)
)

wj

∣

∣

2
+ σ 2

j

≥ 2R
min
i − 1, ∀||1Ui||l ≤ ei,k , ∀i ∈ N , (13b)

N
∑

i=1

||wi||
2
2≤ Pmax , (13c)

|vm|
2= 1, ∀m ∈M, (13d)

0 ≤ θm≤ 2π, ∀m ∈M. (13e)

where E

{

∑∞
t=1

∑N
i=1 δ

t−1Rti

∣

∣πt , st

}

denotes the expected

value of long-term system sum-rate, given the policy and the

state of the agent, and δ is the discount factor. These entities

are explained in the next section. The constraint in (13b)

ensures the successful implementation of SIC and that the

required minimum QoS at UEi is achieved regardless of the

channel uncertainties, where Ui ∈ {Qi,hi}, l ∈ {F, 2} and

k ∈ {r, d} [39]. The constraint in (13c) takes into account

the available maximum transmit power at the BS, while

constraints (13d) and (13e) are related to the IRS elements

to guarantee ideal reflection and appropriate phase shifts,

respectively.

The above optimization problem is non-convex in terms

of the beamforming vectors W and phase shifts ϒ . In addi-

tion, it is an NP-hard problem in general due to the coupled

optimization variables in (13a) and (13b). Note that the

problem is still non-convex even in the absence of (13d)

and (13e) as highlighted by [10]. Therefore, solving this

problem using a convex optimization approach will require

transforming the problem into convex form using differ-

ent approximation methods and obtaining solutions based

on iterative algorithms. Such iterative algorithms are highly

complex in general. In particular, the algorithm should be

executed for each new set of channels. In other words,

the optimization problem needs to be solved for each new

set of channels. To further demonstrate the complexity of

the optimization problem in (13a), the work in [40] which

solved the weighted sum-rate maximization (WSR) problem

by proposing a centralized solution based on semidefinite

programming (SDP) for optimizing the IRS phase shifts, and

using the maximum-ratio transmission (MRT) for beamform-

ing design. However, the existing work in the literature does

not consider the power allocation problem in MRT, which

is non-trivial and challenging to optimize optimally [16],

[41]. The same work proposed an iterative algorithm in an

alternating manner to optimize the IRS phase shifts and

the beamforming vectors. The work in [42] proposed a

distributed solution based on fractional programming and

the alternating direction method of multipliers (ADMM)

algorithm to iteratively solve theWSR optimization problem.

However, both the centralized methods which utilize the

SDP and the iterative methods are still expensive in terms

of latency and computational complexity, especially when

the number of inputs is high. It is also worth mentioning

that such algorithms are hand-crafted for OMA, and not for

NOMA systems. It is well-known that NOMA introduces

additional constraints to the optimization problem to ensure

the smoothness of the SIC operation at the receivers which is

an essential part of the NOMA principle [10]. Therefore, the

aforementioned conventional optimization approaches can-

not be applied directly to the problem considered in this work.

To address these issues with iterative solution approaches,

we propose a DRL-based robust design. Since RL agents

are designed to optimize a long-term objective in a given

environment, we can reformulate the problem as an RL envi-

ronment and develop an RL-based algorithm where the agent

solves the challenging optimization problem. In particular,

we develop an approach to solve this robust design using the

TD3 agent, which is an enhanced version of DDPG. There

are mainly three main motivations for considering this DRL-

based approach. First, using a DRL-based algorithm allows

for solving the original problem, not an approximated version

of it, which means that any feasible solution is guaranteed to

solve the problem with no additional assumptions or condi-

tions. This holds for both fixed and varying channels. The

second relates to the computational complexity of trained

DRL models. As we will see in the next section, the time

complexity of obtaining a feasible solution from the trained

network is almost trivial, which makes it more attractive

to latency-sensitive applications. Finally, the fact that TD3

converges to a deterministic policy which is also the case

for DDPG. However, TD3 is more stable and robust against

policy-breaking issues found in the baseline DDPG as we

explain in the next section.

III. PROBLEM REFORMULATION AS A RL

ENVIRONMENT

In this section, we briefly summarize the basic concepts of RL

focusing on the TD3 agent. Then, we reformulate the original

optimization problem in (13a)-(13e) as an appropriate RL

environment to efficiently solve by a TD3 agent.

A. RL AND DRL

Tabular RL methods like Q-learning and SARSA are lim-

ited to solving problems with discrete action and state

spaces [43]. DRL methods, on the other hand, utilize the
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function approximation capabilities of deep neural networks

(DNN), which makes them applicable to a wider variety of

problems. DRLmethods can be classified primarily into three

categories; value-based methods, such as DQN [44] which

can handle continuous state space but only support discrete

action space. Policy-based methods such as the Reinforce

algorithm [45] which optimize the policy directly through

an actor network. Actor-critic methods such as DDPG and

TD3 [46], [47], are recent off-policy agents that train deter-

ministic policies. The actor takes actions and optimizes the

policy of the agent while the critic evaluates the action taken

by the actor with regards to the current state and returns a

Q-value. Through these interactions, actor-critic agents opti-

mize the policy of the agent until it converges to an optimal

or near-optimal policy. Furthermore, actor-critic agents can

handle continuous action and state spaces which widens their

applicability to a larger set of problems in wireless commu-

nications. Note that any actor-critic agent with continuous

actions and state spaces can be applied to solve the robust

design problem using the reformulation provided. However,

we utilize the TD3 agent because it is an off-policy agent

with higher sample efficiency due to the use of a replay buffer

which allows for reusing past experiences. Furthermore, the

TD3 agent optimizes a deterministic policywhich is generally

easier to implement compared to stochastic policies.

B. BRIEF OVERVIEW OF TD3

TD3 is an off-policy actor-critic DRL agent that is capable

of handling continuous action and state spaces. A TD3 agent

consists of two main parts, an actor and a critic. The actor

is a DNN responsible for generating actions. It takes in the

current state as input and generates an action based on its

current policy. The critic’s DNN is responsible for generating

the corresponding Q-value for the action taken by the actor.

As a result, the critic’s DNN has two inputs, the current

state and the current action taken by the actor. Note that

training in the context of RL is not the same as in deep

learning. In the case of RL, the agent learns in an online

fashion, which has two important implications; training-data

generation and learning are carried out simultaneously, and

that training targets are constantly changing according to the

agent’s current policy. In order to stabilise learning, both the

actor and the critic use a delayed copy of their current DNNs

called target networks. Target networks stabilise learning by

fixing the target value when optimizing actor’s and critics’

DNNs. Experience replay buffer is utilized by the majority

of off-policy DRL agents and TD3 is no exception [48].

Previous interactions with the environment defined as tuples

of {s, a, r, s′}, are saved in the replay buffer D. The buffer

is then sampled to obtain training data. Replay buffer with

larger memory makes data more independent and identically

distributed (iid), which reduces the DNN variance during

training. The critic of the DDPG agent can be considered as

a modified DQN that takes in the action performed by the

actor and outputs a scalar Q-value. To mitigate the problem

of overestimating the Q-value in DDPG, TD3 uses two (or

more) critics and selects the smallest estimate of the target

Q-value. Given that the next state s′ is not the terminal state,

the target can be expressed as [47].

y(r, s′) = r + δ min
i=1,2

Qφi,η (s
′, µψη (s

′)), (14)

whereQφi,η is the target network for the critic’s DNN φi, i =

1, 2, δ is the discount factor (current value) for future rewards,

and µψη is the actor’s target network which provides the next

action a′ given a next state s′. Then, the two critics learn

the Q-function by minimizing their respective objectives as

follows [47]:

L(φ1,D) = E
(a,s,r,s′)∼D

[

(

Qφ1 (s, a)− y(r, s
′)
)2

]

,

L(φ2,D) = E
(a,s,r,s′)∼D

[

(

Qφ2 (s, a)− y(r, s
′)
)2

]

. (15)

The actor in TD3 aims to optimize the policy. This is achieved

by adjusting the weights of its DNN µψ to maximize the

corresponding Q-value, which is defined by optimizing the

following objective [46]:

max
ψ

E
s∼D

[

Qφ1

(

s, µψ (s)
)

]

, (16)

which is identical to the DDPG actor. Unlike DDPG, TD3

updates its policy using (16) less frequently than its Q-values

to reduce variance during the training. Hence, the policy

update in (16) is not executed in each training step. When

it does, the policy, however, gets updated by (16). The target

networks for both the critics and the actor are updated at a

much slower rate than their main counterparts using

φη,i = ρφi + (1− ρ)φη,i, i = 1, 2,

ψη = ρψ + (1− ρ)ψη, (17)

where 0 < ρ ≤ 1 is the target networks’ smoothing factor.

Algorithm 1 summarizes the key steps of how the TD3’s actor

and critics process one experience. Note that in practice, these

steps are carried out in batches instead of single experiences

to increase computational efficiency.

Overall, TD3 theoretically outperforms DDPG by utiliz-

ing double Q-learning to reduce overestimation effects and

updating its policy less frequently to reduce variance. Fur-

thermore, it employs target policy smoothing by adding noise

to actor actions, and target actions as well to prevent the

agent from exploiting errors in Q-value estimations [47].

Figure 3 shows the interactions between the internal com-

ponents of the agent interact with each other to produce

an optimal or near-optimal policy that maps states to the

best possible actions. Despite that these upgrades may seem

simple, combined together with hyperparameter tuning, they

are the driving factor for any additional gain of TD3 over

DDPG. Simulation results presented in section IV confirm

the additional gain of TD3.
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Algorithm 1 TD3 Actor and Critic Training

1 A tuple {s, a, r, s′} is randomly sampled from the

replay buffer D;

2 The current state s is fed to actor’s DNN µψ to

generate current action a;

3 Both s and a are fed to the critics’ DNNs to generate

Qφ1 (s, a) and Qφ2 (s, a);

4 The next state s′ is fed to the actor’s target DNN µψη
to generate the next action a′;

5 The critics’ target DNNs Qφi,η (s, a), i = 1, 2, are fed

with s′ and a′ to calculate the target using (14);

6 The critics are trained using (15);

7 The actor is trained using (16);

8 Target networks are updated using (17);

FIGURE 3. TD3 agent blocks.

C. ROBUST DESIGN PROBLEM AS TD3 ENVIRONMENT

In order to solve the original robust problem using TD3, three

entities must be clearly defined, namely, action space, state

space, and reward. In this work, we define these entities as

follows

• Since the optimization variables are the beamforming

vectors and the phase shifts of IRS elements, these will

be chosen as the agent’s action. Therefore, the action

vector of the agent at time-step t during training is

expressed as

at =
[

wt
1, . . . ,w

t
N , v

t
1, . . . , v

t
M

]T
. (18)

where at ∈ C
NT+M .

• The state vector is defined with four important pieces

of information about the environment, the power of the

beamforming vectors from the previous time-step, the

achieved rates including rates at which stronger UEs

decode weaker UEs’ signals, and random error bounds

within the maximum error bound. Furthermore, to assist

the agent in evaluating itself, we include the previous

action at−1 as part of the state. Therefore, we can express

the state vector for our TD3 agent as follows:

st =
[

||wt−1
1 ||

2
2, .., ||w

t−1
N ||

2
2, e1, .., eN ,

Rt−11 ,R
1,t−1
2 , ..,R

N−1,t−1
N ,R

N ,t−1
N , at−1

]T
, (19)

where the error values in the state vector are directly

mapped to the reflected error bound in the case of the

partial error model, while the error bounds correspond

to the sum of the direct and reflected error bounds in the

case of the full uncertainty error model. Therefore, st ∈

C
2N+

N (N+1)
2 +NT+M ,N ≥ 2, where N (N+1)

2
determines

the number of all possible rates in the consideredMISO-

NOMA system.

Note that both beamforming vectors and phase shifts are

complex-valued design parameters and they are part of

the action and state spaces. However, since we will be

using real-valued neural networks for building the DRL

agent, each complex vector is mapped to two separate

real vectors where one represents the real values while

the other represents the imaginary values of the original

complex-valued vector [16], [49]. Therefore, the beam-

forming vector (or any complex vector for that matter)

wi ∈ C
Tx1 is mapped to Re(wi) ∈ R

Tx1 representing

the real part of wi, and Im(wi) ∈ R
Tx1 representing the

imaginary part of wi. This is also true for the complex

value phase shifts of the IRS elements, where each scalar

complex phase shift value is mapped to two real scalars

representing the real and complex parts of the original

element. Note that this technique basically doubles the

size of input and output layers for the critic and the

actor DNNs. However, it unlocks the potential for using

neural networks to deal with a wider range of problems

such as the one considered in this paper. To reconstruct

the complex-valued beamformers and IRS phase shift

elements obtained from the action vector, we simply

reverse the mapping process explained earlier. There-

fore, the at ∈ R
2NT+2M , st ∈ R

2N+
N (N+1)

2 +2NT+2M are

corresponding real-only action and state space vectors,

respectively.

• Finally, as the objective is to maximize the long-term

sum-rate of the system, we choose the sum-rate at time-

step t as the reward. Thus, the reward can be expressed

as

r t =

N
∑

i=1

Rti , ∀i ∈ N . (20)

It is important to highlight that the agent will only be

rewarded the sum-rate of the step if its action satisfies all con-

straints of the original optimization problem. However, since

RL agents are only interested in maximizing their rewards,

they cannot solve convex optimization problems directly. For

this reason, we force the agent to meet the constraints by

normalizing its actions to fall within the feasible region.

First, we start with the maximum transmit power constraint.

Since the objective is an increasing function of the transmit
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power, at the optimal conditions, the transmitter will use all

the available transmit power (i.e., Pmax). Therefore, we can

rewrite the transmit power constraint (13c) as follows:

N
∑

i=1

||wi||
2
2 = Pmax, ∀i ∈ N . (21)

The total power at time-step t can be expressed as

Pttotal =

N
∑

i=1

||wt
i ||

2
2, ∀i ∈ N . (22)

We can then write the normalization coefficient as

κ t =

√

Pmax

Pttotal
. (23)

Finally, the constraint-satisfying beamforming vectors can be

written as

fti = κ
twt

i , ∀i ∈ N . (24)

A similar process is carried out for the IRS elements. Since

the angle θ can be mapped directly to a value in the feasi-

ble region, only amplitudes of the IRS elements need to be

normalized as

vtm

|vtm|
, ∀m ∈M. (25)

With the normalized action, we then decide to either reward

the agent with the sum-rate in (20) if the QoS requirements

are satisfied under the channel uncertainty, otherwise, the

agent is punished with a negative reward. Any negative

reward will work as the agent will try to avoid such action

in the future. We will use the sum of the rate deficit across

all users as the negative reward [18]. The set ε contains users

j = 1, .., J , ε ∈ N whose QoS are not satisfied at time-step t .

Thus, we define the sum of the rate deficit across all users as

r td =

J
∑

j=1

(

Rtj − R
min
j

)

, ∀j ∈ ε. (26)

Therefore, if at satisfies the QoS constraints under some

bounded error region, the agent will be given a positive

reward according to (20), otherwise, it will be punished with

the negative reward in (26). Algorithm 1 summarizes the

proposed TD3-based algorithm for solving the original robust

design problem. Note that Algorithm 2 summarizes the train-

ing process for the proposed agent. However, once the agent

has been trained successfully, the actor network is the one

we deploy in practice. The trained actor network can then be

integrated into the BS hardware to be used to generate the

solutions. To implement the proposed solution, in a practical

IRS-assisted MISO-NOMA system, the BS receives the CSI

reports in the uplink band. The BS then queries the trained

actor network by using the obtained channels, i.e., executing

steps 7 − 11. The resulting IRS vector is transmitted to the

IRS via a feedback link, while the beamforming vectors are

used for transmission.

Algorithm 2 TD3-Based Robust Beamforming and

Phase Shift Design

1 Initialize TD3 target and training parameters, empty

replay buffer D and initialize the Gaussian random

process A;

2 Set φη,1← φ1, φη,2← φ2, ψη ← ψ ;

while Episode ≤ Total Episodes do

3 Acquire training channels based on the system

parameters N ,M ,T ;

4 Calculate 1Qi,∀i, according to (7) for the partial

error model, adding 1hi,∀i, according to (8) for

the full error model;

5 Initialize the beamforming vectors and the phase

shift elements randomly;

while t ≤ Time steps do

6 Observe the current state st and obtain an

action from the actor network using

at = clip(µψ (s)+ ϵ, alow, ahigh), ϵ ∈ A,

normalize action values using (23), (24)

and (25);

7 Recover the complex value beamforming

vectors and the IRS elements from step 6;

8 Using vector v generated in the previous step,

build the final estimated channels
ˆ̃
hi,∀i,

according to (3);

9 Decide a descending decoding order ζ such

that ||
ˆ̃
h1||

2
2 ≥ ||

ˆ̃
h2||

2
2 ≥ . . . ≥ ||

ˆ̃
hN ||

2
2, based

on the estimated channels
ˆ̃
hi,∀i;

10 Build the true channels h̃i,∀i, using vector v

and random errors based on (3), (5) and (6);

11 Evaluate the SINR values and calculate the

corresponding rates Ri,∀i;

if Ri ≥ R
min
i , ei, ∀i ∈ N then

12 Use reward in (20);

else

13 Use reward in (26);

end

14 Obtain next state st+1. Save tuple

{st , at , r t , st+1} to replay buffer D;

15 Randomly sample replay buffer using a batch

of size b to calculate the target according

to (14) and train the two critic networks

φ1, φ2 using (15);

if time to update policy then

16 Update policy with one step using (16);

end

17 Update target networks using (17);

18 t = t + 1;

19 Set st = st+1;

end

20 Episode = Episode+ 1;

end

21 Output: Obtain {f∗1, . . . , f
∗
N , v
∗
1, . . . ., v

∗
m}
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TABLE 1. Numerical time-complexity.

D. COMPUTATIONAL COMPLEXITY ANALYSIS

In this subsection, we define the computational complex-

ity of the proposed TD3-based algorithm. Similar to other

deep learning models, the complexity of the proposed DRL

framework can be divided into two categories: offline com-

plexity, which is associated with training the actor network

by plugging in critics and the replay buffer, and online com-

plexity which is associated with inference or deployment

of the actor’s network. Calculating the best and the worst

case run times for offline training of neural networks is still

an open issue due to the complexity associated with the

implementation of backpropagation and other hyperparam-

eters in DNNs [16], [50]. Furthermore, we assume that the

offline complexity of this model can be afforded. Never-

theless, we include empirical comparisons for four different

profiles with different hardware specifications in Table 1.

The specification of each hardware platform and the system

parameters used for each case are provided in Tables 5, 6 in

the appendix.

For estimating the time complexity of inference, which

is the cost of a feed-forward pass through the trained actor

DNN, big O notation is a common method of measuring

the worst-case run time of an algorithm. Since all modern

libraries and deep learning frameworks use matrix notation

to perform calculations through DNNs, it is straightforward

to conclude that a matrix-vector multiplication operation,

zl = 9cl , where 9 is the weights matrix, cl is the input

vector, and zl is the output vector from the l-th hidden layer,

is performed for each hidden layer. The output vector z is then

passed through an activation layer as bl = g(zl), where bl

is the activated vector that is fed to the next hidden layer in

the DNN. Since the activation is an element-wise operation,

it has a time complexity of O(ℵl), where ℵl is the number of

neurons in the l-th hidden layer. According to the proposed

actor’s architecture shown in Figure 4, there are three weight

matrices in total, 91 ∈ R
ℵxCard(st ), linking the input to the

first hidden layer, 92 ∈ R
ℵ2 , between the two hidden layers,

assuming ℵ1 = ℵ2 = ℵ, and 93 ∈ R
Card(at )xℵ, linking the

second hidden layer to the output layer. Therefore, we can

write the total run-time asO

(

T ′
(

ℵ·Card(st )+ℵ2+Card(at )·

ℵ + 2ℵ + Card(at )
)

)

, where T ′ highlights the fact that the

action space is part of the state space. Moreover, since the

action vector is part of the state vector, then Card(st ) >

Card(at ) always holds. Therefore, we can approximate the

worst-case run time for evaluating the actor’s DNN as

FIGURE 4. TD3 Actor DNN.

FIGURE 5. TD3 Critic DNN.

O
(

ℵ · max
(

ℵ,Card(st )
)

)

. To define the complexity of the

proposed DRL algorithm in context, we provide a complexity

review for related works in the literature. The worst-case

complexity for the iterative algorithm proposed in [10], which

only solves the beamforming design problem, is O(N 7) per

iteration. The SDP-based algorithm for optimizing the IRS

phase shifts proposed in [40] has a worst-case complexity

of O(M6), while the iterative algorithm proposed in [42]

reduced the IRS phase shifts optimization complexity to

O(M3) using ADMM. Furthermore, the worst-case run-time

for the proposed algorithm scales linearly with the system

parameters for a fixed number of neurons, while the worst-

case run-time of the model-based algorithms is cubic at

best. Therefore, compared to the complexities of the existing

methods, the proposed algorithm has a significant advantage

in terms of run times, while still maintaining competitive

performance.

IV. TRAINING, SIMULATION AND NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

TD3-based algorithm with different system models.

A. AGENTS STRUCTURE AND HYPERPARAMETERS

To evaluate the performance of the proposed robust design,

we train a TD3 agent with one actor and two identical critics.

Note that despite the two critics being identical in terms of

layer type and size, the random initialization of their respec-

tive DNNs makes them behave differently, and therefore,

produce different Q-value estimates. The architecture of the
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TABLE 2. Actor and critic layers.

TABLE 3. Hyperparameters of the TD3 agent.

actor and critics DNNs are shown in Fig. 4 and 5, respectively.

Table 2 describes the structure and size of the actor and critics

networks. We set the number of hidden nodes to 300 for each

hidden layer, irrespective of the input and output sizes, the

ReLU activation function, f (x) = max(0, x), is used for acti-

vating the hidden layers in both actor and critics’ networks.

The Tanh function, f (x) = ex−e−x

ex+e−x
, is used as an activation

function for the output in the actor’s network. The ADAM

optimizer is used for both actor’s and critics’ DNNs as it is

more robust than other optimizers, and more appropriate for

non-stationary objectives [51]. Table 3 provides a summary

of hyperparameters used to train the agent for both fixed and

dynamic channel cases. The reward discount factor is set to

0.99 to steer the agent towards a long-term optimal reward

policy. Generally, the hyperparameters chosen for the TD3

agent in this paper are more on the conservative side. Such an

approach favours training stability over faster convergence,

which is recommended for the agent to form a more robust

policy against channel uncertainties. Furthermore, since the

optimal hyperparameter selection is an exhaustive search

problem, the performance of the proposed algorithm can be

considered the average performance in the context of the

selected hyperparameters.

B. SYSTEM PARAMETERS

In terms of system parameters, we consider an IRS-assisted,

downlink MISO-NOMA system, where T = N = 2, 3, 4,

which is one of the cases where NOMA has the most

advantage over OMA [10]. Table 4 summarizes the system

parameters used in the simulations. Because of the high

computational complexity associated with SIC receivers, the

maximum number of UEs is limited to N = 4 where

the strongest UE will perform 3 SIC operations. Increas-

ing the number of UEs requires pairing the UEs into clusters,

which is beyond the scope of this paper. For the channel

model, both small-scale and large-scale fading are taken into

account. The large-scale fading is a function of the distance

from the BS and the IRS, for the direct and the reflected

channels, respectively. The small-scale fading is modelled

by Rician and Rayleigh fading for the reflected and direct

channels, respectively. The channel coefficients for direct and

reflected paths are drawn from a complex Gaussian distribu-

tion with zero mean and unit variance. The first part of the

reflected channels from the BS to the IRS is modelled as

H =
1

√

d
αb→irs

irs

(
√

K

1+ K
HLoS +

√

1

1+ K
HnLoS

)

, (27)

where K is the Rician factor that indicates the strength of the

LoS component and is assumed to be 1, dirs is the distance

between the BS and the IRS and is fixed to 70 m. Similarly,

the channel coefficients from the IRS to UEi are expressed as

gi =
1

√

d
αirs→u

i

(
√

K

1+ K
gLoS +

√

1

1+ K
gnLoS

)

, (28)

where di is the distance between the IRS and UEi. The direct

channels hi between the BS and the UEi are modelled as hi =
hi

√

d
αb→u
id

, where did is the distance between the BS and UEi.

To fairly assess the performance of the proposed algorithm,

we use the following benchmark algorithms

• DDPG: The DDPG agent has been widely adopted in

the DRL literature. DDPG is included as a DRL bench-

mark to showcase the performance gain of the proposed

TD3-based design in terms of convergence, system sum-

rate, and robustness.

• Baseline 1: This benchmark scheme is based on SDP.

More specifically, an SDP is used to solve the IRS

optimization subproblem [40], and then the best possible

rates are achieved for the given maximum available

power through solving the transmit power minimization

problem [16], [41]. Note that this scheme has pro-

hibitively high complexity and is therefore used as an

analytical benchmark.

• Baseline 2: This scheme is based on the well-

known zero-forcing (ZF) principle as a solution

to the beamforming design subproblem. However,

since the multi-user power allocation problem is

non-trivial in the ZF beamforming case, a fixed power

allocation strategy is assumed for this scheme. There-

fore, this is a non-robust scheme. The IRS optimization

subproblem is solved using SDP [40].

• Baseline 3: This is a random benchmark scheme, i.e., the

IRS phase shifts and the beamforming vectors are ran-

domly generated. Such a scheme is included to show that
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TABLE 4. Summary of system parameters.

the agent has derived a competitive policy that adapts to

the environment.

In the following subsections, we provide simulation results

generated by the agent for two system scenarios. The first is

a fixed-channel scenario, where the channels are assumed to

be fixed throughout the training period. The other scenario

is a more realistic one where the channels are assumed to be

dynamic, i.e., the UEs are randomly deployed such that did ∈

[10, 200] m changes during both training and testing. Note

that this translates to varying large-scale fading for each UE,

which is more practical and more challenging to solve.

C. FIXED-CHANNEL SCENARIO

For the fixed-channel case, both partial and full error models

are considered. The agent is trained for 200 episodes, with

200 time-steps per episode. The UEs are assumed to be

separated by a distance of at least 30 m from each other.

In each new episode, the agent is fed with new error values

within their error bounds as part of the state vector.

Figures 6 and 7 present the convergence of the agent

during training for the two extreme cases of IRS elements,

M = 16 and M = 128, respectively. These convergence

plots suggest that both agents are able to converge faster

in the case of M = 16, compared to the other case with

M = 128. This is expected, as M is directly related to the

length of the state and the action vectors, and the error bound,

making faster convergence in the case of M = 128 more

challenging for the agents. Note that in both cases, the TD3

agent shows amore stable and consistent behaviour compared

to that of the DDPG agent, thanks in part to the additional

critic used by TD3. As seen in Figures 6 and 7, the TD3

agent requires around 40 episodes of training to reach an

average reward level of greater than 400 in the first case,

while other case requires around 130 episodes to achieve the

same reward. The DDPG shows a similar performance in the

FIGURE 6. The reward of the proposed robust TD3, and DDPG

agents for 200 training episodes, with fixed channels, M = 16,

Rmin
= 1b/s/Hz.

FIGURE 7. The reward of the proposed robust TD3, and DDPG

agents for 200 training episodes, 200 time-steps per episode

with fixed channels, M = 128, Rmin
= 1b/s/Hz.

case M = 16. However, Figure 7 shows the DDPG requires

much higher training episodes to determine a high reward

policy when N = 2, 4. Overall, both agents require more

training episodes to achieve convergence in the case of the full

error model than in the partial error model. This is expected,

as the robust beamforming design with a larger error bound

is more challenging than the one with a small error bound.

To demonstrate the potential capabilities of the TD3 agent

in maximizing system sum-rate, Figures 8, 9 and 10 show

the performance gains of the proposed TD3 agent. These

simulation results are generated by taking the average rates of

the agents when they are tested for a total of 1, 000 episodes,

with 10 steps per episode. The achievable system sum-rates

are higher in the partial error case across the three plots. The

proposed TD3 agent outperforms the benchmarking DDPG

and random schemes with variable margins. The most sig-

nificant TD3 gains over DDPG are achieved in the cases of

N = T = 4,M = 64 and N = T = 3,M = 128,
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FIGURE 8. The achieved system sum-rate of the proposed robust

design versus the number of IRS elements for N = T = 2,

Rmin
= 1b/s/Hz.

with 3.2 b/s/Hz, 5.4 b/s/Hz, for the partial and full error

cases, respectively. This clearly shows that the proposed TD3

agent is able to derive a more accurate and higher rewarding

policy than the DDPG agent. Another interesting observation

from the achieved system sum-rates is that there are different

peak rates for different numbers of UEs. In Figure 8, where

N = T = 2, the maximum system sum-rate is achieved with

M = 64, while in the case of N = T = 3, the sum-rate

is achieved with M = 128, and in the case N = T = 4 it

reaches with M = 32. This suggests that in each case, there

is a sweet spot between having the ideal number of IRS

elements to maximize the sum-rate, and having a manageable

error region. It also suggests that, unlike many studies in the

literature, increasing the number of IRS elements does not

always result in an increased system sum-rate. In fact, when

considering a robust design, increasing the number of IRS

elements beyond a certain number may result in a degraded

performance for the fixed channel case. Compared to the

benchmark schemes, the TD3 agent generally outperforms

the ZF baseline, even when the full error model is used. The

performance gap in terms of the achieved system sum-rates

between the proposed TD3-based design and the upper-bound

baseline is marginal at best, with 1.9 b/s/Hz and 2.5 b/s/Hz for

the partial and full error models, respectively. In terms of

achieved rates of UEs, Figure 11 presents UE1 andUE4 rates

for both error models achieved by both agents, which rep-

resent the strongest and the weakest UEs in the system,

respectively. The figure shows that UE1 achieves higher rates

when using the TD3 agent’s policy. As for UE4, both agents

were able to consistently achieve the target rate required by

the weakest UE for both error models. The apparent high

variance in UE1’s rate for baseline 2 is caused by channel

errors during testing since it is a non-robust scheme. This is

also evident by the casual dips in UE1’s rate as shown in the

FIGURE 9. The achieved system sum-rate of the proposed robust

design versus number of IRS elements for N = T = 3,

Rmin
= 1b/s/Hz.

FIGURE 10. The achieved system sum-rate of the proposed

robust design versus number of IRS elements for N = T = 4,

Rmin
= 1b/s/Hz.

same figure. Furthermore, to rigorously assess the robustness

of both agents, Figure 12 demonstrates the performance of

the agents for different target rates. The figure shows that

the TD3 agent is able to achieve a perfect score up to the

training target rate, and after. In particular, the TD3 agent with

M = 128 for the partial error model is able to attain a target

rate of 1.5 b/s/Hz with a robustness score of 88%, which is

impressive considering it was trained on a lower target rate

of 1 b/s/Hz. The performance of the DDPG agent, on the

other hand, is degraded in the case of full channel uncertainty,

achieving a score of 89% withM = 16 as its worst case.

D. DYNAMIC-CHANNEL SCENARIO

In the previous scenario, the channels were assumed to be

fixed. While this may be the case for stationary devices or
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FIGURE 11. The achieved individual user rate of the proposed

robust design across 100 testing episodes for N = T = 4,

Rmin
= 1b/s/Hz.

FIGURE 12. The robustness performance of the proposed agent

versus the target rate with fixed channels, for N = T = 4,

Rmin
= 1b/s/Hz.

low-mobility UEs, fixed channel models cannot be used for

high-mobility situations where channels change drastically.

To solve this dynamic channel problem, we train the TD3

agent on a small dataset of distinctively different channels.

Also, we use the full error model for the varying channel case

as we focus more on the practical implementation aspects

of this design. Therefore, the TD3 agent is trained for a

total of 2, 000 episodes and 300 steps per episode. At the

beginning of each episode, a different set of channels ran-

domly sampled from a dataset of 10 channels is selected.

These training channels are generated based on a uniform

sampling of the distance between the BS and the maximum

cell radius. This uniform sampling is chosen to ensure that the

training channels reflect the variance of the channels across

the entire cell. Corresponding error bounds for direct and

reflected links are also fed to the agent for each new episode

FIGURE 13. The reward of the proposed robust TD3, and DDPG

agents for 2,000 training episodes, with dynamic channels,

M = 128, Rmin
= 0.3b/s/Hz.

during training as part of the state vector. Furthermore, to

prevent the optimization problem from becoming infeasible

due to higher channel variations, we reduce the target rate to

0.3 b/s/Hz for the dynamic channels scenario. To evaluate the

performance of the agent in a dynamic-channel environment,

we use a total of 250 randomly generated channels with did ∈

[10, 200] m as a testing set. Also, the agent is simulated for

1, 000 episodes, with 10 steps per episode for testing, to deter-

mine the average achieved sum-rates. The convergence of

the agent is shown in Figure 13 for the two extreme cases

N = T = 2, 4,M = 128, where relatively higher training

variance is apparent. This is expected since the channels

are inherently different, and consequently, the reward will

also have a higher variance. From Figure 13, we can see

that there is a significant difference in terms of stability and

consistency between the TD3 and the DDPG agents, where

TD3 shows superior convergence properties. This is further

evident by the relatively lower variance of the TD3 agent

compared to the higher training variance of DDPG. Instability

during training often leads to performance degradation due

to the inadequately derived policy. Figures 14, 15 and 16

illustrate the achieved system sum-rates for different system

parameters. The TD3 agent shows marginal gains compared

to the DDPG agent, with the most significant gain being

2.14 b/s/Hz, achieved in the case N = T = 3,M = 64.

For the dynamic channel case, we can see that increasing the

number of IRS elements is exploited by both agents, leading

to a slight increase in terms of sum-rate. The TD3 agent is able

to achieve a gain of 2.1 b/s/Hz in the system sum-rate for the

case N = T = 3,M = 64. However, despite the addition

of 64 IRS elements, the system sum-rate has not increased as

much between M = 64 and M = 128, which further proves

the point that the number of IRS elements may be utilized by

the agent up to a certain number before starting to degrade
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FIGURE 14. The achieved system sum-rate of the proposed

robust design versus the number of IRS elements with dynamic

channels, for N = T = 2, Rmin
= 0.3b/s/Hz.

FIGURE 15. The achieved system sum-rate of the proposed

robust design versus the number of IRS elements with dynamic

channels, for N = T = 3, Rmin
= 0.3b/s/Hz.

the performance. Compared to the benchmark schemes, the

proposed TD3 agent achieves a similar sum-rate performance

to the ZF baseline scheme on average, while the sum-rate gap

between the upper-bound baseline and the proposed agent has

increased in the varying channels case with an average gap of

3.3 b/s/Hz. In terms of achieved individual rates, Figure 17

illustrates the rate for each UE for the dynamic channels case,

with N = T = 4,M = 128. This Figure shows some

casual drops of UE4’s rate below the 0.3 b/s/Hz mark by both

the TD3 and the DDPG agents. This is expected due to the

dynamic channels used for testing. Another observation is

that DDPG achieved a higher rate for UE1 at the expense of

not satisfying the target rate required by UE4, which is the

result of converging to a non-optimal policy.

FIGURE 16. The achieved system sum-rate of the proposed

robust design versus the number of IRS elements with dynamic

channels, for N = T = 4, Rmin
= 0.3b/s/Hz.

Finally, to evaluate the limits of the TD3 agent’s derived

policy in terms of robustness, we tested the trained agent for

a set of target rates for N = T = 4. Figure 18 shows the

robustness of the agent in satisfying each of the target rates.

As expected, there is a trade-off between target rates and the

robustness of the agent. Despite the dynamic channels used

for testing, TD3 is able to maintain a robustness performance

of at least 65%. Furthermore, with M = 64; the agent

maintained a competitive score up to 0.5 b/s/Hz, which is

66% higher than the target rate used during training. While

both agents achieve similar system sum-rates as highlighted

by Figures 14, 15 and 16, DDPG is less robust to channel

uncertainties. The seemingly enhanced robustness score for

baseline 2 is not related to the algorithm itself. Instead,

it is due to the lower target rates used for dynamic-channels

testing.

Overall, the TD3 agent outperforms the DDPG agent in

every category, with marginal gain in some cases and sig-

nificant in others. Furthermore, the results from the dynamic

channels scenario suggest that the TD3 agent is more robust

to channel uncertainties.

V. CONCLUSION

In this paper, we proposed a DRL-based robust design for an

IRS-assisted downlink MISO-NOMA system with imperfect

channel feedback. In particular, a TD3 agent is developed

to jointly optimize the beamforming vectors and the phase

shifts of IRS elements to satisfy the required QoS with chan-

nel uncertainties. Through numerical simulations, we have

shown that the proposed robust TD3 agent was able to main-

tain its robustness against channel uncertainties and achieved

competitive performance in both fixed and dynamic channel

cases. We showed that, unlike conventional convex optimiza-

tion methods, the proposed robust TD3-based design solved
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FIGURE 17. The achieved individual user rate of the proposed

robust design across 100 testing episodes, with dynamic

channels for N = T = 4, Rmin
= 0.3b/s/Hz.

FIGURE 18. The robustness performance of the proposed agent

versus the target rate with dynamic channels, for N = T = 4,

Rmin
= 0.3b/s/Hz.

the original non-convex problem, not an approximation of it.

Furthermore, the agent only needed to converge to a good pol-

icy once. After being trained successfully, the agent was able

to generate robust vectors and IRS phase shifts by perform-

ing a simple forward pass through its actor network, which

was shown to have a low time complexity. This drastically

reduces the latency in DRL-based designs and expands their

applicability to low-latency systems. Conventional algorith-

mic methods, on the other hand, need to solve the problem

each time a change occurs in the system state, causing higher

system latency. We also showed that while additional IRS

elements may improve the system sum-rate, it is not always

the case that a higher number of IRS elements leads to sum-

rate gains, especially when channel uncertainty is taken into

account.

TABLE 5. Hardware profiles.

TABLE 6. System parameters for run-time testing.

APPENDIX

To ensure that MATLAB is able to exploit the maximum

amount of computational resources on each of these hardware

platforms, no other applications were running in the back-

ground during the testing period. Therefore, the empirical

results provided in Table 1 reflect the best performance that

these machines can sustain.

Profile 1 is equipped with state-of-the-art CPU, GPU and

RAM units, which demonstrates the superior performance of

this platform.
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