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Abstract 
The economics of obesity literature implicitly assumes that measured anthropometrics 
are error-free and they are often treated as a gold standard when compared to self-
reported data. We use factor mixture models to analyse measurement error in both self-
reported and measured anthropometrics with nationally representative data from the 
2013 National Health Survey in Brazil. A small but statistically significant fraction of 
measured anthropometrics are attributed to recording errors. While, as they are 
imprecisely recorded and due to reporting behaviour, only between 10% and 23% of our 
self-reported anthropometrics are free from any measurement error. Post-estimation 
analysis allows us to calculate hybrid anthropometric predictions that best approximate 
the true body weight and height distribution. BMI distributions based on the hybrid 
measures do not differ between our factor mixture models, with and without covariates, 
and are generally close to those based on measured data. While BMI based on self-
reported data under-estimates the true BMI distribution. “Corrected self-reported BMI” 
measures, based on common methods to mitigate reporting error in self-reports using 
predictions from corrective equations, do not seem to be a good alternative to our “hybrid” 
BMI measures. Analysis of regression models for the association between BMI and health 
care utilization shows only small differences, concentrated at the far-right tails of the BMI 
distribution, when they are based on our hybrid measure as opposed to measured BMI. 
However more pronounced differences are observed, at the lower and higher tails of BMI, 
when these are compared to self-reported or “corrected self-reported” BMI.  
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1. Introduction 

 

Obesity is a strong predictor of overall mortality (Li et al. 2021; Prospective Studies 

Collaboration et al. 2009) and an important risk factor for several noncommunicable 

diseases such as cardiovascular diseases, diabetes, musculoskeletal disorder, and some 

cancers (Lin et al. 2020). A large literature has explored the economic and social 

ramifications of obesity, such as poorer labour market outcomes, increased health care 

utilization and associated public health costs (e.g., Cawley 2004; Cawley 2015; Rooth 

2009). Moreover, studies have investigated and measured socioeconomic inequalities in 

obesity (e.g., Bilger et al. 2017; Davillas and Benzeval 2016; Zhang and Wang 2004). 

Despite an influential report on the importance of physically measured health 

indicators for understanding how the social and economic environment may get under the 

skin, several multi-purpose social science datasets continue to collect only self-reported 

weight and height data (Cawley 2015). Some existing studies do use datasets that collect 

measured anthropometrics, often in addition to self-reported anthropometric data (e.g., 

Cawley 2015; Cawley et al. 2015; Davillas and Jones 2021; Gil and Mora 2011). Studies 

that analyse measurement error in anthropometric data typically compare self-reports 

and measured anthropometric data; this research explicitly assumes that measured 

anthropometric data are error-free “gold-standard” measures. Specifically, Cawley et al. 

(2015), using the US National Health and Nutrition Examination Survey (NHANES) for 

the period between 2003–2010, compare self-reports with measured weight and height 

data. They find that reporting error in self-reported data is non-classical, with those who 

are underweight, based on measured anthropometrics, tending to over-report and 

overweight and obese respondents tending to under-report their weight. Gil and Mora 

(2011) use data from the 2006 Catalan Health and Health Examination Surveys and 

compare self-reported with measured anthropometrics. They find that social norms 

regarding ideal weight may affect reporting bias in self-reported anthropometrics. Those 

respondents who are more satisfied with their own body image are less prone to under-

report their weight, although these results are subject to the definition of social norms on 

body image.  

Using UK data, Davillas and Jones (2021) conducted an experiment to explore the 

extent of measurement error in body mass index (BMI), when self-reported body weight 

and height data are compared to measured anthropometrics. This study shows non-

classical reporting error in height and weight, taller people seem to report their height 

more accurately, and a sharp increase in reporting errors in self-reported body weight for 
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those of greater measured weight. Further analysis shows that heterogeneity in self-

reported anthropometrics is associated with within-household measured BMI data. A 

study employing Swedish data (Ljungvall et al. 2015) finds the presence of reporting error 

in self-reports of BMI (called misreporting in the study), when compared to measured 

anthropometric data, and that there is systematic social patterning in misreporting which 

matters for estimation of the education and income gradients in BMI when based on self-

reports. O’Neill and Sweetman (2013), using a selective sample of mothers from the Irish 
Cohort Study, find that self-reported BMI, as compared to measured anthropometrics, is 

subject to substantial measurement error, which also causes an overestimation of the 

relationship between BMI and income. Finally, the role of interviewers is examined by 

Olbrich et al. (2022). Using various datasets from the USA, UK and Germany this study 

shows that interviewers play an important role in differences between reported and 

measured body height data as well as on the changes in reported height over survey 

waves. 

Over and above the fact that these existing studies assume that measured 

anthropometrics are error-free, they mostly compare self-reports and measured 

anthropometric data that were collected with a considerable time difference or where 

respondents were informed about the subsequent physical measurements (Cawley et al. 

2015; Gil and Mora 2011). The related medical literature is often based on selected age 

groups, non-representative samples and neither aims to characterise the measurement 

error nor to quantify the implications of the measurement error for economic modelling 

(e.g., Engstrom et al. 2003; Gorber et al. 2007; Keith et al. 2011).  

Despite the fact that measured anthropometrics are assumed to be error-free in 

much of the existing literature, the accuracy of measured anthropometrics may indeed be 

affected by several factors. For instance, recent evidence has documented the influence of 

interviewers on reliability of measured and self-reported body height data in different 

surveys (e.g., Finn and Ranchhod 2017; Olbrich et al. 2022). Potential sources of 

measurement error include both unintentional (such as accidental recording errors from 

measurement equipment to survey materials) and intentional (i.e., fabricating parts of 

the measurement or even conducting physical measurements on the wrong respondent) 

recording errors (e.g., Finn and Ranchhod 2017; Groves 2005; Olbrich et al. 2022). These 

may not be easy to detect if the interviewers visited the household to conduct the interview 

(Olbrich et al. 2022). Moreover, in some datasets, interviewers may visit the household 

more than once to complete a socioeconomic questionnaire and collect physical 

measurements, including anthropometrics; this increases the likelihood that mis-
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identification takes place. More broadly, the literature has discussed the presence of 

measurement error in more objectively measured nurse-collected and blood-based health 

data (Davillas and Pudney 2020a,b). These studies use latent variable models to account 

for measurement error, but they do not aim to explicitly model measurement error or to 

explore its potential implications for economic models. Overall, there is limited research 

that has access to both self-reported and measured anthropometric data collected within 

the same survey wave. 

Our paper contributes to the literature in various ways. We model potential 

measurement error in both self-reported and measured anthropometrics (i.e., body weight 

and body height). We use data from the 2013 National Health Survey (Pesquisa Nacional 

de Saúde; PNS-2013) of Brazil, which is a nationally representative dataset that allows 

for measured and self-reported data on body weight and height to be collected from the 

same individuals within the span of a household interview. In Brazil, obesity has 

systematically increased since the 2010s, with one in every five adults experiencing 

obesity (Triaca et al. 2020). Projections of the obesity-related costs in Brazil show that the 

annual health care costs may double from 2010 ($5.8 billion) to 2050 ($10.1 billion) ─ a 
total health care cost of $330 billion over 40 years (Rtveladze et al. 2013). As such, obesity 

is an important public health concern for Brazil. 

To analyse measurement error in the Brazilian data we use a factor mixture model, 

initially proposed by Kapteyn and Ypma (2007). This Kapteyn and Ypma (KY) factor 

mixture model is applied and extended by Jenkins and Rios-Avila (2020) and Jenkins and 

Rios-Avila (2021, 2023a) to analyse measurement error in self-reported and 

administrative income data. To the best of our knowledge, the KY factor mixture model 

has not been used to analyse measurement error in self-reported and measured 

anthropometric data. Unlike the existing literature, that assumes no measurement error 

in measured body weight and height data, our analysis allows us to model different types 

of errors in both self-reported and measured anthropometrics. Specifically, we test the 

hypothesis that measured anthropometrics encompass data-recording errors. Moreover, 

the self-reported anthropometric data are assumed to be subject to a wider set of 

measurement errors. These include the precision of the scale for the self-reported data, 

which are only recorded as whole numbers (in cm or Kg), non-classical mean-reverting 

errors, and other types of remaining errors. As permitted by our data, we also estimate 

factor mixture models that account for individual-level covariates to explore the extent to 

which true latent anthropometrics as well as reporting error in self-reported 

anthropometrics, and their dispersion, may vary across population groups. Absence of 
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interviewer-level data, however, prevents us from exploring heterogeneity in measured 

anthropometrics due to interviewer characteristics.  

Our analysis also allows us to estimate the probability of each type of 

measurement error in both self-reported and measured data. Of particular interest, given 

that measured anthropometric data are often considered error-free (e.g., Cawley 2015; 

Davillas and Jones 2021; Gil and Mora 2011), our results suggest that a small but 

systematic fraction of measured anthropometrics contain data recording errors. Turning 

to self-reported weight and height, the estimated probabilities that the self-reported 

anthropometrics equal the true body weight and height are relatively low, at 10% and 

23% respectively.  

Post-estimation analysis allows us to generate a set of predictions of the 

distribution of the true latent weight and height data that combine information from both 

self-reported and measured anthropometrics. Based on reliability measures and mean 

squared errors, estimated using simulated out of the sample predictions, we select the 

best performing predictions of latent weight and height distributions. After choosing our 

preferred prediction, for our factor mixture models with and without covariates, our 

sample data are used to compute body weight and height measures that approximate the 

true values; these are then used to calculate our proxies of the true BMI distribution.  

Finally, we compare the distributions of BMI using self-reported, measured and 

our proxies of true BMI; the latter are very close to the distribution of BMI based on 

measured anthropometrics, while the BMI based on self-reported data under-estimates 

the true BMI distribution. We also employ the “corrected self-reported BMI” as an 

additional measure ― a conventional measure used in the existing economics of obesity 

literature to correct self-reported data for reporting error (Cawley 2015). Our results show 

that these “corrected self-reported BMI” measures are not a good alternative to our 

“hybrid” BMI measures. In addition, we provide evidence to explore the potential 

implications of the measurement error in both self-reported and measured 

anthropometrics. As an illustration, we compare results when each of the self-reported, 

“corrected self-reported”, measured and hybrid BMI measures are used as explanatory 

variables in linear regression models for the frequency of hospital admissions in the past 

12 months. We find only moderate differences in the results between the hybrid BMI 

measure and the one based on measured anthropometrics and these are concentrated in 

the far-right tails of the BMI distribution. More pronounced disparities are observed, at 

the lower and higher BMI tails, when our hybrid measures are compared with BMI 

measures based on self-reported or “corrected self-reported” data.  
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Understanding and characterizing measurement error in both self-reported and 

measured anthropometrics has important public health implications. Self-reported and/or 

physical measurements of anthropometrics are collected in several nationally 

representative surveys. For example, the Survey of Health, Ageing and Retirement in 

Europe (SHARE), the European Community Household Panel (ECHP), the German Socio-

Economic Panel (GSOEP) as well as the National Longitudinal Survey of Youth (NLSY), 

the Medical Expenditure Panel Survey (MEPS) and the Behavioural Risk Factor 

Surveillance System (BRFSS) are datasets that are frequently used for obesity research 

but are limited to self-reports of body weight and height data. Recent advances to survey 

measurement allow for measured anthropometrics to be collected as part of multi-purpose 

social science surveys to improve data reliability on anthropometric measurement 

(Cawley et al. 2015).  Data from nationally representative surveys are used to estimate 

obesity prevalence at the national level as well as for international comparisons (Ng et al. 

2014). Measurement errors that may contaminate both self-reported and measured 

anthropometrics may affect within and between country and region comparisons of 

obesity prevalence and estimates of the population at increased health risks. Depending 

on the size of the measurement error, this may mislead potential public policies to 

mitigate regional or cross-country differences in excess body weight. Moreover, studies 

that quantify the (public) health care costs associated with obesity and related diseases 

often rely on survey data (Cawley and Meyerhoefer 2012); this research is influential and 

is used to justify government programmes to prevent obesity on the grounds of external 

costs (USDHHS 2010). The extent to which these estimates may be biased due to 

measurement error in measured and/or self-reported anthropometrics collected in surveys 

is of relevance from a public health point of view given the cost savings from reducing 

obesity prevalence. 

The rest of the paper is organized as follows. Section 2 present the methods used 

to analyse measurement error in both self-reported and measured anthropometric data. 

Our data source and descriptive statistics are presented in Section 3. The results of our 

analysis, post-estimation predictions and a preliminary analysis of the potential 

implications on measurement error in both self-reported and measured anthropometrics 

for economic research are presented in Section 4. Section 5 concludes and provides a 

summary of our findings.  

 

 

 



 6 

2. Methods 

 

We adapt the factor mixture model, proposed by Kapteyn and Ypma (2007), to model the 

relationship between measured and self-reported anthropometrics. This model has been 

applied and extended by Jenkins and Rios-Avila (2020) and Jenkins and Rios-Avila (2021, 

2023a) to analyse measurement error in income data. In this study, we apply the KY 

model to measurement error in both self-reported and measured anthropometric data, on 

weight and height, using the 2013 National Health Survey of Brazil.  

 We assume that the true values of each anthropometric measure (weight or height) 

for an individual 𝑖 (𝜉𝑖) are unobserved, but we can observe both measured (𝑟𝑖) and self-

reported (𝑠𝑖) anthropometrics. Table 1 provides a description of the types of errors in 

measured and self-reported anthropometric data that can be captured by our factor 

mixture model.  

Measured anthropometrics are collected at the end of the individual questionnaire 

in our dataset. According to the survey protocol, it is possible for the individual interview 

to be completed in more than one visit, so it may be the case that physical measurements 

(which are time consuming as they include anthropometrics and blood pressure 

measurements) may not take place on the same day. Also, the measured anthropometrics 

are recorded by the interviewer by hand in the survey materials. Thus, measured 

anthropometrics may suffer from (unintentional or intentional) recording error related to 

entering values from the measurement equipment to the survey materials, fabrication of 

the measurement of anthropometrics by the interviewer1 or even physical measurements 

taken from the wrong household member (especially if the main interview and physical 

measurements are not collected on the same day). These measurement errors, although 

they may occur with low frequency, could have a non-negligible impact on data reliability.  

Thus, in the case of measured anthropometrics, we assume that the distribution 

of each anthropometric measure is a mixture of two types of observation: 

 𝑟𝑖 = {   𝜉𝑖             with probability 𝜋𝑟    𝜁𝑖       with probability (1 − 𝜋𝑟)                                                              (1) 

 

1 These fabrication errors (if they exist) are unlikely to result in mean reversion/mean divergence 
but may be fairly random errors. Existing studies have shown evidence of misperception of body 
size (Zelenytė et al. 2021), suggesting that interviewers may not be able to accurately predict 
participants’ body weight/height (if not measured) and, thus, not be able to make guesses that may 
lead to mean reversion/mean divergence (i.e. guesswork that is strongly correlated with true body 
weight and height). 
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where, measured anthropometrics (𝑟𝑖) equals the true value with probability 𝜋𝑟 (case R1). 

However, measured anthropometrics may be not equal to the true value for certain 

respondents with probability 1 − 𝜋𝑟 (case R2); thus, an error-ridden measure (𝜁𝑖) is 

observed in this case. In the spirit of the KY factor mixture model, this erroneous 

anthropometric measure, which is incorrectly attributed to individual 𝑖,  is denoted by 𝜁𝑖.2 
The true values and those with recording errors are both assumed to be independently 

and identically normally distributed: 𝜉𝑖~𝑁(𝜇𝜉, 𝜎𝜉2), 𝜁𝑖~𝑁(𝜇𝜁 , 𝜎𝜁2); this implies that the 

marginal distribution of 𝑟𝑖 is a mixture of two normals. Given the type of errors that are 

captured by 𝜁𝑖, as described above, we assume that there is no correlation between 𝜉𝑖 and 𝜁𝑖3. The assumption that the erroneous measurements are uncorrelated with the true 

values contributes to the identification of the full model as it implies that these 

measurements are also uncorrelated with the self-reported anthropometrics. 

 Each of our self-reported anthropometrics (i.e., weight or height) are assumed to 

be a mixture of three types of observation: 

 

𝑠𝑖 = {      𝜉𝑖                               with probability 𝜋𝑠             𝜉𝑖 + 𝜂𝑖 + 𝜌(𝜉𝑖 − 𝜇𝜉)             with probability (1 − 𝜋𝑠)(1 − 𝜋𝜔)𝜉𝑖+ 𝜂𝑖 + 𝜌(𝜉𝑖 − 𝜇𝜉) + 𝜔𝑖     with probability (1 − 𝜋𝑠)𝜋𝜔    (2) 

 

Table 1 describes all sources of measurement errors in self-reported anthropometrics that 

are captured in equation 2.  Specifically, we assume that the self-reported 

anthropometrics (𝑠𝑖) equals the true latent value (𝜉𝑖) with probability 𝜋𝑠 (case S1). The 

self-reported values are recorded as integers so this case only applies when the true value 

 

2 The factor mixture measurement error model proposed by Kapteyn and Ypma (2007) assumes 
that  observed administrative income data are a mixture of correct matches and mis-matches (with 
survey data). However they argue that, over and above potential mismatches in the linkage 
between administrative and survey data, it is also likely that administrative and survey data may 
capture conceptually different things. As such, they argue that there is no loss of generality to 
assume that measurement error in administrative data may reflect different sources. Analogously, 
in our analysis measurement error in measured anthropometrics may reflect different sources (as 
described above); in particular interviewers’ errors related to entering values from the 
measurement equipment to the survey materials, fabrication of the measurement of 
anthropometrics by the interviewer or even physical measurements for the wrong household 
member. 
3 Even in the case of fabricated interviews or when anthropometric measurement is not conducted 
for the intended respondent, this may be a strong assumption if quality control takes place. 
However, there is no such quality control undertaken in the dataset used in our analysis (as well 
as in many other multipurpose social science datasets that collect anthropometrics).   
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is a whole number4. Otherwise (cases S2 and S3), there must be some imprecision in 𝑠𝑖 
due the scale of measurement. This imprecision, reflecting the different ways in which 

respondents may round their responses to whole numbers along with random noise in the 

self-reports, is captured by the error term 𝜂𝑖. This error is independent of the true value (𝜉𝑖). In addition, we allow for the possibility of non-classical mean-reverting (or mean-

diverging) error (survey measurement error, which is captured by term 𝜌(𝜉𝑖 − 𝜇𝜉). 5 
Existing studies comparing measured with self-reported data have shown the presence of 

mean-reverting errors in self-reported body weight (Cawley et al. 2015).  The second case 

(S2), which allows for both sources of error, occurs with probability (1 − 𝜋𝑠)(1 − 𝜋𝜔). The 

third case (S3), which occurs with probability (1 − 𝜋𝑠)𝜋𝑤, adds a third source of 

measurement error (𝜔𝑖) to allow for additional random noise that may occur in some 

observations who make additional errors in their self-assessments of height or weight (see 

Table 1).  The measurement errors are both assumed to be independently and identically 

normally distributed: 𝜂𝑖~𝑁(𝜇𝜂 , 𝜎𝜂2), and 𝜔𝑖~𝑁(𝜇𝜔 , 𝜎𝜔2 ).  
Note that the survey team undertook significant effort to minimize the risk of 

equipment failure for physical anthropometric measurements; our dataset employs 

international measurement protocols and validated equipment, which is calibrated daily 

to ensure reliability of the measurements. The procedures for taking anthropometric 

measures are defined to prevent biologically inaccurate measures and were done in 

partnership with the Laboratory for Nutritional Evaluation of Populations (LANPOP), 

part of the Public Health School in the University of São Paulo (Damacena et al. 2015; 

Szwarcwald et al. 2014). Also, the availability of two repeated physical measurements of 

body weight and height (we took the second measure for our main estimation and, for 

sensitivity analysis, the average of these measures) further reduces the likelihood of 

errors related to equipment failure. Thus, we do not capture this potential source of error 

in our factor mixture models.6  

 

4 Self-reported anthropometrics are collected as integer values (cm for height and Kg for weight), 
while the corresponding measured values are measured to one decimal point. In those cases where 
the respondent provided a non-integer value of their self-reported body weight and/or height (for 
example 61.5Kg), the interviewer recorded an integer value (such as 61Kg or 62Kg).  
5 Mean reversion (𝜌 <  0) means that respondents with high (low) values of true anthropometric 
measures, relative to the true mean, tend to under-report (over-report) their body weight and 
height in self-reports; the opposite is the case for mean divergence (𝜌 >  0). 
6 Moreover, one may argue that survey mode may influence measurement error in self-reported 
anthropometrics. For example, social desirability bias is much lower in the case of self-completion 
as opposed to the open interview (Bowling, 2005); thus, assuming that being taller and not of excess 
weight is more socially desirable, shorter people and those with excess weight may have distinct 
reporting patterns across collection modes. However, existing studies do not confirm the presence 
of such influences in reporting errors. Davillas and Jones (2021) find that measurement errors in 
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Table 1. Types of measurement error and their sources used in the factor mixture 
models 
Type of error  Sources 
Self-reported anthropometrics 
Imprecision error The survey questionnaire on self-reported anthropometric 

data requests the participants to respond to body weight and 
height questions with a precision of integer values (cm for 
height and Kg for weight). The precision error reflects the 
different ways in which respondents may round their 
responses to whole numbers (integers) along with random 
noise in the self-reports. Moreover, in those cases where the 
respondent provided a non-integer value of their self-
reported body weight and/or height (for example 61.5Kg), the 
interviewer recorded an integer value (such as 61Kg or 
62Kg). 

 

Mean-reverting (or mean-
diverging) error 

Mean reversion means that respondents with high (low) 
values of true anthropometric measures, relative to the true 
mean, tend to under-report (over-report) their 
anthropometrics in self-reports; the opposite is the case for 
mean divergence. Existing studies have shown evidence of 
mean reversion in reporting errors in weight and height data 
(e.g., Cawley et al. 2015).  

Additional random error Captures any potential additional random noise (over and 
above imprecision and mean-reverting errors) that may occur 
for those who make additional errors in their self-
assessments of height/weight. These errors may capture 
respondent’s lack of awareness of their true anthropometrics.  

Measured anthropometrics  
Unintentional or 
intentional recording errors  

Recording errors in measured anthropometrics may capture 
errors related to entering values from the measurement 
equipment to the survey materials, fabrication of the 
measurement of anthropometrics by the interviewer or even 
physical measurements taken from the wrong household 
members (especially if the main interview and physical 
measurements are not collected the same day).   

 

 

The full KY model defines a mixture of six latent classes that correspond to the 

combination of cases R1 or R2 with S1, S2 or S3. Table 2 describes all the potential latent 

classes. For instance, the class 1 (R1, S1) consists of error-free self-reported (S1) and 

measured (R1) data and occurs with probability 𝜋𝑟𝜋𝑠. The full model is a mixture of the 

six bivariate normal distributions for the observed outcome pairs (𝑟𝑖, 𝑠𝑖), each with 

 

anthropometrics do not differ according to the mode of interview, with similar patterns observed 
when self-reported anthropometrics are collected using randomly assigned open interview and self-
completion modes. Along similar lines, Cawley et al. (2015) who also discuss mean reversion in 
reporting error in weight, highlight that interviewers do not amend/correct the self-reported 
anthropometrics based on measured data in their datasets and, thus, no additional interviewer 
effects are expected.  
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different means and covariance matrices (see Jenkins and Rios-Avila (2020, 2021) and 

Kapteyn and Ypma (2007) for full details).  

The parameter estimates are obtained by maximizing the model log-likelihood (see 

Kapteyn and Ypma 2007, Appendix B), with identification relying on the existence of the 

“completely labelled” group that contains observations with error-free anthropometrics 

(class 1: R1-S1). Parameters 𝜇𝜉 and 𝜎𝜉2 are identified from these “completely labelled” 

observations and this contributes to identification of the other unknown parameters from 

the mixture of normals implied by the model specification (see Kapteyn and Ypma (2007) 

for further details on identification). Kapteyn and Ypma (2007) provide the expressions 

for the probability density functions and the associated log-likelihood function. Employing 

Jenkins and Rios-Avila’s (2023b) user-written Stata command, we fit the full Kapteyn and 

Ypma (2007) model by maximum likelihood, assuming that the sample likelihood function 

is a finite mixture of latent class distributions. Our analysis is done separately for each of 

our anthropometric measures, i.e., for weight and height.  

 

Table 2: Groups (latent classes) in mixture model of self-reported and measured 
anthropometrics.  

 

Groups (𝒊) Types Probability (𝝅𝒋) 
1 R1,S1 𝜋𝑟𝜋𝑠 
2 R1,S2 𝜋𝑟(1 − 𝜋𝑠)(1 − 𝜋𝑤) 
3 R1,S3 𝜋𝑟(1 − 𝜋𝑠)𝜋𝜔 
4 R2,S1 (1 − 𝜋𝑟)𝜋𝑠 
5 R2,S2 (1 − 𝜋𝑟)(1 − 𝜋𝑠)(1 − 𝜋𝜔) 
6 R2,S3 (1 − 𝜋𝑟)(1 − 𝜋𝑠)𝜋𝜔 

 

 

Accounting for covariates 

Following Jenkins and Rios-Avila (2020; 2021), the factor mixture model is based on 

unconditional distributions. However, allowing the measurement error distributions to 

vary across observed characteristics has the advantage of increased flexibility and can be 

used to assess whether the distributions of measurement errors differ across population 

sub-groups (Jenkins and Rios-Avila 2023b). Goodness of fit tests based on the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) are used to compare 

our factor mixture models with and without covariates. 

Jenkins and Rios-Avila (2023a), extend the Kapteyn and Ypma (2007) model, to 

allow transformations of relevant parameters to be specified as linear indices of 

characteristics (𝑋𝑖): 
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 𝐺(𝛾) = 𝛼𝛾 + 𝛽𝛾′ 𝑋𝑖.         (3) 

 

where, for each factor mixture model parameter of interest (𝛾), 𝛼𝛾 is a constant, and 𝛽𝛾 

are the slopes associated with individual-level characteristics (𝑋𝑖). The function 𝐺(∙) is the 

specific transformation function of the parameter of interest. These are the identity 

function for means (𝜇), the logarithmic function for SDs (𝜎), and Fisher’s z transformation 
for correlations (𝜌).  

In practice, and for parsimony in the estimation of our factor mixture models with 

covariates, we parameterise errors in self-reported data using age, gender and region of 

residence. Existing studies argue that measurement error in self-reported body weight 

and height data depends on respondents’ characteristics (e.g.,  Cawley et al. 2015; Davillas 

and Jones 2021). Specifically, for the self-reported anthropometrics, we model the 𝜇 and 

the 𝜎 of the imprecision error (𝜂𝑖) and of the additional random error (𝜔𝑖) as a function of 

individual characteristics (age groups, gender and region of residence); we also condition 

the non-classical mean-reverting error on these respondent-level characteristics.  

Moreover, for the latent true body weight and height, we assume that the mean 

(𝜇𝜉) varies by respondents’ age, gender and region of residence; the same covariates are 

also used for the SD equation (σξ). Earlier research has considered these demographics as 

basic correlates of obesity (e.g., Baum and Ruhm, 2009, Davillas and Jones, 2020). Finally, 

we model the distribution of measured anthropometrics without covariates; given that the 

protocols on physical measurements of anthropometrics collected in surveys are the same 

for all respondents (irrespective of gender, age and region of residence).  Interviewer 

characteristics, for those who are responsible for the physical measurements, might be 

more relevant sources of measurement error in measured anthropometrics (Olbrich et al. 

2022).7 However, these are not available in our dataset.  

For the factor mixture models with covariates, we calculate the estimated 

parameters in their natural metrics, computing the Average Predicted Margins (APMs); 

for each measurement model parameter of interest (𝛾), we predict 𝛾 for every individual 

in our sample using the fitted model and assuming all other covariates are at their 

observed values and, then, calculate the sample average of 𝛾 (and its associated standard 

error). For presentation purposes, we report how each measurement error parameter (𝛾) 

 

7 Typically, failures of measurement equipment may be also relevant for measurement error in 
physical measurements of anthropometrics. However, we believe that the risk of equipment failure 
is less relevant in our dataset given the prevention mechanisms/protocols we describe above. 
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varies across covariates using the APMs (Jenkins and Rios-Avila 2023a,b). For example, 

for a gender dummy, we calculate the APMs, for males by setting all sample values of 

gender to male and then taking the average over the whole sample; APMs for females are 

calculated analogously. This allows us to test whether there are systematic gender 

differences in APM for each particular parameter of interest (𝛾). For comparison purposes, 

in addition to APMs across population groups (by gender, age groups and region of 

residence) we also report the corresponding APMs for all observations in the sample.  

 

Post estimation predictions  

As a post-estimation exercise, we generate predictions of the distribution of the true latent 

weight and height (e.g., Meijer et al. 2012). In line with Jenkins and Rios-Avila (2023a), 

we employ the most reliable prediction among all the potential hybrid measures of weight 

and height and then calculate BMI as weight (in Kg) over the square of height (in metres). 

We compare the distributions of hybrid, self-reported, and measured BMI. We take the 

estimated parameters of our mixture models, separately for the case of models with and 

without covariates, to create “hybrid” anthropometric predictions that combine 
information from both self-reported and measured anthropometrics.8  

Specifically, in line with Meijer et al. (2012), both with and without covariates, we 

compare a number of approaches that combine measured and self-reported data to obtain 

the best prediction of the “true” anthropometrics of interest. Meijer et al. (2012) begin by 
deriving two predictors for the case of a single latent class (as described in Table 2 for our 

analysis): one that minimizes the mean squared error (MSE) and one that minimizes the 

MSE conditional on unbiasedness. Because class membership is unobserved, Meijer et al. 

(2012) proposed three ways to proceed: (1) compute the within-class predictors for each 

class and combine them in a weighted average using the (un)conditional class 

probabilities for weighting; (2) predict class membership and then use the within-class 

predictor for the predicted class; and (3) derive predictors that minimize the total mean 

squared prediction error. Because either the predictor based on MSE or on MSE 

conditional on unbiasedness could be the within-predictor for each of the three approaches 

listed above, there are six potential predictors in total. Finally, a system-wide predictor 

minimizes MSE under the assumption of linearity and imposing the condition of 

unbiasedness. 

 

8 The user written Stata command “ky_fit” predicts the seven “hybrid” measures proposed by 
Meijer et al. (2012). Table 6 in Jenkins and Rios-Avila (2023b) provides the descriptions of the 
predictors (“hybrid” outcomes), with the corresponding derivation of the formulae presented in 
their appendix. 
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As described above, following Meijer et al. (2012), seven “hybrid” measures to 
approximate the true body weight and height are generated in our study: 1) Weighted 

(unconditional), 2) Weighted (unconditional) unbiased, 3) Weighted (conditional), 4) 

Weighted (conditional) unbiased, 5) Two-stage, 6) Two-stage, unbiased, and 7) System-

wide linear. Predictions 1 to 6 use two within-class predictors for 𝜉. The first set 𝜉𝑖𝑗, used 

for predictors 1, 3, and 5, minimize the mean square error (MSE), 𝐸 [(𝜉𝑖 − 𝜉𝑖𝑗)2|𝜉𝑖 , 𝑖 ∈ 𝐽]. 
The second of set predictors,𝜉𝑖𝑈𝑗, used for predictors 2, 4 and 6, minimize the MSE 

conditional on 𝐸(𝜉𝑖 − 𝜉𝑖𝑈𝑗| 𝑖 ∈ 𝐽) = 0. Predictors 1 and 2 provide weighted predictions using 

the unconditional within-class probabilities 𝜋𝑗. Predictors 3 and 4 provide weighted 

predictions using conditional or posterior within-class probabilities 𝜋𝑗(𝑟𝑖 , 𝑠𝑖). Predictors 5 

and 6 use a two-step Bayesian classification; i.e., the predicted class membership is 

obtained first and, then, the class-specific predictor of the predicted class is used. Finally, 

the seventh predictor (𝜉7𝑖) is the system-wide predictor that minimizes MSE under the 

assumption of linearity and imposing the condition of unbiasedness.  

To assess the precision of those predictions, we estimate reliability statistics and 

the MSE.9 These are computed with respect to the seven “hybrid” measures that come 

from the sample simulations for body weight and body height based on estimated 

parameters for the factor mixture models both with and without covariates. Simulation 

analysis is done using the user-written Stata command “ky_sim” (Jenkins and Rios-Avila, 

2023b). 

We provide some further analysis to explore the implications of the measurement 

error in both self-reported and measured anthropometrics for empirical research on the 

association between obesity and health care utilization. Specifically, we compare results 

when each of the self-reported, measured and hybrid BMI measures are used as 

explanatory variables. If measurement error is non-classical, i.e., systematically 

associated with the measured values, it may cause bias in regression models that use 

anthropometrics as a regressor, even in the case where instrumental variable analysis is 

employed to deal with endogeneity or errors-in-variables (Cawley et al. 2015; O’Neill and 
Sweetman 2013). 

 

 

 

9 The mean square error is computed as 𝐸(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 − 𝜉)2 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒. Reliability measures 
are computed as follows: 𝑅𝑒𝑙1(𝑟)  =  𝑐𝑜𝑣(𝜉, 𝑟)/𝑣𝑎𝑟(𝑟), 𝑅𝑒𝑙1(𝑠)  =  𝑐𝑜𝑣(𝜉, 𝑠)/𝑣𝑎𝑟(𝑠), 𝑅𝑒𝑙2(𝑟)  = 𝑐𝑜𝑣(𝜉, 𝑟)2/[𝑣𝑎𝑟(𝜉) ∙ 𝑣𝑎𝑟(𝑟)] and 𝑅𝑒𝑙2(𝑠)  =  𝑐𝑜𝑣(𝜉, 𝑠)2/[𝑣𝑎𝑟(𝜉) ∙ 𝑣𝑎𝑟(𝑠)]. Further details can be found 
in Jenkins and Rios-Avila (2023a). 
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3. Data  

 

Data on self-reported and measured anthropometrics are extracted from the 2013 

National Health Survey of Brazil (Pesquisa Nacional de Saúde –PNS-2013).10 This is a 

cross-sectional, nationally representative dataset for all Brazilian states and geographic 

regions. The survey focuses on use of health care services, population health conditions, 

and surveillance of chronic non-communicable diseases and their associated risk factors. 

The PNS-2013 collects demographics and socioeconomic characteristics of all household 

members. For each household, a randomly selected household member aged 18 or older is 

chosen for their body weight and height to be measured along with self-reports of the same 

anthropometrics.11 This results in a working sample of 37,335 respondents, men and non-

pregnant women aged 20 or older, with valid self-reported and measured weight and 

height data. We focus on adults (aged 20+) to avoid any puberty-related changes in body-

size.  

 

3.1 Self-reported and measured body weight and height data  

 

Self-reported body weight and height data are collected as part of the survey 

questionnaire. Measured weight and height are collected twice by a trained survey team 

member at the end of the questionnaire. Weight is measured by a portable digital scale, 

following standard measurement protocols which require that the respondents remove 

their shoes, heavy clothes, accessories, and objects from their pockets (PNS 2013). 

Following common practice in the literature, when measured health data are used, we 

take the second measurement for weight and height for our base case analysis to reduce 

 

10 The 2013 National Health Survey of Brazil is publicly available online: 
https://www.ibge.gov.br/estatisticas/sociais/saude/9160-pesquisa-nacional-de-
saude.html?=&t=microdados. 
11 In PNS-2019, that collected data in 2019, body weight and height were measured for a much 
smaller sub-sample of respondents, due to the difficulties in physical anthropometric 
measurements for the full survey sample selected for individual interviews, (Reis et al. 2022). On 
the other hand, in PNS-2013, the anthropometric measurements were carried out on all residents 
selected for the individual interview, except pregnant women (Damacena et al. 2015). Collection of 
both self-reported and measured anthropometrics at the same wave is necessary for our research 
question and the estimation requirements of our factor mixture models. Given that measured 
anthropometrics are only available for a small fraction of the total survey sample in PNS-2019 and 
because time sensitivity is not a constraint for the scope and the nature of our research question 
for this study we have used the PNS-2013 data for our analysis. 

https://www.ibge.gov.br/estatisticas/sociais/saude/9160-pesquisa-nacional-de-saude.html?=&t=microdados
https://www.ibge.gov.br/estatisticas/sociais/saude/9160-pesquisa-nacional-de-saude.html?=&t=microdados
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any potential errors in measured anthropometrics (e.g., Johnston et al. 2009; Davillas and 

Pudney 2017). A sensitivity analysis is done using the average of the two measures.12 

For height, a portable stadiometer is used to measure stature (PNS, 2013). 

Measurement protocols for body height require that the respondent must remove their 

shoes and other accessories, if possible, and keep at least three points of the body on the 

posterior surface of the stadiometer (PNS 2013). International measurement protocols 

together with validated and daily calibrated equipment are employed for anthropometric 

physical measurements. These procedures are settled in partnership with the Laboratory 

for Nutritional Evaluation of Populations (LANPOP), part of the Public Health School in 

the University of São Paulo, to prevent biologically inaccurate anthropometric 

measurements (Szwarcwald et al. 2014). 

Our analysis allows for modelling all hypothesised errors in the measured and self-

reported anthropometrics as relevant to our dataset and described in detail in Table 1. 

Along with the unconditional factor mixture measurement error models, we also estimate 

models that account for a parsimonious set of covariates to explore potential differential 

patterns in measurement errors across population groups. Specifically, in these models, 

we account for the respondent’s gender, while respondents age is captured by a 6-category 

age group variable (20-29, 30-39, 40-49, 50-59, 60-69, and 70 or more). Region of residence 

is captured by a categorial variable for the five geographical regions (often called macro 

regions) of Brazil as defined by the Brazilian Institute of Geography and Statistics: North, 

Northeast, Central-West, Southeast and South. 

 

3.2 Descriptive statistics 

 

Figure 1 shows the histograms of the raw difference between measured and self-reported 

body weight and height data, as well as for BMI created from the measured and self-

reported anthropometrics; a normal distribution is overlayed on each histogram. The 

horizontal axis is the number of units of raw reporting error; negative numbers indicate 

that self-reports are higher than measured values, and vice versa. The histograms would 

have been a single bar, with all the sample having zero reporting error, if every 

respondent reported the same measured and self-reported anthropometrics.  

 

12 Figure A1 (Appendix) plots the absolute differences between the 1st and 2nd body weight and 
height physical measurement. The graph shows that the mass of the absolute difference is 
concentrated at zero, and there are a few observations with absolute differences between the 1st 
and 2nd measurement that exceeds 1.5kg (for body weight) or 1.5cm (for body height). 
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Figure 1: Histograms of the raw difference between measured and self-
reported (measured – self-reported) anthropometrics 

 

 

 

Note: The normal density curve is overlayed to each histogram.  
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Overall, across the graphs for body weight, height and BMI, the distribution of the 

raw difference between reported and measured values deviates from the normal 

distribution. Specifically, these is more mass around zero for the raw difference, as shown 

by the histograms, as opposed to the normal distribution. Compared to the normal 

distribution, less mass is observed with moderate and larger raw differences for all 

anthropometrics, while there is more mass at very high raw differences. Finally, it seems 

that the distribution for the raw body height difference is more skewed.  

Descriptive statistics for the self-reported and measured weight and height data 

as well as for BMI measures are presented in Table 3.13 The mean self-reported weight 

(71.5Kg) is slightly smaller than the mean measured weight (72Kg). Mean self-reported 

height is 0.8cm higher than measured height. Table 3 also shows that the mean absolute 

difference between the self-reported and measured data (expressed in terms of percentage 

of the measured values) is about 3% for body weight, 1% for height and 4.5% for the 

derived BMI measure.   

 

 

Table 3. Descriptive statistics and (raw and absolute) difference between measured and self-
reported data. 

 Weight (Kg) Height (cm) BMI (Kg/m2) 
Measure Mean SD Mean SD Mean SD 
Self-reported 71.5 14.6 165.2 9.5 26.2 4.7 
Measured 72.0 15.0 164.4 9.5 26.6 4.9 
Raw difference† (measured–self-reported) 0.4 3.8 -0.8 3.7 0.4 1.8 
Absolute difference†† 2.2 3.1 2.2 3.1 1.2 1.5 
Absolute difference (% measured) †† 3.1 4.4 1.4 1.9 4.5 5.3 
† The raw difference is calculated as the difference of measured from self-reported data.  
†† The absolute difference takes the absolute value of the difference between measured and 
self-reported data; in other words, the absolute difference is only positive numbers as it 
removes any negative signs.  
 

 

 

 

 

 

13 The corresponding kernel density distributions for self-reported and measured body weight, 
height and BMI are presented in Figure A2 (Appendix). It seems that both self-reported and 
measured body height data have approximately normally shaped distributions, although right 
skewed distributions are observed for the case of body weight and BMI. This is important as our 
model assumes normality for the factor distributions and identification of the components of the 
mixture of normals stems from non-normality in the (joint) distribution of observed outcomes. 
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Existing literature argues that reporting error in body weight self-reports may be 

mean reverting, when compared with measured anthropometric data (Cawley et al. 2015); 

respondents with high (low) values of measured body weight data tend to under-report 

(over-report) their body weight in self-reports. To provide some preliminary evidence of 

this, under the assumption that measured data are not subject to measurement error (an 

assumption we will relax later), Figure 2 shows the mean raw difference (measured–self-

reported) in body weight and height data across deciles of the measured anthropometrics. 

Our results for body weight, show that the mean raw reporting error becomes less 

negative moving across the first three groups. This indicates that, on average, the self-

reported weight is higher than measured weight for those with the lowest measured 

weight data. For the higher deciles of measured body weight there is a progressively 

increasing positive raw error indicating that measured weight is higher than the self-

reports, with the under-reporting becoming more evident for those with higher measured 

weight.  

Figure 2 also displays the mean raw differences for height. There is a progressively 

less negative mean raw difference moving to those of higher measured height up to the 

80th percentile of measured height; i.e., self-reports of height are higher than measured 

data on average, with the over-reporting (almost) monotonically reducing in magnitude  

for those with higher measured height. For the two tallest deciles the mean raw reporting 

error is positive, suggesting that those of very high measured height tend to under-report 

their height. Overall, and despite the observed differences between weight and height, 

these results show that respondents with high (very high) measured body weight (height) 

tend to under-report, while over-reporting is evident for those of lower measured values. 

These summary statistics provide initial evidence on the presence of mean reverting error 

in self-reported anthropometrics under the assumption that measured data are not 

subject to measurement error. Although this is an assumption that we relax in our factor 

mixture models, this motivates accounting for mean reversion (or mean divergence) in the 

measurement error models.  

 

 

 

 

 

Figure 2: Differences between measured and self-reported weight/height 
data by decile groups of measured anthropometrics 
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4. Results 

 

4.1 Estimates of structural parameters: mixture model without covariates.  

 

Table 4 presents the estimates for the KY model (expressed in their natural metrics). 

Following Jenkins and Rios-Avila (2020), the completely labelled observations are defined 

as those observations with |𝑟𝑖 − 𝑠𝑖| ≤ 𝛿. Our model presented in Table 4 assumes 𝛿 = 0, 

i.e., the completely labelled observations are only those with no differences between self-

reported and measured values. Under this demanding requirement, given the differences 

in precision of the scales used for measured and the self-reported outcomes, the completely 

labelled cases represent just 10% and 23% of our observations for weight and height 
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respectively. Sensitivity analysis is also conducted to test the robustness of our results 

when this requirement is relaxed.  

Table 4 shows that the mean of latent true body weight (𝜇𝜉) is 71.9Kg (with a standard deviation, 𝜎𝜉 =  14.9). The distribution of the latent true weight has a 

higher mean (by about 0.4Kg) than the mean of self-reported body weight (Table 3); the 

p-value for the difference in means is less than 0.01. The estimated mean of true body 

height is 164.5 cm (with a standard deviation 𝜎𝜉 =  9.4). This value is lower (by -0.7 cm) 

than the mean of the self-reported height (Table 3).  

The probability (𝜋𝑟) that measured weight and height reflect the corresponding 

true values is high: 98.6% for weight and 96.7% for height. This indicates that the 

probability of error-prone measured body weight and height data occur with a low, but 

systematically different from zero, probability (1 − 𝜋𝑟) of about 1.4% (p-value < 0.01) and 

3.3% (p-value < 0.01), respectively. Error-prone measurement of body weight (reflecting 

the recording errors) leads to an estimated mean (𝜇𝜁) of 78.9Kg for these erroneous 

observations, which is 7Kg (or almost 10%) higher than the estimated mean of true 

weight; data recording error in measured weight is also associated with a higher standard 

deviation (𝜎𝜁 = 19.4) compared to the estimated true weight distribution (𝜎𝜉 = 14.9). 

Similarly, error-prone measured body height (that is subject to potential recording error) 

has an estimated mean (𝜇𝜁) for the erroneous observations of 159.8cm, which is lower 

than the estimated mean of the true height (by about 4.7cm, i.e., 2.9% of the mean of the 

true height), as well as having a lower estimated standard deviation compared to the true 

height distribution (𝜎𝜁 = 8.9 compared to 𝜎𝜉 = 9.4).  

Turning to self-reported weight and height, the estimated probability (𝜋𝑠) that the 

self-reported anthropometrics equal the true body weight and height (i.e., they are free 

from any measurement error) are, as expected given the difference in precision of the two 

measures, relatively low at about 10% and 24%, respectively. Table 4 shows that mean 

reversion (𝜌) in case of both self-reported body weight and height data is small in 

magnitude (close to zero) although statistically significant at the 1% level. This indicates 

that after accounting for all other sources of measurement error in self-reported data, 

mean reversion seems to play a limited role. Error due to the reporting precision (precision 

error) in self-reported body weight and height data have mean values (𝜇𝜂); of -0.33Kg for 

weight and 0.4cm for height. The estimated probability of the Case S2 type of 

observations, (1 − 𝜋𝑠)(1 − 𝜋𝜔), is about 62% for weight and 44% for height. Moreover, 

Table 4 shows that the probability (1 − 𝜋𝑠)𝜋𝜔 that self-reported anthropometric data 
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contains additional measurement error, Case S3, is about 28% for self-reported weight 

and 31% for self-reported height.  

Table 4 (Panel B) presents estimates of the membership probabilities for the six 

latent classes (as described in Table 2). The first latent class consists of error-free self-

reported (S1) and measured (R1) anthropometric data with a probability of 10% for body 

weight and 23% for height. The probability that there are error-free measured 

anthropometrics and survey reporting error in self-reported anthropometrics is about 61% 

for weight and 43% for height (𝑃𝑟(𝑅 = 1, 𝑆 = 2)). The probability of error free measured 

anthropometrics and additional reporting error in self-reported data, corresponding to the 

third latent class, is 27% for weight and 30% for height. Regarding the remaining latent 

classes, where there are recording errors in measured anthropometrics, we find small 

probabilities. For instance, the probability that weight and height observations contain 

error in the self-reported data and recording errors in the measured anthropometrics, 

corresponding to the fifth latent class (𝑃𝑟(𝑅 = 2, 𝑆 = 2)), is 0.9% and 1.5% for weight and 

height, respectively. Overall, these results indicate that, although there are non-

negligible recording errors in measured body weight and height data (about 7kg and 4.7cm 

difference on average as compared to true body weight and height, respectively), their 

probability of occurrence is small.    

We conducted a sensitivity analysis, where measured body weight and height data 

are rounded to the nearest integer (Table A1, Appendix); this allows us to have the same 

scale in measured and reported data, but it masks the part of measurement error that is 

attributable to lack of precision in the recording of the self-reported data. There are 

differences in the six latent classes probabilities, reflecting the difference in the proportion 

of completely labelled cases (𝑃𝑟(𝑅 = 1, 𝑆 = 1)). For instance, the increase in the 

probability of completely labelled cases as opposed to the case of our base case results 

(from 10% in the base case to 26.3% for the sensitivity analysis for weight; and, from 

23.3% to 32.4% for height), is reflected in the reduction in the latent class probabilities for 

classes two and three (Table 4 vs Table A1).  

Finally, we conducted a sensitivity analysis to explore whether our results 

presented in Table 4 are sensitive to using the average of the two weight and height 

measurements to define measured anthropometrics (for the mixture models). The 

corresponding parameter estimates, and latent class probabilities (Table A2, Appendix) 

are practically identical to those presented in Table 4.   
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Table 4: Estimates of factor mixture model for body weight and height. 

 
Weight 

(Kg) 
Height 

(cm) 
Panel A: Parameters   𝜇𝜉 71.911*** 164.518*** 

 (0.077) (0.050)    𝜎𝜉  14.853*** 9.448*** 
 (0.055) (0.035)    𝜇𝜁 78.892*** 159.767*** 
 (1.099) (0.395)    𝜎𝜁 19.395*** 8.895*** 
 (0.728) (0.261)    𝜇𝜂 -0.328*** 0.400*** 
 (0.014) (0.024)    𝜎𝜂 1.636*** 1.837*** 
 (0.018) (0.027)    𝜇𝜔 -0.333*** 1.185*** 
 (0.067) (0.070)    𝜎𝜔 5.127*** 4.469*** 
 (0.085) (0.074)    𝜋𝑟 0.986*** 0.967*** 
 (0.001) (0.002)    𝜋𝑠 0.101*** 0.241*** 
 (0.002) (0.002)    𝜋𝜔 0.306*** 0.414*** 
 (0.007) (0.011)    𝜌 -0.024*** -0.037*** 
 (0.001) (0.002)    

Panel B: Class probabilities   𝑃𝑟(𝑅 = 1, 𝑆 = 1) 0.100*** 0.233*** 
 (0.002) (0.002) 𝑃𝑟(𝑅 = 1, 𝑆 = 2) 0.615*** 0.430*** 
 (0.007) (0.009) 𝑃𝑟(𝑅 = 1, 𝑆 = 3) 0.271*** 0.304*** 
 (0.007) (0.008) 𝑃𝑟(𝑅 = 2, 𝑆 = 1) 0.001*** 0.008*** 
 (0.000) (0.001) 𝑃𝑟(𝑅 = 2, 𝑆 = 2) 0.009*** 0.015*** 
 (0.001) (0.001) 𝑃𝑟(𝑅 = 2, 𝑆 = 3) 0.004*** 0.011*** 
 (0.000) (0.001) 

Log-likelihood -251,431 -234,482 
Observations 37,335 37,335 

Note. The fraction of completely labelled observations (i.e., |𝑟𝑖 − 𝑠𝑖| = 0) is 10.0% for body 
weight, and 23.3% for body height.  
*** p<0.01  
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4.2 Mixture model with covariates 

 

Table 5 reports the AIC and BIC for the KY models, separately for body weight and height, 

with no covariates (i.e., our baseline model), and for the KY models that account for our 

set of covariates. Across all factor mixture models for body weight and height, those that 

account for covariates have lower AIC and BIC as opposed to the counterparts without 

covariates (baseline models). Overall, it seems that models with covariates perform better 

than our baseline models, suggesting that the former can be used to explore potential 

differential patterns in measurement error across individual characteristics.  

 

Table 5: AIC and BIC for the factor mixture models for body weight and height: models 
with and without covariates 

 No covariates With covariates 

 Weight Height Weight Height 
AIC 502885.4 468987.5 495340.2 444261.2 
BIC 502987.7 469089.9 496039.5 444960.5 
Observations 37,335 37,335 37,335 37,335 

 

 Tables 6 and 7 report the estimates of our factor mixture model with 

covariates for body weight and height, respectively. We report the APMs for the full 

sample (‘all’) and for the specific groups of individuals based on the set of covariates we 

account for in the case of true latent body weight and height, precision error (𝜂𝑖), 

additional random noise (𝜔𝑖), and the mean-reverting error in self-reported 

anthropometrics (Panel A). Tables 6 and 7 also report the estimates of error probabilities 

and class probabilities (Panel B). Regarding the estimates of the membership probabilities 

for the six latent classes (Tables 6 and 7, Panel B), these are very similar to the 

corresponding results without covariates (Table 4).   

 

True anthropometrics: The estimated mean of true body weight is 71.9 and SD 13.8 (‘all’ 
estimates); as in the case of our model without covariates (Table 4), these results show 

that the distribution of the latent true weight has a higher mean (by about 0.4kg) than 

the mean of self-reported body weight (p-value of the difference in means <0.001). 

Differences across individual characteristics are as we expect. In line with existing 

findings (Fryar et al., 2021), men have greater average and more dispersed body weight 

than women; gender differences in APM are highly statistically significant (as shown by 

“+++” reflecting the statistical significance of the pairwise comparisons of APMs by 
gender). Moreover, there is an inverted U-shaped association between mean true body 
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weight and age (Baum, 2007); variations in the dispersion of the true weight distribution 

are also observed across age groups. We also observe systematic regional differences in 

mean latent weight (with “+++” in Table 6, reflecting the joint significance of between-

region groups differences in APM); the APM for the mean true body weight is higher in 

the South and the Southeast as opposed to other regions; this confirms existing literature 

about higher obesity rates for these regions in Brazil (Rimes-Dias et al., 2022).  

 

Turning to the latent true height (Table 7), the estimated mean is 164.4 (with a standard 

deviation 𝜎𝜉=6.848); in line with the corresponding values from our model without 

covariates (Table 4), the estimated true mean height is lower (by -0.8 cm) than the mean 

of self-reported height (Table 3). Higher mean true height, but also a larger dispersion in 

the relevant distribution, is observed for males and younger individuals (Fryar et al., 

2021). Regional variations in the mean and standard deviation of the true height 

distribution are also evident in Table 7.  

 

Measured anthropometrics: We find that the mean and the standard deviation of 

measured body weight and height (𝜇𝜁 , 𝜎𝜁) are comparable to the corresponding parameters 

from our baseline models without covariates (Tables 6 and 7 versus Table 4) and, thus, 

estimating models with covariates does not change the conclusions of our analysis. Note 

that, given absence of interviewer-level data, we do not condition these parameters on 

covariates when estimating the factor mixture models presented in Tables 6 and 7. 

Specifically, the error-prone measured body weight has a mean and standard deviation 

(𝜇𝜁 = 78.792, 𝜎𝜁 = 18.952), which are higher than the corresponding values for the true 

weight distribution; in line with our results from our baseline model without covariates, 

the estimated mean of measured body weight for those cases that are subject to 

(intentional or unintentional) recording error is around 7kg (or almost 10%) higher than 

the estimated mean of true weight.  

Regarding height, the estimated mean of the measured height for those cases that 

are subject to error (error-prone measured body height) is around 163.0cm; this is very 

close to the corresponding estimated mean from the baseline model without covariates 

(around 160cm in Table 4), and, confirm our baseline results suggesting that the mean of 

the error-prone measured height is lower than the estimated mean of true height. In line 

with our baseline models, our analysis shows that errors in measured anthropometrics 

occur with a probability (1 − 𝜋𝑟) that is very low in magnitude (about 1.5% for body weight 

and height) but systematically different from zero (p-values < 0.01).  
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Measurement errors heterogeneity in self-reported weight: The estimated mean value of 

precision error in self-reported body weight (𝜇𝜂) is -0.29 (with a standard deviation, 𝜎𝜂 = 1.60).  Taking these values as a benchmark (“All” estimates, Table 6), there are 

systematic differences in the precision error distribution across population groups. Mean 

of the reporting precision error is positive for males (0.057), while it is negative for females 

(-0.60); gender differences in APM are highly statistically significant (as shown by “+++” 
reflecting the statistical significance of the pairwise comparisons of APMs by gender). 

Moreover, the standard deviation of the imprecision error is higher for men. In other 

words, in seems that men and women have different patterns of reporting for self-reported 

weight; there is systematic mean upward bias for males with a higher dispersion, while a 

downward bias with lower dispersion is observed for females. Turning to age groups, the 

estimated APM of mean imprecision error is negative for all age groups, with variations 

in both mean imprecision error in body weight (and its dispersion) across age groups. 

There are systematic regional differences in mean imprecision error (as evident by the 

“+++” in Table 6 reflecting the joint significance of between-region groups differences in 

APM); APM for the mean impression error is more negative for the  Southeast (-0.347) 

and Northeast (-0.292), while the South has an APM for mean imprecision error of -0.180.  

The additional random error in self-reported body weight data has a negative mean  (𝜇𝜔), -0.460, and a standard deviation of 𝜎𝜔 =  4.97. As in the case of the imprecision error, 

there is a gender differences, with random error being much more negative and highly 

significant for females (-0.713) than males (-0.178). There are also systematic age 

variations (with the joint test for between-age groups differences in APMs being 

statistically significant at the 1% level) ― notably the APM for the mean random error is 

negative and (non-monotonically) increasing in absolute terms for older respondents, 

while it is positive and higher in (absolute) magnitude for the oldest age group (70+); the 

oldest age group has the highest dispersion (APM for standard deviation is 5.7). There are 

negative and statistically significant APMs for mean random error for all regions and 

between-region differences in the mean random errors and their dispersion.    

Turning to the APM for mean reversion (𝜌), we confirm our results from the models 

without covariates suggesting the mean reversion is small in magnitude (close to zero) 

but statistically significant (“all” APM in Table 6). There are gender, between-age group 

and between-region differences in mean reverting patterns. 
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Table 6: Estimates of factor mixture model for body weight with covariates. 
Panel A: Parameters 

  APM (SE)  APM (SE) 
 

All 𝜇𝜉 71.905*** (0.072) 𝜎𝜉 13.811*** (0.051) 
Female  67.336*** (0.097)  13.488*** (0.069) 

Male  77.009*** (0.107)+++  14.173*** (0.076)+++ 
Age ≤ 29  69.488*** (0.156)  13.733*** (0.111) 

Age 30-39  73.093*** (0.143)  14.107*** (0.102) 
Age 40-49  73.723*** (0.158)  13.924*** (0.112) 
Age 50-59  72.821*** (0.181)  13.824*** (0.128) 
Age 60-69  71.197*** (0.226)  13.686*** (0.160) 

Age ≥ 70  67.625*** (0.267)+++  12.616*** (0.189)+++ 
North  69.854*** (0.162)  13.471*** (0.115) 

Northeast  70.413*** (0.135)  13.387*** (0.096) 
Southeast  73.128*** (0.145)  14.132*** (0.104) 

South  74.190*** (0.191)  14.209*** (0.136) 
Center-west  72.832*** (0.194)+++  14.073*** (0.138)+++ 

       

All 𝜇𝜁 78.792*** (1.041) 𝜎𝜁 18.952*** (0.686) 
       

All 𝜇𝜂 -0.289*** (0.014) 𝜎𝜂 1.600*** (0.017) 
Female  -0.598*** (0.017)  1.429** (0.018) 

Male  0.057** (0.023)+++  1.790** (0.023)+++ 
Age ≤ 29  -0.159*** (0.030)  1.541*** (0.027) 

Age 30-39  -0.287*** (0.027)  1.593*** (0.025) 
Age 40-49  -0.430*** (0.030)  1.636*** (0.027) 
Age 50-59  -0.267*** (0.035)  1.605*** (0.032) 
Age 60-69  -0.355*** (0.044)  1.610*** (0.039) 

Age ≥ 70  -0.199*** (0.058)+++  1.672*** (0.049)+++ 
North  -0.251*** (0.031)  1.579*** (0.029) 

Northeast  -0.292*** (0.026)  1.584*** (0.025) 
Southeast  -0.347*** (0.029)  1.652*** (0.027) 

South  -0.180*** (0.036)  1.576*** (0.032) 
Center-west  -0.342*** (0.036)+++  1.584*** (0.032)+++ 

       
All 𝜇𝜔 -0.460*** (0.066) 𝜎𝜔 4.966*** (0.082) 

Female  -0.713*** (0.086)  4.786* (0.093) 
Male  -0.178* (0.100)+++  5.167* (0.100)+++ 

Age ≤ 29  -0.307** (0.134)  4.672*** (0.118) 
Age 30-39  -0.794*** (0.126)  4.828*** (0.122) 
Age 40-49  -0.782*** (0.146)  5.170*** (0.132) 
Age 50-59  -0.672*** (0.164)  5.121*** (0.145) 
Age 60-69  0.081 (0.201)  4.829*** (0.171) 

Age ≥ 70  1.211*** (0.291)+++  5.676*** (0.252)+++ 
North  -0.277* (0.146)  5.017*** (0.131) 

Northeast  -0.452*** (0.122)  4.963*** (0.110) 
Southeast  -0.532*** (0.137)  5.168*** (0.130) 

South  -0.623*** (0.165)  4.690*** (0.146) 
Center-west  -0.420** (0.169)+++  4.827*** (0.156)+++ 

       
All 𝜌 -0.038*** (0.001)    

Female  -0.030*** (0.001)    
Male  -0.046*** (0.002)+++    

Age ≤ 29  -0.042*** (0.002)    
Age 30-39  -0.036*** (0.002)    
Age 40-49  -0.033*** (0.002)    
Age 50-59  -0.036*** (0.002)    
Age 60-69  -0.039*** (0.003)    

Age ≥ 70  -0.050*** (0.004)+++    
North  -0.037*** (0.002)    

Northeast  -0.037*** (0.002)    
Southeast  -0.038*** (0.002)    
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South  -0.037*** (0.002)    
Center-west  -0.039*** (0.003)+++    

Panel B: Probabilities 
 𝜋𝑟 0.985*** (0.001) 𝑃𝑟(𝑅 = 1, 𝑆 = 1) 0.100*** (0.002) 
 𝜋𝑠 0.101*** (0.002) 𝑃𝑟(𝑅 = 1, 𝑆 = 2) 0.619*** (0.007) 
 𝜋𝜔 0.300*** (0.007) 𝑃𝑟(𝑅 = 1, 𝑆 = 3) 0.266*** (0.006) 
    𝑃𝑟(𝑅 = 2, 𝑆 = 1) 0.002*** (0.000) 
    𝑃𝑟(𝑅 = 2, 𝑆 = 2) 0.010*** (0.001) 
    𝑃𝑟(𝑅 = 2, 𝑆 = 3) 0.004*** (0.000) 
Note. The fraction of completely labelled observations (i.e., |𝑟𝑖 − 𝑠𝑖| = 0) is 10.0% for body weight. 
*** p<0.01, ** p<0.05, and * p<0.10; Significance levels for tests of APM=0. 
+++ p<0.01, ++ p<0.05, and + p<0.10; Significance level for tests for pairwise comparisons of APMs by 
gender and for the joint significance of between age groups and regional differences in APMs.  
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Measurement error heterogeneity in self-reported height. The estimated mean and 

standard deviation of precision error in self-reported body height (𝜇𝜂 , 𝜎𝜂) are 0.50 and 1.92 

(“All” estimates, Table 7), respectively. Taking these values as a benchmark, we observe 

differences in the precision error distribution across covariates (Table 7). The mean of the 

reporting precision error does not differ systematically by gender. The imprecision error 

in body height is almost monotonically increasing across age groups, with a similar 

pattern for the dispersion of the imprecision reporting error distribution for older age 

groups. There are systematic regional variations for the mean imprecision error; the APM 

for the mean impression error which is more positive for the South (0.70), while the 

Northeast has the lowest estimated APM for mean imprecision error (0.39).  

 The additional random error in self-reported body height has a positive mean value (𝜇𝜔), 1.28, and a standard deviation of 𝜎𝜔 =  4.96 (“All” estimates in Table 7). Mean values 

of the additional random noise are higher for females as opposed to males (2.34 versus 

0.09). There are also systematic age variations (as shown by “+++” in Table 7) ― notably 
the APM for the mean random error is positive and (mostly) increasing with age; the 

oldest age groups (60-69 and ≥70) have the highest mean of the random error and the 

highest dispersion. Systematic regional differences in APM for mean random error as well 

as for the dispersion of the distribution of the errors are also evident.   

As in the baseline model without covariates (Table 4), the mean reversion (𝜌) for 

the case of self-reported height is small in magnitude (close to zero) but statistically 

significant (“all” APM in Table 7).  
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Table 7: Estimates of factor mixture model for body height with covariates. 
Panel A: Parameters 

  APM SE  APM SE 
All 𝜇𝜉 164.427*** (0.036) 𝜎𝜉 6.848*** (0.026) 

Female  158.649*** (0.048)  6.641*** (0.034) 
Male  170.881*** (0.054)+++  7.081*** (0.039)+++ 

Age ≤ 29  166.843*** (0.079)  6.874*** (0.056) 
Age 30-39  165.781*** (0.070)  6.870*** (0.050) 
Age 40-49  164.467*** (0.077)  6.787*** (0.055) 
Age 50-59  162.817*** (0.091)  6.887*** (0.065) 
Age 60-69  161.216*** (0.112)  6.762*** (0.080) 

Age ≥ 70  159.667*** (0.147)+++  6.922*** (0.105)+++ 
North  162.041*** (0.082)  6.776*** (0.059) 

Northeast  163.077*** (0.070)  6.886*** (0.050) 
Southeast  166.060*** (0.072)  6.935*** (0.051) 

South  166.360*** (0.093)  6.852*** (0.066) 
Center-west  165.158*** (0.093)+++  6.713*** (0.067)+++ 

       
All 𝜇𝜁 162.984*** (0.585) 𝜎𝜁 9.172*** (0.385) 

       
All 𝜇𝜂 0.503*** (0.022) 𝜎𝜂 1.917*** (0.026) 

Female  0.486*** (0.031)  1.943*** (0.032) 
Male  0.521*** (0.029)  1.889*** (0.030)+ 

Age ≤ 29  0.195*** (0.040)  1.730*** (0.036) 
Age 30-39  0.236*** (0.037)  1.800*** (0.034) 
Age 40-49  0.405*** (0.044)  1.883*** (0.041) 
Age 50-59  0.654*** (0.056)  2.024*** (0.049) 
Age 60-69  1.078*** (0.076)  2.166*** (0.070) 

Age ≥ 70  1.697*** (0.108)+++  2.525*** (0.090)+++ 
North  0.427*** (0.051)  2.111*** (0.048) 

Northeast  0.393*** (0.040)  1.958*** (0.040) 
Southeast  0.488*** (0.040)  1.779*** (0.035) 

South  0.697*** (0.050)  1.788*** (0.044) 
Center-west  0.633*** (0.056)+++  1.983*** (0.048)+++ 

       
All 𝜇𝜔 1.276*** (0.072) 𝜎𝜔 4.958*** (0.078) 

Female  2.342*** (0.104)  5.081*** (0.091) 
Male  0.086*** (0.101)+++  4.820*** (0.098)++ 

Age ≤ 29  0.250*** (0.146)  4.704*** (0.129) 
Age 30-39  1.063*** (0.132)  4.771*** (0.115) 
Age 40-49  1.459*** (0.150)  4.919*** (0.115) 
Age 50-59  1.571*** (0.183)  5.087*** (0.160) 
Age 60-69  2.471*** (0.239)  5.158*** (0.172) 

Age ≥ 70  2.352*** (0.344)+++  6.128*** (0.238)+++ 
North  1.664*** (0.170)  5.220*** (0.139) 

Northeast  1.826*** (0.136)  5.410*** (0.112) 
Southeast  1.083*** (0.137)  4.615*** (0.124) 

South  0.627*** (0.173)  4.692*** (0.138) 
Center-west  0.756*** (0.182)+++  4.672*** (0.139)+++ 

       
All 𝜌 -0.043*** (0.003)    

Female  -0.034*** (0.004)    
Male  -0.053*** (0.004)+++    

Age ≤ 29  -0.025*** (0.005)    
Age 30-39  -0.030*** (0.005)    
Age 40-49  -0.034*** (0.005)    
Age 50-59  -0.048*** (0.007)    
Age 60-69  -0.081*** (0.010)    

Age ≥ 70  -0.112*** (0.013)+++    
North  -0.043*** (0.006)    

Northeast  -0.040*** (0.005)    
Southeast  -0.046*** (0.005)    

South  -0.044*** (0.006)    
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Center-west  -0.041*** (0.007)+++    
Panel B: Probabilities 

 𝜋𝑟 0.984*** (0.001) 𝑃𝑟(𝑅 = 1, 𝑆 = 1) 0.232*** (0.002) 
 𝜋𝑠 0.236*** (0.002) 𝑃𝑟(𝑅 = 1, 𝑆 = 2) 0.473*** (0.008) 
 𝜋𝜔 0.371*** (0.010) 𝑃𝑟(𝑅 = 1, 𝑆 = 3) 0.279*** (0.008) 
    𝑃𝑟(𝑅 = 2, 𝑆 = 1) 0.004*** (0.000) 
    𝑃𝑟(𝑅 = 2, 𝑆 = 2) 0.008*** (0.001) 
    𝑃𝑟(𝑅 = 2, 𝑆 = 3) 0.005*** (0.000) 
Note. The fraction of completely labelled observations (i.e., |𝑟𝑖 − 𝑠𝑖| = 0) is 23.3% for body height. 
*** p<0.01, ** p<0.05, and * p<0.10 (Significance levels for tests of APM=0). 
+++ p<0.01, ++ p<0.05, and + p<0.10; Significance level for tests for pairwise comparisons of APMs 
by gender and for the joint significance of between age groups and regional differences in APMs. 

 

 

4.3 Post-estimation analysis 

 

Table 8 shows the precision of the seven types of “hybrid” predictions for body weight, for 

our factor mixture models with and without covariates, using simulations with 1,000 

replications. The results for height are shown in Table 9. Our first measure of reliability 

is analogous to the slope coefficient from a (hypothetical) regression of true 

anthropometrics on the observed anthropometrics measure; higher values correspond to 

greater reliability and a value greater than one indicates mean reversion. Reliability 2 

represents the squared correlation between true anthropometrics and observed 

anthropometrics measure. These reliability measures should only be used to assess how 

close a given measure is to the relevant true value and should not be compared across 

model specifications. For the models of body weight and height, with and without 

covariates, all hybrid measures provide very large reliability coefficients. A closer look at 

Tables 8 and 9 shows that the smallest MSE is found for the weighted (conditional) 

prediction for both anthropometric measures and across models with and without 

covariates. This indicates that these predictors perform better, as shown by the MSE 

using out-of-sample simulations, and, thus, the weighted (conditional) prediction is our 

preferred “hybrid” prediction for both weight and height. 
  



 31 

 

Table 8: Precision of “hybrid” body weight predictions.  
 No covariates With covariates 
 Rel1 Rel2 MSE Rel1 Rel2 MSE 
Measured body weight (𝑟) 0.973 0.959 9.242 0.968 0.953 9.191 
Self-reported body weight (𝑠) 0.977 0.956 9.973 0.985 0.952 9.425 
Hybrid body weight predictors       
1. Weighted (unconditional) 0.978 0.964 8.142 0.975 0.959 8.080 
2. Weighted (unconditional) unbiased 0.978 0.964 8.139 0.974 0.959 8.077 
3. Weighted (conditional) 1.000 0.997 0.697 1.000 0.996 0.709 
4. Weighted (conditional) unbiased 1.000 0.997 0.701 0.999 0.996 0.713 
5. Two-stage 0.998 0.996 0.867 0.998 0.995 0.878 
6. Two-stage, unbiased 0.998 0.996 0.869 0.997 0.995 0.881 
7. System-wide linear 1.000 0.978 4.791 1.000 0.976 4.665 

 

 

Table 9: Precision of “hybrid” body height predictions.  
 No covariates With covariates 
 Rel1 Rel2 MSE Rel1 Rel2 MSE 
Measured body height (𝑟) 0.962 0.930 6.442 0.971 0.956 2.126 
Self-reported body height (𝑠) 0.927 0.901 9.804 0.838 0.811 10.877 
Hybrid body height predictors       
1. Weighted (unconditional) 0.980 0.946 4.881 0.982 0.962 1.790 
2. Weighted (unconditional) unbiased 0.977 0.946 4.872 0.980 0.963 1.792 
3. Weighted (conditional) 1.000 0.985 1.338 1.000 0.984 0.777 
4. Weighted (conditional) unbiased 0.997 0.985 1.355 0.998 0.983 0.790 
5. Two-stage 0.991 0.980 1.828 0.989 0.979 1.002 
6. Two-stage, unbiased 0.989 0.980 1.839 0.988 0.979 1.017 
7. System-wide linear 1.000 0.957 3.838 1.000 0.963 1.753 

  

 

Simulation analysis helps to identify the preferred predictors for the latent true 

body weight and height. After choosing the preferred prediction, the  sample data are used 

to compute the true latent anthropometric measures in order to calculate a BMI measure 

that aims to approximate the true BMI distribution. Table 10 provides descriptive 

statistics of this preferred “hybrid” BMI measure obtained from models with and without 

covariates. In Table 10 presents descriptive statistics  for the "corrected self-reported 

BMI” measure ― a frequently used measure in studies that do not have access to measured 

anthropometric data (Cawley 2015).14 Although the “corrected self-reported BMI” is not 

 

14 Existing studies in the economics of obesity literature that rely on self-reported anthropometrics 
often estimate corrective equations (or utilize the coefficients from existing equations) based on the 
relationship between measured and self-reported body weight and height data from alternative 
data sources (Cawley 2015). To mimic correction procedures for self-reported anthropometrics in 
the existing studies, we estimate analogous “corrective” equations by regressing measured weight 
and height data on self-reports and a vector of demographics (results from these equations are 
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driven by the mixture measurement error models, adding BMI measures in Table 10 that 

are based on “corrective” equations allows  comparisons with a popular measure used in 

the existing literature in the absence of measured BMI data. 

 The “hybrid” BMI measures, with and without covariates, and the BMI based on 

measured data are very close both at the mean and across their distribution. It seems 

however that at the right tails, the q75 and q90 are slightly lower for the “hybrid” 
measures (both with and without covariates) as opposed to the BMI based on measured 

data; the latter reflected in the difference in inter-quantiles ranges between the “hybrid” 
measures and measured BMI. On the other hand, BMI values that are based on self-

reported data are always lower at the mean level and across quantiles of the distribution 

as well as with a lower dispersion compared to both the “hybrid” measures (obtained from 

models with and without covariates) and the BMI based on measured data. Statistics for 

the “corrected self-reported BMI” depart from the self-reported BMI values; the “corrected 
self-reported BMI” has a higher mean and quantiles, up to median of the distribution, 

when compared to the “hybrid” measures, while the opposite is the case at higher 
quantiles (p75 and p90). 

Overall, these results suggest that similar “hybrid” measures are obtained from 

the models with and without covariates and that these measures are very close to the BMI 

measure based on the measured weight/height data. On the other hand, the BMI based 

on self-reported data underestimate the “true” values. This indicates that the recording 

error in measured anthropometrics does not translate into major differences between the 

“hybrid” and the measured anthropometrics as a result of their small likelihood of 

occurrence in our sample. Finally, the distribution of the popular “corrected self-reported 

BMI”, does not perform well as an alternative to measured BMI or our “hybrid” BMI 
measures.  

 

 

 

 

 

 

 

available in the Appendix, Table A3). The predictions from these equations are used to calculate 
self-reports of body weight and height that are corrected for reporting error – these results from 
our "corrected self-reported BMI” measure as presented in Tables 10 and 11.  
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Table 10. Distributions of BMI based on preferred “hybrid” anthropometric predictions, BMI 
based on self-reported, “corrected self-reported” and measured body weight/height data. 

 Self-reported  
BMI 

Corrected  
self-reported BMI 

Measured 
BMI 

Hybrid BMI 

 
No covariates 

With 
covariates 

Statistics      

Mean 26.158 26.572 26.580 26.526 26.555 

p10 20.776 21.142 20.911 20.936 20.942 

p25 22.942 23.322 23.147 23.131 23.152 

p50 25.510 25.939 25.960 25.914 25.950 

p75 28.720 29.212 29.320 29.237 29.278 

p90 32.242 32.748 32.941 32.829 32.863 

Inter-quantile rages      

p75 - p25 5.778 5.890 6.173 6.106 6.125 

p50 - p10 4.735 4.798 5.049 4.977 5.009 

p90 - p50 6.732 6.809 6.981 6.916 6.912 

p90 - p10 11.466 11.607 12.030 11.893 11.921 

 

4.4 Implications for the association between BMI and health care utilization 

 

In this sub-section, we provide evidence to test the sensitivity of econometric analyses 

where BMI is used as an explanatory variable. We compare results with the “hybrid” BMI 

measures, estimated from our factor mixture models, with those based on self-reported, 

“corrected self-reported” and measured anthropometrics.  

 We estimate linear regression models to measure the association between BMI and 

the frequency of hospital admissions in the previous 12 months (Table 11). To facilitate 

interpretation of specifications that use polynomials in BMI, Figure 3 presents the 

adjusted predictions at representative values (APRs), i.e., the predicted health care use 

across selected BMI values with all the other variables kept at their mean values (based 

on the models presented in Table 11). As shown in Figure 3, the APRs for health care use 

are practically identical for the “hybrid” measures of BMI. Although the APRs for health 

care use for the measured and “hybrid” BMI measures are similar across their 

distribution, they differ at the very high tails of the BMI distribution (above BMI values 

of 41.5 kg/m2). Turning to self-reported BMI, the relevant results depart from those of our 

“hybrid” BMI measures (and measured BMI) especially at the lower (BMI values below 

23.5 kg/m2) and higher tails (BMI values above 37 kg/m2) of the BMI distribution. The 

APRs for health care use for the corrected self-reported BMI lie between the corresponding 

results for self-reported and measured anthropometrics, lying much closer to those for 

BMI based on measured data.   
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Table 11: Linear regression models of healthcare utilization in the last 12 months on BMI 
measures. 

 
Self-reported BMI 

Corrected 
Self-reported BMI 

Measured BMI 
Hybrid BMI 

 
No 

covariates 
With 

covariates 

BMI -5.994*** -5.908*** -6.281*** -5.991** -6.301*** 

 (2.165) (2.250) (2.378) (2.374) (2.472) 

 
     

BMI² 19.951*** 19.211** 19.791** 18.796** 19.712** 

 (7.375) (7.609) (8.096) (8.101) (8. 445) 

 
     

BMI³ -20.484** -19.224** -19.101** -17.997** -18.821** 

 (8.137) (8.348) (8.929) (8.967) (9.352) 

 
     

Observations 37,335 37,335 37,335 37,335 37,335 
† BMI is divided by 100.  
Notes: Standard errors robust to heteroscedasticity in parentheses. Our models account for age, 
gender, ethnicity and geographic region fixed effects.  
** p<0.05, *** p<0.01 

 

Figure 3:  Predicted health care use across selected BMI values                      
(based on OLS models in Table 11) 
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5. Conclusion 

 

Existing research in the economics of obesity shows that self-reported data are subject to 

measurement error, which can lead to biased estimates in empirical research that relies 

on self-reported anthropometrics (e.g., Cawley 2015; Cawley et al. 2015; Davillas and 

Jones 2021; Gil and Mora 2011; O’Neill and Sweetman 2013). These analyses, however, 

explicitly assume that measured anthropometrics are error-free as they are treated as 

“gold standards” when compared to self-reported data. The literature provides little 

discussion of the potential measurement errors that measured anthropometrics may 

entail. The latter is of particular relevance given developments in large-scale social 

surveys that involve the integration of physical health measurements, in addition to 

traditional self-reported measures. To fill this gap in the literature, we use the KY factor 

mixture model (Kapteyn and Ypma, 2007) to analyse and characterize measurement error 

in both self-reported and measured anthropometrics with national representative data 

from the 2013 National Health Survey in Brazil.  

We find that a very small, but statistically significant fraction of measured 

anthropometrics, may contain recording errors. The estimated probability that the self-

reported anthropometrics are free from any measurement error are, as expected, 

relatively low at about 10% and 23% for body weight and height data ─ these results 
remain robust with and without accounting for covariates in our factor mixture models. 

This highlights that respondent’s lack of awareness of their true anthropometrics in 

combination with the lack of precision of the self-reported questionnaires may be sources 

of the observed measurement error. For example, it has been argued that enhancing 

people’s knowledge of their exact anthropometric values (by monitoring interventions) 
may indeed improve their ability to accurately report their anthropometric values (Sherry 

et al. 2007).  

Of particular interest, our analysis reveals that mean reverting errors in self-

reported anthropometrics are low in magnitude, after accounting for other sources of 

errors in self-reported data. These findings contradict the existing literature that 

compares self-reported with measured anthropometrics, arguing there are strong mean 

reverting patterns at least for body weight (e.g., Cawley et al. 2015). However, unlike our 

analysis, it should be noted that most studies that compare self-reported with measured 

anthropometrics assume measured anthropometrics are error-free and do not account for 

other potential sources of measurement errors. Our study is, therefore, potentially useful 
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for exploring the sources of measurement errors that may affect both self-reported and 

measured anthropometrics and the magnitude of bias that each source of error may cause.  

 Factor mixture models that account for covariates are used to explore the potential 

heterogeneity of reporting errors in self-reported as well as the true latent 

anthropometrics across population groups. A limitation of our analysis is the absence of 

interviewer-level data. This necessarily limits our factor mixture models, with no 

covariates accounted for in the measurement error in measured anthropometrics. If we 

had had the opportunity to provide insights on how measurement error in the physical 

measurements varies across interviewer characteristics, we would have been able to 

provide relevant recommendations to survey data teams to improve measurement 

protocols.   

Latent true anthropometrics vary across age groups, by gender and across regions 

broadly in line with the existing literature (e.g., Arntsen et al., 2023; Baum and Ruhm, 

2009; Davillas and Jones, 2020; Fryar et al., 2021; Rimes-Dias et al., 2022). Males have 

higher true mean body weight and height; mean true body weight is associated with an 

inverted U-shaped relationship with age; mean true height is monotonically decreasing 

with age, reflecting birth-cohort effects and loss of height as people become older (e.g., 

Arntsen et al., 2023).  

Overall, we find that being older is associated with higher reporting errors (due to 

imprecision error or other random errors) in self-reported body weight and height. These 

results highlight the role of age-related changes in cognitive and communicative 

functioning on self-reported data (Knäuper et al. 2016); it has been shown than age-

related impacts on cognitive ability, question interpretation as well as memory retrieval 

have impacts of people’s self-reports as they become older. This is of particular relevance 

in the case of self-reports of body weight and height as it involves respondent’s cognitive 
ability, memory and ability to process information. Moreover, we find the presence of 

systematic gender differences in measurement error in self-reported weight and height 

data, with women reporting with more errors than men. These results are broadly in line 

with the existing literature (e.g., Cawley et al. 2015, Gil and Mora 2011). For example, it 

may be the case that women experience greater social stigma than men for having excess 

weight or that other related social norm pathways affecting reporting behaviour in 

anthropometrics may be the relevant underlying mechanisms (Gil and Mora 2011; Puhl 

and Heuer 2009; Sattler et al. 2018). The observed regional differences in self-reported 

measurement error may reflect cultural, socioeconomic and demographic differences 

across Brazilian regions; however, it is impossible to disentangle the role of particular 
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characteristics on shaping these results given the aggregate regional variations we 

employ in our analysis.  

To explore the practical implications of our measurement error results, post-

estimation analysis and out of the sample simulations are employed to estimate hybrid 

anthropometric predictions that best approximate the true body weight and height 

distribution. Our proxies of true BMI distribution are very close to the distribution of BMI 

based on measured anthropometrics. On the other hand, BMI based on self-reported data 

seems to under-estimate the true BMI distribution. “Corrected self-reported BMI” 
measures, based on conventional methods to mitigate reporting error in self-reports using 

predictions from corrective equations, do not perform as well as our “hybrid” BMI 
measures.  

We implement analysis on the potential implications of the measurement error 

when different BMI measures are used as explanatory variable in econometric models on 

health care utilization. We find similar econometric results when they are based on 

measured data or on our hybrid BMI measures across most of the BMI distribution, while 

only small differences are observed at the very high tails of the distribution (above BMI 

values of 41.5 kg/m2). Differences are also observed in the econometric results based on 

self-reported or “corrected self-reported” data when compared to our hybrid BMI 
measures at the lower and higher BMI tails. Our findings further confirm existing 

evidence suggesting that BMI based on self-reported data may bias econometric results 

when BMI is used as an explanatory variable (e.g., Cawley et al. 2015), and suggest that 

conventional ways to correct self-reported anthropometrics may not provide mitigation.  

Measured anthropometrics may encompass some systematic measurement error, 

but our estimates suggest a very low prevalence of errors and this is reflected in the 

presence of only small differences, concentrated at the right tail of the distribution, 

compared to our proxies of true BMI. Nevertheless, the possibility of errors in measured 

anthropometrics should be acknowledged when searching for an error-free adiposity 

measure, especially when focusing on the extreme right tail of the distribution of BMI.    
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Appendix 

 

Figure A1: Kernel densities for the absolute differences between the 1st and 2nd body weight 
and height physical measurement 
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Figure A2. Kernel densities: body weight, height, and BMI. 
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Table A1: Estimation of factor mixture model for body weight and height – measured 
weight/height data are rounded at the nearest integer. 

Parameter 
Weight 

(kg) 
Height 

(cm) 𝜇𝜉 71.571*** 164.338*** 
 (0.077) (0.050)    𝜎𝜉 14.883*** 9.459*** 
 (0.055) (0.035)    𝜇𝜁 79.543*** 158.978*** 
 (1.457) (0.450)    𝜎𝜁 20.207*** 8.591*** 
 (0.949) (0.307)    𝜇𝜂 0.080*** 1.065*** 
 (0.021) (0.029)    𝜎𝜂 2.287*** 2.306*** 
 (0.023) (0.037)    𝜇𝜔 -0.511*** 0.544*** 
 (0.101) (0.094)    𝜎𝜔 5.936*** 4.757*** 
 (0.127) (0.101)    𝜋𝑟 0.990*** 0.970*** 
 (0.001) (0.002)    𝜋𝑠 0.265*** 0.334*** 
 (0.002) (0.003)    𝜋𝜔 0.252*** 0.379*** 
 (0.009) (0.016)    𝜌 -0.041*** -0.056*** 
 (0.001) (0.002)    

Class probabilities   𝑃𝑟(𝑅 = 1, 𝑆 = 1) 0.263*** 0.324*** 
 (0.002) (0.002) 𝑃𝑟(𝑅 = 1, 𝑆 = 2) 0.544*** 0.401*** 
 (0.007) (0.011) 𝑃𝑟(𝑅 = 1, 𝑆 = 3) 0.183*** 0.245*** 
 (0.006) (0.011) 𝑃𝑟(𝑅 = 2, 𝑆 = 1) 0.003*** 0.010*** 
 (0.000) (0.001) 𝑃𝑟(𝑅 = 2, 𝑆 = 2) 0.005*** 0.012*** 
 (0.001) (0.001) 𝑃𝑟(𝑅 = 2, 𝑆 = 3) 0.002*** 0.008*** 
 (0.000) (0.001) 

Log-likelihood -249,954.7 -230,849.5 
Observations 37,335 37,335 

Notes: The fraction of labelled observations (i.e., |𝑟𝑖 − 𝑠𝑖| = 0) is 26.3% for weight, and 32.4% 
relative to height. 
*** p<0.01 
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Table A2: Estimation of factor mixture model for body weight and height (measured 
data: average between 1st and 2nd measurement). 

Parameter 
Weight 

(kg) 
Height 

(cm) 𝜇𝜉 71.936*** 164.519*** 
 (0.077) (0.050)    𝜎𝜉 14.848*** 9.443*** 
 (0.055) (0.035)    𝜇𝜁 79.557*** 159.380*** 
 (1.208) (0.391)    𝜎𝜁 19.751*** 8.716*** 
 (0.793) (0.260)    𝜇𝜂 -0.342*** 0.333*** 
 (0.014) (0.022)    𝜎𝜂 1.600*** 1.695*** 
 (0.017) (0.026)    𝜇𝜔 -0.351*** 1.216*** 
 (0.065) (0.064)    𝜎𝜔 5.097*** 4.320*** 
 (0.082) (0.066)    𝜋𝑟 0.988*** 0.967*** 
 (0.001) (0.002)    𝜋𝑠 0.088*** 0.217*** 
 (0.001) (0.002)    𝜋𝜔 0.309*** 0.437*** 
 (0.007) (0.011)    𝜌 -0.023*** -0.032*** 
 (0.001) (0.002)    

Class probabilities   𝑃𝑟(𝑅 = 1, 𝑆 = 1) 0.087*** 0.210*** 
 (0.001) (0.002) 𝑃𝑟(𝑅 = 1, 𝑆 = 2) 0.622*** 0.426*** 
 (0.007) (0.009) 𝑃𝑟(𝑅 = 1, 𝑆 = 3) 0.278*** 0.331*** 
 (0.007) (0.008) 𝑃𝑟(𝑅 = 2, 𝑆 = 1) 0.001*** 0.007*** 
 (0.000) (0.000) 𝑃𝑟(𝑅 = 2, 𝑆 = 2) 0.008*** 0.015*** 
 (0.001) (0.001) 𝑃𝑟(𝑅 = 2, 𝑆 = 3) 0.004*** 0.011*** 
 (0.000) (0.001) 

Log-likelihood -250,889.2 -234,764.3 
Observations 37,335 37,335 

Notes: Robust standard errors to heteroscedasticity in parentheses. The fraction of labelled 
observations (i.e., |𝑟𝑖 − 𝑠𝑖| = 0) is 8.7% for weight, and 21.0% relative to height. 
*** p<0.01 
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Table A3: “Corrective equations” for body weight and height. 

 
Measured 

weight 
Measured 

height 
Self-reported weight 1.0015*** 

-  (0.0017) 
Self-reported height 

- 
0.8344*** 

 (0.0035) 
Male -0.5494* 2.4708*** 
 (0.3314) (0.0575) 
Age 0.0718*** -0.0184** 
 (0.0105) (0.0072) 
Age² -0.0008*** -0.0003*** 
 (0.0001) (0.0001) 
Male x Age -0.0226 

-  (0.0149) 
Male x Age² 0.0003** 

-  (0.0002) 

Adj. R² 0.9366 0.8679 

Observations 37,335 37,335 
Note: Standard errors robust to heteroscedasticity in parentheses. 
*** p<0.01, ** p<0.05, and *p<0.1. 

 


