
This is a repository copy of Formal Design, Verification and Implementation of Robotic
Controller Software via RoboChart and RoboTool.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/212366/

Version: Published Version

Article:

Li, Wei orcid.org/0000-0001-9786-585X, Ribeiro, Pedro orcid.org/0000-0003-4319-4872,
Miyazawa, Alvaro orcid.org/0000-0003-2233-9091 et al. (5 more authors) (2024) Formal
Design, Verification and Implementation of Robotic Controller Software via RoboChart and
RoboTool. Autonomous Robots. 14. ISSN 0929-5593

https://doi.org/10.1007/s10514-024-10163-7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Autonomous Robots (2024) 48:14

https://doi.org/10.1007/s10514-024-10163-7

Formal design, verification and implementation of robotic controller
software via RoboChart and RoboTool

Wei Li1,2 · Pedro Ribeiro3 · Alvaro Miyazawa3 · Richard Redpath2 · Ana Cavalcanti3 · Kieran Alden2 ·

Jim Woodcock3 · Jon Timmis4

Received: 19 July 2022 / Accepted: 20 April 2024

© The Author(s) 2024

Abstract

Current practice in simulation and implementation of robot controllers is usually undertaken with guidance from high-level
design diagrams and pseudocode. Thus, no rigorous connection between the design and the development of a robot controller
is established. This paper presents a framework for designing robotic controllers with support for automatic generation of
executable code and automatic property checking. A state-machine based notation, RoboChart, and a tool (RoboTool) that
implements the automatic generation of code and mathematical models from the designed controllers are presented. We
demonstrate the application of RoboChart and its related tool through a case study of a robot performing an exploration task.
The automatically generated code is platform independent and is used in both simulation and two different physical robotic
platforms. Properties are formally checked against the mathematical models generated by RoboTool, and further validated
in the actual simulations and physical experiments. The tool not only provides engineers with a way of designing robotic
controllers formally but also paves the way for correct implementation of robotic systems.

Keywords Formal verification · Robotic controller · State machine · Domain specific language

1 Introduction

Many autonomous systems are deployed in critical applica-
tions. A key challenge in developing such systems is ensuring
they operate as expected. It is often the case that the software
for a robotic system is validated during, or after development,
and typically experimentally. Even then, only a small subset
of their possible behaviours can be validated, given the dif-
ficulties in testing such complex systems. It is very hard to
ensure that exhaustive testing has been undertaken or that

B Wei Li
fd liwei@fudan.edu.cn

Pedro Ribeiro
pedro.ribeiro@york.ac.uk

1 Academy for Engineering and Technology, Fudan University,
Shanghai 200043, China

2 Department of Electronic Engineering, University of York,
York YO10 5DD, UK

3 Department of Computer Science, University of York, York
YO10 5GH, UK

4 Department of Computer Science, Aberystwyth University,
Aberystwyth SY23 3FL, UK

adequate coverage with respect to testing has been achieved
(Lewis, 2009).

Formal verification is the use of mathematical reasoning
to ensure correct execution of computing systems and show
that the system satisfies its desired properties or specifications
(Ray, 2010). It has been used to verify a variety of robotic
systems such as self-driving cars (Bringsjord & Sen, 2016),
assistant robots (Webster et al., 2016), UAVs (Webster et al.,
2011) and swarming robots (Rouff et al., 2007; Winfield et
al., 2005).

Finite state machines are often adopted in the design of
robot controllers (Park et al., 2013; Bjerknes & Winfield,
2010; Chen et al., 2015), which execute the program to
operate a robot. Here, by controller we refer to the soft-
ware that implements high-level decision making, reacting
to inputs from sensors or embedded software, and producing
outputs to be realised by actuators and or low-level control
algorithms. In the design stage, often a state machine dia-
gram guides the development of the software controller, and
is validated using simulation, but no rigorous connection
between the design and the implementation is established.
This makes it hard to maintain the consistency between high-
level controller designs and low-level implementations. In

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-024-10163-7&domain=pdf
http://orcid.org/0000-0001-9786-585X
http://orcid.org/0000-0003-4319-4872
http://orcid.org/0000-0003-2233-9091
http://orcid.org/0000-0002-0831-1976
http://orcid.org/0000-0003-4411-1776
http://orcid.org/0000-0001-7955-2702
http://orcid.org/0000-0003-1055-0471

 14 Page 2 of 22 Autonomous Robots (2024) 48:14

Fig. 1 A development workflow starting from a RoboChart design
model and properties of interest, both informed by requirements. Arti-
facts are indicated by ovals: a mathematical model suitable for analysis
using formal verification tools; and executable controller code suitable

for loading into a robotics simulator or deployment onto physical robots.
Property verification, via formal approaches and simulation, guides the
model evolution. The dashed box defines the scope of the activities
carried out using RoboTool

order to build a rigorous connection between design and
implementation of autonomous robotic systems, we explore
the use of a top-down model-driven approach, focusing on
high-level specification and automatic code generation from
software design models (Ken, 2002) that are verified to meet
functional requirements. We explore the role formal veri-
fication can play in the development of the software for a
robotic controller at an early stage, even before simulation
and deployment are considered, and whether a systematic
approach to code generation from design models is feasible,
so that a typical iterative development can be model-based,
rather than code-centric. We propose an approach, and a tool,
that practitioners can use for rapid iterative design supported
by: (a) automated formal verification; (b) automatic code
generation for simulation. The former allows a developer to
get confidence at an early stage that a design is sound, while
the latter can help eliminate errors that could otherwise be
introduced in the process of manually implementing, and
revising, simulation code.

To this end, we use RoboChart (Miyazawa et al., 2019), a
state-machine based notation which supports design and ver-
ification of the software for robotic controllers. RoboChart
takes inspiration from UML, a commonly used modelling
language in software development (Bergenti & Poggi, 2000).
It is specialised for robotics, and provides support for mod-
elling the architecture of robotic systems, including facilities
to model time and probabilities. By adopting the Z (Wood-
cock & Davies, 1996) type system and its mathematical
toolkit, RoboChart supports rich data modelling primitives,
such as, sets, abstract datatypes and mathematical functions,
for modelling the software at a high-level of abstraction,
which is key for exploiting automated verification tech-

niques. While the work we describe here concerns only the
(discrete-timed) software and its execution, work is ongo-
ing to complement, and connect, the software with models
of physical robots (Miyazawa et al., 2020) and simulation
scenarios. Distinctively from other modelling languages,
RoboChart has a formal semantics tailored for automatic
verification of (discrete) timed functional properties of the
software, namely via model-checking, an approach that can
provide counter-examples when a violation is identified.

Figure 1 outlines a development workflow using RoboChart
that comprises design, formal verification, and simulation
of robotic controllers. From a RoboChart design a mathe-
matical model is automatically generated, which is used to
assess conformance against properties of interest using for-
mal verification tools. If the result is not satisfactory, then
the model is evolved until all properties of interest are satis-
fied. Then, executable code can be automatically generated
for simulation or deployment. Similarly, properties of inter-
est can be assessed against observed behaviour in simulation
and deployment. Likewise, if the results are unsatisfactory
then the model is evolved, avoiding the need for manually
modifying code, an endeavour that could lead to the intro-
duction of unintended problems in an implementation. To
support this workflow, we have developed RoboTool,1 a set
of Eclipse plugins that include a graphical editor for con-
structing RoboChart design models, textual editors for stating
properties of a design, including absence of livelocks and
deadlocks, but also application-specific behavioural proper-
ties. Importantly, RoboTool provides integration with formal
verification tools, for example, making reports of verification

1 https://robostar.cs.york.ac.uk/robotool/.

123

https://robostar.cs.york.ac.uk/robotool/

Autonomous Robots (2024) 48:14 Page 3 of 22 14

results directly available within the tool. This facilitates the
construction and validation of RoboChart models, as well as
the automatic generation of simulations and mathematical
models, contributing to the implementation of safe robotic
controllers.

In Li et al. (2016), we demonstrate the usage of a pre-
liminary version of RoboChart together with the automatic
generation of C++ code for a small subset of RoboChart.
The generated code is validated using two case studies of
multi-robot systems in simulation. The simulation adopts
the model-viewer-controller (MVC) pattern (Gamma et al.,
1994). Here, we present a richer version of RoboChart, cov-
ering a broader set of constructs, such as composite states,
and its event-based paradigm that admits both synchronous
and asynchronous communications. Moreover, we propose a
new software architecture that is closer to that of the for-
mal semantics. This closer correspondence facilitates the
definition of compositional rules mapping elements of a
RoboChart design model to code, and paves the way for
verifying the correctness of the code generator against the
(formal) mathematical model. We also report on evidence
obtained by model-checking that traces collected from exe-
cuting generated simulations are in conformance with the
formal semantics. The details of the formal semantics and
automatic property checking using the related tools are dis-
cussed in Miyazawa et al. (2018, 2019), while in this paper
we emphasise the simulation and deployment of robotic
applications.

In this paper, we demonstrate the application of RoboChart
and its related tool through a case study of a robot perform-
ing an exploration task. The robot shares many similarities
with other robotic systems. For example, the robot needs to
explore the environment autonomously while avoiding col-
lisions. It also needs to meet certain critical properties such
as being responsive to a command.

In summary, the main contributions of this paper are as
follows:

• Illustrates the role automatic formal verification tech-
niques can play in the iterative model-based development
of robot controllers.

• Proposes a novel software architecture as a target for
automatic generation of object-oriented code from Robo-
Chart design models. In contrast with previous work, it
covers a richer set of constructs and is closer to the formal
semantics.

• Reports on evidence that our code generation approach
preserves functional behaviour from design through sim-
ulation and deployment.

The remainder of the paper is organised as follows. Sec-
tion 2 presents related work. Section 3 introduces RoboChart,
its overall structure and a simple example showing key

features of the language. Section 4 presents the software
architecture involved in executing a RoboChart model, show-
ing how the elements in a RoboChart model are mapped
to the different elements of the software architecture. Sec-
tion 5 presents the RoboChart model for the case study of the
exploration robot. In Sect. 6, we discuss the verification of
properties of the robotic system and its validation via sim-
ulation and hardware experiments. Section 7 concludes and
discusses future work.

2 Related work

RoboChart is a domain-specific language (DSL), dedicated to
robotic applications. It supports a model-driven engineering
approach, which focuses on creating and exploiting models to
provide high-level descriptions of a system. It also provides
automatic code generation for simulation and deployment.
DSLs have been widely developed in robotics either for
general robotic platforms (Schlegel et al., 2009; Dhouib et
al., 2012; Klotzbucher & Bruyninckx, 2012) or a particu-
lar robotic platform (Schultz et al., 2007; Baumgartl et al.,
2013). A survey on DSL for robotics is available in Nord-
mann (2016). RoboChart is distinctive to these works in its
support for mathematical proof of (timed) behavioural prop-
erties of design models.

Work in Dhouib et al. (2012) presents a general robotics
DSL, RobotML. The aim of RobotML is to support mod-
elling of robotic systems and automatic generation of
platform-independent code. RobotML was defined as a UML
profile, with the main advantage of describing different com-
ponents (such as robotic architecture and environment) of a
robotic system at a functional level along with their commu-
nication protocol. RobotML can generate code for different
target platforms, such as OROCOS,2 that provides a com-
plete library for robotic applications, and MORSE.3

Work by Schlegel et al. (2009) describes a DSL that
also adopts a UML-based component framework. Compo-
nents are realised through a set of communication patterns
such as request/response and publish/subscribe, which define
the visibility of components. A tiered approach, covering
abstract and concrete software component models is fur-
ther explored in Schlegel et al. (2021). Behavioural aspects
are characterised by blocks, whose semantics is deferred to
outside documentation or reference implementations. Tool
support is discussed in Stampfer et al. (2016). In Baumgartl et
al. (2013), a DSL is developed for robot pick-and-place appli-
cations. The authors demonstrate their approach through a
grasp task in which the robot needs to pick and grasp a par-
ticular object in an open environment. The key components

2 https://www.orocos.org/ocl.
3 https://morse-simulator.github.io/.

123

https://www.orocos.org/ocl
https://morse-simulator.github.io/

 14 Page 4 of 22 Autonomous Robots (2024) 48:14

such as pick and path planner are specified in the language.
Additionally, it provides partial support for modelling robot
hardware. These works only provide a modelling framework
while no verification is performed.

In Schultz et al. (2007), a language is developed to
program self-assembling robots. The authors propose a role-
based language that allows the programmer to define the
behavioural roles of each component independently from
the concrete physical structure of the robots. A language for
verifying multi-robot systems is developed in Harbin et al.
(2021), which supports the systematic robustness analysis of
multi-robot systems in simulation. However, automatic exec-
utive code is not generated while it can generate middleware
for Gazebo/ROS.

In these works, the semantics of the domain specific
languages are not formally specified, and there is no sup-
port for formal verification of a model designed using such
languages. RoboChart is a DSL for designing and veri-
fying robotic controllers based on state-machines, with a
well defined semantics to support generation of mathemat-
ical models for formal verification as well as generation of
platform-independent code for simulation and deployment.

It should be noted, however, that formal verification is
supported in other languages. A comprehensive survey on
formal specification and verification of autonomous robotic
systems is presented in Luckcuck et al. (2019). It highlights
the challenges and importance of integrating formal methods
for verification. The most prominent technique employed
is model checking, namely using temporal logic and state
transition systems. For example, verification by model check-
ing is also considered for GenoM Foughali et al. (2016).
Models are translated to a mathematical notation called
Fiacre, which is close to the input language of the Petri Net
model checker TINA. Verification focuses on schedulabil-
ity. Another approach uses a mathematical notation, BIP, for
deadlock checking and schedulability analysis (Abdellatif et
al., 2012). As opposed to RoboChart, GenoM is an executable
language; models, for example, include C code.

The language in Fleurey and Solberg (2009) is used to
model the adaptive architecture of an exploration robot.
Automatic generation of mathematical definitions supports
the use of model checking and other proof techniques to iden-
tify optimal configurations. Unlike RoboChart, behavioural
properties are not the focus. What we present here is an
approach for modelling, simulation and property checking
of robotic systems.

There are other works focusing on developing verifica-
tion techniques for certain specific components of robotic
systems. In Kortik and Shastha (2021), a novel representa-
tion and verification technique for ROS components using a
linear logic theorem prover is presented. The system model
can be either statically extracted by a ROS based static anal-
ysis framework or dynamically extracted once all system

components are running. Similarly, Santos et al. (2021) also
extracts models from ROS executable code for the purpose of
static analysis and model checking of (untimed) behavioural
properties, defined via a DSL (Carvalho et al., 2020), over
message-passing between nodes given loose behavioural
specifications that must be manually constructed for each
node. In contrast, in our framework we adopt a model-driven
approach that starts from a high-level design model rather
than from code.

In Cardoso et al. (2020), components of a NASA rover
simulation are verified using complementary methods: the
high-level Beliefs-Desires-Intention (BDI) agent is verified
using the Agent Java Path Finder (AJPF) model checker
(Bordini et al., 2008); the environment interface is verified
using Dafny (Leino, 2010); and a model of action nodes,
following the publish-subscribe paradigm of ROS, is ver-
ified using the FDR model checker (Gibson-Robinson et
al., 2014). The emphasis is on component verification with
formal models guiding the generation of runtime monitors.
Modelling of architectural patterns in RoboChart can be tack-
led using the companion DSL called RoboArch (Barnett et
al., 2022), which has been applied in conjunction with Cor-
teX (Caliskanelli et al., 2021), a software framework targeted
at the nuclear industry.

In Colledanchise et al. (2021) Behavior Trees are for-
malised via program graphs, akin to extended finite state
machines, but without considering time primitives directly
in BTs. Instead, a master tick generator is considered
for runtime verification of properties, such as deadlines,
expressed in a fragment of Timed Propositional Temporal
Logic (TPTL) (Alur & Henzinger, 1994). The notion of a
clock generator is similar in nature to the approach adopted
in UML-RT (Selic, 1998) with timers. UML (OMG Uni-
fied Modeling Language, 2015) has a simple notion of time
that is not adequate for modelling timed properties. Another
profile, UML-MARTE (Selic & Grard, 2013) supports the
specification of logical, discrete and continuous time through
the notion of clocks. Support for specification of deadlines
and duration of behaviours is largely focused on particu-
lar behavioural instances via sequence and time diagrams.
RoboChart, on the other hand, provides facilities to directly
specify budgets and deadlines over transitions and actions.

In Bourbouh et al. (2021) an assurance case is developed
for an inspection rover, using a combination of models writ-
ten in AADL (Feiler & Gluch, 2012), Simulink and Event-B
(Abrial, 2010). Functional requirements are stated using
FRET (Giannakopoulou et al., 2020), with semantics given
in Linear Temporal Logic (LTL) for analysis of Lustre (Caspi
et al., 1987) models generated from Simulink via CoCoSim
(Bourbouh et al., 2020), that supports code generation from
discrete dataflow models. Kind2 (Champion et al., 2016)
is used to verify system-level properties, while some com-
ponents are verified using Event-B. In contrast, RoboChart

123

Autonomous Robots (2024) 48:14 Page 5 of 22 14

adopts a self-contained, hierarchical, state machine-based
software component model. It includes support for syn-
chronous and asynchronous communications, a well-defined
action language, preconditions and postconditions, and time
primitives encompassing budgets and deadlines, and is tai-
lored for verification using model checkers (Miyazawa et al.,
2019; Ye et al., 2022) and theorem provers (Foster et al.,
2018). Related work reported in (Murray et al., 2022) has
exploited the combination of RoboChart and Simulink for co-
verification of system-level properties of an ABB paint robot
high-voltage controller, while other case studies are reported
in Cavalcanti et al. (2018). Here, we focus on model-based
development guided by verification, and code generation for
simulation and deployment from RoboChart design models.

3 RoboChart

In this section, we first present a simple example, illustrating
how a RoboChart model is constructed. We then present the
metamodel of RoboChart and its key constructs.

3.1 Obstacle avoidance example

A simple example of a RoboChart design model for a ground
robot that can sense obstacles and perform turns is shown
in Fig. 2. These capabilities are captured in RoboChart by
a robotic platform (indicated by), that is a record of the
services (events, operations and variables) available to the
software. In this case, the platform Robot provides (indicated
by) an interface MovementI, with a constant PI (indicated
by) and an operation Move, that takes a linear and angu-
lar velocity, and uses (indicated by) an interface EventsI

with an event obstacle () that carries a value of type Loc to
indicate the position (left or right) of an obstacle relative to
the robot.

The top-level element of the model is a module called
OAModule, that completely defines the behaviour of the
software by associating the platform Robot with a software
controller ConstMovement, that we discuss next. They are
connected via the event obstacle and communicate asyn-
chronously, as indicated by the keyword async. Importantly,
the interface MovementI required by the controller (indi-
cated by) is provided by the platform. Interfaces enable
the definition of self-contained components, while RoboTool
uses this information to check that all services required by a
component, such as, operations and variables, are provided
in the context in which they are used.

The controller ContMovement contains a reference to the
state machine StmMovement, that we discuss next. The state
machine specifies the actual behaviour of the software, such
that by default the robot moves forward until an obstacle is
detected, and then either turns left or right. It requires the

Fig. 2 RoboChart design model for a simple obstacle avoidance robot

interface MovementI, and declares a variable dir (indicated
by) of type Loc and a clock T (). It contains two states
(Moving and Turning), and an initial junction (black circle
symbol) with a transition leading to state Moving, whose
entry action calls the operation Move with a linear velocity
to move the robot forward. If an obstacle is found, the clock
is reset (via #T) and state Turning is entered. In Turning,
the robot starts turning with an angular velocity based on the
location of the obstacle by calling the operation Move. Then,
if the time elapsed since the clock was reset has passed the
threshold PI/2, it transitions to state Moving again.

3.2 Metamodel of RoboChart

As shown in Fig. 3, a RoboChart model can contain packages,
modules, robotic platforms, controllers, state machines, type
declarations, and interfaces. For a complete account of the
metamodel of RoboChart, see (Miyazawa et al., 2018, 2019).

A RoboChart package (RCPackage) groups components
used for designing a robotic system. It is similar in nature
to a package in Java or other programming languages and
provides scope for the model: packages can import other
packages. If no package is declared for a model, then global
visibility is assumed. As shown in Fig. 3, a RCPackage can

123

 14 Page 6 of 22 Autonomous Robots (2024) 48:14

Fig. 3 RoboChart metamodel

include declarations of modules, robotic platforms, con-
trollers, state machines, etc.

A Module in RoboChart contains a complete account of a
robotic control system. It associates a RoboticPlatform with
particular Controller(s) to specify the behaviours of a robot.
The RoboticPlatform or Controller can be defined inside a
Module, or outside, in which case it is associated to a Mod-

ule via references. A RoboticPlatform provides an abstract
description of the hardware in terms of its events, variables
and operations. For example, in the example in Fig. 2, the
module OAModule is specified by a robotic platform that
defines an event obstacle and provides an interface Move-

mentI declaring an operation Move. Robotic Platform and
Controller(s) interact with each other using events or shared
variables. An event may have a type, if it represents an inter-
action with a sensor or actuator that communicates values. A
Controller is composed of one or more (potentially interact-
ing) state machines.

A RoboChart StateMachine, similarly to UML state-
charts, includes (initial) junctions, states, and transitions.
Unlike UML, however, there are no parallel regions or inter-
level transitions, that can make compositional reasoning
challenging. A state can have entry, during, and exit actions.
The entry action of a state is executed when the state is being
entered, and is followed by the execution of the during action
while that state is active. When a state is exited, its exit action
is executed. A transition can be triggered by an event guarded
by a condition. If an action is associated with the transition,
this action is also executed before the state machine enters

the target state or junction. A junction is a decision point, and
at least one of its transitions should be enabled at any time.
A state can be composite: it contains other states that define
behaviour while in that state. In this way, states can be nested
inside states and nesting can be arbitrarily deep.

Operations and Events can be grouped in an Interface

in order to facilitate the reuse of common elements. A state
machine can require an interface in order to use the elements
grouped in that interface. An operation can either be declared
in an interface without implementation (in this case, only the
operation signature is provided) or defined by the user using a
state machine in a package. In the former case, the user needs
to define an implementation for the operation in simulation
and deployment. For the latter, the code of the operation is
automatically generated. This facilitates modular design.

Mathematical Functions can be defined in RoboChart.
The aim of using a function is to perform some necessary cal-
culation, for example, calculating the value of an angle that
the robot needs to turn when detecting an obstacle. It also pro-
vides a common functionality of which different components
can make use. A function can be specified by a precondition
and a postcondition.

VariableList is composed of Variable(s), which can be
defined using pre-defined types or user-defined types. Prim-
itive types include common types found in programming
languages such as int and real. RoboChart adopts the Z
(Woodcock & Davies, 1996) type-system and its math-
ematical toolkit, so it supports rich types such as sets,
enumerations, and data types.

RoboChart also includes time constraints. A clock can be
defined inside a state machine to record the passage of time.
For example, the primitive since(T) yields the time elapsed
since the most recent clock reset #T. For full details of
RoboChart, refer to (Miyazawa et al., 2018).

4 RoboChart software

This section presents the RoboChart software architecture
and how a model is executed.

4.1 Software architecture

The RoboChart notation is implemented in RoboTool as a
collection of integrated Eclipse plug-ins using the Eclipse
Modelling Framework (EMF), Xtext4 and Sirius.5 The
RoboChart metamodel is implemented using EMF. Xtext, a
framework for developing domain-specific languages, is used
to define a textual language, suitable as a human-readable

4 https://www.eclipse.org/Xtext/.
5 https://www.eclipse.org/sirius/.

123

https://www.eclipse.org/Xtext/
https://www.eclipse.org/sirius/

Autonomous Robots (2024) 48:14 Page 7 of 22 14

serialisation of RoboChart models, which are otherwise usu-
ally created via a graphical editor implemented using Sirius.
The tool implements validation rules, as Xtext check meth-
ods, that are automatically checked as a model is being
constructed. This ensures models are typed correctly and
well-formed. In addition to enforcing scoping rules, the tool
also checks, for example, that all operations required by a
component are provided in context where that component is
used.

For code generation from RoboChart, we use Xtend,6 a
flexible dialect of Java, that provides a rich templating lan-
guage suitable for defining methods that map RoboChart
constructs to code in a target programming language. This
approach has previously been used (Miyazawa et al., 2017) to
implement the functions that define the formal semantics of
RoboChart models, so that, for instance, the methods can be
visually inspected for correspondence with the mathematics.

We adopt object-oriented programming in the software
development, as this paradigm supports modular design of
the RoboChart software in a structured way and facilitates
the reusability of the generated code. Figure 4 shows a class
diagram that depicts the RoboChart software architecture.

The architecture is formed by classes that implement key
features of the RoboChart language. The two classes Hard-

wareComponent and Interface, at the top of Fig. 4, in purple
colour, need to be extended to create a robotic application.
The Module fully defines the behaviours of the robot and the
assumptions about the Robotic Platform. Information about
the environment is obtained via the events in the robotic plat-
form, which must be supplied as platform dependent code.
We adopt the Sense→Plan→Act paradigm in robotics. In the
RoboChart software architecture this is realised via methods
Sense→Execute7→Actuate, that is, the robot senses the envi-
ronment, executes the controllers, and then performs actions.
The Sense and Actuate methods are grouped into the Robotic

Platform class, and the Execute method is contained in the
Module class.

The HardwareComponent class, which includes the meth-
ods Sense and Actuate, provides an abstraction of the robot
hardware (sensors and actuators). The events and opera-
tions are declared in the Interface class, which inherits from
the class HardwareComponent. The Robotic Platform class
inherits the Interface classes.

The Module class contains an instance of the Robotic Plat-

form class and Controller classes. The latter holds instances
of the State Machine classes where the decision-making
mechanism of the robot is defined. Note that currently we
only support the simulation of one controller and one state

6 https://www.eclipse.org/xtend/.
7 This terminology is chosen to reflect the execution of a wide range of
state machines, which may not necessarily implement a planner in the
traditional sense.

Fig. 4 Class diagram of the RoboChart software architecture used to
implement a design model. Classes HardwareComponent and Interface

need to be extended to create an application, while the others are fully
generated

machine; however, states machines can have composite states
or call operations whose behaviour is defined by another state
machine.

The communication between the robotic platform and
controllers is via events implemented by an event channel.
This is inspired by the communication mechanism of the
process algebra Communicating Sequential Processes (CSP)
(Roscoe, 2011), which is the basis of the formal semantics
of RoboChart (Miyazawa et al., 2019). In the architecture,
the communication between different components, namely a
Controller, including its State Machine, and a Robotic Plat-

form, is via message passing. A message can be sent over a
channel, and another component is able to receive the mes-
sage sent over a channel to which it has a reference. The
motivation for using channels is to facilitate the proof of
correctness of the code. A channel acts as an intermediate
buffer for bridging the communication of two components,
that is, the sender and receiver are not aware of each other.
Each sender only needs to send information into the channel
via events and the Channel class is responsible for handling

123

https://www.eclipse.org/xtend/

 14 Page 8 of 22 Autonomous Robots (2024) 48:14

the asynchronous or synchronous (blocking) communication
between the receiver and sender.

Concretely, in RoboTool the software architecture is gen-
erated from a RoboChart design model as a C++ API, with
concrete code implementing the classes of Fig. 4, such as
Channel, State, and Event classes.

In the following, we describe how elements (in bold) of the
RoboChart metamodel are mapped to classes of the software
architecture.

Module: For everyModule in a RoboChart model, a Mod-

ule class is defined that contains instances of the classes that
implement its robotic platform, controllers and events. It has
an Execute method that is used for driving the simulation.

Interface: The Interface class contains the operations as
methods. It has references to the Event class. Variables are
generated as attributes.

Robotic Platform: The RoboticPlatform class inherits all
of the provided and defined Interface classes. If the events
and variables are declared inside the robotic platform, they
are generated as attributes of the RoboticPlatform class with
types that implement their RoboChart counterparts. It con-
tains constructor and destructor methods, and Sense and
Actuate methods. We observe that the declaration of oper-
ations is grouped in the Interface class.

Controller: The Controller class acts as an intermediate
mechanism that connects the robotic platform with the state
machine via the event channel. Therefore, this class holds
a reference to the robotic platform and state machine, and
all of the events defined. Further work will deal with paral-
lel simulations involving several controllers, potentially with
several machines.

State Machine: In the implementation, we treat a state
machine as a composite state without any outgoing transi-
tions. Therefore, the class StateMachine inherits from the
State class, which can have sub-states. The State class also
has several instances of the Transition class, each of which
holds a reference to a source and a target State class.

Operation: Each operation defined by a state machine is
generated as an Operation class, which can be referred by a
State Machine class. If no definition is given, the operation is
generated as a method that is to be implemented by the user.

Event: For a defined event in RoboChart, a correspond-
ing event channel class is declared. This class is then
instantiated inside the Module class. The name of each
defined event needs to be different, which is ensured by
the well-formedness rules of RoboChart as implemented by
RoboTool.

Clock: If a clock is defined in a state machine, a Timer

class is generated. It has an attribute counter, indicating the
elapsed time, and methods such as IncreaseCounter and
ResetTimer. Note that only a single Timer class is gener-
ated, for each clock defined there will be a corresponding
instance of the Timer class. The timer is used as a service of

Algorithm 1 Software Architecture Execution
1: initialise module, robotic platform, controller
2: and state machine
3: repeat (for each control cycle)
4: Sense()
5: while (Execute(s)) do

6: end while

7: Actuate()
8: until (program terminates)

the state machine, which means the state machine can access
the counter of a Timer.

Function: A function in RoboChart is generated as a plain
function, which can be invoked by different classes.

TypeDecl: A primitive data type is directly mapped into a
primitive data type in the target programming language. For
example, the primitive type real corresponds to double in the
C++ implementation of the software architecture, whereas a
record type is generated as a pre-defined class that has all of
the fields of that type.

4.2 RoboChart software execution

In this section, we describe how the software architecture
shown in Fig. 4 is implemented.

Algorithm 1 shows the execution flow of the software
architecture. Before executing the control loop (line 3), the
classes of Module, Robotic Platform, Controller and State

Machine, as depicted in Fig. 4, are instantiated and initialised
(lines 1–2). As already mentioned, overall, the implementa-
tion of the architecture follows the pattern
Sense→Execute→ Actuate, which is repeated (lines 4–7) in
each control cycle. In Sense (line 4), the robot senses the envi-
ronment, and registers any detected events in the channel. In
Execute (line 5), the state machine is executed repetitively
until no more transitions are enabled (i.e., this method returns
false). In Actuate (line 7), the parameters of actuators are set.
In every control cycle of the state machine, all of the avail-
able transitions of the state machine’s current active state
(including its sub-states) are checked. Note that if a transi-
tion is taken, the transitions of the target (active) state will
be checked. The execution of the state machine proceeds to
the next control cycle only if there are no enabled transitions
for the active state.

Algorithm 2 shows how the state machine is executed in
each control cycle. Execution of child states is performed
recursively. A state has four possible statuses: s enter,
s active, s exit and s inactive. States are initially set as
s inactive, whereas a state machine’s status is s active. We
describe each of the cases as follows.

When the state is in the s enter status (line 2), its entry
action is executed (line 3). If the state has any child, its child’s
initial state (s.InitialChild on line 4) is set into s enter status,

123

Autonomous Robots (2024) 48:14 Page 9 of 22 14

Algorithm 2 Execute(s)
1: switch s.status do

2: case s enter

3: Execute entry action of s

4: SetStatusEnter(s.InitialChild)
5: Execute(s.InitialChild)
6: SetStatusActive(s)
7: return true
8: case s active

9: while (TryExecuteChildStates(s)) do

10: end while

11: if TryTransitions(s) == false

12: Execute during action of s

13: return false
14: end if

15: return true
16: case s exit

17: SetStatusExit(s.ActiveChild)
18: Execute (s.ActiveChild)
19: Execute exit actions of s
20: SetStatusInactive(s)
21: return false;
22: end switch

and it is executed (line 5). After that, the current status is set
into s active via the method SetStatusActive (line 6).

If the state is in the s active status (line 8), it first tries to
execute its child states using the method TryExecuteChild-

States (line 9). If any transitions of the child state are enabled,
TryExecuteChildStates is executed again. After that, it tries
its own transitions (line 11). If no transition is enabled, that
is TryTransitions returns false, the during action of that state
is executed (line 12).

Finally, when the state is in the s exit status (line 16),
its active child (s.ActiveChild) if any, is set into s exit sta-
tus (line 17), followed by execution of the child, and then
execution of its exit action (line 19). After that, the current
state is set into s inactive status (line 20). Note that for the
current framework, we assume that the entry, exit and tran-
sition actions terminate and fit within a single step of the
simulation.

Algorithm 3 shows how the transitions of an active state
are executed. The Transition class has two methods: Check

and Condition. Every time a Check method is called (line 2),
it invokes the Check method of the Channel class. This
method checks whether the triggering event for the transi-
tion has occurred or not. The Condition method is used to
check whether the expression of the guard of the transition
is true or false. Only when both the triggering event occurs
and the condition is met, the transition is enabled. After the
transition is taken, the status of the source state is set to s exit

and is executed (lines 3–4), followed by the Action method
of the transition itself (line 5). The status of the target state
(t.target) is set to s enter (line 6).

Algorithm 3 TryTransitions(s)
1: for each transition t ∈ T (s) do

2: if t.Check() and t.Condition():
3: SetStatusExit(t.source)
4: Execute(t.source)
5: Action(t)
6: SetStatusEnter(t.target)
7: return true
8: end if

9: end for

10: return false

5 Modelling an exploration robot in
RoboChart

In this section, we explore the usage of RoboChart through
modelling an exploration robot. It can be seen as an exten-
sion of the obstacle avoidance example presented earlier
in Sect. 3.1, whereby besides exploring the environment
autonomously while avoiding obstacles, it needs to satisfy
additional functional requirements. Certain safety proper-
ties should be established before the robot is deployed. For
example, one such property is that the robot should stop
immediately if a ‘reset’ command is detected. If the battery
level of the robot is low, it is required to return to its charging
station.

The requirements for the designed robotic system are as
follows:

• R1: If a command is detected, then the robot should stop.
• R2: Once the charging station is found, the robot should

flash its LEDs and stop. After that, the robot can still
accept a command.

• R3: The robot should avoid obstacles, or reverse, when
an obstacle is detected, while no command is detected.
Odometer readings can occur internally.

• R4: After an obstacle is detected, an odometer is read
immediately.

In order to meet the requirements mentioned above, we
designed a RoboChart model. This model includes a robotic
platform VCRobot and a controller VCController. The con-
troller communicates with the robotic platform via events.
The controller’s behaviour is defined by a state machine
Movement. The state machine models the robot behaviour,
which performs searching by default when no ‘command’
is detected. While the robot is searching, it performs explo-
ration while trying to avoid the obstacles and once the battery
is low, the robot moves towards the goal location (charging
station).

123

 14 Page 10 of 22 Autonomous Robots (2024) 48:14

Fig. 5 The RoboChart model
including definition of module
(VCModule), robotic platform
(VCRobot), interfaces (Events,
OperationsSig and
OperationsDef) and the
enumerated type Loc

Fig. 6 The ChangeDirection operation defined in RoboChart. Its
behaviour is defined by a state machine, which calls TurnLeft or Turn-
Right depending on the value of lc and then terminates

As shown in Fig. 5, a module called VCModule is defined.
It has a reference to a robotic platform, VCRobot and its
controller, VCController. Events used between VCRobot and
VCController are grouped in an interface, Events. The events
are connected in the module, indicating the flow of infor-
mation between components. For example, the real value
associated with the event turn is always passed from the
VCRobot to the VCController. In order to get the odometer
reading from the robot, an odometer event of type real, is
defined. The flash event is used by the controller to cause
the robot’s LEDs to flash. In RoboChart, the communication
between robotic platform and controller is always asyn-
chronous (marked by the symbol async). The operations that
the robotic platform provides are declared in the interface
OperationsSig. These operations are assumed to terminate
and take negligible time.

The operation ChangeDirection in the OperationsDef

interface, however, is a software operation defined using a
state machine (shown in Fig. 6). It calls TurnLeft or Turn-

Fig. 7 The VCController defined in RoboChart. It refers to a state
machine Movement and defines its communication with the controller
via events. It also requires the platform operations in OperationSig and
brings into context the definition of the software operation ChangeDi-

rection

Right depending on the value of parameter lc and then
terminates.

Figure 7 shows the robotic controller VCController. It
requires the interface OperationSig, brings into context the
operation ChangeDirection (required by Movement), and
uses the events in interface Events for interaction with the
state machine Movement that defines the decision-making
mechanism controlling the robot directly. Note that the con-
troller can refer to one or several (potentially interacting) state
machines. In this case study, only one state machine is used.
The event information is passed between the robotic platform

123

Autonomous Robots (2024) 48:14 Page 11 of 22 14

Fig. 8 The Movement state machine defined in RoboChart. It defines the behavior of the robot

Table 1 Summary of CSP operators

Symbol Name Description

SKIP Skip Terminates immediately without any side effects

STOP Deadlock Refuses all interactions, but does not change the state

P |[cs]| Q Parallel composition Runs P and Q in parallel synchronising on events in cs

{|e|} Channel set Set of all possible events associated with channel e

c → P Prefix Synchronise on channel c and then behave like P

P ; Q Sequential composition Behaves like P, and once P terminates, behaves like Q

P ⊓ Q Internal choice Non-deterministically chooses between behaving like P or Q

P�csQ Exception Behaves like P, until P raises an event in cs, at which point, it behaves like Q

P \ cs Hiding Runs P with events in cs hidden

P ◮ d Deadline Requires P to terminate within d time units

123

 14 Page 12 of 22 Autonomous Robots (2024) 48:14

Fig. 9 States Avoiding and AvoidingAgain of an earlier version of
SMovement

Fig. 10 The simulated and physical scenarios for evaluating the model
designed in Sect. 5: a simulation; b physical e-puck robot; c physical
hexaberry robot

VCRobot, the controller VCController and the state machine
Movement. The arrow of connection between events indi-
cates direction. For example, the information of the turn

event is passed from the controller to its state machine,Move-

ment. The event flash is passed from the state machine to the
controller and then to the robotic platform to light the robot’s
LEDs.

Figure 8 shows the state machine Movement. It requires
the interfaces OperationsSig and OperationsDef. It also
defines local variables (e.g., angle) and constants (e.g., out-
Period). The variable angle is used for the robot to turn. The
variables d0 and d1 are used to record the odometer read-
ings of the robot. The variables l and l new of enumeration
type Loc are used to record the direction of the obstacle rel-
ative to the robot. The state machine also uses the interface
Events. Two clocks, T1 and T2, are declared to specify time
associated with transitions. In particular, T1 is used to record
the turning period of the robot, and T2 is used to record the
battery life of the robot.

The state machine Movement consists of two top-level
states, Searching and Finish. The initial state is Searching, as
indicated by the transition from the initial junction. We need
to ensure the robot never misses the command of a human
operator according to the specification. Therefore, the cmd

event leading to the Finish state is used to trigger the transi-
tion from the state Searching to Finish. In the Finish state,
the robot stops, by calling stop, and then transitions to a final
state.

Searching is a composite state. In this state, there is an
entry action, where the location of the obstacle, as recorded
by l, is set to Loc::no. The variable l is of type Loc, an enu-
merated type with constants left, right and no, indicating the
existence of the obstacle and its direction, or the absence of
an obstacle. When the state machine enters the Exploring

state, its entry action is executed: MoveForward is called.
While the robot is in the Exploring state, its sub-state Watch

monitors for obstacles using the event obstacle. If an event
obstacle is received (obstacle?l new), its value is recorded
in l new, and then this is assigned to l as part of the transi-
tion’s action (l = l new).

Once an obstacle is detected (either left or right), the tran-
sition from Exploring toAvoiding is enabled, the clock (#T1)
is reset, the state machine enters the state Avoiding, and
the odometer reading (d0) is updated immediately. In this
state, the robot attempts to avoid the obstacle by changing
the robot’s direction as part of the during action that calls
operation ChangeDirection. We recall it is defined by a state
machine as shown in Fig. 6. ChangeDirection takes the loca-
tion l of the obstacle as a parameter, and if the obstacle is
to the right of the robot, turns left; otherwise, it turns right
by calling the appropriate operations TurnLeft or TurnRight,
respectively.

In the Avoiding state, we assume that the robot needs a
certain time (turningPeriod) to rotate a certain angle. After
the robot has finished turning and no cmd event is detected,
the state machine switches to the state ExploringAgain in
which the robot continues exploring the environment. If an
obstacle is detected again, it enters the state AvoidingAgain,
where the odometer reading (d1) is updated immediately.
When the robot is in state AvoidingAgain, the outgoing tran-
sitions are only triggered by a condition that decides whether
the difference of two consecutive odometer readings is larger
than a certain threshold (stuckDist). If so, we assume that the
robot does not get stuck and the state machine transitions to
Avoiding; otherwise, the robot is stuck and the state machine
enters the GettingOut state. In this case, the robot performs
a Reverse action. After a certain time, defined by a constant
outPeriod, the state machine enters the Exploring state.

If a turn event is detected, and no obstacle has been
detected (guarded by the condition: [l==loc::no]) and a
certain amount of time (batteryLife) has passed, the state
machine takes the transition to the MovingTowardsGoal

state, where the robot turns towards the charging station by
calling the operation MoveTowards with a specific angle,
obtained from the robotic platform via the turn event. The
behaviour is implemented by the operation MoveTowards of
the robotic platform.

123

Autonomous Robots (2024) 48:14 Page 13 of 22 14

During this process, if no obstacle has been detected
([l==Loc::no]), and the robot finds the source, it enters the
state Found. It then sends a flash event to the robot, which
causes the robot to flash its LEDs.

6 Results

In this section, we report on the results of analysis, simulation
and deployment of the system described above. In particular,
we examine whether the requirements are met using three
different approaches: property checking using model check-
ing techniques, validation via simulations, and validation
through experiments using physical robots. A video demon-
strating how RoboTool is used, as well as model checking,
simulation, and physical experiments using the RoboChart
model is included in the supplementary material.

6.1 Property checking via formal verification

RoboChart has a formal semantics defined using tock-CSP
(Baxter et al., 2022), a timed dialect of the process alge-
bra CSP (Roscoe, 2011). Systems and their components are
defined using processes, which interact with each other and
their environment via atomic and instantaneous events. CSP
provides a large number of operators that can be used to
model complex concurrent systems. Table 1 presents the
operators that we use for property checking in this work.
At the core of CSP is the notion of refinement whereby a
process P is refined by Q, written P ⊑ Q, exactly when
every behaviour of Q is also a behaviour of P, that is, given a
specification P we can replace it with an implementation Q.

6.1.1 General properties

Before implementing a model designed in RoboTool, it is
customary to make sure that a system satisfies general prop-
erties, such as being free of deadlocks and livelocks. General
properties of each component can be checked by loading an
automatically generated file with suffix coreassertions.csp

into the model checker FDR (Gibson-Robinson et al., 2014).
Alternatively, FDR can be executed directly from RoboTool,
and the results of the verification can be examined in a report
that is generated automatically. Another option is using the
RoboChart assertion language. For example, to check that
the Movement state machine is deadlock free, we can write
a property as follows.

assertion A0: Movement is deadlock-free

In our example, we are interested in two properties: dead-
lock free and livelock free. This means, for example, that the
state machine does not contain deadlocks or infinite loops

that could preclude it from responding to inputs. Verification
using FDR shows that our model satisfies these properties.
This is a guarantee that we obtain without any extra effort,
beyond writing the model itself. Verification of these proper-
ties at design time is useful, given that identifying the cause
of deadlocks and livelocks in a simulation, or at deployment,
could be non-trivial.

6.1.2 Task-specific properties

We also use FDR to verify the four requirements presented
in Sect. 5 by stating them as refinement assertions. In the
following, we show how these are formally specified using
tock-CSP.
Property R1 For the first property, we want to verify that the
robot responds to a command. That is, if a cmd event occurs,
the robot stops. This is formalised in CSP below.

R1=CHAOS(�)�{cmd}(StopOp ; STOP)

The process R1 initially can perform any event nondeter-
ministically any number of times as defined by CHAOS(�),
where � is the set of all events. Once the event cmd occurs,
the behaviour is defined by StopOp, the process that models
the call of operationStop, sequentially composed with STOP,
the CSP process that deadlocks, that is, it cannot engage in
any event but allows time to pass. We omit the definition
of StopOp, which requires the operation Stop to terminate
immediately. We observe that this is not a deadline on the
behaviour of stopping the robot, but rather a deadline on the
software operation indicating that it takes a negligible amount
of time.

To verify that a RoboChart model satisfies a particular
requirement encoded as a CSP process P, we state that P ⊑

Q, where Q is the CSP semantics of the RoboChart model. In
the case of requirement R1 we check that R1 is refined by the
CSP semantics of VCModule, defined via a process System,
as R1 ⊑ System. This can be specified using RoboTool’s
assertion language as follows:

assertion A2: VCModule refines R1

We use a particular semantic model of CSP for the refine-
ment check that takes into account liveness and safety, that is,
every trace of events performed by System is permitted by R1

(safety), and at any point in a trace of System where an event
is accepted in R1 then it must also be accepted in System (live-
ness). For each assertion, FDR provides an answer indicating
whether the refinement holds, and if it fails a counter-example
is presented showing a trace of events after which some unde-
sired behaviour is observed. For property R1 the refinement
succeeds.
Property R2 The second property that we want to verify is
that when the robot finds the charging station, as indicated

123

 14 Page 14 of 22 Autonomous Robots (2024) 48:14

Fig. 11 A trajectory of the a

simulated e-puck robot, b

physical e-puck robot and c

hexaberry robot executing the
RoboChart model

Fig. 12 Two experimental trials (a) and (b) of simulation

by the event found, then it flashes and stops. We formalise
this requirement as follows.

R2 =

(

CHAOS(�)�{|found|}

(flash → StopOp ; cmd → StopOp ; STOP)

)

Similarly to R1, initially R2 can engage in any event non-
deterministically any number of times. Once found takes
place then it engages in event flash, and afterwards behaves
as StopOp, the process that models the operation Stop, as
already discussed, and then also accepts a cmd event. The
fact that it may Stop twice is harmless. This property is also
satisfied as checked by FDR.
Property R3 The third property requires that if an obstacle
is detected while no command is issued, either on the left or
the right, via the parametrised event obstacle, then the robot
should either avoid it, by changing direction, or reverse. We
formalise this property as R3 below, while the conditionality
on the absence of cmd, and the possible internal odometer

readings, is considered in the refinement check that we define
next.

R3 =

(

CHAOS(�)�{|obstacle.left,obstacle.right|}

((ChangeDirectionOp ⊓ ReverseOp) ; R3)

)

The process R3 initially accepts any event nondeterminis-
tically. Once either obstacle.left or obstacle.right happen,
R3 behaves as either ChangeDirectionOp or ReverseOp, the
processes that model the call to operations ChangeDirec-

tion or Reverse, and then recurses to behave as R3. Here
the nondeterminism captures the fact that both behaviours
are possible following the detection of an object and indeed
a correct implementation could perform either, or even opt
between the two behaviours each time an object is detected.
The refinement in this case is stated as follows.

R3 ⊑ (System|[{|cmd|}]|SKIP) \ {|odometer|}

123

Autonomous Robots (2024) 48:14 Page 15 of 22 14

Fig. 13 Four experimental trials (a) and (b) of the physical e-puck robot and (c) and (d) of the hexaberry robot for validating the properties of the
RoboChart software design model

That is, we verify System in a context where cmd is prevented
from happening, and where the channel set {|odometer|} is
hidden. The refinement check for R3 using FDR succeeds as
required.
Property R4 The fourth requirement states that, while no
command is issued, if an obstacle is detected, then the odome-
ter is read. It is specified as follows.

R4 =

(

CHAOS(�)�{|obstacle.left,obstacle.right|}

(odometer?x → SKIP ◮ 0 ; R4)

)

Similarly to R3, initially we have that R4 behaves as
CHAOS(�), and can be interrupted by events obstacle.left

or obstacle.right to behave as the process that requires
odometer?x, with any value x, to take place immediately,
specified using the deadline operator (◮), and then recurses
as R4.

123

 14 Page 16 of 22 Autonomous Robots (2024) 48:14

6.1.3 Model evolution

In this section we discuss the evolution of the state machine
SMovement, using the results of analysis performed using
FDR to illustrate problems that were encountered during
modelling.

In Fig. 9 we reproduce states Avoiding and AvoidingA-

gain of an earlier version of SMovement, documented in
Ribeiro and Li (2019). We observe that the transitions into
and out of these states are the same as in Fig. 8, and so are
ommitted. Differently, however, these are composite states
where the odometer is read on a self-transition of a substate
named Watch. In this version R3 is not satisfied without
considering further assumptions, because, as defined, it is
possible for the system to keep requesting odometer readings
indefinitely and refuse to call Reverse or even accept cmd.
This is not just undesirable, but misses an important assump-
tion about the real-world that we did not account for in the
verification: there cannot be an infinite number of events in
a finite time.

Adjusting the verification by bounding the number of
odometer readings in a finite amount of time is a possi-
bility that we pursued. However, further analysis revealed
that R4 was also not satisfied. Analysis using FDR produced
a counter-example, whereby after calling MoveForward and
detecting an obstacle a call to ChangeDirection could hap-
pen before an odometer reading. Careful consideration of
this example revealed that a stale value of variable d1, poten-
tially not initialised, could be used when transitioning out
of state AvoidingAgain. This is unlike the specification of
the correct model in Fig. 8, where an odometer reading is
always requested upon entering statesAvoiding andAvoidin-
gAgain. This led to the development of a second version of
SMovement, as documented in Ribeiro and Li (2019).

In addition, because no deadline was specified on the read-
ing of odometer the verification of R4 using FDR revealed
that it was possible for this input to be delayed. In the version
presented in Fig. 8 the odometer reading in states Avoid-

ing and AvoidingAgain has a deadline to enforce that it
must be completed immediately. Results obtained with FDR
helped to refine the model to obtain a version that meets
the requirements. For our case study, the verification of each
property took a couple of seconds on a desktop machine
(Intel i3-8109U processor). Model-checking is a useful tech-
nique to guide roboticists in the development of a satisfactory
RoboChart design model.

6.2 Simulation validation

In this section, we validate the three requirements of the
RoboChart model in Sect. 5 using simulations.

6.2.1 Simulation platform

To simulate the RoboChart model shown in Fig. 5, we use
a 3D simulator, ARGoS (Pinciroli, 2012). It has a built-in
model of several ground robots such as e-puck (Mondada et
al., 2009) and foot-bot (Ducatelle et al., 2011), and flying
robots such as eye-bot (Ducatelle et al., 2011). In simula-
tion, we exercise the RoboChart model using the light and
proximity sensors located around the body of the e-puck. The
details of the robots are described in Sect. 6.3.1. Figure 10a
shows a scenario for evaluating the designed model. In sim-
ulation, the charging station is modelled using a light source
(yellow). The robot performs a phototaxis behaviour when
moving towards the light source.

6.2.2 Simulation experiments

In simulation, the robot is initially located in the centre of
a square-sized arena of 1.5 m ∗ 1.5 m. The obstacles are
randomly distributed within the arena. The light source sim-
ulating the charging station is fixed in one corner of the arena.

To run the simulation with a particular robot, the generated
code was completed with platform-dependent configura-
tions. For example, in the class of HardwareComponent, the
API of e-puck (sensors and actuators) needs to be inserted8.
The operations such as Actuate corresponding to different
robots also need to be adjusted. For example, for the e-puck,
the C++ implementation of the operation Actuate is defined
as follows:

void Operations::Actuate():@ // reverse kinematicsdouble
lv, rv;lv = (2*@:linearSpeed:@ -
@:angularSpeed:@*5.2)/2;rv = (2*@:linearSpeed:@
+ @:angularSpeed:@*5.2)/2;@:wheels actuators:@-
>@:SetLinearVelocity:@(lv,rv);

The C++ source code for the complete simulation targeting
ARGoS is available online.9

Figure 11a shows the trajectory of the simulated e-puck
robot in one of the trials. Figure 12a and b show another
two trials of the simulation experiments, which show that the
properties have been met. We record the speed of the robot
in each state and the point where the events occur. The letters
showing in each region separated by dotted lines represent the
state (with shortened name) in which the state machine stays.
The gray line in the figure marks the point where the event
occurs. Figure 12a validates the requirement R1 in which the
robot responds to the cmd immediately and stops. In this
figure, the robot first explores the environment by moving

8 A detailed description of how to construct an ARGoS simulation
using the generated code can be found in: https://liwei-cn.gitbooks.io/
robochart-simulation-framework/content/
9 https://robostar.cs.york.ac.uk/case_studies/exploration/Exploration-
V8-gen-argos.zip

123

https://liwei-cn.gitbooks.io/robochart-simulation-framework/content/
https://liwei-cn.gitbooks.io/robochart-simulation-framework/content/
https://robostar.cs.york.ac.uk/case_studies/exploration/Exploration-V8-gen-argos.zip
https://robostar.cs.york.ac.uk/case_studies/exploration/Exploration-V8-gen-argos.zip

Autonomous Robots (2024) 48:14 Page 17 of 22 14

forward (with a fixed linear speed and zero angular speed).
At time step 10, an obstacle is detected and the robot turns
on the spot (with zero linear speed and a negative angular
speed). While the robot is still turning, a cmd is detected
at time step 20 and the robot stops immediately (with zero
linear and angular speed). The requirements R2 and R3 are
validated in Fig. 12b. The robot avoids the detected obstacles
and stops when the ‘charging station’ is found. We observe
that because the behaviour is deterministic, these trials are
adequate to validate the software controller and are repre-
sentative of other runs, namely in that they cover similar
sequences of behaviours of interest.

6.3 Hardware validation

In this section, the requirements of the RoboChart model in
Sect. 5 are further validated using physical experiments on
two robotic platforms.

6.3.1 Robotic platforms

E-puck Robot: The e-puck, shown in Fig. 10b, is a
miniature, differential wheeled mobile robot. The e-puck’s
diameter and height are approximately 7.4 cm and 5.5 cm,
respectively, and its weight is approximately 150 g. The e-
puck is equipped with a directional camera located at its
front. The e-puck’s processor is a Microchip dsPIC micro-
controller. The Linux board equipped on the robot provides
a convenient way for programming the robot using an object
oriented language such as C++. The Linux board and micro-
controllers communicate via UART.

Hexaberry Robot: The hexaberry robot, which is shown
in Fig. 10c, is a Raspberry Pi based robot developed in the
York Robot Lab. It carries 6 sensor boards containing various
sensors (proximity sensors, TOF laser sensors, etc.) around
its body, and a front camera. The robot uses standard I2C
protocols to access sensor data. The robot also has an on-
board LCD for display and debugging.

6.3.2 Physical experiments

As the e-puck is equipped with a Linux board, the simulation
code for ARGoS can be run on the board without any modi-
fication. For the hexaberry robot, the code is directly run on
the Raspberry Pi to control the robot. The operations and sen-
sor readings still need to be customised for different robotic
implementations such as the operation MovingTowards. We
observed that due to the interference of the infrared beacon,
the readings of the proximity sensors of the e-puck and hex-
aberry robots are noisy. As a result, the robot would perform
obstacle avoidance behaviour even without detecting genuine
obstacles. We filtered the beacon readings by synchronizing

the frequency of the beacon and the robots’ control cycle,
thus minimizing the influence of random noise.

Figure 11b and c show the trajectory of the e-puck and
hexaberry robots executing the generated implementation in
two of the trials. Figure 13a–d show four trials of the phys-
ical experiments, and the traces are similar to those of the
simulation experiments. Due to the reality gap (Koos et al.,
2013), for different platforms, certain parameters need to be
adjusted. For example, the parameter turningPeriod for sim-
ulation and each physical robot are set to different values in
order to perform sufficient obstacle avoidance behaviour. A
RoboChart design model contributes to narrowing the gap by
providing a systematic approach for developing a software
controller. When the behaviour observed is not as expected,
a designer can tweak parameters of a model or iterate the
design, like we have done, rather than changing the controller
code directly. Code implementing the platform services is
clearly isolated in this architecture. If it is also relevant for
design and analysis, then the robotic platform abstraction
needs to be made more concrete and more of its behaviour
incorporated into the RoboChart model. This modelling chal-
lenge is part of ongoing work on integrating design models
with those of physical platforms (kinematics, dynamics, sen-
sors and actuators), some of which we briefly discuss in the
conclusions. Related, we anticipate uncertainties could be
modelled via the use of probabilistic junctions in a design,
or, by considering models that incorporate non-deterministic
behaviour, for example, where values range over intervals.

7 Conclusion

In this section we conclude by summarising our contribu-
tions, highlighting limitations of our approach, and sketching
paths for future work.

7.1 Summary

In this paper, we have explored the application of a model-
based framework for modelling software controllers of
autonomous robots, combined with the automatic genera-
tion of C++ code as well as automatic property checking to
guide the design. The properties of the software controller are
verified using the automatically generated formal semantics
at design time, and are further validated in both simulations
and physical robots.

Our vision is to reduce the gap between the high-level
modelling and low-level implementation of robotic con-
trollers through the use of formal methods and automatic
code generation. This could contribute to providing evidence
of safety when the robotic systems are to be deployed in real-
world scenarios, especially in safety-critical domains like
military and aerospace. Proofs of properties before starting a

123

 14 Page 18 of 22 Autonomous Robots (2024) 48:14

simulation or deployment could potentially reduce the test-
ing time as mistakes can be found earlier in the design stage.
For example, it is feasible to check that designs are free from
deadlocks, an issue that is harder to pinpoint at a later stage.

For modelling, RoboTool provides a graphical editor
for constructing RoboChart design models, which is useful
to support practitioners in their use of diagrammatic state
machines. RoboChart has a formal semantics, so models
have a precise account of their behaviour suitable for analy-
sis using formal verification tools. Our extension caters for
the automatic generation of code, with only minimal effort
required to target a particular robotic platform, suitable for
conducting experiments via simulation and deployment. User
studies to gauge the usability of our prototype implementa-
tion in RoboTool, alongside a broader evaluation of our tools
and techniques, including by application to further case stud-
ies, are future work.

7.2 Limitations

Because a RoboChart model accounts only for the software,
physical aspects concerning the robot and its interaction with
the environment need to be captured separately. This is in
contrast, for example, with the proposition in Colledanchise
and Ögren (2017) where BTs are also used for capturing
continuous phenomena. Our experience (Murray et al., 2022)
indicates that this separation of concerns can be exploited for
the co-verification of system-level properties. Further work
is required to consider all these aspects in a unified model-
based framework and provide formal guarantees. Related,
RoboChart also has facilities that can help with modelling
uncertainty, namely via probabilistic junctions (Ye et al.,
2022).

The model-driven approach we propose here targets the
early stages in the development of a high-level controller,
with verification and simulation supporting a developer’s
workflow. For verification, RoboTool automatically calcu-
lates a tock-CSP semantics (Baxter et al., 2022) that can be
exhaustively checked with FDR. With this technique there is
no need to provide explicit input and output values, however
it is limited to instantiating data types over finite discrete
domains and can suffer from the well-known state-explosion
problem. In our experience, high-level designs, due to their
abstraction, suffer less from this problem, and are there-
fore more amenable to this type of verification technique.
RoboChart models, namely featuring probabilistic junctions,
can also be analysed using PRISM (Kwiatkowska et al.,
2011), which provides, in addition, the facility to employ
statistical model-checking techniques.

Currently, the generated controller code is a direct map-
ping from the elements in RoboChart to various classes in
the software architecture. We adopt similar communication
mechanisms in the code and the RoboChart semantics. In

particular, we envisage that the CSP model generated from
a RoboChart specification will be useful to establish the cor-
rectness of the generated code using refinement. Practical
verification can be carried out using model checkers like FDR
(which also provides a facility to animate the model, and
thus perform further validation), as used in this work. Inte-
gration with theorem provers is ongoing work: an approach
for checking deadlock freedom of RoboChart models that do
not make use of timed primitives is discussed in Foster et
al. (2018). To validate the correctness of the code generator,
we recorded the robot’s traces, which record the states the
robot stays in and any associated events that may change the
evaluation of guards and enable transitions. The traces are
then passed back to FDR for verification. If FDR reported a
successful validation, this meant that the traces were correct
according to the model.

7.3 Future work

Another avenue to be explored is checking of properties writ-
ten in the positive fragment of LTL, that can be expressed via
refinement checks for CSP-based semantics (Lowe, 2008).
Expressing properties via sequence diagrams is ongoing
work (Windsor & Cavalcanti, 2022).

When model checking task-specific properties, some
implicit assumptions may need to be made explicit to make
the formal verification feasible. These assumptions may not
be captured when specifying the properties using natural lan-
guages but are typically assumed by implementations and
are necessary when analysing RoboChart models. This is
because RoboChart is a modelling language rather than a sim-
ulation or execution language. To avoid this ambiguity, we
are developing a new language, RoboSim, to capture some of
these assumptions in the simulation context. As future work,
we will investigate the use of controlled natural language
(Cavalcanti et al., 2021) to capture assumptions and require-
ments such as the ones discussed in this paper. Currently, our
code generation targets one state machine only. We aim to
support more complex robotic systems consisting of multi-
ple parallel (and interacting) state machines, controllers, and
multi-robot systems.

Finally, in future work we will consider the connection
of RoboChart design models with models that account for
kinematics, dynamics, and properties of sensors and actu-
ators, such as noise. That requires targeting richer formal
semantics encompassing hybrid and stochastic aspects, but
will allow us to further reduce the reality gap by record-
ing assumptions about the physical platform. Together with
models of the scenarios of interest, recording properties of

123

Autonomous Robots (2024) 48:14 Page 19 of 22 14

the arena, we envisage that it will be possible to reason about
system-level properties, such as, area-coverage.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-024-10163-
7.

Acknowledgements The authors would like to acknowledge the sup-
port from EPSRC grants EP/M025756/1 and EP/R025479/1, and the
Royal Academy of Engineering. We thank James Hilder for assis-
tance with the physical experiments, and the anonymous reviewers for
their constructive feedback. The icons used in RoboChart have been
made by Sarfraz Shoukat, Freepik, Google, Icomoon and Madebyo-
liver from www.flaticon.com, and are licensed under CC 3.0 BY https://
creativecommons.org/licenses/by/3.0/.

Declarations

Conflict of interest Wei Li and Pedro Ribeiro contributed equally to this
paper. Wei Li, Pedro Ribeiro and Jon Timmis wrote the main manuscript
text and Alvaro Miyazawa prepared Fig. 2–4. All authors reviewed the
manuscript. The authors declare that they have no Conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

OMG Unified Modeling Language (2015). Object Management Group,
www.omg.org/spec/UML/2.5/

Abdellatif, T., Bensalem, S., Combaz, J., De Silva, L., & Ingrand, F.
(2012). Rigorous design of robot software: A formal component-
based approach. Robotics and Autonomous Systems, 60(12), 1563–
1578.

Abrial, J. (2010). Modeling in event-b-system and software engineering.
Cambridge University Press.

Alur, R., & Henzinger, T. A. (1994). A really temporal logic. Journal

of the ACM, 41(1), 181–204.
Barnett, W., Cavalcanti, A., & Miyazawa, A. (2022). Architectural mod-

elling for robotics: RoboArch and the CorteX example. Frontiers

in Robotics and AI, 9, 991637.
Baumgartl, J., Buchmann, T., Henrich, D. and Westfechtel, B. (2013).

Towards easy robot programming: Using DSLs, code generators
and software product lines. In Proceedings of the 8th international

joint conference on software technologies, Reykjavík, Iceland.
SciTePress, pp 548–554.

Baxter, J., Ribeiro, P., & Cavalcanti, A. (2022). Sound reasoning in
tock-CSP. Acta Informatica, 59(1), 125–162.

Bergenti, F., & Poggi , A. (2000). Exploiting UML in the design of
multi-agent systems. In 1st international workshop on engineering

societies in the agents world, Berlin, Germany, Lecture Notes in
Computer Science, vol 1972. Springer, p 106–113.

Bjerknes, J. D., & Winfield, A. F. T. (2010). On fault tolerance
and scalability of swarm robotic systems. In The 10th interna-

tional symposium on distributed autonomous robotic systems,
Lausanne, Switzerland, Springer Tracts in Advanced Robotics,
vol 83. Springer, p 431–444.

Bordini, R. H., Dennis, L. A., Farwer, B., & Fisher, M. (2008). Auto-
mated verification of multi-agent programs. In 23rd IEEE/ACM

international conference on automated software engineering,
L’Aquila, Italy. IEEE Computer Society, pp 69–78.

Bourbouh, H., Garoche, P. L., Loquen, T., Noulard, É., & Pagetti, C.
(2020). CoCoSim, a code generation framework for control/com-
mand applications: An overview of CoCoSim for multi-periodic
discrete Simulink models. In 10th European congress on embed-

ded real time software and systems, Toulouse, France.
Bourbouh H., Farrell M., Mavridou A., Sljivo I., Brat G., Dennis L. A.,

& Fisher, M. (2021). Integrating formal verification and assurance:
An inspection rover case study. In 13th international symposium

on NASA formal methods, virtual event, lecture notes in computer

science, vol 12673. Springer, pp 53–71.
Bringsjord, S., & Sen, A. (2016). On creative self-driving cars: Hire

the computational logicians, fast. Applied Artificial Intelligence,

30(8), 758–786.
Caliskanelli, I., Goodliffe, M., Whiffin, C., Xymitoulias, M., Whit-

taker, E., Verma, S., Hickman, C., Minghao, C., & Skilton, R.
(2021). CorteX: A software framework for interoperable, plug-
and-play, distributed, robotic systems of systems. In A. Cavalcanti,
B. Dongol, R. Hierons, J. Timmis, & J. Woodcock (Eds.), Software

engineering for robotics. Springer.
Cardoso, R. C., Farrell, M., Luckcuck, M., Ferrando, A., & Fisher,

M. (2020). Heterogeneous verification of an autonomous curiosity
rover. In 12th international symposium on NASA formal methods,

Moffett Field, CA, USA, Lecture Notes in Computer Science, vol.
12229. Springer, pp 353–360.

Carvalho, R., Cunha, A., Macedo, N., & Santos, A. (2020). Verification
of system-wide safety properties of ROS applications. In IEEE/RSJ

international conference on intelligent robots and systems. IEEE,
pp 7249–7254.

Pilaud, D., Halbwachs, N., & Plaice, J. A. (1987). Lustre: A declarative
language for programming synchronous systems. In Conference

record of the fourteenth annual ACM symposium on principles of

programming languages (pp. 178–188). Germany. Association for
Computing Machinery: Munich.

Cavalcanti, A., Miyazawa, A., Ribeiro, P., & et al. (2018). RoboStar
case studies. https://robostar.cs.york.ac.uk/case_studies/

Cavalcanti, A., Baxter, J., Carvalho, G. (2021). Roboworld: Where
can my robot work? In 19th International conference on software

engineering and formal methods, virtual event, lecture notes in

computer science, vol. 13085. Springer, pp 3–22.
Champion, A., Mebsout, A., Sticksel, C., & Tinelli, C. (2016). The

Kind 2 model checker. In 28th International Conference on Com-

puter Aided Verification, Toronto, ON, Canada, Lecture Notes in
Computer Science, vol. 9780. Springer, pp 510–517.

Chen, J., Gauci, M., Li, W., Kolling, A., & Gros, R. (2015). Occlusion-
based cooperative transport with a swarm of miniature mobile
robots. IEEE Transactions on Robotics, 31(2), 307–321.

Colledanchise, M., & Ögren, P. (2017). How behavior trees modularize
hybrid control systems and generalize sequential behavior com-
positions, the subsumption architecture, and decision trees. IEEE

Transactions on Robotics, 33(2), 372–389.
Colledanchise, M., Cicala, G., Domenichelli, D. E., Natale, L., & Tac-

chella, A. (2021). Formalizing the execution context of behavior
trees for runtime verification of deliberative policies. In IEEE/RSJ

international conference on intelligent robots and systems. IEEE,
pp 9841–9848.

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., & Ziane, M. (2012).
RobotML, a domain-specific language to design, simulate and

123

https://doi.org/10.1007/s10514-024-10163-7
https://doi.org/10.1007/s10514-024-10163-7
www.flaticon.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.omg.org/spec/UML/2.5/
https://robostar.cs.york.ac.uk/case_studies/

 14 Page 20 of 22 Autonomous Robots (2024) 48:14

deploy robotic applications. In Third international conference on

simulation, modeling, and programming for autonomous robots,
Tsukuba, Japan, Lecture Notes in Computer Science, vol. 7628.
Springer, p 149–160.

Ducatelle, F., Di Caro, G. A., Pinciroli, C., & Gambardella, L. M. (2011).
Self-organized cooperation between robotic swarms. Swarm Intel-

ligence, 5, 73–96.
Feiler, P. H., & Gluch, D. P. (2012). Model-based engineering with

AADL: An introduction to the SAE architecture analysis & design

language. Addison-Wesley.
Fleurey, F., & Solberg, A. (2009). A domain specific modeling language

supporting specification, simulation and execution of dynamic
adaptive systems. In 12th international conference on model driven

engineering languages and systems, Denver, CO, USA, Lecture

Notes in Computer Science, vol. 5795. Springer, pp 606–621.
Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., & Woodcock, J.

(2018). Automating verification of state machines with reactive
designs and Isabelle/UTP. In 15th international conference on for-

mal aspects of component software, Pohang, South Korea, Lecture

Notes in Computer Science, vol. 11222. Springer, pp 137–155.
Foughali, M., Berthomieu, B., Dal Zilio, S., Ingrand, F., & Mallet,

A. (2016). Model checking real-time properties on the functional
layer of autonomous robots. In 18th International conference on

formal engineering methods, Tokyo, Japan, Lecture Notes in Com-

puter Science, vol. 10009. Springer, pp 383–399.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design

patterns: Elements of reusable object-oriented software. Addison
Wesley.

Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schu-
mann, J., & Shi, N. (2020). Formal requirements elicitation with
FRET. In Joint Proceedings of REFSQ-2020 Workshops, Doctoral

Symposium, live studies track, and poster track co-located with the

26th international conference on requirements engineering: foun-

dation for software quality Pisa, Italy. p 2584.
Gibson-Robinson, T., Armstrong, P., Boulgakov, A., & Roscoe, A.

W. (2014). FDR3—A modern refinement checker for CSP. In
Ábrahám, E., Havelund, K. (Eds) 20th international conference

on tools and algorithms for the construction and analysis of sys-

tems, Held as Part of the European Joint Conferences on Theory
and Practice of Software, Grenoble, France, Lecture Notes in Com-
puter Science, vol 8413. Springer, pp 187–201.

Harbin, J., Gerasimou, S., Matragkas, N., Zolotas, A., & Calinescu,
R. (2021). Model-driven simulation-based analysis for multi-
robot systems. In 24th International conference on model driven

engineering languages and systems (pp. 331–341). Japan. IEEE:
Fukuoka.

Kent, S. (2002). Model driven engineering. In 3rd international confer-

ence on integrated formal methods, Turku, Finland, Lecture Notes
in Computer Science, vol 2335. Springer, pp 286–298.

Klotzbucher, M., & Bruyninckx, H. (2012). Coordinating robotic tasks
and systems with rFSM statecharts. Journal of Software Engineer-

ing for Robotics, 2(13), 28–56.
Koos, S., Mouret, J., & Doncieux, S. (2013). The transferability

approach: Crossing the reality gap in evolutionary robotics. IEEE

Transactions on Evolutionary Computation, 17(1), 122–145.
Kortik, S., & Shastha, T. K. (2021). Formal verification of ROS based

systems using a linear logic theorem prover. In IEEE international

conference on robotics and automation, Xi’an, China. IEEE, pp
9368–9374.

Kwiatkowska, M. Z., Norman, G., & Parker, D. (2011). PRISM 4.0:
Verification of probabilistic real-time systems. In Gopalakrishnan
G, Qadeer S (eds) Computer Aided Verification—23rd Interna-

tional Conference, CAV 2011, Snowbird, UT, USA, July 14–20,
2011. Proceedings, Lecture Notes in Computer Science, vol 6806.
Springer, pp 585–591.

Leino, K. R. M. (2010). Dafny: An automatic program verifier for func-
tional correctness. In 16th International conference on logic for

programming, artificial intelligence, and reasoning, Dakar, Sene-

gal, Lecture Notes in Computer Science, vol. 6355. Springer, pp
348–370.

Lewis, W. E. (2009). Software testing and continuous quality improve-

ment (3rd ed.). Auerbach Publications.
Li, W., Miyazawa, A., Ribeiro, P., Cavalcanti, A., Woodcock, J., & Tim-

mis, J. (2016). From formalised state machines to implementation
of robotic controllers. In The 13th international symposium on dis-

tributed autonomous robotic systems, Natural History Museum,

London, UK, Springer Proceedings in Advanced Robotics, vol. 6.
Springer, pp 517–529.

Lowe, G. (2008). Specification of communicating processes: Temporal
logic versus refusals-based refinement. Formal Aspects of Com-

puting, 20(3), 277–294.
Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., & Fisher,

M. (2019). Formal specification and verification of autonomous
robotic systems: A survey. ACM Computing Surveys (CSUR),

52(5), 1–41.
Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., & Timmis, J.

(2017). Automatic property checking of robotic applications. 2017

IEEE/RSJ international conference on intelligent robots and sys-

tems (pp. 3869–3876). Canada. IEEE: Vancouver, BC.
Miyazawa, A., Cavalcanti, A., Ribeiro, P., Li, W., Woodcock, J., & Tim-

mis, J. (2018). Robochart reference manual. Tech. rep., University
of York, https://robostar.cs.york.ac.uk/publications/techreports/
reports/robochart-reference.pdf

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., & Wood-
cock, J. (2019). RoboChart: Modelling and verification of the
functional behaviour of robotic applications. Software & Systems

Modeling, 18, 3097–3149.
Miyazawa, A., Cavalcanti, A., Ahmadi, S., Post, M., & Timmis, J.

(2020). RoboSim physical modelling reference manual. Techni-
cal report, University of York, https://www.cs.york.ac.uk/circus/
publications/techreports/reports/physmod-reference.pdf

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz,
A., Magnenat, S., Zufferey, J. C., Floreano, D., & Martinoli, A.
(2009). The e-puck, a robot designed for education in engineer-
ing. In Proceedings of the 9th conference on autonomous robot

systems and competitions, Castelo Branco, Portugal. IPCB, Insti-

tuto Politécnico de Castelo Branco, pp 59–65.
Murray, Y., Sirevåg, M., Ribeiro, P., Anisi, D. A., & Mossige, M. (2022).

Safety assurance of an industrial robotic control system using hard-
ware/software co-verification. Science of Computer Programming,

216(102), 766.
Nordmann, A., et al. (2016). A survey on domain-specific modeling

and languages in robotics. Journal of Software Engineering for

Robotics, 7(1), 75–99.
Park, H. W., Ramezani, A., & Grizzle, J. W. (2013). A finite-state

machine for accommodating unexpected large ground-height vari-
ations in bipedal robot walking. IEEE Transactions on Robotics,

29(2), 331–345.
Pinciroli, C., Trianni, V., O‘Grady, R., Pini, G., Brutschy, A., Bram-

billa, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F.,
& Birattari, M. (2012). ARGoS: A modular, parallel, multi-engine
simulator for multi-robot systems. Swarm intelligence, 6, 271–295.

Ray, S. (2010). Scalable techniques for formal verification. Springer.
Ribeiro, P., & Li, W. (2019) Case-study: exploration. https://robostar.

cs.york.ac.uk/case_studies/exploration/
Roscoe, A. W. (2011). Understanding concurrent systems, texts in com-

puter science. Springer.
Rouff, C. A., Hinchey, M. G., Pena, J., & Ruiz-Cortes, A. (2007). Using

formal methods and agent-oriented software engineering for mod-
eling NASA swarm-based systems. 2007 IEEE Swarm Intelligence

Symposium (pp. 348–355). USA. IEEE: Honolulu, Hawaii.

123

https://robostar.cs.york.ac.uk/publications/techreports/reports/robochart-reference.pdf
https://robostar.cs.york.ac.uk/publications/techreports/reports/robochart-reference.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/physmod-reference.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/physmod-reference.pdf
https://robostar.cs.york.ac.uk/case_studies/exploration/
https://robostar.cs.york.ac.uk/case_studies/exploration/

Autonomous Robots (2024) 48:14 Page 21 of 22 14

Santos, A., Cunha, A., & Macedo, N. (2021) The high-assurance ROS
framework. In 3rd IEEE/ACM international workshop on robotics

software engineering. IEEE, pp 37–40.
Schlegel, C., Hassler, T., Lotz, A., & Steck, A. (2009). Robotic software

systems: from code-driven to model-driven designs. In 14th inter-

national conference on advanced robotics (pp. 1–8). Germany.
IEEE: Munich.

Schlegel, C., Lotz, A., Lutz, M., & Stampfer, D. (2021). Composition,
separation of roles and model-driven approaches as enabler of a
robotics software ecosystem. In Software engineering for robotics.
Springer, p 53–108.

Schultz, U. P., Christensen, D. J., & Stoy, K. (2007). A domain-specific
language for programming self-reconfigurable robots. In Proceed-

ings of the 2007 workshop on automatic program generation for

embedded systems. ACM, Salzburg, Austria, pp 28–36.
Selic, B. (1998). Using UML for modeling complex real-time systems.

Lecture notes in computer science. In F. Mueller & A. Bestavros
(Eds.), Languages, compilers, and tools for embedded systems.

Springer.
Selic, B., & Grard, S. (2013). Modeling and analysis of real-time and

embedded systems with UML and MARTE: Developing cyber-

physical systems. Morgan Kaufmann Publishers Inc.
Stampfer, D., Lotz, A., Lutz, M., & Schlegel, C. (2016). The smartmdsd

toolchain: An integrated mdsd workflow and integrated develop-
ment environment (ide) for robotics software. Journal of Software

Engineering for Robotics (JOSER), 7(1), 3–19.
Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay,

K. L., Dautenhahn, K., & Saez-Pons, J. (2015). Toward reliable
autonomous robotic assistants through formal verification: A case
study. IEEE Transactions on Human-Machine Systems, 46(2),
186–196.

Webster, M., Fisher, M., Cameron, N., & Jump, M. (2011). Formal
methods for the certification of autonomous unmanned aircraft
systems. In: 30th International Conference on Computer Safety,
Reliability, and Security, Naples, Italy, Lecture Notes in Computer
Science, vol 6894. Springer, pp 228–242.

Windsor, M., & Cavalcanti, A. (2022). RoboCert: Property specification
in robotics. In A. Riesco & M. Zhang (Eds.), Formal methods and

software engineering. Springer.
Winfield, A. F., Sa, J., Fernandez-Gago, M. C., Dixon, C., & Fisher, M.

(2005). On formal specification of emergent behaviours in swarm
robotic systems. International Journal of Advanced Robotic Sys-

tems, 2(4), 363–370.
Woodcock, J. C. P., & Davies, J. (1996). Using Z—Specification, refine-

ment, and proof. Prentice-Hall.
Ye, K., Cavalcanti, A., Foster, S., Miyazawa, A., & Woodcock, J.

(2022). Probabilistic modelling and verification using RoboChart
and PRISM. Software and Systems Modeling, 21(2), 667–716.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Wei Li received the B.Eng. degree
in automation and the M.Eng. de-
gree in control science and engi-
neering from the Harbin Institute
of Technology, China, in 2009
and 2011, respectively, and the
Ph.D. degree in 2016 from the
University of Sheffield, UK. After
being a research associate at the
University of York, UK, he is
currently an associate professor
with the Academy for Engineer-
ing and Technology, Fudan Uni-
versity, China. His research inter-
ests include robotics and compu-

tational intelligence, and especially embodied intelligence, evolution
and learning, self-organized/swarm systems.

Pedro Ribeiro is a Lecturer in
Computer Science at the Univer-
sity of York, UK. Previously, he
was a Research Fellow in the Sc-
hool of Physics Engineering and
Technology and before that a Re-
search Associate. He completed
his PhD in CS on the topic of
Angelic Processes. His research
interests span the breadth of the
engineering lifecycle for robotics,
including design and development
of domain-specific notations and
their formal semantics, model-based
testing and verification using auto-

mated proof techniques. He is a member of the RoboStar Centre
for Excellence in Software Engineering for Robotics, and a founding
member of Formal Methods Europe’s communications committee.

Alvaro Miyazawa is a lecturer at
the Department of Computer Sci-
ence of the University of York.
Having completed BSc in Com-
puter Science at the University of
Sao Paulo and doctoral research at
the University of York, his main
research interests are formal seman-
tics and refinement for domain-
specific languages and graphical
notations and the development of
verification strategies to support
high levels of automation in pro-
gram verification. He has applied
and developed formal techniques

in various fields, including systems engineering, safety-critical real-
time systems, and robotics. Currently, his research focuses on mod-
elling, testing, simulation and verification for robotics.

Richard Redpath received his PhD in Electronic Engineering from the
University of York in 2019, and he is a Research Associate in the Intel-
ligent and Adaptive Systems group at the Department of Electronic
Engineering, University of York, working on model-based approaches
for the development of robot controllers.

123

 14 Page 22 of 22 Autonomous Robots (2024) 48:14

Ana Cavalcanti is a Professor
at the University of York, UK,
and holds a Royal Academy of
Engineering Chair in Emerging
Technologies. In that role, she is
Director of the RoboStar centre
on Software Engineering for Ro-
botics. She previously held a Royal
Society Industry Fellowship, which
provided her with the ideal oppor-
tunity to understand and contribute
to the practice of formal methods
working with QinetiQ. Her main
scientific achievements have been
on the design and justification of

sound program design and verification techniques. She has covered
theoretical and practical integration with industry-strength technology.
Her work provides support for graphical notations popular with engi-
neers, and for main-stream programming languages. It also supports
high degrees of automation to enable usability and scalability. She has
chaired the Programme Committee of leading conferences, and been
a member of numerous Programme Committees. Currently, she is the
Chair of the Formal Methods Europe Board.

Kieran Alden is a research fellow
in intelligent and adaptive systems
with the Department of Electronic
Engineering, University of York.
He conducts interdisciplinary res-
earch that aims to increase con-
fidence in predictions generated
by computer models of biolog-
ical systems, through the devel-
opment and application of novel
techniques that understand and quan-
tify the relationship between the
model and the biological system
that model is designed to capture.
He is a member of the IEEE.

Jim Woodcock holds the Anniver-
sary Chair in Software Engineer-
ing at the University of York in
the UK. He is an elected fellow
of the UK Royal Academy of
Engineering and a chartered engi-
neer. He is a professor of com-
puter science at Aarhus University
in Denmark. He is a professor of
cyber-physical systems, a distin-
guished researcher at Southwest
University in China, and a Chi-
nese Academy of Sciences Pres-
ident’s international fellow and dis-
tinguished scientist. He is an elected

fellow of the Asia-Pacific AI Association. He is editor-in-chief of
ACM’s Formal Aspects of Computing journal and of Cambridge’s
Research Directions: Cyber-Physical Systems.

Jon Timmis is currently Vice-
Chancellor at Aberystwyth Uni-
versity and Professor of Intelli-
gent and Adaptive Systems. Jon
graduated in Computer Science
from Aberystwyth University and
went on to study a PhD at Aberys-
twyth in the area of artificial intel-
ligence, with a focus on the immune
system. Over the last 25 years,
his research has focused on the
intersection of immunology, com-
putational and mathematical mod-
elling, machine learning, robotics
and swarm robotics. Jon is a pre-

vious recipient of a Royal Society-Wolfson Research Merit Award
and a Royal Academy of Engineering Enterprise Fellowship. Jon co-
founded a company to commercialise his research in modelling and
simulation applied in the pharmaceutical industry in 2014.

123

	Formal design, verification and implementation of robotic controller software via RoboChart and RoboTool
	Abstract
	1 Introduction
	2 Related work
	3 RoboChart
	3.1 Obstacle avoidance example
	3.2 Metamodel of RoboChart

	4 RoboChart software
	4.1 Software architecture
	4.2 RoboChart software execution

	5 Modelling an exploration robot in RoboChart
	6 Results
	6.1 Property checking via formal verification
	6.1.1 General properties
	6.1.2 Task-specific properties
	6.1.3 Model evolution

	6.2 Simulation validation
	6.2.1 Simulation platform
	6.2.2 Simulation experiments

	6.3 Hardware validation
	6.3.1 Robotic platforms
	6.3.2 Physical experiments

	7 Conclusion
	7.1 Summary
	7.2 Limitations
	7.3 Future work

	Acknowledgements
	References

