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A B S T R A C T

The current work studies the application of population-based structural health monitoring
(PBSHM) to the problem of damage prognosis. Two methods are proposed for population-
informed damage prognosis and they are evaluated according to their performance using an
experimental dataset. The first method is an attempt to define a functional subspace, which
includes the potential behaviour of members of the population subjected to the phenomenon
of damage evolution. The second approach is a meta-learning method, the deep kernel transfer
(DKT) method, which seeks to exploit information from a population in order to enhance the
predictive performance of a Gaussian process. The predictive capabilities of the two methods
are tested in an experimental crack-growth problem. The results reveal that the two methods
are properly informed by the population to make predictions about new structures and show
potential in dealing with the problem of damage evolution, which is a problem of imbalanced
and difficult-to-acquire data.

1. Introduction

This paper is a continuation of a sequence devoted to introducing foundations for a new discipline of Population-based Structural
Health Monitoring (PBSHM) [1–5]. The new technology is an attempt to deal with a quite common problem of structural health
monitoring (SHM) [6] - the scarcity of data. The various modelling procedures of structural health monitoring are indivisibly
connected to the acquisition and the exploitation of data. As a result, a convenient and powerful approach to follow is to define
data-driven models to perform the desired monitoring and modelling of the structures [7–9]. However, for such approaches to be
effective, data should be available from the various problems and phenomena, which one seeks to model.

In many cases, such data are not available for structures, either because they have not been appropriately monitored or because
they have only been recently erected. In other cases, structures may be extensively monitored and one may have access to data
instances from different environmental or operational conditions from these structures, as well as access to data from damaged
states, a vital element needed for the definition of various types of data-driven SHM models. At the same time, it is clear that
structures are made of similar materials, operate in similar environmental conditions, and have similar shapes and connectivity. In
many cases structures are even nominally identical, i.e. they are manufactured as identical and their differences could be apportioned
to inherently random events. Therefore, one could consider populations of structures, which share similar physics and, consequently,
knowledge becomes transferable between them. This lack of data from some structures and the described similarities between them
were the stimulus for the development of PBSHM.

The PBSHM discipline is developed by trying to deal with a wide range of knowledge-transfer problems, from more simple to
more complicated ones. On the simpler side of the problem spectrum, a knowledge transfer problem and an attempt to solve it is
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described in [1]. In the aforementioned work, the problem is that of transferring knowledge within a homogeneous population. Such
a population may result from the procedure of constructing nominally-identical structures or structural members. In this case, the
variations in the characteristics of the structures arise from inherently random events during the construction or because of the
exposure of the structures to the environment, which may cause small defects. As a result, the structures shall have similar but not
identical behaviour.

The approach described in [1] for this type of populations is the definition of a single model to explain the behaviour of each
structure within the population. The proposed term for such a model is a form, motivated by Plato’s Protagoras and Meno [10] and
The Republic [11]. For Plato, a form is a set of rules and behaviours that an entity follows, according to which group of beings it
belongs to. Similarly, given a population of structures and considering it a group of beings, the behaviour of all the structures within
it should follow the corresponding form. The form is not very strict and allows some variations. Likewise all structures do not need
to behave exactly the same way, but have some room for divergence between them. To allow such differentiation, an appropriate
type of model for a form is a probabilistic or a generative model. A straightforward example of such a model, which is also used in [1],
is a Gaussian process (GP) model [12]. The GP provides a conditional probability density function (PDF) of a monitored quantity of
the structure, given some input variables. As a result, such a form can be trained on an existing and monitored population, and can
be used to perform novelty detection for new members of the population, which have not been extensively monitored.

Attempting to move towards a more complicated knowledge-transfer problem, one might find out that one needs to transfer
knowledge between populations of structures which are not nominally identical. Populations of such dissimilar structures are referred
to as heterogeneous populations in [1–5]. The heterogeneity of the populations may vary from quite high levels to very low levels
of quite similar, but not nominally-identical, structures. In a quite general case, every structure could be considered part of a
single population. In that case, smaller communities of the population can be separated from the whole population, to facilitate
the knowledge transfer between them. To assess the similarity of the structures and classify them in subgroups, a similarity metric
is required. For this purpose, in [2] a transformation of the structures into irreducible elements (IEs) and the formation of graphs
using these elements is discussed. In [5], the procedure of transforming structures into IEs and the creation of the corresponding
attributed graphs (AGs) is extended and a matching algorithm is presented.

The transformation of structures into graphs provides a convenient way of encoding the layout of the structures in a form
which is recognisable by machine learning [13–15] algorithms. Using standard algorithms or learning algorithms, the graphs can
be processed and the similarity of structures can be evaluated. In [2], communities are sought within the population, as well as
similar subgraphs within the population. In [5], a machine-learning algorithm is used to classify the structures in communities,
which seems to be able to classify specific types of structures following similar logic to human intuition; for example, bridges are
classified according to the number of spans they have. In [4], the created graphs are also used as inputs to graph neural networks
(GNNs) [16] to perform inference within a population of structures regarding a quantity of interest. If the specific quantity, which is
predicted from the algorithm, is a damage-sensitive quantity, the model can be used to infer this quantity for newly-built structures,
for which acquired data do not exist.

A common problem of SHM, for which data availability is a major issue, is that of damage prognosis [17,18]. Dealing with most
prognosis problems is fundamentally an extrapolation problem; although prognosis problems with periodic behaviour exist, it is not
the case in general. In the case of damage prognosis, the notion of extrapolation is even more evident, because of the irreversibility
of the damage evolution procedure. Of course, structures can be repaired and be once again operational, but it is unlikely that the
repaired structure will exhibit the same behaviour as before [19]. Even replacing a damaged component, could result in a structure
with different behaviour because of the uncertainty of the connectivity of the new member with the rest of the structure.

To reduce the dependence of data, one could resort to physics-based approaches. Such approaches provide an analytical model
of the effect of damage on the behaviour of a structure and the way that damage evolves over time [20,21]. However, evolution of
damage in structural members is a quite complicated process and, if one takes into account the uncertainty added because of the
environmental and operational conditions, its analytical modelling can become quite demanding. As in most modelling problems,
statistical and data-driven approaches are a viable option. Statistical models of degradation processes can be used to make predictions
of the remaining useful life of systems [22]. As a more modern approach, machine learning is an alternative, and algorithms such
as recurrent neural networks (RNNs) [23] could be used to perform damage prognosis.

Although a machine-learning approach seems appealing, such approaches might not be a viable option. Such models require
sufficient data to be trained, and, if one wants to build an appropriate model of the damage evolution mechanism, the data
should be available until the failure of the structure; or up to a point that the structure needs immediate repair. Given that, as
discussed previously, a repaired structure is not the same as before the repair, such data are difficult to acquire. Arguably, one of
the most effective ways to acquire such data would be using a population-based strategy. As in [1], the evolution of damage in a
nominally-identical population can be modelled using a damage-evolution form. A difference between a damage-prognosis form and
the normal-condition form presented in [1] is that a damage-prognosis form should be informed by partial observations about the
current state of the tested structure. The information is partial and biased, because the structure’s lifetime starts from an undamaged
state and evolves towards its degraded states, which is expected, because the acquired data from a monitored structure tend to be
from its less damaged states and the desired predictions are about states of higher level of damage.

In the current work, a population-based approach to damage prognosis is studied. The desired approach is the definition of
algorithms, which do not require the analyser’s knowledge as input to the model. Approaches which would require such knowledge
are called physics-based and, as discussed, the formalisation of the physics of damage evolution can be quite complicated and highly
uncertain. Thus, the approach selected in the current paper is a data-driven one. Moreover, a damage-mechanism model requires
quite accurate measurements of quantities that describe the evolution of damage; for example in [21], the XFEM method is used
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to model the effect of a crack in the mechanical properties of a body, but to do so, the characteristics of the crack are needed.
Measuring such quantities is not always feasible and a method applied directly on the evolution of monitored quantities would be
more convenient.

The population-based approach proposed here is based on the belief that a population of nominally identical or quite similar
structures will have a similar behaviour regarding damage evolution. It is also considered that, because of the uncertainty of the
loading conditions and the exact damage, the behaviour will vary. Therefore, the proposed approaches shall be informed both by
data acquired from the structure, while damage evolves, and by the population. The first approach considered is that of applying
a functional principal component analysis (fPCA) [24] on the population data. By doing so, a subspace of the total space of functions
is defined, where one can consider that the functions describing the damage evolution of the population members exist. Having
defined that space, and using partial observations of a new structure where damage has started evolving, one can perform a Bayesian
search for the function which belongs to the functional subspace of the population and best fits the observed data. As more data
are acquired, i.e. as the damage evolves further, more points are included in the inference procedure and the more accurate the
provided predictions become.

The second approach is that of using meta-learning [25], a recently-developed subdiscipline of machine learning. Although a quite
popular interpretation of what meta-learning includes is algorithms that ‘‘learn to learn’’ [25], for population-based approaches of
modelling systems a more fitting interpretation of such algorithms is that they draw information from the tasks of the population,
in order to perform more accurate predictions for tasks, whose data availability is restricted. Such an approach is suitable for a
population-based framework, especially for damage prognosis, where the data for the task at hand are biased and restricted.

The two methods are presented as two alternatives to the population-based approach to structural health monitoring and more
specifically to the problem of damage prognosis. The first method is considered as a more direct and explainable approach to
defining an underlying functional space of the physics of the population. The explainability comes from the fact that, given such a
functional space, one could sample from it and explore the potential behaviour of the structures. The second approach comes from
the machine-learning field of meta-learning and is a completely physics-blind approach. According to the second approach, a neural
network is assigned with the task of learning the correlation between values of the quantity of interest for different input values
within the population. The exploration and explanation of the resulting model might be more challenging than in the first case,
however such methods might be more flexible because of learning local correlations instead of a total underlying function space.
Both methods are included in the current work as a comprehensive study for PBSHM damage prognosis.

The layout of the paper is as follows. Section 2 describes the effect of applying fPCA on functional data from a population of
structures. Section 3 provides an introduction to meta-learning and more specifically to the algorithm which is used here, the deep
kernel transfer (DKT) [26]. Section 4 describes the application of fPCA for damage prognosis with re results of the application and
Section 5 presents the results of applying the DKT method to an experimental crack-growth dataset. Finally, in Section 6 the results
and the behaviour of the algorithms are discussed and in Section 7, conclusions are drawn about the methods.

2. Structural data in the functional principal component space

A major problem when modelling a system is uncertainty. Uncertainty is often categorised as of two types, the aleatory
uncertainty and the epistemic uncertainty. The first type refers to inherently random processes and the second refers to the lack
of knowledge about the actual way that a system works. Although the above separation of sources and effects of uncertainty is quite
convenient and used throughout the literature, in the current work a slightly different naming and separation is considered. The
preferred separation herein is that of uncertainty in the parameters and structural uncertainty.

The uncertainty in the parameters is quite similar to aleatory uncertainty. Common sources of such a type of uncertainty for
modelling of structures are the manufacturing process of structural members, environmental conditions and operational conditions. It
could be quite complicated to attempt to model or extensively control these procedure and some of the events which form them may
be considered totally random. As a result, the actual structural parameters, for example Young’s modulus, differ from one’s belief or
from the specifications of the manufacturing procedure. Such variations could also occur because of environmental conditions and
ageing of materials. The main difference in the current definition of uncertainty in the parameters is that several parameters of the
formalisation of the model may fall in this category, while aleatory uncertainty is mainly about fundamentally-random quantities.
For example, one could be modelling a nonlinear structure using a Duffing oscillator model, i.e. a cubic nonlinearity, however, the
behaviour may be better explained using a power which slightly diverges from the third power. Such a type of uncertainty would
be considered epistemic according to the previous formalisation, but in the current one it would be in the parameters.

The second type, the structural uncertainty, is fundamentally about the mathematical formalisation that the analysers use to
model a system. It has to do with parts of the system or other factors that affect the behaviour of the system and have been
omitted or that the way, according to which they affect the system, has not been properly modelled. The difference from epistemic
uncertainty is that the structural uncertainty may only contain the part of the uncertainty that cannot be reduced simply by altering
the parameters of a model.

The aim of the current work is to model the evolution of damage in a population-based framework relying exclusively on data.
This approach is desired to avoid any structural uncertainty from defining a physics-based model for the specific phenomenon. At
the same time, the desired approach should be able to deal with uncertainty in the parameters, because of potential noise in the
measurements or, as mentioned already, inherently random events during the damage evolution procedure.

In contrast to the approach of the current work, the physics-based approach to modelling a system is to use one’s intuition and
define a model 𝑓 𝑝, which for some input variables 𝒙 would provide predictions 𝒚 about the behaviour of the system. Of course, for
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the model to be applicable to many different systems, with common physics, the model should have some adjustable parameters 𝜶.
Therefore, the prediction process is given by,

𝒚 = 𝑓 𝑝(𝒙;𝜶) (1)

where 𝒚, 𝒙 and 𝜶 are vectors of variables and parameters.
Because of the use of tunable parameters 𝜶 as part of the function, the potential functions, that can be selected to explain the

behaviour of a system, define a family of functions 𝑝. This family defines all the potentially-observable behaviours of every system
in the studied family of systems. Obviously, this applies to a population of structures. Phenomena, which are modelled within
a population-based framework, may follow Eq. (1). Consequently, one has to define a proper family of functions 𝑝, which is a
functional of all the potential behaviours of the members of the population.

Given that the functional family 𝑝 is defined following one’s intuition and understanding, the modelling framework is susceptible
to structural uncertainty. Trying to mathematically formulate what this uncertainty means, a second functional family has to be
defined, i.e. the functional family of the actual behaviours of the systems ℎ ∈ . The general case will be that 𝑝 ≢ , as a result,
the predictions of the models 𝑓 𝑝 will diverge from the actual behaviour of the structures of interest.

In the case of 𝑝 ⊂ , then there is no structural uncertainty. Such a case may not be very common in a physics-based approach,
as it would require a quite general family of functions 𝑝, but for a data-driven approach, a Gaussian process or a neural network
are models that can potentially achieve such a condition; since a very general prior is considered and with every observation some
functions are rejected, resulting in a smaller set of functions with every observation. In the case of 𝑝 ⊂ , the only uncertainty
that exists is that of the parameters, and what is needed for accurate predictions is informative (and potentially noise-free) data to
select the most fitting parameters for the case.

Data from the system or structure whose modelling is desired are not always accessible. As a result, the definition of  is
not always feasible. A major example is modelling of a structure, which has not been deployed yet. In that case, the use of existing
knowledge is the only way to perform modelling. However, in this case, the knowledge may still be considered population-motivated,
since it comes from studying past similar structures or structural members. Motivated by this observation, the current work aims
at a data-driven definition of population-based models. All things considered, it might be argued that most types of modelling are
data-driven, considering that even calibrating a physics-based model fits the empirical risk minimisation (ERM) procedure, which
is described in [27] as a core element of data-driven learning, i.e. finding the most fitting parameters 𝛼 for a model of the form
of Eq. (1) regardless of the way that the model has been defined, physics-based or data-driven.

The motivation of the current work is that for a population, a proper family of functions  can be defined via the available
data from existing structures. To do so, functional principal component analysis (fPCA) is used [24]. To follow such an approach, the
available data should be in the form,

𝐷 = {ℎ1, ℎ2..., ℎ𝑁}, ℎ𝑖 = {(𝒙1, 𝑦
𝑖
1
), (𝒙2, 𝑦

𝑖
2
)..., (𝒙𝑀 , 𝑦𝑖

𝑀
)}, 𝑖 = 1, 2..., 𝑁 (2)

where 𝐷 is the available dataset, ℎ𝑖 is a set of observations for structure 𝑖 of the form {(𝒙1, 𝑦
𝑖
1
), (𝒙2, 𝑦

𝑖
2
)..., (𝒙𝑀 , 𝑦𝑖

𝑀
)}, where 𝑥𝑗 is the

𝑗th input vector and 𝑦𝑖
𝑗
is the 𝑗th output variable of the 𝑖th structure. Using this dataset and fPCA, a linear subspace 𝑓𝑃𝐶𝐴 of the

space of all possible functions is defined. Given that the data are representative of the population (the evaluation of which is not
the objective of the current work), the potential behaviour of all structures belonging to the same populations and under the same
damage, environmental and operational conditions live in this subspace. In this case, it can be considered that  ⊂ 𝑓𝑃𝐶𝐴. The
functions 𝑓𝑖 ∈ 𝑓𝑃𝐶𝐴 are given by,

𝑓𝑖(𝒙) =

𝑗=𝐾∑

𝑗=1

𝛽𝑖
𝑗
𝜑𝑗 (𝒙) + 𝜖, 𝒙 ∈  , 𝑓𝑖 ∈ 𝑓𝑃𝐶𝐴 (3)

where 𝜑𝑗 (𝒙) are the basis functions of the fPCA decomposition of the data, 𝛽𝑖
𝑗
are the coefficients of the basis functions used to

compose 𝑓𝑖, and 𝐾 is the number of principal components considered in the decomposition in order to maximise the explained
variance. To obtain the principal component basis-functions 𝜑𝑗 (𝒙), using a set of functional observations ℎ𝑖, a PCA approach can
be followed for discrete data or an fPCA approach as described in [24]. Given some partial observations of the behaviour of a new
structure in the population, the problem of predicting the behaviour for the whole input space is reduced to selecting the most fitting
principal component scores 𝜷𝒋 . The search for the most fitting parameters can be performed with several algorithms. The efficiency
depends largely on the dimensionality 𝐾 of the problem. In the current work, a Bayesian Hamiltonian Monte Carlo [28,29] approach
is considered for this search.

The belief that the actual subspace of functions  is a subset of the fPCA space 𝑓𝑃𝐶𝐴 comes from the fact that fPCA is a linear
decomposition designed to contain as much information as possible from the original functions. Moreover, it is an infinite space,
because the values of the principal component scores 𝛽𝑗 may be any real number. In fact, the actual subspace  might be a manifold
in the total functional space and in the fPCA space as well. Such an issue will be further discussed in Section 4, where a specific
problem of damage prognosis is presented and the fact that the data actually exist in a manifold of 𝑓𝑃𝐶𝐴 becomes evident.

3. Meta-learning

A recently emerging class of algorithms in the machine-learning community has been that of meta-learning. Several methods are
considered to belong in the specific field, a comprehensive review of which can be found in [25,30]. A common characteristic of the
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methods is that they are essentially population-based approaches to the development of machine learning models. Looking further
into the functionality of the algorithms, the field of meta-learning could be characterised as a special case of transfer learning [31]
and, in many cases, of multi-task learning [32].

The class of meta-learning algorithms which are of interest herein are the ones that draw information from a population of tasks,
which, for the interests of structural dynamics and structural health monitoring, are often separate structures. It should be noted
that the desired type of model is a common model for the whole population, which can be with a few samples adjusted to a member
of the population, given some data from it. Such a framework is motivated by the functionality of physics-based models, such as
finite element models (FEM) [33], which have a few tunable parameters and, by varying them, the behaviour of many different
members of the population can be modelled.

As described in [30], there are several types of meta-learning algorithms. One of these types is focussed on the parameter
initialisation of the model. The idea is quite appealing for neural network approaches, whose number of tunable parameters is quite
high. An approach of defining such a model is described in [34], where the search for an initialisation point is performed, setting
as a criterion that, from the initialisation point, the training algorithm (backpropagation in this case) shall be able to converge to a
satisfactory point with a few training steps and a few samples. The algorithm is built as a two-step backpropagation algorithm, whose
first step takes into account the errors of individual tasks from the population and the second step attempts to exploit information
from the first step to find the desired initialisation point. The method is compared to a simple average-point initialisation approach,
i.e. simply averaging the minima points of all tasks of the population, and seems to be more efficient.

Another approach to meta-learning is that of targeting the learning algorithm to make it case-specific and more efficient for
a population of tasks. An implementation of such an approach is presented in [35]. In the aforementioned work, the learning
algorithm is replaced by a neural network. The idea behind such an approach is that the learning algorithm and the loss functions
used in optimisation of neural networks are often quite general and not task-specific. Therefore, training a neural network as a
population-specific neural-network trainer seems an appealing idea for a population-specialised optimiser. The results also reveal
that the method provides faster convergence and with lower error.

An interesting approach is presented in [36]. The method, called conditional neural processes (CNP), aims at defining variables
that characterise the tasks. The idea is quite appealing in the case of physical problems, since, in a heterogeneous population, there
might be some underlying variables that characterise the space of structures. These variables may be difficult to define, therefore
an approximation of these via the use of a secondary neural network is attempted in the CNP framework. The secondary neural
network uses available data (both inputs and targets), as inputs and predicts a latent vector, which is then used as an input to
the main predictive neural network. The framework aims at training the secondary neural network to provide task-informative
vectors, so that the main predictive neural network shall be able to make more accurate predictions about new data-poor tasks of
the population.

Other approaches include sharing of features and some few-shot learning approaches [37]. In the current work, the preferred
method is that of deep kernel transfer (DKT) [26]. The method is selected because of its simplicity, the reasonable intuition available
on the way the method works, and because of the use of Gaussian processes, which is a Bayesian algorithm and is able to properly
treat uncertainty.

Deep kernel transfer is built on top of the Gaussian process training framework. More specifically, a Gaussian process model
considers as inputs data  of the form,

 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2)..., (𝒙𝑀 , 𝑦𝑀 )} (4)

where 𝒙𝑖 is the 𝑖th sample input vector, 𝑦𝑖 is the 𝑖th sample target output, and 𝑀 is the number of observations. Consequently, a
functional prior is selected for the candidate functions, which shall be considered for the interpolation of the data in . The prior
is given by,

𝑓 (𝑥) ∼ (𝑚(𝒙), 𝑘(𝒙,𝒙′)) (5)

where 𝑚(𝑥) is the mean function of the prior, which is a function of the input vectors 𝒙 and 𝑘(𝒙,𝒙′) is the kernel function, which is
calculated between two input vectors 𝒙 and 𝒙′.

Taking into consideration the data , one can make predictions about new input points 𝒙∗. The predictions are given by,

𝑓 (𝒙∗|) ∼  (𝑓 ∗, 𝑐𝑜𝑣(𝑓 ∗)) (6)

where is a Gaussian distribution, and 𝑓 ∗ and 𝑐𝑜𝑣(𝑓 ∗) are the mean and covariance of the predictions for 𝒙∗, which can be, in some
cases, calculated analytically as shown in [12]. The hyperparameters often included in the process are a scale factor, a length scale
of the kernel, and the variance of the noise, in case it is considered that the data are noisy. The selection of the hyperparameters
can be performed via likelihood maximisation or variational inference.

The selection of the mean and kernel functions is performed by the analyst. Common options are a zero-mean function or a linear
one, and an exponential or Matern kernel. These selections reflect the belief that one has that the about the underlying physics of
the system which is modelled. The mean function may reflect one’s belief that a trend exists in the data and the kernel may reflect
the smoothness or the periodicity of the data. Proper selection of such parameters can be performed to induce physical knowledge
in the algorithm; such examples are presented in [38].

The main addition to the traditional GP definition by the DKT framework is that in the second case the data are available in a
population-based framework,

𝑖 = {(𝒙𝑖
1
, 𝑦𝑖

1
), (𝒙𝑖

2
, 𝑦𝑖

2
)..., (𝒙𝑖

𝑀
, 𝑦𝑖

𝑀
)}, 𝑖 = 1, 2..., 𝑁 (7)
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where 𝑖 is the dataset of the 𝑖th task/structure, 𝑀 is the number of observations and 𝑁 is the number of structures. Another
difference is that, in the second case, the mean and the covariance functions are learnt instead of being imposed by the analyser.
To do so, a neural network is used. The neural network 𝐹𝝓 is used to preprocess the input vectors 𝒙 before they are fed into the
mean function and the kernel function. Thus, the new prior is given by,

𝑓 𝑖(𝑥) ∼ (𝑚(𝝓(𝑥)), 𝑘(𝝓(𝑥),𝝓(𝑥
′))) (8)

where 𝝓 are the trainable parameters of the neural network. The mean and kernel functions can be used for the Gaussian process
and Eq. (6) gives the predictions for new points 𝒙∗ following,

𝑓 𝑖(𝒙∗|) ∼  (𝑓 ∗
𝝓
, 𝑐𝑜𝑣(𝑓 ∗

𝝓
)) (9)

but in this case the mean and covariance of the normal distribution of the predictions are functions of the trainable parameters of
the neural network 𝐹𝝓. Moreover, a loss function is considered, which is common for every task. The loss function is given by,

𝑖 = − log 𝑝𝜙,𝜑(𝑦
𝑖|𝑖) (10)

where 𝑝𝝓,𝝋 is the probability density function predicted by the model, which is a function of the tunable parameters of the neural
network 𝜙 and of the parameters 𝝋 of the GP. The loss function is aimed at maximising the probability of the target values 𝑦𝑖 of
the data 𝑖. During every training loop, for every task 𝑖, the error 𝑖 is calculated and then this error is backpropagated to perform
an optimisation training step for parameters 𝝓 of the neural network 𝐹 and the parameters 𝝋 of the GP. More specifically, the
backpropagation step is given by,

𝝓′
← 𝝓 − 𝛾1∇𝜙

𝑖 (11)

where 𝝓′ are the updated values of the neural-network parameters 𝝓 after one training iteration, 𝛾1 is the learning rate of the
neural-network parameters and,

𝝋′
← 𝝋 − 𝛾2∇𝜑

𝑖 (12)

where 𝝋′ are the updated values of the Gaussian-process parameters 𝝓 after one training iteration, 𝛾2 is the learning rate of the
Gaussian-process parameters. Although Gaussian processes are often considered a non-parametric algorithm, their hyperparameters
need tuning. These are often the correlation length of the kernel, the noise parameter of the process and the scale of the kernel.
In some cases more parameters can be included in this optimisation procedure, e.g. for a linear mean function, the slope of the
function. After completing training, the resulting parameters 𝝓̂ and 𝝋̂ from the optimisation algorithm are identified. For a new
structure, observations 𝐷∗ similar to Eq. (7) are acquired and, following the traditional GP framework, the predictions for the labels
𝑦∗ for 𝒙∗ are given by,

𝑝(𝑦∗) ∼ 𝐺𝑃 (𝑚(𝝓̂(𝒙
∗)), 𝑘𝝋̂(𝝓̂(𝒙

∗),𝝓̂(𝒙
′∗))|∗) (13)

Considering every structure to be a different task, the current application follows the methodology defined in [26], where the code
for the algorithm is presented.

The intuition behind such an algorithm is that it shall learn a population-informed transformation of the input variables, so that
it can perform effective inference for all the tasks. The transformation that the network 𝐹𝝓̂ provides may have several forms. In a
quite high-dimensional problem, the network may perform a feature-extraction procedure in order to identify informative features
so that the GP can afterwards perform inference. In more simple and low-dimensional problems, like the one which is presented
here, the neural network is expected to transform the input space, so that the mean and kernel functions of the GP are effectively
informed by the population. This transformation might be a deformation of the input variables 𝒙, so that a linear mean function
and an exponential kernel represent more accurately the actual mean function of the population and the correlation between points
of the input space and the target quantities.

Following a data-driven path instead of defining the two quantities manually, is expected to deal with the structural uncertainty
issue. When modelling structures, it is expected that analytical solutions for specific problems may not be available. The problem
might be highly evident in high-dimensional problems, where the definition of a formula may be very difficult, even in the form
of a prior belief. Therefore, it is desired that machine-learning algorithms are used to extract such relationships, at least at an
approximation level. For damage prognosis, as discussed, the damage-evolution phenomenon is difficult to model and involves high
levels of uncertainty. As a result, the population-based DKT approach is considered a potential solution to the problem.

4. Application of fPCA to crack-propagation

4.1. Experimental set-up

To test the efficiency of estimating the actual functional space of a population phenomenon, in the current work, a population
of plates is chosen and the phenomenon is the growth of a crack in them. The population comprises six aluminium plates, which
were subjected to cyclic loading in a laboratory environment; one of the plates is shown in Fig. 1. The damage is a skin crack and
was artificially initiated in the centre of the plates; the value of the initial crack was 16 mm. The load was a sinusoidal load of 12 Hz

frequency with maximum amplitude of 35kN and a load ratio of 𝑅 = 0.1. The crack is manually measured with calipers during the
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Fig. 1. The experimental setup used to acquire the data of the current application [39].

Fig. 2. The crack-growth paths of the six plates in their original form (left) and with inverted axes (right), for the purposes of the current work. For reference,
the colours of the plates corresponding to numbers one to six is considered to be blue, orange, green, red, purple, brown. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

system operation. The plates are representative of plates of the fuselage of a helicopter. For more information, the interested reader
can refer to [39,40].

The crack-growth curves of the six plates are shown in Fig. 2 on the left. It immediately becomes evident that, although the
plates are considered nominally identical and form a homogeneous population, their behaviour, regarding the way that the crack
grows, is quite different. The crack requires different numbers of loading cycles to reach similar values of crack lengths for every
plate. This difference in the behaviour is quite evident, especially after the cracks achieve a length of around 30-40 mm.

4.2. Definition of the fPCA subspace

In order to apply the methodology described previously, the available dataset should have a functional form; i.e. the available
curves should be functions and, thus, there should exist a common range of each function. This clearly does not happen when one
considers the dataset in the form of Fig. 2 on the left. However, considering the modelled relationship a function which maps the
crack length to the required number of loading cycles (instead of the opposite), a functional relationship is defined. By defining an
upper limit for the crack length, and inverting the axes for the aforementioned reason, the result is shown in Fig. 2 on the right.

The latter form of the data is particularly useful, because, in this form, fPCA and data augmentation are applicable. The result of
applying fPCA is the definition of the principal components of the functional relationship between the crack length and the loading
cycles. These components are shown in Fig. 3 on the left and the principal component scores of each curve of Fig. 2 are shown on
the right. Using two principal components, 99% of the variance of the data is explained. What is interesting in the aforementioned
figures is that the behaviour of the cracks contains two components, in which one is almost steadily decreasing but the second
has a peculiar behaviour. Therefore, one could speculate that the accurate physical modelling and interpretation of the specific
data would be quite difficult, since physical intuition would probably omit inclusion of such behaviour in an analytical model. A
second observation is that the principal component scores which correspond to the available data do not spread along the whole
𝑓𝑃𝐶𝐴 space, which would be the whole plane of the right-hand plot. In contrast, they are concentrated in a very small area. This
observation indicates that fPCA may identify a space which contains the actual space of functions of the modelled phenomenon.
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Fig. 3. The principal component functions of the fPCA - 𝜑𝑗 in Eq. (3) - applied on the functional crack-growth data (left). The principal component scores -
𝛽1
𝑗
, 𝛽2

𝑗
in Eq. (3) - of the six available curves, with colour correspondence with Fig. 2 (right). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

As mentioned, the specific functional form of the data provides the analyst with the option to augment the dataset. The
augmentation is simply performed by defining new curves using the convex combination,

𝑐 = 𝛼𝑐1 + (1 − 𝛼)𝑐2 + 𝝐 (14)

where 𝑐1 and 𝑐2 are two of the available curves, i.e. they are two distinct samples of ℎ𝑖 of Eq. (2), 𝛼 is a random variable sampled
uniformly from the interval [0, 1], and 𝜖 is a noise parameter sampled from a positive-only distribution (because the crack may
only become larger), a beta distribution in the current work. If specific knowledge about the phenomenon of the crack growth is
available, the user could impose a specific distribution for 𝛼, but in the current work, a physics-agnostic approach is desired, so the
uniform distribution is chosen. This approach in the principal component space, since it is the result of a linear projection of the
original curves, is interpreted as the definition of line segments that connect the points of the available data and adding noise to
them.

Because of the small number of structures in the population in the current case, the augmentation is required to define a manifold
in the functional space. This manifold is considered to be the space of the potential behaviour of the members of the population. The
approach is an attempt to define this space in a data-driven manner, rather than trying to identify it using knowledge and analytical
solutions. After the space has been defined, for a new structure, where damage starts evolving, an optimisation procedure can be
followed to identify the principal component scores that best fit the so-far observations of the damage evolution.

4.3. HMC for damage prognosis

A Bayesian framework can be followed to identify the principal component scores that best fit the data. More specifically, for a
structure 𝑖 of the population, a set of observations 𝑖 is considered in the form,

𝑖 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)..., (𝑥𝑀 , 𝑦𝑀 )} (15)

where for the current problem 𝑥𝑗 is the 𝑗th observed value of crack length, 𝑦𝑗 is the number of loading cycles required to achieve
the specific crack length and 𝑀 is the number of observations.

The variables that need to be identified for the specific problem are the principal component scores 𝛽𝑗 of Eq. (3). In the current
case, because two principal components explain the dataset, the variables that are identified are 𝛽1 and 𝛽2. The likelihood of the two
variables is chosen to be Gaussian, the two variables are considered to be independent, and, taking into account the observations
of Eq. (15), the likelihood is given by,

𝐿(𝑖|𝛽1, 𝛽2) =
𝑀∏

𝑗=1

1

𝜎
√
2𝜋

exp−
1

2
[
(𝛽1𝜑1(𝑥𝑗 ) + 𝛽2𝜑2(𝑥𝑗 ) − 𝑦𝑗 )

𝜎
]2 (16)

where 𝜎 is the standard deviation of the likelihood and can be included in the learning process or be defined by the analyser, and
𝜑1 and 𝜑2 are the principal components, examples of which are shown in Fig. 3 on the left.

Using Bayes theorem, the posterior probability or the log-posterior probability of the parameters can be calculated by,

𝑃 (𝛽1, 𝛽2|𝐷𝑖) =
𝐿(𝑖|𝛽1, 𝛽2)𝑝(𝛽1, 𝛽2)

𝑝(𝑖)
∼ log𝐿(𝑖|𝛽1, 𝛽2)𝑝(𝛽1, 𝛽2) (17)

where 𝐿 is the likelihood given by Eq. (16), 𝑝(𝛽1, 𝛽2) is the prior belief about the values of 𝛽1 and 𝛽2 and 𝑝(𝑖) is the probability of
the data.

The prior belief has been acquired from the population data. More specifically, the prior belief about the values of the parameters
𝛽1, 𝛽2 is the result of the augmented data, which are the result of Eq. (14). To define a probability density function of these
parameters, a normalising flow (NF) [41] is used. This option may not be the most computationally-efficient for a two-dimensional
case, as the one of this example, but NFs are powerful models which can learn quite complicated distributions and would be efficient
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Fig. 4. Schematic procedure of the proposed fPCA algorithm for population-informed inference.

in cases of higher number of principal components. Further explanation of the method of normalising flows is not given here, but
the interested reader could refer to [42,43].

For completeness, the models used were masked affine flows [44] and the characteristics of the models used in every case were
a Gaussian latent distribution with a unit covariance matrix, and an NF with eight flows (i.e. eight neural network transformations
from the latent distribution to the target distribution), each of these flows was a neural network with two-dimensional inputs and
outputs (because the data are two-dimensional) and a 32-node hidden layer. The models were trained for 20000 epochs with a
batch size of 512 samples. Although it is a machine learning model and a validation procedure should be followed to select the
hyperparameters of the model and the best model throughout the training procedure, the aim of this NF is auxiliary and its purpose
is to model the probability density of the population samples. As a result, the model is selected solely using the normalising-flow
training loss and picking the one with the lowest such value.

In order to perform inference, the logarithm of the posterior is used and a Hamiltonian Monte Carlo (HMC) algorithm [28],
more specifically a No-U-turn algorithm [45]. The implementation of the algorithm which is used here can be found in [46]. The
application of such an algorithm for the values of the latent space are also proposed in [47]. Such an algorithm is applicable in
the current case, because the posterior of Eq. (17), from which sampling is required, is differentiable. The benefit of using an
HMC approach instead of more classic Metropolis–Hastings Markov chain Monte Carlo (MCMC) is that it is more efficient in high-
dimensional search spaces. The current problem is quite low-dimensional, however, similarly to using an NF, the algorithm is built
for a higher number of principal components. The characteristics of the HMC algorithm in the presented applications are a step size
equal to 0.002, 30 samples per step of the algorithm, a burn-in period of 250 samples, and a total of 1250 samples. After using HMC
to sample from the posterior, Eq. (3) is used to reconstruct the potential damage paths and to calculate the time until the crack
reaches the user-set limit. The procedure is shown schematically in Fig. 4 and a pseudoalgorithm is presented in Algorithm 1.

Observing the fPCA component scores shown in Fig. 3 and the augmented data in Fig. 4, it becomes clear that the data-
augmentation process followed here creates a manifold in the PC space by connecting together couples of points in the dataset.
Such an augmentation would not be necessary for a larger dataset, with much more dense data points in the PC space. However, in
the current case, given the small size of the dataset, the augmentation is necessary. A problem that might arise with a small dataset,
like the one available here, is that the specific augmentation process might not create an appropriate manifold in the sense that
it might not include proper PCs for a testing damage path. This is evident in the current case, if one observes the right-hand side
of Fig. 3. In this plot, it is clear that, if one damage path is considered the testing datum and a manifold is created following the
proposed data-augmentation strategy using the other five paths, the created manifold would not include the left-out path. This is
true except for the case of considering as testing path the third path (green curve and point).

In the case that the true underlying pair of principal component scores (PCs) does not belong in the manifold of the augmented
data, the algorithm is still expected to perform well. Such an expectation comes from the fact that, although the true underlying



Mechanical Systems and Signal Processing 209 (2024) 111119

10

G. Tsialiamanis et al.

Algorithm 1 FPCA subspace inference.

Require: 𝐷 = {ℎ1, ℎ2..., ℎ𝑁} (Eq. (2))
Require: Testing structure data D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2..., (𝑥𝑚, 𝑦𝑚)}

Require: N number of HMC samples
Require: 𝜎 variance of the likelihood
procedure HMC predictions(𝐷,D,N , 𝜎)

𝐷𝑎𝑢𝑔 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐷) ⊳ Eq. (14)
𝑃𝐶𝐴𝑏𝑎𝑠𝑖𝑠, 𝑃𝐶𝐴𝑠𝑐 ← 𝑓𝑃𝐶𝐴(𝐷𝑎𝑢𝑔) ⊳ 𝑃𝐶𝐴𝑏𝑎𝑠𝑖𝑠 contains 𝜑𝑗 of Eq. (3)

𝑁𝐹 ← 𝑡𝑟𝑎𝑖𝑛_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑖𝑛𝑔_𝑓𝑙𝑜𝑤(𝐷𝑎𝑢𝑔) ⊳ According to [42]
𝑝𝑟𝑖𝑜𝑟 ← 𝑁𝐹

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ←

∏𝑚

𝑗=1
1

𝜎
√
2𝜋

exp−
1

2
[
(𝛽1𝑃𝐶𝐴𝑏𝑎𝑠𝑖𝑠[1](𝑥𝑗 )+𝛽2𝑃𝐶𝐴𝑏𝑎𝑠𝑖𝑠[2](𝑥𝑗 )−𝑦𝑗 )

𝜎
]2

[𝜷1, 𝜷2..., 𝜷N ] ← 𝐻𝑀𝐶(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑, 𝑝𝑟𝑖𝑜𝑟) ⊳ According to [46]
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑃𝐶𝐴([𝜷𝟏, 𝜷𝟐..., 𝜷N ]𝑇 )

return 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
end procedure

pair of 𝛽1 and 𝛽2 does not belong to the manifold, the NF does not assign an absolute zero value of probability density to the rest
of the PC space. As a result, the HMC algorithm should potentially be able to locate the appropriate principal component scores.
Therefore, for completeness, the algorithm is tested on two problem set-ups. The first is an in-population prediction framework,
i.e. all the damage paths are considered in the prior-definition process and data from the augmented dataset are randomly sampled
and the performance of the algorithm is tested according to the later samples. The second scenario is an out-of-population prediction
framework, where six scenarios are considered. Each scenario is simply defined by using five of the original damage paths as the
training population and the sixth as the testing datum.

4.4. In-population predictions

The proposed algorithm is tested on partial data coming from damage paths from the augmented dataset. The augmented data
are created using Eq. (14). The testing data in this case are considered to belong to the same population as the training data and
the accuracy of the algorithm is expected to be higher.

The testing population comprises 1000 damage-path samples. The results are presented in terms of the normalised mean-square
error (NMSE) of the final prediction of the predictions of the remaining damage path. The NMSE of the performance of the algorithm
is defined by,

𝑁𝑀𝑆𝐸 =
100

𝑀𝜎2
𝑦

𝑀∑

𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)
2 (18)

where 𝑦̂𝑖 is the prediction of the model for the 𝑖th damage path, 𝑦𝑖 is the corresponding true value of the true remaining damage
path, 𝜎𝑦 is the standard deviation of the damage paths throughout the population and 𝑀 is the total number of samples. Such an
error metric is useful because it is equal to 100% if the model predictions (𝑦̂𝑖) are set to the mean value, i.e. 𝑦̂𝑖 = 𝑦; values lower
than 100% reveal that the model is indeed capturing correlations in the data. Experience with this NMSE indicates that good models
are obtained for values of less than 5%, with a value of less than 1% for excellent models.

The results are presented in Figs. 5 and 6 in terms of the mean value and the standard deviation of the NMSE across the testing
population. In the specific figures, the horizontal axis represents the crack length, for which the loading cycles are predicted, and
the vertical axis represents the current crack length. The colour of the plot in Fig. 5 represents the NMSE of the testing population
regarding the prediction of the number of cycles needed to achieve the crack-length value defined by the 𝑥 axis, given crack-length
and number-of-cycles observations up to the crack-length value defined by the 𝑦 axis. Similarly, in Fig. 6 the colour represents the
standard deviation of the NMSE within the testing population. It is clear that as the crack length increases, the mean NMSE of the
predictions becomes quite low. It is worth noting that a part of the plots in Figs. 5 and 6 refer to predicting the past, which might
seem peculiar. However, this metric is useful as well, because it indicates how well the algorithm is able to explain the so-far data
and as a result it could be a metric of whether the testing structure indeed belongs to the population.

4.5. Out-of-population predictions

The results of applying the proposed algorithm to make predictions about one plate, considering the other five plates as training
population, are summarised in Figs. 7 and 8. In the aforementioned figures, it is clear that the predictions get more accurate as
the crack grows and more observations are included in the inference process. More plots of how the predictions evolve as more
data are acquired are provided in the appendix and the results are further discussed in Section 6. In the plots in Fig. 8, it becomes
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Fig. 5. Average normalised mean-squared error of the predictions of the fPCA model for a testing population of 1000 structures. The horizontal axis represents
the crack length to which the predictions refer and the vertical axis represents the current crack length.

Fig. 6. Standard deviation of the normalised mean-squared error of the predictions of the fPCA model for a testing population of 1000 structures. The horizontal
axis represents the crack length to which the predictions refer and the vertical axis represents the current crack length.

clear that in some cases the algorithm is not able to fit quite well in the existing data, with an exception of plates one and six. This
observation could indicate to the analysts that the specific plates should be studied using a different approach. Indeed for plate five,
the predictions for the past are not satisfactory and so do the predictions for the future for the most of the crack-growth procedure.

5. Application of meta-learning to crack-propagation

The DKT meta-learning approach, which was described in Section 3, is also tested on the aforementioned crack-growth dataset.
For the application, similarly to before, a training population is assumed and the model is trained based on data acquired from these
structures. Subsequently, the trained model is applied on the testing population or a single testing structure. The predictions of the
model are calculated using Eq. (13). The procedure is schematically shown in Fig. 9.

5.1. In-population predictions

Similar to the fPCA approach, the meta-learning algorithm is tested on the two cases of in- and out-of- population predictions.
For the case of making predictions for structures that belong to the population, similar to before, 1000 damage paths generated
from Eq. (14) are considered. Because the results refer to a testing population, the accuracy of the algorithm is evaluated in terms
of the average NMSE and the standard deviation of the NMSE across the testing population.

The average NMSE of the predictions is shown in Fig. 10. Similar to before, for a crack length of above 40 mm, the average
NMSE is almost always below 1%. Similar behaviour is observed for the standard deviation of the NMSE of the predictions in
Fig. 11, indicating a quite consistent behaviour across the testing population, which is desired from such algorithms. Regarding the
so-far predictions, the algorithm has really high accuracy, indicating that it shall have high accuracy for future predictions as well.
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Fig. 7. The PDFs of the estimated total lifetime of the structures using the fPCA algorithm, as a function of the current crack length. The mean values of the
predictions are shown as the blue curves and the actual total life-time of each plate is shown as the horizontal red line. The numbers of the plates are one to
six from right to left and from top to bottom.

5.2. Out-of-population predictions

To evaluate the efficiency of the algorithm, the same six single-testing-plate problems are considered. The results of applying
the DKT algorithm are described by Figs. 12 and 13. In the aforementioned figures, it is clear that as, more information is acquired,
the predictions become more accurate and concentrate around the actual remaining useful life of each plate. The algorithm is able
to make accurate predictions even for out-of-population plates, implying that the neural network of the DKT algorithm has learnt
an appropriate transformation of the input space, so that the mean and the correlation functions resemble the actual mean and
correlation of the population. More figures for a more comprehensive qualitative evaluation of the algorithm are provided in the
Appendix and a discussion regarding the results is carried out in the next section. In the case of the DKT algorithm, in contrast to the
fPCA algorithm, the accuracy for the so-far predictions is satisfactory in most cases. This observation indicates that the algorithm
is more efficient in learning the actual underlying physics from the training population and applying this knowledge to future
predictions.

6. Discussion

The results show that the two methods presented are able to exploit information from a population of data-rich structures to
make predictions about new structures, whose acquired datasets suffer from data scarcity. Observing the results, it becomes clear
that both methods become more accurate as more data are acquired. For both types of testing data – in- and out-of- population –
the methods are able to make more accurate and more certain predictions as more crack-growth data are observed.

The increasing accuracy of the methods as more data are observed is especially clear for the in-population case studies. The
characteristic of these case studies is that the testing population is similar to the training population (i.e. the inference problems
come from the same distribution of tasks). Although this is a facilitating assumption, it might be quite common that such inference is
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Fig. 8. The resulting normalised mean-square error for the six out-of-population problems regarding the whole damage path, using the fPCA algorithm, as a
function of the current crack length and the step for which the prediction is made.

Fig. 9. Schematic representation of the flowchart of applying the deep kernel transfer (DKT) algorithm for damage prognosis.

required. Especially when a large population is considered, it is highly likely that a new structure will have behaviour which is part

of the potential behaviours of the existing population or quite similar. Moreover, according to the augmentation scheme followed

here, the new samples are generated on the basis of the linear superposition of the behaviours of members of the population. This
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Fig. 10. Average normalised mean-squared error of the predictions of the DKT model for a testing population of 1000 structures. The horizontal axis represents
the crack length to which the predictions refer and the vertical axis represents the current crack length.

Fig. 11. Standard deviation of the normalised mean-squared error of the predictions of the DKT model for a testing population of 1000 structures. The horizontal
axis represents the crack length to which the predictions refer and the vertical axis represents the current crack length.

type of augmentation might as well be physically admissible and, in the specific framework, assists in the creation of a prior belief
via the use of a normalising flow.

For the out-of-population problems, similar behaviour is observed. Although the algorithms need more observations to provide
accurate predictions compared to the in-population case, after observing more values of the current crack length, the predictions
become quite accurate in terms of the NMSE. This behaviour is encouraging regarding the performance of both the fPCA and the
DKT algorithms. For both cases, as in the in-population predictions, it is clear that the observations in the initial part of the crack
growth region are not quite informative. Observing Fig. 2, it becomes evident that the cracks in all plates evolve quite similarly
until they reach a value of approximately 45 mm. This is reflected in the accuracy of the algorithms, which is quite low for values
of observed cracks lower than this value. The low accuracy might also be the result of very low standard deviations in this region,
making the NMSE quite high, even for low values of actual errors. This behaviour of the presented algorithms is quite natural and
reflects their Bayesian nature, i.e. the updating of the predictions according to the information content of the observations, which
in many cases may be a desired behaviour.

Another important aspect of the out-of-population predictions is that again, both algorithms achieve a satisfactory level of
accuracy after acquiring data corresponding to crack lengths higher than 45 mm. The algorithms seem to adapt slower than in
the case of the in-population predictions but this is expected. The increasing accuracy is again encouraging for the two algorithms
for different reasons. For the fPCA algorithm, the appropriate principal component scores for the left-out plates may not be part of
the prior belief defined by the NF, but there exist values in the hyperplane that correspond to a curve with satisfactory accuracy for
the observations. As a result, the HMC algorithm, given enough time, is able to converge to such values and provide appropriate
predictions. The DKT algorithm is also performing quite satisfactorily for the out-of-population problems. In this case, the accuracy
might be the result of the neural network of the algorithm learning an appropriate transformation of the input variables of the
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Fig. 12. The PDFs of the estimated total lifetime of the structures using the DKT algorithm, as a function of the current crack length. The mean values of the
predictions are shown as the blue curves and the actual total life-time of each plate is shown as the horizontal red line. The numbers of the plates are one to
six from right to left and from top to bottom.

GP, so that the mean and covariance functions of the GP resemble the properties of the population. A simple example of such a
transformation would be that, given a linear mean function for the GP, the neural network could wrap the input space so that the
mean would resemble a logarithmic function, which is a better fit for the current population.

Examining more qualitatively the fitting and the predictions of the algorithms in the Appendix, a quite interesting behaviour is
observed. In many cases, the algorithms under- or overestimate the remaining lifetime of the plates. The false estimations happen
especially for plates with sudden change in the crack-growth rate. A major example for both algorithms are the fourth and the
sixth plates. In both cases there is an underestimation of the total lifetime of the plate using the initial observations. However,
for the fourth plate, when the crack length reaches a value of 25 mm, a sudden change in the crack-growth rate is observed. As
observations after the change are included in the procedure, the algorithms are able to make more accurate predictions. For the sixth
plate, a sudden change is observed twice, and again the algorithms seem to adapt to the observations and to make more accurate
predictions. This characteristic of the behaviour of the algorithms might be considered an advantage, because of how well they
seem to be informed by the available observations.

An interesting observation regarding the results of the fifth plate in the Appendix is that the fPCA algorithm has high errors for
a small amount of available data samples, but the DKT does not have a similar problem with the corresponding testing plate. This
difference in behaviour is partially expected. The fPCA algorithm learns a functional subspace represented in a low-dimensional
Cartesian space by a normalising flow. It is expected that, when the fifth damage curve is not included, which exhibits significantly
quicker failure compared to the rest of the plates, the shaped prior belief might not include coefficients to account for this behaviour,
i.e. the point which corresponds to the fifth curve may be outside the domain defined by the normalising flow. In contrast, the
DKT algorithm learns correlations between different points of the input space; as a result, it can deal with such differences in the
crack-length evolution.

In both cases, a population-informed predictive framework is achieved. Part of the utility of the two algorithms is that they
both attempt to learn the underlying physics in a physics-blind scheme. What this means is that the analysts do not need to impose
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Fig. 13. The resulting normalised mean-square error for the six out-of-population problems regarding the whole damage path, using the DKT algorithm, as a
function of the current crack length and the step for which the prediction is made.

any knowledge into the models. This attribute could indicate that the models could perform in a population-based framework of
modelling of a wide variety of phenomena and systems, and not only in the domain of structural dynamics and damage prognosis.
Although the two algorithms were applied to a nominally-identical population, in future work, new algorithms might be developed
incorporating methodologies similar to the ones presented in [2–5]. Exploiting metrics which could quantify the similarity of
structures, the current work could be extended to heterogeneous populations of systems.

7. Conclusions

The current work presents two methods to perform population-based structural health monitoring. The first method is based on
defining a functional subspace which comprises the functions that explain the behaviour of members of a population of structures.
The second method is a meta-learning algorithm, according to which a neural network is employed as a transformation function
for the inputs to a Gaussian process. The functionality of the neural network is to transform the features, so that the GP mean and
covariance functions represent appropriately the actual underlying mean and covariance functions of the population. The problem,
which is studied here, is that of damage prognosis. Such a problem is inherently a problem of imbalanced data, because one can
only have access to the data in the beginning of the evolution of the phenomenon.

A difference between the current work and other damage-prognosis methods is that the input to the inference algorithm is the
crack length and the output is the number of cycles required to achieve such a value of crack length. Making this change in the
problem formulation allows the application of the proposed algorithms. The inversion of the input and output variables allows a
proper definition of the functions of the behaviour of the structures under evolving damage, because this way the support of the
damage-evolution curves is common for every structure, i.e. for every value of the input space (crack length) there is a value in the
output space (number of cycles), which is not the case for the opposite consideration. By moving the uncertainty to the output, this
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consideration could potentially allow an easier implementation of other algorithms as well, since the exact number of loading cycles
between each crack-length measurements may be quite inaccurate, because of varying environmental end operational conditions,
but the crack length measurements can be quite accurate.

To deal with the specific problem, the two methods are applied and evaluated according to their performance on an experimental
crack-growth dataset and for two categories of testing populations. The first category is an in-population testing dataset, which
includes testing structures which come from the same population of structures as the training structures. The algorithms are quite
accurate in this case, especially as more observations from the testing structures are included in the inference process. The second
category considers out-of-population testing structures. More specifically the testing structures are plates from the experiments,
which were left out of the training population. Because the actual plate population is small (six plates) and they have quite
different behaviour, the left-out plates are not considered part of the population. In this case, the algorithms also exhibit satisfactory
behaviour. Given enough observations from the testing plates, the predictions become quite accurate in terms of predicting the
remaining damage path.

Concluding, the proposed methods appear to be learning part of the physics of the evolution of damage in the available population
of structures. A big advantage of the methods is that they do not need to be informed by the analyst about the underlying physics and
they learn exclusively from data. Moreover, they clearly exhibit a Bayesian behaviour, i.e. they are initially informed by some prior
belief by being trained according to the training population, and, as more data become available from the structures of the testing
population, their predictions adapt to the specific behaviour of the structures of the testing population. Therefore, the two proposed
algorithms could be considered as a potential solution to a plethora of population-based modelling problems and they motivate a
functional and population-informed way of thinking about problems, instead of the traditional single-problem (or single-structure)
approach.
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Appendix

Qualitative fPCA results

See Figs. 14–19.

Qualitative DKT results

See Figs. 20–25.
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Fig. 14. Mean value of the predictions of the fPCA algorithm (blue curve), minimum–maximum confidence interval of the predictions (blue-shaded area), the
true underlying damage path of the first testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Mechanical Systems and Signal Processing 209 (2024) 111119

19

G. Tsialiamanis et al.

Fig. 15. Mean value of the predictions of the fPCA algorithm (blue curve), minimum-maximum confidence interval of the predictions (blue-shaded area), the true
underlying damage path of the second testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Mean value of the predictions of the fPCA algorithm (blue curve), minimum-maximum confidence interval of the predictions (blue-shaded area), the true
underlying damage path of the third testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Mean value of the predictions of the fPCA algorithm (blue curve), minimum-maximum confidence interval of the predictions (blue-shaded area), the true
underlying damage path of the fourth testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Mean value of the predictions of the fPCA algorithm (blue curve), minimum-maximum confidence interval of the predictions (blue-shaded area), the
true underlying damage path of the fifth testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Mechanical Systems and Signal Processing 209 (2024) 111119

23

G. Tsialiamanis et al.

Fig. 19. Mean value of the predictions of the fPCA algorithm (blue curve), minimum-maximum confidence interval of the predictions (blue-shaded area), the true
underlying damage path of the sixth testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. Mean value of the predictions of the DKT algorithm (blue curve), ±3 standard deviations confidence interval of the predictions (blue-shaded area), the
true underlying damage path of the first testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 21. Mean value of the predictions of the DKT algorithm (blue curve), ±3 standard deviations confidence interval of the predictions (blue-shaded area),
the true underlying damage path of the second testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Mean value of the predictions of the DKT algorithm (blue curve), ±3 standard deviations confidence interval of the predictions (blue-shaded area),
the true underlying damage path of the third testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 23. Mean value of the predictions of the DKT algorithm (blue curve), ±3 standard deviations confidence interval of the predictions (blue-shaded area),
the true underlying damage path of the fourth testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 24. Mean value of the predictions of the DKT algorithm (blue curve), ±3 standard deviations confidence interval of the predictions (blue-shaded area), the
true underlying damage path of the fifth testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 25. Mean value of the predictions of the DKT algorithm (blue curve), ±3 standard deviations confidence interval of the predictions (blue-shaded area), the
true underlying damage path of the sixth testing plate (red curve), and the observations for different stages of the damage evolution (red stars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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