
This is a repository copy of Zero-sum stopper vs. singular-controller games with 
constrained control directions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/212349/

Version: Accepted Version

Article:

Bovo, A., De Angelis, T. and Palczewski, J. orcid.org/0000-0003-0235-8746 (2024) Zero-
sum stopper vs. singular-controller games with constrained control directions. SIAM 
Journal on Control and Optimization (SICON), 62 (4). pp. 2203-2228. ISSN 0363-0129 

https://doi.org/10.1137/23M1579558

This item is protected by copyright. This is an author produced version of an article 
published in SIAM Journal on Control and Optimization. Uploaded in accordance with the 
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ZERO-SUM STOPPER VS. SINGULAR-CONTROLLER GAMES

WITH CONSTRAINED CONTROL DIRECTIONS∗

ANDREA BOVO† , TIZIANO DE ANGELIS∗, AND JAN PALCZEWSKI‡

Abstract. We consider a class of zero-sum stopper vs. singular-controller games in which the
controller can only act on a subset d0 < d of the d coordinates of a controlled diffusion. Due to
the constraint on the control directions these games fall outside the framework of recently studied
variational methods. In this paper we develop an approximation procedure, based on L1-stability
estimates for the controlled diffusion process and almost sure convergence of suitable stopping times.
That allows us to prove existence of the game’s value and to obtain an optimal strategy for the
stopper, under continuity and growth conditions on the payoff functions. This class of games is a
natural extension of (single-agent) singular control problems, studied in the literature, with similar
constraints on the admissible controls.

Key words. zero-sum stochastic games, singular control, optimal stopping, controlled diffusions,
constrained controls, variational inequalities, obstacle problems, gradient constraint

MSC codes. 91A05, 91A15, 60G40, 93E20, 49J40

1. Introduction. A zero-sum stopper vs. singular-controller game can be for-
mulated as follows. Given a time horizon T ∈ (0,∞), two players observe a stochastic
dynamics X = (Xs)s∈[0,T ] in R

d described by a controlled stochastic differential equa-
tion (SDE). One player (the minimiser) may exert controls that impact additively on
the dynamics and that may be singular with respect to the Lebesgue measure, as
functions of time. The other player (the maximiser) decides when the game ends by
selecting a stopping time in [0, T ]. At the end of the game, the first player (controller)
pays the second one (stopper) a payoff that depends on time, on the sample paths
of X and on the amount of control exerted. A natural question is whether the game
admits a value, i.e., if the same expected payoff is attained irrespective of the order
in which the players choose their (optimal) actions.

In [4] we studied zero-sum stopper vs. singular-controller games in a diffusive
setup with controls that can be exerted in all d coordinates of the process X. The
approach is based on a mix of probabilistic and analytic methods for the study of a
class of variational inequalities with so-called obstacle and gradient constraints. It is
shown that the value of the game is the maximal solution of such variational inequality.
More precisely, it is the maximal strong solution in the sense that it belongs to the
Sobolev space of functions that admit two spatial derivatives and one time derivative,
locally in Lp (i.e., in W 1,2,p

ℓoc ). The methods rely crucially on the assumption that all
coordinates of the process can be controlled. Indeed, that determines a particular form
of the gradient constraint that enables delicate PDE estimates for a-priori bounds on
the solution. When only d0 < d coordinates are controlled, i.e., there is a constraint
on the control directions, the results from [4] are not applicable (cf. Section 2.2 for
details) and the existence of a value is an open question.
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In this paper, we continue our study of zero-sum stopper vs. singular-controller
games by showing that even in the case d0 < d the game admits a value. We also
provide an optimal strategy for the stopper and we observe that it is of a slightly
different form compared to the one obtained in [4] (see Remark 2.7 for details). The
line of proof follows an approximation procedure, governed by a parameter γ ∈ [0, 1],
by which we relax the constraints on the class of admissible controls. For γ = 1 we
are in the same setting as in [4], whereas γ = 0 corresponds to the constrained case.
It turns out that for γ ∈ (0, 1) we have an intermediate situation for which a suitable
adaptation of the arguments from [4] is possible. The idea is then to obtain the value
of the constrained game in the limit as γ ↓ 0.

When letting γ ↓ 0, we need L1-stability estimates for the controlled dynamics.
These estimates involve local times and a-priori bounds on the candidate optimal
controls and they are not standard in the literature. Optimality of the stopper’s
strategy is derived via an almost sure convergence for a suitable sequence of stopping
times, based on path properties of the controlled dynamics and uniform convergence
of the approximating value functions as γ ↓ 0. We can no longer guarantee the
solvability of the associated variational problem in the strong (Sobolev) sense but,
of course, our value function satisfies both the appropriate gradient constraint and
obstacle constraint. Moreover, we show that the value of our game is the uniform limit
of solutions of approximating variational inequalities, paving the way to a notion of
solution in the viscosity sense. Finally, we notice that our results hold under continuity
and (sub)linear growth conditions on the payoff functions. These are much weaker
conditions than those needed in [4], where continuous differentiability in time and
space and Hölder continuity of the derivatives is required.

The motivation for considering constrained control directions arises from the lit-
erature on (single-agent) irreversible or partially reversible investment problems. In
the classical paper [30], Soner and Shreve consider a d-dimensional Brownian mo-
tion whose d-th coordinate is singularly controlled. Various works by Zervos et al.
[26, 27, 28], Guo and Tomecek [18], Federico et al. [13, 14], Ferrari [15], De Ange-
lis et al. [8, 9, 10] consider 2- or 3-dimensional dynamics with only one controlled
coordinate. We also notice that in those papers the controlled process X is fully
degenerate in the controlled dynamics (i.e., there is no diffusion in the control direc-
tion). In all cases but [8] and [13] this assumption enables an explicit solution of the
problem, because the resulting free boundary problems are cast as families of ODEs
parametrised by the state variable associated to the control. A non-degenerate exam-
ple arises instead in mathematical finance in the paper by Bandini et al. [1] who deal
with 2-dimensional diffusive dynamics with only one controlled coordinate. It seems
therefore natural that game versions of similar problems should be studied in detail
and we provide the first results in this direction.

The literature on controller vs. stopper games has been developing in various
directions in the case of controls with bounded velocity (see, e.g., Bensoussan and
Friedman [3], Karatzas et al. [22, 23], Hamadene [19], Bayraktar and Li [2], among
others). A more detailed review of the main results in that direction is provided in
the introduction of [4]. Instead, the case of singular controls is widely unexplored.
Prior to [4], the only other contribution was by Hernandez-Hernandez et al. [20] (see
also [21]), who studied the problem in a one-dimensional setting using free boundary
problems in the form of ODEs with appropriate boundary conditions. The present
paper contributes to the systematic study of zero-sum stopper vs. singular controller
games while complementing and extending the classical framework with controls of
bounded velocity.
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Our paper is organised as follows. In Section 2 we set up the problem, we explain
the main technical difficulties preventing the use of methods from [4], we state the
main result (Theorem 2.3) and introduce an approximation scheme. In Section 3 we
obtain stability estimates. Those are later used in Section 4 to prove convergence of
the value functions of the approximating problems to the original one.

2. Setting and main results. Let (Ω,F ,P) be a complete probability space,
equipped with a right-continuous filtration F = (Fs)s∈[0,∞) completed with P-null sets.
Let (Ws)s∈[0,∞) be an F-adapted, d′-dimensional Brownian motion. Fix T ∈ (0,∞),
the horizon of the game. Let d ≤ d′ be the dimension of the controlled diffusion
process (Xs)s∈[0,T ]. We decompose d into two sets of coordinates: d = d0 + d1 with
d0, d1 > 0. The first d0 coordinates in the controlled dynamics are affected directly
by singular controls. The remaining d1 coordinates, instead, are affected indirectly
via drift and diffusion coefficients. This is made rigorous in (2.1) after we introduce
the class of admissible controls.

For t ∈ [0, T ], we set Tt := {τ |τ is an F-stopping time such that τ ∈ [0, T − t]}.
For a vector x ∈ R

d, |x|d stands for the Euclidean norm of x and |x|d0
for the Euclidean

norm of the first d0 coordinates. We consider the following class of admissible controls:

Ad0 :=































(n, ν)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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(ns)s∈[0,T ] is progressively measurable, Rd-valued,

with ns = (n1
s, . . . n

d0
s , 0, 0, . . . 0), ∀s ∈ [0, T ],

and |ns|d = |ns|d0
= 1, P-a.s. ∀s ∈ [0, T ];

(νs)s∈[0,T ] is F-adapted, real valued, non-decreasing and

right-continuous with ν0− = 0, P-a.s., and E[(νT )
2] <∞
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Analogously, we define the class Ad with the same properties as the one above but
with ns = (n1

s, . . . , n
d
s) such that |ns|d = 1, P-a.s. The class Ad is the one used by

[4], where the control may act in all d coordinates. Instead, the class Ad0 is the one
which we use in the present paper, where the control directions are constrained to a
subspace of Rd.

Notice that for P-a.e. ω, the map s 7→ ns(ω) is Borel-measurable on [0, T ]
and s 7→ νs(ω) defines a measure on [0, T ]; thus the Lebesgue-Stieltjes integral
∫

[0,s]
nu(ω)dνu(ω) is well-defined for P-a.e. ω. A jump of the process ν at time s

is denoted by ∆νs := νs − νs−.
Given a control pair (n, ν) ∈ Ad0 and an initial condition x ∈ R

d, we consider a

d-dimensional controlled stochastic dynamics (X
[n,ν]
s )s∈[0,T ] described by

dX [n,ν]
s = b(X [n,ν]

s ) ds+ κ(X [n,ν]
s )dWs + ns dνs, X

[n,ν]
0− = x,(2.1)

where b : R
d → R

d and κ : R
d → R

d×d′

are continuous functions and X
[n,ν]
0− is

the state of the dynamics before a possible jump at time zero. We denote Px( · ) =
P( · |X [n,ν]

0− = x) and Ex[ · ] = E[ · |X [n,ν]
0− = x]. It is important to remark that the

control acts only in the first d0 coordinates of the dynamics of X [n,ν]. However, the
effect of such control is also felt by the remaining d1 coordinates via the drift and
diffusion coefficients. Under Assumption 2.1 on b and κ (stated below), there is a
unique (strong) F-adapted solution of (2.1) by, e.g., [25, Thm. 2.5.7].

We study a class of 2-player zero-sum games (ZSGs) between a (singular) con-
troller and a stopper. The stopper picks τ ∈ Tt and the controller chooses a pair
(n, ν) ∈ Ad0 . At time τ the game ends and the controller pays to the stopper a
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random payoff depending on τ and on the path of X [n,ν] up to time τ . We denote
the state space of the game by R

d+1
0,T := [0, T ] × R

d. Consider continuous functions

g, h : R
d+1
0,T → [0,∞), f : [0, T ] → (0,∞), and a fixed discount rate r ≥ 0. For

(t, x) ∈ R
d+1
0,T , τ ∈ Tt and (n, ν) ∈ Ad0 , the game’s expected payoff reads

Jt,x(n, ν, τ) = Ex

[

e−rτg(t+τ,X [n,ν]
τ )+

∫ τ

0

e−rsh(t+s,X [n,ν]
s ) ds

+

∫

[0,τ ]

e−rsf(t+s) dνs

]

.

(2.2)

We define the lower and upper value of the game respectively by

v(t, x) := sup
τ∈Tt

inf
(n,ν)∈Ad0

Jt,x(n, ν, τ) and v(t, x) := inf
(n,ν)∈Ad0

sup
τ∈Tt

Jt,x(n, ν, τ).(2.3)

Then v(t, x) ≤ v(t, x) and if the equality holds we say that the game admits a value:

v(t, x) := v(t, x) = v(t, x).(2.4)

Before assumptions of the paper are formulated, we introduce necessary notations.
Given a matrix M ∈ R

d×d′

, with entries Mij , i = 1, . . . d, j = 1, . . . d′, we define its

norm by |M |d×d′ := (
∑d

i=1

∑d′

j=1M
2
ij)

1/2, and, if d = d′, we let tr(M) :=
∑d

i=1Mii.

For x ∈ R
d we use the notation x = (x[d0], x[d1]) with x[d0] = (x1, . . . xd0

) and

x[d1] = (xd0+1, . . . xd). Given a smooth function ϕ : Rd+1
0,T → R we denote its partial

derivatives by ∂tϕ, ∂xi
ϕ, ∂xixj

ϕ, for i, j = 1, . . . d. We write ∇ϕ = (∂x1ϕ, . . . ∂xd
ϕ)

for the spatial gradient, and D2ϕ = (∂xixj
ϕ)di,j=1 for the spatial Hessian matrix. The

first d0 coordinates of the gradient ∇ϕ are denoted by ∇0ϕ = (∂x1
ϕ, . . . ∂xd0

ϕ) and

the remaining d1 coordinates are denoted by ∇1ϕ = (∂xd0+1
ϕ, . . . ∂xd

ϕ).
We now give assumptions under which we obtain our main result, Theorem 2.3.

Assumption 2.1 (Controlled SDE). The functions b and κ are such that:
(i) b ∈ C1(Rd;Rd), κ ∈ C1(Rd;Rd×d′

) with derivatives bounded by D1 > 0;
(ii) For i = 1, . . . d and κi = (κi1, . . . κid′), it holds κi(x) = κi(xi);
(iii) For any bounded set B ⊂ R

d there is θB > 0 such that

〈ζ, κκ⊤(x)ζ〉 ≥ θB |ζ|2d for any ζ ∈ R
d and all x ∈ B,

where 〈·, ·〉 denotes the scalar product in R
d and B the closure of B.

Notice that the Lipschitz continuity of b and κ implies that there exists D2 such that

|b(x)|d + |κ(x)|d×d′ ≤ D2(1 + |x|d), for all x ∈ R
d.(2.5)

Assumption 2.2 (Payoffs). Functions f : [0, T ] → (0,∞), g, h : Rd+1
0,T → [0,∞)

are continuous, and:
(i) The function f is non-increasing;
(ii) There exist constants K1 ∈ (0,∞) and β ∈ [0, 1) such that

0 ≤ g(t, x) + h(t, x) ≤ K1(1 + |x|βd ) for all (t, x) ∈ R
d+1
0,T ;

(iii) The function g is Lipschitz in the first d0 spatial coordinates with a constant
bounded by f in the sense that for every t ∈ [0, T ], |∇0g(t, x)|d0 ≤ f(t) for
a.e. x ∈ R

d.
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Assumption 2.1(ii) says that the diffusion coefficient of each coordinate of the process
depends only on such coordinate. That is needed for L1-stability estimates provided
in Sections 3.1 and it is satisfied by, e.g., stock market models with stochastic interest
rates (cf. [6]). The assumptions on the payoff functions are in line with those in [4].
More precisely, we allow less smoothness than in [4] but we require strictly sub-linear
growth instead of quadratic growth as in [4]. Those assumptions are satisfied by a
wide class of strictly concave utility functions. Finally, we could allow for r < 0 by
incorporating the discount factor in functions f, g, h (which are time-dependent).

The next theorem is the main result of the paper. Its proof builds on an approx-
imation procedure that allows us to invoke PDE results from [4]. By passing to the
limit in the approximation scheme we recover the value function of our game. Details
of the scheme and the convergence are presented in the next sections of the paper.

Theorem 2.3. Under Assumptions 2.1 and 2.2, the game described above admits
a value v (i.e., (2.4) holds) with the following properties:

(i) v is continuous on R
d+1
0,T ;

(ii) |v(t, x)| ≤ c(1 + |x|βd ) for some c > 0, and β from Assumption 2.2(ii);
(iii) v is Lipschitz continuous in the first d0 spatial variables with constant bounded

by f in the sense that |∇0v(t, x)|d0
≤ f(t) for a.e. (t, x) ∈ R

d+1
0,T .

Moreover, for any given (t, x) ∈ R
d+1
0,T and any (n, ν) ∈ Ad0 , the stopping time

θ∗ = θ∗(t, x;n, ν) ∈ Tt is optimal for the stopper, where θ∗ = τ∗ ∧ σ∗ and, Px-a.s.,

τ∗ = τ∗(t, x;n, ν) := inf
{

s ≥ 0
∣

∣ v(t+ s,X [n,ν]
s ) = g(t+ s,X [n,ν]

s )
}

,

σ∗ = σ∗(t, x;n, ν) := inf
{

s ≥ 0
∣

∣ v(t+ s,X
[n,ν]
s− ) = g(t+ s,X

[n,ν]
s− )

}

.
(2.6)

Remark 2.4. The set {s ≥ 0 | v(t + s,X
[n,ν]
s ) = g(t + s,X

[n,ν]
s )

}

always contains
T − t, because v(T, x) = g(T, x). Hence, θ∗ ≤ T − t, Px-a.s.

Remark 2.5. The stopper’s strategy θ∗ is of a closed-loop type, i.e., the stopping
time θ∗ depends on the dynamics of the underlying process X [n,ν]. Optimality of
θ∗, asserted above, should be understood in the sense that for any admissible control
(n, ν) ∈ Ad0 , we have v(t, x) ≤ Jt,x(n, ν, θ∗), (t, x) ∈ R

d+1
0,T . In particular this implies

v(t, x) = inf(n,ν)∈Ad0 Jt,x(n, ν, θ∗(t, x;n, ν)), but θ∗ may not be a best response for
any specific pair (n, ν). Existence of an optimal control remains an open question (cf.
[4, Rem. 3.5]).

Remark 2.6. The results in the theorem above continue to hold in the uncon-
strained case d0 = d. That proves existence of a value under less stringent regularity
conditions on g, h than in [4] and when f is independent of the spatial coordinate.
Notice that for d = d0 the approximation via functions (uγ)γ>0 described in Section
2.1 is not needed. The rest of the analysis follows the same steps as in Section 4
taking γ = 1 and ignoring the arguments about the limit as γ → 0 in Section 4.1.

Remark 2.7. The stopping time τ∗ is shown to be optimal for the game studied in
[4]. Theorem 2.3 asserts the optimality of θ∗ which is the minimum of τ∗ and another
stopping time σ∗. This construction comes at no disadvantage as θ∗ is also optimal
in the setting of [4] (see Lemma 3.5). It however enables us to prove convergence of
optimal stopping times in the form of θ∗ for games with value functions converging
uniformly on compacts (see Lemma 4.3 and the proof of Theorem 4.4). Note that one
cannot expect such convergence to hold for τ∗.

2.1. Approximation procedure. The key step for the proof of Theorem 2.3
is based on an approximation scheme that we present here. Fix γ ∈ (0, 1]. Given
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(n, ν) ∈ Ad, we consider the controlled SDE

dX [n,ν],γ
s = b(X [n,ν],γ

s ) ds+ κ(X [n,ν],γ
s )dWs + nγs dνs,(2.7)

where nγ
s := (n1

s, . . . , n
d0
s , γn

d0+1
s , . . . , γnds) (i.e., the parameter γ acts as a weight on

the last d1 coordinates of ns).
Given vectors p, q ∈ R

d, recalling the notation p = (p[d0], p[d1]) ∈ R
d0 × R

d1 and

the scalar product 〈p, q〉 in R
d, we introduce the bilinear form 〈·, ·〉γ : Rd × R

d → R

defined as 〈p, q〉γ := 〈p[d0], q[d0]〉 + γ〈p[d1], q[d1]〉. Notice that we are slightly abusing

the notation because 〈p[d0], q[d0]〉 and 〈p[d1], q[d1]〉 are scalar products in R
d0 and R

d1 ,

respectively. Associated with 〈·, ·〉γ we have the norm |p|γ :=
√

〈p, p〉γ on R
d. It

is worth noticing that ∇|p|2γ = 2(p1, . . . , pd0
, γ pd0+1, . . . , γ pd) and, for j = 1, . . . , d,

we clearly have
(

D2|p|2γ
)

ij
= 2δij for i = 1, . . . d0 and

(

D2|p|2γ
)

ij
= 2γδij for i =

d0 + 1, . . . d, where δij is the Kronecker delta.
We introduce an approximation of f as

fγ(t) :=
√

f2(t) + γK2 for t ∈ [0, T ],(2.8)

where K is a suitable constant that we choose later on (the same as in (3.3)). By
construction fγ → f uniformly on [0, T ] as γ → 0. We consider a new payoff

J γ
t,x(n, ν, τ) := Ex

[

e−rτg(t+τ,X [n,ν],γ
τ ) +

∫ τ

0

e−rsh(t+s,X [n,ν],γ
s )ds

+

∫

[0,τ ]

e−rsfγ(t+s)dνs

]

.

Upper and lower value for the game with the expected payoff J γ
t,x are given by

uγ(t, x) = sup
τ∈Tt

inf
(n,ν)∈Ad

J γ
t,x(n, ν, τ) and uγ(t, x) = inf

(n,ν)∈Ad
sup
τ∈Tt

J γ
t,x(n, ν, τ),

and we say that the value exists if uγ := uγ = uγ . We formally set u0 = v and u0 = v.
Using results from [4] we will show that uγ is well-defined, i.e., the approximating

game admits a value, for every γ ∈ (0, 1]. Then we obtain limγ→0 u
γ = v and

limγ→0 u
γ = v uniformly on compacts, thus proving existence of a value for our

constrained game.

2.2. Challenges in the constrained setup. The theory developed in [4] does
not cover the game we are considering here for two essential reasons. The first one
is that the functions f, g, h are only assumed to be continuous, whereas [4] requires
continuous differentiability once in time and twice in space (and Hölder continuity of
all derivatives). The second one, and more important, is that the constraints on the
directions of the admissible control imply that estimates obtained in [4] via analytical
arguments can no longer be obtained. In the next paragraphs we briefly elaborate on
this fine technical issue.

The variational problem in [4] features a gradient constraint on the value function
v of the form |∇v|d ≤ f . In the penalisation procedure adopted in [4] we therefore
consider a semi-linear PDE with a non-linear term of the form R

d ∋ p 7→ ψε(|p|2d−f2)
(see Eq. (5.14) in [4]), where ε > 0 is a parameter that must tend to zero in the
limit of the penalisation step. In our current setup, given that the control only acts
in the first d0 coordinates, the gradient constraint must be of the form |∇0v|d0

≤ f .

6



That translates into a non-linear term of the form R
d ∋ p 7→ ψε(|p[d0]|2d0

− f2) in the
associated penalised problem. One of the key estimates in [4] is obtained in [4, Prop.
4.9] and it concerns a bound on the gradient of the solution of the penalised problem.
The method of proof adopted in [4, Prop. 4.9] is also used in other places, e.g., in [4,
Prop. 5.1]. We now show where those arguments fail.

Arguing as in the proof of [4, Prop. 4.9], we obtain an analogue of [4, Eq. (4.38)]
and it reads: −2〈∇wn,∇(|∇0un|2d0

−f2m)〉 ≤−2λ|∇0uε,δ|2d0
+R̃n. Here, it is enough to

understand that fm is an approximation of f , while wn and un both approximate the
solution uε,δ of the penalised problem. The term R̃n is a remainder which can be made
arbitrarily small and it plays no substantial role in this discussion. Continuing with
the argument that follows [4, Eq. (4.38)] we arrive at λ|∇0uε,δ|2d0

≤ α1|∇uε,δ|2d + α2,
where α1, α2 > 0 are given constants and λ > 0 can be chosen arbitrarily. From this
estimate we cannot conclude that |∇uε,δ| is bounded. Instead of λ|∇0uε,δ|2d0

, in [4] we

have λ|∇uε,δ|2d, which leads to λ|∇uε,δ|2d ≤ α1|∇uε,δ|2d + α2 and it allows to conclude
|∇uε,δ|2d ≤ c for some constant c > 0, by the arbitrariness of λ.

Other difficulties of a similar nature appear in, e.g., adapting the arguments of [4,
Lem. 5.8], where in Eq. (5.34) we would not be able to obtain a bound on |D2wn|2d×d,
because we cannot control the derivatives ∂xixj

wn for i, j = d0 + 1, . . . d. We avoid
going into further detail and refer the interested reader to the original paper for a
careful comparison.

2.3. Notation. Before passing to the proof of Theorem 2.3, we introduce the
remaining notation used in the paper.

The d-dimensional open ball centred in 0 with radius m is denoted by Bm. For
an arbitrary subset O ⊆ R

d+1
0,T , we let C∞

c, sp(O) be the space of functions on O with
compact support in the spatial coordinates (not in time) and infinitely many continuous
derivatives. For an open bounded set O ⊂ R

d+1
0,T , we denote by O the closure of O

and we let C0(O) be the space of continuous functions ϕ : O → R equipped with the
supremum norm ‖ϕ‖C0(O) := sup(t,x)∈O |ϕ(t, x)|. Analogously, C0(Rd+1

0,T ) is the space

of bounded, continuous functions ϕ : Rd+1
0,T → R equipped with the norm ‖ϕ‖∞ :=

‖ϕ‖C0(Rd+1
0,T ). We denote by C0,1,α(O) the space of α-Hölder continuous functions on

O with α-Hölder continuous spatial gradient, equipped with the supremum norm and
the α-Hölder semi-norm. The semi-norm is evaluated with respect to the parabolic
distance; for details see [17, Ch. 3, Sec. 2] (see also the notation section in [4]). The
space of functions with bounded C0,1,α-norm in any compact subset of Rd+1

0,T is denoted

by C0,1,α
ℓoc (Rd+1

0,T ). For p ∈ [1,∞), we recall the definition of the usual Sobolev space
(see [24, Sec. 2.2]):

W 1,2,p
ℓoc (Rd+1

0,T ) :=
{

f ∈ Lp
ℓoc(R

d+1
0,T )

∣

∣ f ∈W 1,2,p(O), ∀O ⊆ R
d+1
0,T ,O bounded

}

.

For e1 = (1, 0, . . . , 0) ∈ R
d and a(x) := (κκ⊤)(x), the infinitesimal generator of

the uncontrolled process X [e1,0] is denoted by L and it reads

(Lϕ)(t, x) = 1

2
tr
(

a(x)D2ϕ(t, x)
)

+ 〈b(x),∇ϕ(t, x)〉,

for a sufficiently smooth function ϕ : Rd+1
0,T → R.

3. Properties of the approximating problems and stability estimates.

In this section we study the game described in Section 2.1. Our first lemma shows
that we can restrict the class of admissible controls to those with bounded expectation
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uniformly in x in compact sets. In the proof we use inft∈[0,T ] f(t) = f(T ) > 0 from
Assumption 2.2. Recall that we formally set u0 = v and u0 = v.

Lemma 3.1. There is K2 > 0 such that for any (t, x) ∈ R
d+1
0,T and γ ∈ [0, 1]

uγ(t, x) = inf
(n,ν)∈Ad,opt

t,x

sup
τ∈Tt

J γ
t,x(n, ν, τ), uγ(t, x) = sup

τ∈Tt

inf
(n,ν)∈Ad,opt

t,x

J γ
t,x(n, ν, τ),

where Ad,opt
t,x :=

{

(n, ν) ∈ Ad
∣

∣Ex[νT−t] ≤ K2(1 + |x|d)
}

. (When γ = 0 we must use

Ad0,opt
t,x := Ad,opt

t,x ∩ Ad0 instead of Ad,opt
t,x .)

Proof. Let (e1, 0) ∈ Ad be the null control, where e1 = (1, 0, . . . 0) ∈ R
d, and

denote X = X [e1,0] (notice that X [e1,0] = X [e1,0],γ for all γ ∈ [0, 1]). We have

uγ(t, x) ≤ sup
τ∈Tt

J γ
t,x(e1, 0, τ) = sup

τ∈Tt

Ex

[

e−rτg(t+τ,Xτ )+

∫ τ

0

e−rsh(t+s,Xs)ds
]

≤K1(1 + T )
(

1 + Ex

[

sup
s∈[0,T ]

|Xs|2d
]1/2)

≤ C1(1 + |x|d),
(3.1)

where the second inequality uses the sub-linear growth of g and h, the third inequality
is by standard estimates for SDEs with linearly growing coefficients ([25, Cor. 2.5.10]).
The constant C1 > 0 depends only on T , D2 andK1 from (2.5) and Assumption 2.2(ii),
respectively. Since 0 ≤ uγ , by (3.1) we can restrict admissible controls in uγ to the

class Ad,sub
t,x := {(n, ν) ∈ Ad | supτ∈Tt

J γ
t,x(n, ν, τ) ≤ C1(1 + |x|d)}.

A similar argument applies for the lower value uγ . As in (3.1),

inf
(n,ν)∈Ad

J γ
t,x(n, ν, τ) = inf

(n,ν)∈Ad,sub
t,x

J γ
t,x(n, ν, τ),

for any (t, x) and τ . So we can also restrict controls to Ad,sub
t,x in the definition of uγ .

It remains to show that Ad,sub
t,x ⊆ Ad,opt

t,x . To this end, recall that f > 0. For

(n, ν) ∈ Ad,sub
t,x we have

Ex

[

νT−t

]

≤ er(T−t)
(

min
s∈[0,T−t]

f(t+ s)
)−1

Ex

[

∫

[0,T−t]

e−rsf(t+ s) dνs

]

≤ er(T−t)

f(T )
Ex

[

∫

[0,T−t]

e−rsfγ(t+ s) dνs

]

≤ erT

f(T )
J γ
t,x(n, ν, T − t),

(3.2)

where the second inequality uses that f ≤ fγ and f is non-increasing in time and
the third inequality follows from g, h ≥ 0. Using (3.1) and (3.2), we have Ex[νT−t] ≤
erT

f(T )u
γ(t, x) ≤ K2(1 + |x|d), with K2 = erTC1

f(T ) . This concludes the proof because

Ad,sub
t,x ⊆ Ad,opt

t,x ⊆ Ad and in the first part of the proof we have shown that Ad can

be replaced by Ad,sub
t,x in the definitions of uγ and uγ .

From now on we assume stronger conditions than in Assumption 2.2 for the
sake of simplicity of exposition. These will be relaxed in Section 4.2. In particular,
throughout this section we enforce

Assumption 3.2. Functions f : [0, T ] → (0,∞), g, h : Rd+1
0,T → [0,∞) satisfy:

(i) g ∈ C∞
c, sp(R

d+1
0,T ) and h ∈ C∞

c, sp(R
d+1
0,T );

(ii) f ∈ C∞([0, T ]), non-increasing and strictly positive;
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(iii) For all (t, x) ∈ R
d+1
0,T , it holds |∇0g(t, x)|d0

≤ f(t).

We notice that the assumptions of infinite continuous differentiability and compact
support imply the existence of a constant K ∈ (0,∞) such that:

(iv) f , g and h are bounded and, for all 0 ≤ s < t ≤ T and all x, y ∈ R
d,

|g(t, x)− g(s, y)|+ |h(t, x)− h(s, y)| ≤ K
(

|x− y|d + (t− s)
)

;(3.3)

(v) For all (t, x) ∈ R
d+1
0,T , it holds (h+ ∂tg + Lg − rg)(t, x) ≥ −K.

In the construction of fγ in (2.8) we take K > 0 as in (iv) and (v) above. Then,
Assumption 3.2(iii) and (3.3) imply for all (t, x) ∈ R

d+1
0,T

|∇g(t, x)|2γ = |∇0g(t, x)|2d0
+ γ|∇1g(t, x)|2d1

≤ f2(t) + γK2 = (fγ(t))2.

For the game in Section 2.1 (with expected payoff J γ
t,x) our Assumption 3.2 implies

Assumption 3.2 in [4], and our Assumption 2.1 implies Assumption 3.1 in [4]. The
variational inequality that identifies the value of such game is the following:

min
{

max
{

∂tu+ Lu− ru+ h, g − u
}

, fγ − |∇u|γ
}

= 0, a.e. in R
d+1
0,T ,

max
{

min
{

∂tu+ Lu− ru+ h, fγ − |∇u|γ
}

, g − u
}

= 0, a.e. in R
d+1
0,T ,

(3.4)

with terminal condition u(T, x) = g(T, x) and growth condition |u(t, x)| ≤ c(1+ |x|d),
for a suitable c > 0. A simple adaptation of the results from [4] leads to the next
theorem. For fuller details we refer to [5, Appendix A].

Theorem 3.3. The game described above admits a value (i.e., uγ = uγ) and the
value function uγ is the maximal solution1 of (3.4) in the class W 1,2,p

ℓoc (Rd+1
0,T ) for

all p ∈ [1,∞). Moreover, for any given (t, x) ∈ R
d+1
0,T and any admissible control

(n, ν) ∈ Ad, the stopping time defined Px-a.s. as

τγ∗ := inf
{

s ≥ 0 |uγ(t+ s,X [n,ν],γ
s ) = g(t+ s,X [n,ν],γ

s )
}

is optimal for the stopper.

Remark 3.4. Thanks to the boundedness and positivity of f, g, h, the value func-
tion of the game uγ is bounded and non-negative. The upper bound is obtained by
taking the sub-optimal control (n, ν) ≡ (e1, 0) with e1 = (1, 0, . . . , 0). In turn, by the
maximality of uγ across the solutions of (3.4), we have that any solution of (3.4) in
W 1,2,p

ℓoc (Rd+1
0,T ) is bounded.

The family of stopping times (τγ∗ )γ>0 is optimal for the stopper in the corre-
sponding family of games with values (uγ)γ>0. However, it turns out that studying
the convergence of τγ∗ for γ ↓ 0 is not an easy task. For that reason we introduce
another family of stopping times and we prove some of its useful properties. For γ > 0

and (n, ν) ∈ Ad, let σγ
∗ := inf{s ≥ 0|uγ(t + s,X

[n,ν],γ
s− ) − g(t + s,X

[n,ν],γ
s− ) = 0}, and

define

θγ∗ := τγ∗ ∧ σγ
∗ .(3.5)

Notice that given (t, x) ∈ R
d+1
0,T and (n, ν) ∈ Ad the stopping time depends on both

(t, x) and (n, ν) via the controlled dynamics X [n,ν],γ (Remark 2.5). Therefore we
sometimes use the notation θγ∗ = θγ∗ (t, x;n, ν) or the shorter θγ∗ = θγ∗ (n, ν).

Next we show that θγ∗ is optimal for the stopper in the game with value uγ .

1Maximal means that if w ∈ W
1,2,p
ℓoc

(Rd+1

0,T
), for all p ∈ [1,∞), is another solution of (3.4), then

uγ(t, x) ≥ w(t, x) for all (t, x) ∈ R
d+1

0,T
.
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Lemma 3.5. Fix (t, x) ∈ R
d+1
0,T . We have uγ(t, x) ≤ J γ

t,x(n, ν, θ
γ
∗ ), for any pair

(n, ν) ∈ Ad. Furthermore,

uγ(t, x) = inf
(n,ν)∈Ad

J γ
t,x

(

n, ν, θγ∗ (n, ν)
)

,

hence θγ∗ is optimal for the stopper in the game with value uγ .

Proof. With no loss of generality we assume Cγ = {(t, x) : uγ(t, x) > g(t, x)} 6= ∅.
If Cγ = ∅ then θγ∗ = 0 and the lemma trivially holds. Next we adapt an argument
from the verification result for singular control, [16, Thm. VIII.4.1], to overcome the
lack of smoothness of uγ .

Let (ζk)k∈N be a standard family of mollifiers and consider the sequence (wγ
k)k∈N ⊂

C∞(Rd+1
0,T ), obtained by convolution wγ

k := uγ ∗ ζk. Since uγ belongs to W 1,2,p
ℓoc (Rd+1

0,T )

which is compactly embedded in C0,1,α
ℓoc (Rd+1

0,T ) for p > d + 2 and some α ∈ (0, 1), we

have wγ
k → uγ and ∇wγ

k → ∇uγ uniformly on compact sets, as k → ∞; moreover,

∂tw
γ
k → ∂tu

γ and D2wγ
k → D2uγ strongly in Lp

ℓoc(R
d+1
0,T ) for all p ∈ [1,∞), as k →

∞ (see, e.g., arguments in Thm. 5.3.1 and Appendix C.4 in [12]). For notational
simplicity, denote the operator (∂t + L − r) by L̃.

Standard calculations based on integration by parts yield ∂tw
γ
k = (∂tu

γ) ∗ ζk,
∂xj

wγ
k = (∂xj

uγ) ∗ ζk, ∂xixj
wγ

k = (∂xixj
uγ) ∗ ζk, and therefore

(L̃uγ ∗ ζk − L̃wγ
k)(t, x) =

∫

R
d+1
0,T

(

d
∑

i,j=1

(aij(y)−aij(x))∂xixj
uγ(s, y)

+

d
∑

i=1

(bi(y)−bi(x))∂xi
uγ(s, y)

)

ζk(t−s, x−y) dsdy.

Since first and second order derivatives of uγ belong to Lp
ℓoc(R

d+1
0,T ) for any p ∈ [1,∞),

then Hölder’s inequality and continuity of a and b yield for any compact Σ ⊂ R
d+1
0,T

lim
k→∞

QΣ
k = 0,(3.6)

where QΣ
k := sup(t,x)∈Σ |(L̃uγ ∗ ζk)(t, x)− (L̃wγ

k)(t, x)|. Since uγ is a solution of (3.4),

we have (L̃uγ + h)(t, x) ≥ 0 for almost every (t, x) ∈ Cγ and therefore

χγ
k(t, x) :=

(

(L̃uγ + h) ∗ ζk
)

(t, x) ≥ 0, for all (t, x) ∈ Cγ .(3.7)

Finally, denoting hk = h ∗ ζk and MΣ
k := sup(t,x)∈Σ

∣

∣hk(t, x)− h(t, x)
∣

∣ we have

lim
k→∞

MΣ
k = 0.(3.8)

From (3.6), (3.7) and (3.8) we have

lim inf
k→∞

inf
(t,x)∈Σ∩Cγ

(

(L̃wγ
k)(t, x) + h(t, x)

)

≥ lim inf
k→∞

(

inf
(t,x)∈Σ∩Cγ

χγ
k(t, x)−QΣ

k −MΣ
k

)

≥ 0.
(3.9)
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Fix (n, ν) ∈ Ad and let ρm = inf{s ≥ 0|X [n,ν],γ
s /∈ Bm}∧(T−t). By an application

of Dynkin’s formula we obtain

wγ
k(t, x) = Ex

[

e−r(θγ
∗
∧ρm)wγ

k

(

t+θγ∗ ∧ ρm, X [n,ν],γ

θγ
∗∧ρm

)

−
∫ θγ

∗
∧ρm

0

e−rsL̃wγ
k(t+s,X

[n,ν],γ
s )ds

−
∫ θγ

∗
∧ρm

0

e−rs〈∇wγ
k(t+s,X

[n,ν],γ
s− ), ns〉γ dνcs

−
∑

s≤θγ
∗∧ρm

e−rs

∫ ∆νs

0

〈∇wγ
k

(

t+s,X
[n,ν],γ
s− +λns

)

, ns〉γ dλ
]

.

The contribution to wγ
k of the final jump of X [n,ν],γ at θγ∗ ∧ ρm is removed using

wγ
k

(

t+ θγ∗ ∧ ρm, X [n,ν],γ

θγ
∗∧ρm

)

= wγ
k

(

t+ θγ∗ ∧ ρm, X [n,ν],γ

θγ
∗∧ρm−

)

+

∫ ∆ν
θ
γ
∗
∧ρm

0

〈∇wγ
k(t+ s,X

[n,ν],γ

θγ
∗∧ρm−

+ λnθγ
∗∧ρm

), nθγ
∗∧ρm

〉γ dλ.

Then, substituting the latter in the expectation yields

wγ
k(t, x) = Ex

[

e−r(θγ
∗
∧ρm)wγ

k

(

t+ θγ∗ ∧ ρm, X [n,ν],γ

θγ
∗∧ρm−

)

−
∫ θγ

∗
∧ρm

0

e−rsL̃wγ
k(t+ s,X [n,ν],γ

s )ds

−
∫ θγ

∗
∧ρm

0

e−rs〈∇wγ
k(t+ s,X

[n,ν],γ
s− ), ns〉γ dνcs

−
∑

s<θγ
∗∧ρm

e−rs

∫ ∆νs

0

〈∇wγ
k(t+ s,X

[n,ν],γ
s− + λns), ns〉γ dλ

]

.

We expand L̃wγ
k(t + s,X

[n,ν],γ
s ) as

(

L̃wγ
k + h

)

(t + s,X
[n,ν],γ
s ) − h(t + s,X

[n,ν],γ
s ) and

let k → ∞. We apply the inequality (3.9) to the term (L̃wγ
k + h) and the dominated

convergence theorem for the remaining terms, justified by the uniform convergence of
(wγ

k ,∇w
γ
k) to (uγ ,∇uγ) on compacts:

uγ(t, x) ≤ Ex

[

e−r(θγ
∗
∧ρm)uγ(t+ θγ∗ ∧ ρm, X [n,ν],γ

θγ
∗∧ρm−

)+

∫ θγ
∗
∧ρm

0

e−rsh(t+ s,X [n,ν],γ
s )ds

−
∫ θγ

∗
∧ρm

0

e−rs〈∇uγ(t+s,X [n,ν],γ
s− ), ns〉γ dνcs

−
∑

s<θγ
∗∧ρm

e−rs

∫ ∆νs

0

〈∇uγ(t+ s,X
[n,ν],γ
s− + λns), ns〉γ dλ

]

.

Notice that Px(ρm < θγ∗ ) ↓ 0 as m → ∞. Then, in the limit as m → ∞ the
dominated convergence theorem yields (recall uγ and h are bounded, |∇uγ |γ ≤ fγ
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and Ex[νT−t] <∞)

uγ(t, x) ≤ Ex

[

e−rθγ
∗uγ(t+ θγ∗ , X

[n,ν],γ

θγ
∗−

)+

∫ θγ
∗

0

e−rsh(t+ s,X [n,ν],γ
s )ds

−
∫ θγ

∗

0

e−rs〈∇uγ(t+s,X [n,ν],γ
s− ), ns〉γ dνcs

−
∑

s<θγ
∗

e−rs

∫ ∆νs

0

〈∇uγ(t+s,X [n,ν],γ
s− +λns), ns〉γ dλ

]

=: Ex[Λ
γ(n, ν, θγ∗ )],

(3.10)

where Λγ(n, ν, θγ∗ ) denotes the sum of terms under expectation. On {τγ∗ ≤ σγ
∗} we

have

uγ(t+ θγ∗ , X
[n,ν],γ

θγ
∗−

) = uγ(t+ τγ∗ , X
[n,ν],γ

τγ
∗ −

)

= uγ(t+ τγ∗ , X
[n,ν],γ

τγ
∗

)−
∫ ∆ν

τ
γ
∗

0

〈∇uγ(t+τγ∗ , X
[n,ν],γ

τγ
∗ −

+λnτγ
∗
), nτγ

∗
〉γ dλ

= g(t+ τγ∗ , X
[n,ν],γ

τγ
∗

)−
∫ ∆ν

τ
γ
∗

0

〈∇uγ(t+τγ∗ , X
[n,ν],γ

τγ
∗ −

+λnτγ
∗
), nτγ

∗
〉γ dλ

≤ g(t+ τγ∗ , X
[n,ν],γ

τγ
∗

) + fγ(t+ τγ∗ )∆ντγ
∗
,

(3.11)

where the third equality is by the definition of τγ∗ , the continuity of uγ and g, and the

right-continuity of t 7→ X
[n,ν],γ
t ; the inequality follows from |∇uγ |γ ≤ fγ . We insert

the estimate (3.11) into the expression under the expectation in (3.10) and apply the
bound |∇uγ |γ ≤ fγ again to obtain

(3.12)

Λγ(n, ν, θγ∗ ) ≤ e−rθγ
∗ g(t+ θγ∗ , X

[n,ν],γ

θγ
∗

)

+

∫ θγ
∗

0

e−rsh(t+s,X [n,ν],γ
s )ds+

∫

[0,θγ
∗ ]

e−rsfγ(t+s)dνs.

On the event {σγ
∗ < τγ∗ }, the arguments are more involved. We start from showing

that uγ(t + σγ
∗ , X

[n,ν],γ

σγ
∗−

) = g(t + σγ
∗ , X

[n,ν],γ

σγ
∗−

). Since σγ
∗ < τγ∗ ≤ T − t, we have

(uγ − g)(t + σγ
∗ , X

[n,ν],γ

σγ
∗

) > 0. The process s 7→ (uγ − g)
(

t + s,X
[n,ν],γ
s

)

is right-

continuous due to continuity of uγ and g and right-continuity of t 7→ X
[n,ν],γ
t . Using

this fact we deduce that for Px-almost every ω there is ε(ω), δ(ω) > 0 such that

(uγ − g)
(

t + s,X
[n,ν],γ
s

)

> ε(ω), ∀ s ∈ [σγ
∗ , σ

γ
∗ + δ(ω)]. This means that (σγ

∗ , σ
γ
∗ +

δ(ω)] ∩
{

s ≥ 0
∣

∣ (uγ − g)
(

t+ s,X
[n,ν],γ
s−

)

= 0
}

= ∅. Hence, by the definition of σγ
∗ , we

conclude that (uγ − g)
(

t+ σγ
∗ , X

[n,ν],γ

σγ
∗−

)

= 0.
We now rewrite

(3.13)

uγ(t+ θγ∗ , X
[n,ν],γ

θγ
∗−

) = uγ(t+ σγ
∗ , X

[n,ν],γ

σγ
∗−

) = g(t+ σγ
∗ , X

[n,ν],γ

σγ
∗−

)

= g(t+ σγ
∗ , X

[n,ν],γ

σγ
∗

)−
∫ ∆ν

σ
γ
∗

0

〈∇g(t+σγ
∗ , X

[n,ν],γ

σγ
∗−

+λnσγ
∗
), nσγ

∗
〉γ dλ

≤ g(t+ σγ
∗ , X

[n,ν],γ

σγ
∗

) + fγ(t+ σγ
∗ )∆νσγ

∗
,

where in the first line we use the identity uγ(t + σγ
∗ , X

[n,ν],γ

σγ
∗−

) = g(t + σγ
∗ , X

[n,ν],γ

σγ
∗−

)

proved above and in the last line the bound |∇g|γ ≤ fγ . We insert the estimate
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(3.13) into the expression under the expectation on the right-hand side of (3.10) and
apply the bound |∇uγ |γ ≤ fγ to obtain (3.12).

Substituting (3.12) inside the expectation on the right-hand side of (3.10) yields
uγ(t, x) ≤ J γ

t,x(n, ν, θ
γ
∗ ), which proves the first claim in the lemma. By arbitrariness

of the pair (n, ν) ∈ Ad we conclude uγ(t, x) ≤ inf(n,ν)∈Ad J γ
t,x(n, ν, θ

γ
∗ ) ≤ uγ(t, x),

hence proving the second statement of the lemma.

Remark 3.6. When the sets {uγ = g} and {|∇uγ |γ = f} are disjoint, heuristic
arguments based on classical verification theorems suggest that the controller and
the stopper do not act simultaneously. In particular, this means that with no loss of
generality we should be able to restrict the class of admissible pairs (n, ν) to those for
which ∆νθγ

∗
= 0 so that τγ∗ (n, ν) = σγ

∗ (n, ν). This type of analysis is left for future
work on more concrete examples.

3.1. Some stability estimates. We next provide a stability estimate in L1 for
the approximating process. The proof uses a generalisation of [11, Lem. 5.1] which is
given in [5, Lemma B.1, Appendix B].

Proposition 3.7. Fix (t, x) ∈ R
d+1
0,T and a treble [(n, ν), τ ] ∈ Ad × Tt. Then,

there exists (n̄, ν̄) ∈ Ad0 such that

Ex

[

∣

∣X [n,ν],γ
τ −X [n̄,ν̄]

τ

∣

∣

d

]

≤ γK3Ex[νT−t],

where K3 > 0 is a constant depending only on d, D1 and T .

Proof. For each pair (n, ν) ∈ Ad, setting ns = n(s) = (n[d0](s), n[d1](s)) ∈ R
d0 ×

R
d1 , we can define a pair (n̄, ν̄) ∈ Ad0 as follows: for i = 1, . . . d0, we set

n̄is =

{

ni
s

|n[d0](s)|d0
, if |n[d0](s)|d0

6= 0,

n̄i
s = (1, 0, . . . , 0), if |n[d0](s)|d0

= 0;
ν̄s =

∫ s

0

|n[d0](r)|d0
dνr,(3.14)

and n̄i
s = 0, i = d0 + 1, . . . , d. By construction the process (n̄s)s∈[0,T ] ∈ R

d is
progressively measurable, hence ν̄ is adapted, right-continuous and non-decreasing
with

∫ s

0
n̄irdν̄r =

∫ s

0
ni
rdνr for all s ∈ [0, T ] and i = 1, . . . , d0.

For τ ∈ Tt and (n, ν) ∈ Ad, let τR := inf{s ≥ 0 : |X [n,ν],γ
s |d ∨ |X [n̄,ν̄]

s |d ≥ R} ∧ T .
Denote the stopped processes (X

[n,ν],γ
s∧τ∧τR)s∈[0,T ] and (X

[n̄,ν̄]
s∧τ∧τR)s∈[0,T ] by (Xγ,R

s )s∈[0,T ]

and (XR
s )s∈[0,T ], respectively. Let J γ,R := Xγ,R − XR and notice that J γ,R is a

càdlàg semimartingale. To further simplify notation we set J = J γ,R for as long as γ
and R are fixed. For each i = 1, . . . , d we denote the i-th coordinate of J by J i. By
Meyer-Itô formula for semimartingales (see2 [29, Thm. IV.70]), noting that J0− = 0
and that the jump part of the process J is of bounded variation, we have for s > 0
and for i = 1, . . . d,

|J i
s| =

∫

[0,s∧τ∧τR]

sign(J i
λ−) dJ

i,c
λ + L0

s∧τ∧τR(J
i) +

∑

0≤λ≤s∧τ∧τR

(

|J i
λ| − |J i

λ−|
)

(3.15)

where J i,c is the continuous part of the process J i, sign(y) = −1 for y ≤ 0 and
sign(y) = 1 for y > 0. The process (L0

t (J
i))t≥0 is the semi-martingale local time at

zero of (J i
t )t≥0.

2In [29], the author considers a càdlàg semi-martingale X starting from X0 = x, whereas here
we have X0− = x. Thus, we must account for a possible jump at time zero when using [29, Thm.
IV.70].

13



Fix i ∈ {1, . . . , d0}. Notice that J i
λ = J i

λ− for all λ ≥ 0 because n̄i
rdν̄r = ni

rdνr.

Thus, using the form of the dynamics of Xγ,R and XR, we have

|J i
s| =

∫ s∧τ∧τR

0

sign(J i
λ)
(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ

+

∫ s∧τ∧τR

0

sign(J i
λ)
(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)

dWλ + L0
s∧τ∧τR(J

i),

where we notice that in the diffusion coefficient of |J i|, the functions κi depend only on
the i-th coordinateXγ,R;i and XR;i, as per (ii) in Assumption 2.1. Taking expectation
in the equation above and removing the martingale term (κi has a linear growth so
it is bounded on compacts) we get

Ex

[

|J i
s|
]

= Ex

[

∫ s∧τ∧τR

0

sign(J i
λ)
(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ+ L0
s∧τ∧τR(J

i)
]

≤ Ex

[

∫ s

0

∣

∣bi(Xγ,R
λ )− bi(XR

λ )
∣

∣ dλ+ L0
s(J

i)
]

≤ Ex

[

D1

∫ s

0

∣

∣Jλ|d dλ+ L0
s(J

i)
]

,

(3.16)

where in the first inequality we extend the integrals up to time s and for the second
one we use Lipschitz continuity of bi with the constant D1 from Assumption 2.1. In
order to estimate the local time, we follow [11, Lem. 5.1], which we can apply because
J i is a continuous semimartingale: for arbitrary ε ∈ (0, 1)

Ex

[

L0
s(J

i)
]

≤ 4ε− 2Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ
]

+
1

ε
Ex

[

∫ s

0

1{Ji
λ
>ε}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

.(3.17)

In order to estimate the final term above we are going to use that

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2 ≤ D2

1

∣

∣J i
λ

∣

∣

2 ≤ 2RD2
1

∣

∣J i
λ

∣

∣,(3.18)

because κ is Lipschitz by (i) in Assumption 2.1 and |J i| ≤ |Jγ,R|d ≤ 2R. Denote by
Iε the last expectation on the right-hand side of (3.17) and pick ζ ∈ ( 12 , 1). We have

Iε =
1

ε
Ex

[

∫ s

0

1{Ji
λ
∈(ε,εζ)}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

+
1

ε
Ex

[

∫ s

0

1{Ji
λ
≥εζ}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

≤ 1

ε
Ex

[

D2
1

∫ s

0

1{Ji
λ
∈(ε,εζ)}|J i

λ|2 dλ+ e1−εζ−1

∫ s

0

1{Ji
λ
≥εζ}

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

≤ D2
1ε

2ζ−1T +
2RD2

1

ε
e1−εζ−1

Ex

[

∫ s

0

|J i
λ| dλ

]

,

by (3.18) and the bounds e1−
Ji
λ
ε 1{Ji

λ
∈(ε,εζ)} ≤ 1 and e1−

Ji
λ
ε 1{Ji

λ
≥εζ} ≤ e1−εζ−1

.
Thanks to the Lipschitz continuity of b, we bound the first expectation on the right-

hand side of (3.17) by 4D1Ex

[

∫ s

0
|Jλ|ddλ

]

. Combining those upper bounds we obtain

Ex

[

L0
s(J

i)
]

≤ 4ε+
(

4D1+
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0

|Jλ|d dλ
]

+D2
1ε

2ζ−1T.
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We insert this bound into (3.16) and obtain the following estimate: for i = 1, . . . d0

Ex

[

|J i
s|
]

≤ 4ε+
(

5D1+
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0

|Jλ|d dλ
]

+D2
1ε

2ζ−1T.(3.19)

Coordinates J i for i = d0 + 1, . . . d are estimated slightly differently. From (3.15)

|J i
s| =

∫ s

0

sign(J i
λ)
(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ+

∫ s

0

sign(J i
λ)
(

κi(Xγ,R;i
λ )− κi(XR;i

λ ))dWλ

+ γ

∫ s

0

sign(J i
λ−)n

i
λ−dν

c
λ+L

0
s(J

i
λ) +

∑

0≤λ≤s

(

|J i
λ| − |J i

λ−|
)

,

where νc is the continuous part of the process ν. Notice that |J i
λ| = |J i

λ−+γniλ∆νλ| ≤
|J i

λ−|+γ∆νλ, which implies γ
∫ s

0
sign(J i

λ)n
i
λ dν

c
λ+

∑

0≤λ≤s

(

|J i
λ|−|J i

λ−|
)

≤ γνs. Thus,
we get the inequality:

|J i
s| ≤

∫ s

0

sign(J i
λ)
(

bi(Xγ,R
λ )−bi(XR

λ )
)

dλ+

∫ s

0

sign(J i
λ)
(

κi(Xγ,R;i
λ )−κi(XR;i

λ ))dWλ

+ γνs + L0
s(J

i
λ).

Since J i may have jumps, the upper bound on the local time [11, Lemma 5.1]
does not apply. Additional terms appear as detailed in [5, Lemma B.1, Appendix B],
where it is shown that

Ex

[

L0
s(J

i)
]

≤ 4ε− 2Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ
]

− 2Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

γniλ dν
c
λ

]

+ Ex

[1

ε

∫ s

0

1{Ji
λ
>ε}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ+ 2γ
∑

0≤λ≤s

∆νλ

]

.

Repeating the same arguments as those we used to obtain (3.19) and additionally
noticing that

∣

∣

∣
Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

γniλ dν
c
λ

]∣

∣

∣
+ Ex

[

γ
∑

0≤λ≤s

∆νλ

]

≤ γEx[νs]

yields Ex[|J i
s|] ≤ 4ε+(5D1+

2RD2
1

ε e1−εζ−1

)Ex[
∫ s

0
|Jλ|d dλ]+D2

1ε
2ζ−1T +3γEx[νs]. Now,

combining the latter with (3.19) we have

Ex

[

|Js|d
]

≤
d

∑

i=1

Ex

[

|J i
s|
]

≤ 4dε+d
(

5D1+
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0

|Jλ|d dλ
]

+dD2
1ε

2ζ−1T+3dγEx

[

νs
]

.

(3.20)

Sending ε ↓ 0 and recalling now that J = Jγ,R and ζ ∈ ( 12 , 1), we get

Ex

[

|J γ,R
s |d

]

≤ 5dD1Ex

[

∫ s

0

|J γ,R
λ |d dλ

]

+ 3dγEx

[

νs
]

.
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By Gronwall’s lemma, there is a constant K3 > 0, depending only on d, D1 and T ,
such that Ex[|J γ,R

s |d] ≤ γ K3 Ex[νT−t], for any s ∈ [0, T − t]. Passing to the limit as
R→ ∞ and using Fatou’s lemma, we get

Ex

[

|X [n,ν],γ
s∧τ −X

[n̄,ν̄]
s∧τ |d

]

≤ lim inf
R→∞

Ex

[

|J γ,R
s |d

]

≤ γK3Ex

[

νT−t

]

, for any s ∈ [0, T − t].

Hence, the proof is completed by setting s = T − t and recalling that τ ≤ T − t.

Another lemma of a similar nature allows us to compare the dynamics induced by a
generic control (n, ν) ∈ Ad0 to its uncontrolled counterpart.

Lemma 3.8. Fix (t, x) ∈ R
d+1
0,T . Let (n, ν) ∈ Ad0 and τ ∈ Tt. Then

Ex[|X [n,ν]
τ −X [e1,0]

τ |d] ≤ K3Ex[νT−t],

with the same constant K3 > 0 as in Proposition 3.7.

Proof. Similarly as in the proof of Proposition 3.7, we denote X = X [n,ν] and
X0 = X [e1,0], and define τR := inf{s ≥ 0 : |Xs|d ∨ |X0

s |d ≥ R}∧T . We denote the two
processes (Xt∧τ∧τR)t∈[0,T ] and (X0

t∧τ∧τR)t∈[0,T ] by XR and X0,R, respectively. Let
JR := XR−X0,R and notice that JR is a càdlàg semimartingale. To further simplify
notation we set J = JR for as long as R is fixed. For each i = 1, . . . , d we denote the
i-th coordinate of J by J i. Now, for i = 1, . . . d0 repeating verbatim, for γ = 1, the
same arguments as in the proof of (3.20) we obtain

Ex

[

|J i
s|
]

≤ 4ε+
(

5D1 +
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0

|Jλ|d dλ
]

+D2
1ε

2ζ−1T + 3Ex

[

νs
]

.

Instead, for i = d0 + 1, . . . , d, the same arguments that yield (3.19) now give us

Ex

[

|J i
s|
]

≤ 4ε+
(

5D1+
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0

|Jλ|d dλ
]

+D2
1ε

2ζ−1T.

Therefore the same conclusions as in Proposition 3.7 hold but with γ = 1.

Combining the above results with Lemma 3.1 we obtain the following corollary.

Corollary 3.9. There is a constant K4 > 0 such that Ex

[

|X [n,ν]
τ |d

]

≤ K4(1 +

|x|d) for any (t, x) ∈ R
d+1
0,T , (n, ν) ∈ Ad0,opt

t,x and τ ∈ Tt.

Proof. We observe that Ex

[

|X [n,ν]
τ |d

]

≤ Ex

[

|X [n,ν]
τ − X

[e1,0]
τ |d

]

+ Ex

[

|X [e1,0]
τ |d

]

.
The first term is bounded using Lemma 3.8 and 3.1. Standard SDE estimates ([25,

Cor. 2.5.10]) give Ex

[

|X [e1,0]
τ |d

]

≤
(

Ex

[

sups∈[0,T ] |X
[e1,0]
s |2d

])1/2 ≤ c(1+ |x|d), for some
c > 0, thanks to Assumption 2.1.

4. Convergence of the approximating problems. In this section we first
study the limit as γ → 0 and then we relax the smoothness assumptions made in
Assumption 3.2. We observe that we could alternatively fix γ and relax Assumption
3.2 before passing to the limit as γ → 0. That approach motivates Remark 2.6.

4.1. Limits as γ → 0. Throughout this subsection we enforce Assumptions 2.1
and 3.2.

Theorem 4.1. The pointwise limit u := limγ→0 u
γ exists on R

d+1
0,T . Moreover, u

coincides with the value of the game with payoff (2.3), i.e., u = v = v = v, and there
exists C > 0 such that

|uγ(t, x)− v(t, x)| ≤ C(1 + |x|d)γ
1
2 , for all (t, x) ∈ R

d+1
0,T .(4.1)
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Proof. Let uγ be the value of the game described in Theorem 3.3. We introduce
u := lim infγ→0 u

γ and u := lim supγ→0 u
γ . We want to prove that u(t, x) ≤ v(t, x)

and u(t, x) ≥ v(t, x), for all (t, x) ∈ R
d+1
0,T , so that u = u = v = v = v as claimed.

Fix (t, x) ∈ R
d+1
0,T . We first prove that u ≥ v. Let (n, ν) ∈ Ad be an η-optimal

control for uγ(t, x), i.e., supσ∈T J γ
t,x(n, ν, σ) ≤ uγ(t, x) + η.

With no loss of generality, thanks to Lemma 3.1 we can assume (n, ν) ∈ Ad,opt
t,x .

Consider the associated (n̄, ν̄) ∈ Ad0 constructed as in (3.14). Recall the processes
X [n,ν],γ and X [n̄,ν̄] as in (2.7) and (2.1), respectively. For notational simplicity, denote
Xγ = X [n,ν],γ and X = X [n̄,ν̄]. Let τ ∈ Tt be an η-optimal stopping time for
supσ∈Tt

Jt,x(n̄, ν̄, σ), which implies v(t, x) ≤ Jt,x(n̄, ν̄, τ) + η. We have

uγ(t, x)− v(t, x)

≥ J γ
t,x(n, ν, τ)− Jt,x(n̄, ν̄, τ)− 2η

= Ex

[

e−rτ
(

g(t+τ,Xγ
τ )−g(t+τ,Xτ )

)

+

∫ τ

0

e−rs
(

h(t+s,Xγ
s )−h(t+s,Xs)

)

ds

+

∫

[0,τ ]

e−rsfγ(t+ s) dνs −
∫

[0,τ ]

e−rsf(t+ s) dν̄s

]

− 2η

≥ Ex

[

e−rτ
(

g(t+τ,Xγ
τ )−g(t+τ,Xτ )

)

+

∫ τ

0

e−rs
(

h(t+s,Xγ
s )−h(t+s,Xs)

)

ds
]

−2η

≥ −KEx

[

|Xγ
τ −Xτ |d

]

−KEx

[

∫ T−t

0

|Xγ
s −Xs|d ds

]

− 2η

≥ −KEx

[

|Xγ
τ −Xτ |d

]

−KT sup
s∈[0,T−t]

Ex

[

|Xγ
s −Xs|d

]

− 2η

where K > 0 is the same as in (3.3). The first inequality is by the choice of (n, ν)
and τ . The second inequality holds because by the definition of ν̄ in (3.14) we have
dν̄s(ω)
dνs(ω) = |n[d0](s, ω)|d0

≤ 1 for all (s, ω) ∈ [0, T ] × Ω and fγ ≥ f by (2.8). The third

inequality is by the Lipschitz continuity of g and h, and the final one is by Fubini’s
theorem. Using Proposition 3.7 combined with Ex[νT−t] ≤ K2(1 + |x|d) from Lemma
3.1 we have that

uγ(t, x)− v(t, x) ≥ −K(1 + T )γK2K3(1 + |x|d)− 2η.(4.2)

Taking the liminf as γ ↓ 0 we get u(t, x) − v(t, x) ≥ −2η. By the arbitrariness of η,
we obtain u(t, x) ≥ v(t, x) as claimed.

We prove now that u(t, x) ≤ v(t, x). Let τ ∈ Tt be an η-optimal stopping time
for uγ , i.e., inf(n,ν)∈Ad J γ

t,x(n, ν, τ) ≥ uγ(t, x) − η. Let (n, ν) ∈ Ad0 be an η-optimal
control corresponding to τ , i.e., v(t, x) ≥ Jt,x(n, ν, τ)−η. Thanks to Lemma 3.1 we can

assume without loss of generality that (n, ν) ∈ Ad0,opt
t,x . Notice that (n, ν) ∈ Ad0,opt

t,x ⊂
Ad is an admissible control in the game with value uγ and, moreover, X

[n,ν],γ
s = X

[n,ν]
s

for all s ∈ [0, T − t], Px-a.s. Thus, using the above indistinguishability and recalling
fγ ≤ f +

√
γK we easily obtain

uγ(t, x)− v(t, x) ≤ J γ
t,x(n, ν, τ)− Jt,x(n, ν, τ) + 2η

= Ex

[

∫

[0,τγ ]

e−rs
(

fγ(t+ s)− f(t+ s)
)

dνs

]

+ 2η

≤ √
γKEx[νT−t] + 2η ≤ √

γKK2(1 + |x|d) + 2η,

(4.3)
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where the final inequality is by Lemma 3.1. Taking limsup as γ ↓ 0 and thanks to the
arbitrariness of η we get u(t, x) ≤ v(t, x) as claimed.

As a result, the pointwise limit limγ→0 u
γ is well-defined and u := limγ→0 u

γ =
v = v = v. Combining (4.2) and (4.3) for γ ∈ (0, 1) yields (4.1).

Since |∇uγ |γ ≤ fγ for every γ > 0, the next corollary holds.

Corollary 4.2. The value function v is Lipschitz in the first d0 spatial coordi-
nates with constant bounded by f , i.e., |∇0v(t, x)|d0 ≤ f(t) for a.e. (t, x) ∈ R

d+1
0,T .

For (n, ν) ∈ Ad0 , we recall stopping times τ∗ and σ∗ defined in (2.6) and set

θ∗ = τ∗ ∧ σ∗.(4.4)

Lemma 4.3. Fix (t, x) ∈ R
d+1
0,T . For any pair (n, ν) ∈ Ad0 we have

lim inf
γ↓0

θγ∗ ≥ θ∗, Px-a.s.,

where θγ∗ is defined in (3.5).

Proof. Fix (t, x) ∈ R
d+1
0,T and take (n, ν) ∈ Ad0 . Let Zs = (v − g)(t + s,X

[n,ν]
s )

and Zγ
s = (uγ − g)(t + s,X

[n,ν]
s ). Since (n, ν) ∈ Ad0 , we have X [n,ν] ≡ X [n,ν],γ , so

θγ∗ = inf{s ≥ 0 : min(Zγ
s , Z

γ
s−) = 0}. Similarly, θ∗ = inf{s ≥ 0 : min(Zs, Zs−) = 0}.

For ω ∈ Ω such that θ∗(ω) = 0 the claim in the lemma is trivial. Let ω ∈ Ω be
such that θ∗(ω) > 0. Take arbitrary δ < θ∗(ω). Then, by the definition of θ∗ we have

min(Zs(ω), Zs−(ω)) > 0 for all s ∈ [0, δ].

Furthermore,

inf
0≤s≤δ

min(Zs(ω), Zs−(ω)) =: λδ,ω > 0,(4.5)

as the mapping s 7→ min(Zs(ω), Zs−(ω)) is lower semi-continuous, so it attains its
infimum on [0, δ].

Since (n, ν) is fixed and Ex[ν
2
T−t] < ∞ by definition of Ad0 , for almost every ω

there is a compact Kδ,ω ⊂ R
d+1
0,T that contains the trajectories s 7→ (t + s,X

[n,ν]
s (ω))

and s 7→ (t + s,X
[n,ν]
s− (ω)) for s ∈ [0, δ]. Then, uniform convergence of uγ to v on

Kδ,ω (see (4.1)) yields limγ→0 sup0≤s≤δ

(

|Zγ
s (ω) − Zs(ω)| + |Zγ

s−(ω) − Zs−(ω)|) = 0.
Hence, for all sufficiently small γ > 0, (4.5) yields inf0≤s≤δ min(Zγ

s (ω), Z
γ
s−(ω)) ≥

λδ,ω/2, which implies lim infγ↓0 θ
γ
∗ (ω) ≥ δ. We conclude that lim infγ↓0 θ

γ
∗ (ω) ≥ θ∗(ω),

because δ was arbitrary. The result holds for a.e. ω, and the proof is complete.

We will extract from the uniform convergence of uγ to v and from Lemma 4.3 the
optimality of the stopping time θ∗. This notion of optimality is discussed in detail in
Remark 2.5.

Theorem 4.4. Fix (t, x) ∈ R
d+1
0,T . We have v(t, x) ≤ Jt,x(n, ν, θ∗), for any

(n, ν) ∈ Ad0 , where we recall that θ∗ = θ∗(t, x;n, ν) depends on the initial point
and the control pair. Furthermore,

v(t, x) = inf
(n,ν)∈Ad0

Jt,x

(

n, ν, θ∗(t, x;n, ν)
)

,

hence θ∗ is optimal for the stopper in the game with value v.
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Proof. We follow an approach inspired by [7, Thm. 4.12] in optimal stopping.
Notice that (n, ν) ∈ Ad0 ⊂ Ad and X [n,ν],γ = X [n,ν], i.e., the processes are indistin-
guishable. Since θγ∗ ∧ θ∗ ≤ θγ∗ it is not difficult to verify that (3.10) continues to hold

when we replace the pair (t + θγ∗ , X
[n,ν],γ

θγ
∗

) therein by (t + θγ∗ ∧ θ∗, X [n,ν]

θγ
∗∧θ∗

). That is,

recalling the notation for Λγ(n, ν, θ) in (3.10), we have

uγ(t, x) ≤ Ex

[

Λγ
(

n, ν, θγ∗ ∧ θ∗
)]

.

Further using that |∇uγ |γ ≤ fγ leads to

uγ(t, x) ≤ Ex

[

e−r(θγ
∗
∧θ∗)uγ

(

t+ θγ∗ ∧ θ∗, X [n,ν]

θγ
∗∧θ∗−

)

+

∫ θγ
∗
∧θ∗

0

e−rsh(t+ s,X [n,ν]
s )ds

+

∫

[0,θγ
∗∧θ∗)

e−rsfγ(t+ s) dνs

]

≤ Ex

[

e−r(θγ
∗
∧θ∗)v

(

t+ θγ∗ ∧ θ∗, X [n,ν]

θγ
∗∧θ∗−

)

+

∫ θγ
∗
∧θ∗

0

e−rsh(t+ s,X [n,ν]
s )ds

+

∫

[0,θγ
∗∧θ∗)

e−rsfγ(t+ s) dνs

]

+ Cγ1/2
(

1 + Ex

[
∣

∣X
[n,ν]

θγ
∗∧θ∗

∣

∣

d

]

)

,

where in the second inequality we used (4.1).
We now let γ ↓ 0 and notice that θγ∗ ∧θ∗ → θ∗ by Lemma 4.3. Since the mappings

s 7→ X
[n,ν]
s− and s 7→

∫

[0,s)
e−ruf(t + u)dνu are left-continuous Px-a.s. and θγ∗ ∧ θ∗

converges to θ∗ from below (although not strictly from below), we can conclude that
for a.e. ω ∈ Ω

lim
γ→0

X
[n,ν]

θγ
∗∧θ∗−

= X
[n,ν]
θ∗−

and

lim
γ→0

∫

[0,θγ
∗∧θ∗)

e−rsfγ(t+s)dνs =

∫

[0,θ∗)

e−rsf(t+s)dνs.
(4.6)

Moreover, we can use dominated convergence thanks to, e.g., Corollary 3.9 and the
identification Ad0 = Ad0,opt

t,x following Lemma 3.1. That yields

v(t, x) ≤ Ex

[

e−rθ∗v
(

t+θ∗, X
[n,ν]
θ∗−

)

+

∫ θ∗

0

e−rsh(t+s,X [n,ν]
s )ds

+

∫

[0,θ∗)

e−rsf(t+s)dνs

]

.

(4.7)

We now follow similar arguments as in the proof of Lemma 3.5 (below Eq. (3.12))

to show that on the event {σ∗ < τ∗} we have v
(

t+ σ∗, X
[n,ν]
σ∗−

)

= g
(

t+ σ∗, X
[n,ν]
σ∗−

)

, so

v
(

t+ θ∗, X
[n,ν]
θ∗−

)

= v
(

t+ σ∗, X
[n,ν]
σ∗−

)

= g
(

t+ σ∗, X
[n,ν]
σ∗−

)

= g
(

t+ σ∗, X
[n,ν]
σ∗

)

−
∫ ∆νσ∗

0

〈∇0g(t+ σ∗, X
[n,ν]
σ∗− + λnσ∗

), nσ∗
〉dλ(4.8)

≤ g
(

t+ σ∗, X
[n,ν]
σ∗

)

+ f(t+ σ∗)∆νσ∗
,

where the inequality uses the bound on the gradient ∇0g imposed by Assumption
2.2(iii).
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On the event {σ∗ ≥ τ∗} we have

v
(

t+θ∗, X
[n,ν]
θ∗−

)

= v
(

t+τ∗, X
[n,ν]
τ∗−

)

= v
(

t+τ∗, X
[n,ν]
τ∗

)

−
∫ ∆ντ∗

0

〈∇0v(t+τ∗, X
[n,ν]
τ∗− +λnτ∗), nτ∗〉dλ(4.9)

≤ v
(

t+τ∗, X
[n,ν]
τ∗

)

+f(t+τ∗)∆ντ∗ = g
(

t+τ∗, X
[n,ν]
τ∗

)

+f(t+τ∗)∆ντ∗ ,

where the inequality uses the bound on the gradient ∇0v from Corollary 4.2 and
the last equality holds by the definition of τ∗ and the right-continuity of the process
X [n,ν].

Combining the upper bounds above with (4.7) yields v(t, x) ≤ Jt,x(n, ν, θ∗),
where we emphasise that θ∗ depends on the control (n, ν). By arbitrariness of
(n, ν) ∈ Ad0 we can conclude the proof of the theorem because v = v implies
v(t, x) ≥ inf(n,ν)∈Ad0 Jt,x(n, ν, θ∗).

4.2. Relaxing Assumption 3.2 into Assumption 2.2. In this section we
prove Theorem 2.3 via a localisation and mollification procedure, and using the results
from the section above. For technical reasons, we assume first that the functions g and
h are uniformly bounded, i.e., ‖g‖∞ + ‖h‖∞ < ∞, and then we relax this condition
in the second part of the proof.

Fix a compact set Σ̂ ⊂ R
d and denote Σ = [0, T ]× Σ̂. There is a family (ζj)j∈N =

(ζΣj )j∈N of mollifiers in R
d+1
0,T and a sequence (cj)j∈N of positive numbers converging

to 0 such that, denoting gj := g ∗ ζj , hj := h ∗ ζj and f j := (f + cj) ∗ ζj , we have

‖gj − g‖C0(Σ) + ‖hj − h‖C0(Σ) ≤ KΣ

j(4.10)

for any j ∈ N and a constant KΣ > 0 and

(4.11) 0 ≤ f j − f ≤ c0
j , for any j ∈ N and a constant c0 > 0.

Note that the definition of f j is with an abuse of notation as f depends only on t: for
this mollification we extend f into the spatial dimension as a constant function.

Recall that Bk ⊂ R
d denotes the ball of radius k centred in the origin. Let

(ξk)k∈N ⊂ C∞
c (Rd) be a sequence of cut-off functions such that ξk(x) = 1 for x ∈ Bk

and ξk(x) = 0 for x /∈ B2k. We find it convenient to construct the sequence as follows:
let

ξ(z) :=







1 z ≤ 0,
0 z ≥ 1,
exp

(

1
z−1

)

/
[

exp
(

1
z−1

)

+ exp
(

− 1
z

)]

, z ∈ (0, 1),
(4.12)

so that ‖ξ′‖∞ = 2, and define ξk(x) := ξ( |x|d−k
k ) for x ∈ R

d. Then

|∇0ξk(x)|2d0
≤ |∇ξk(x)|2d = 1

k2 |ξ′( |x|d−k
k )|2 ≤ 4

k2 .(4.13)

Now we set gj,k := gjξk, h
j,k := hjξk, and f j,k(t) := f j(t) + 2

k‖g‖∞, where we

construct gj , hj and f j using the above mollification procedure with Σ̂ = Bk. With
such choice of f j,k, recalling that |∇0gj |d0

≤ f j by (iii) in Assumption 2.2 and using
the bound in (4.13), we have

|∇0gj,k(t, x)|2d0

= (ξk(x))
2|∇0gj(t, x)|2d0

+2ξk(x)g
j(t, x)〈∇0gj(t, x),∇0ξk(x)〉+(gj(t, x))2|∇0ξk(x)|2d0

≤ (f j(t))2 + 4‖g‖∞f j(t)/k + 4‖g‖2∞/k2 = (f j(t) + 2
k‖g‖∞)2 =

(

f j,k(t)
)2
.
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Fix (t, x) ∈ R
d+1
0,T . For an arbitrary treble [(n, ν), τ ] ∈ Ad0 × Tt we consider the

game with expected payoff

J j,k
t,x (n, ν, τ) = Ex

[

e−rτgj,k(t+τ,X [n,ν]
τ )+

∫ τ

0

e−rshj,k(t+s,X [n,ν]
s ) ds

+

∫

[0,τ ]

e−rsf j,k(t+s) dνs

]

.

(4.14)

Since f j ∈ C∞([0, T ]), gj,k, hj,k ∈ C∞
c, sp(R

d+1
0,T ), then Theorems 4.1 and 4.4 yield that

there exists a value vj,k of the game and an optimal stopping time θj,k∗ = τ j,k∗ ∧ σj,k
∗ ,

with

τ j,k∗ := inf
{

s ≥ 0
∣

∣ vj,k(t+ s,X [n,ν]
s ) = gj,k(t+ s,X [n,ν]

s )
}

,

σj,k
∗ := inf

{

s ≥ 0
∣

∣ vj,k(t+ s,X
[n,ν]
s− ) = gj,k(t+ s,X

[n,ν]
s− )

}

.

Finally, we set v∞ := lim supk→∞ lim supj→∞ vj,k and proceed to show that v∞ ≥ v
and v∞ ≤ v.

Lemma 4.5. Let Assumptions 2.1 and 2.2 hold and assume ‖g‖∞ + ‖h‖∞ < ∞.
For any (t, x) ∈ R

d+1
0,T we have v∞(t, x) = v(t, x) = v(t, x), hence the value v of the

game (2.4) exists.

Proof. We start by proving v∞ ≤ v. Take θj,k∗ defined above. Then

v(t, x) ≥ inf
(n,ν)∈Ad0

Jt,x(n, ν, θ
j,k
∗ ),

as θj,k∗ is suboptimal for v. For any η > 0 there is a pair (nj,k,η, νj,k,η) such that

inf
(n,ν)∈Ad0

Jt,x(n, ν, θ
j,k
∗ ) ≥ Jt,x(n

j,k,η, νj,k,η, θj,k∗ )− η.

Moreover, from the optimality of θj,k∗ for vj,k in the sense of Theorem 4.4, we have
vj,k(t, x) ≤ J j,k

t,x (n
j,k,η, νj,k,η, θj,k∗ ).

For ease of notation we denote (θj,k∗ , nj,k,η, νj,k,η) =: (θ, n, ν) in what follows.
Combining the two bounds above and recalling that gj,k = gj and hj,k = hj in
[0, T ]×Bk we obtain

vj,k(t, x)− v(t, x) ≤J j,k
t,x (n, ν, θ)− Jt,x(n, ν, θ) + η

≤Ex

[

∣

∣gj−g
∣

∣

(

t+θ,X
[n,ν]
θ

)

1
{X

[n,ν]
θ

∈Bk}
+2e−rθ‖g‖∞1{X

[n,ν]
θ

/∈Bk}

]

+ Ex

[

∫ θ

0

∣

∣hj,k
(

t+s,X [n,ν]
s

)

−h
(

t+ s,X [n,ν]
s

)
∣

∣1
{X

[n,ν]
s ∈Bk}

ds
]

+ Ex

[

2‖h‖∞
∫ θ

0

e−rs
1
{X

[n,ν]
s /∈Bk}

ds+νT−t

(

c0
j + 2

k‖g‖∞
)

]

+η,

where we used f j,k − f ≤ c0/j + 2‖g‖∞/k. Next, from (4.10) we obtain

(4.15)

vj,k(t, x)− v(t, x)

≤ (1 + T )
KBk

j + ( c0j + 2
k‖g‖∞)Ex

[

νT−t

]

+ 2‖g‖∞Px

(

X
[n,ν]
θ /∈ Bk

)

+ 2‖h‖∞
∫ T−t

0

Px

(

X [n,ν]
s /∈ Bk

)

ds+ η.
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From the proof of Lemma 3.1, we can restrict our attention to processes (n, ν) ∈
Ad0,opt

t,x for which E[νT−t] ≤ c(1 + |x|d), where the constant c can be chosen indepen-
dently of (j, k). From Corollary 3.9 and Markov’s inequality we deduce that there is

K̃4 > 0 such that Px(X
[n,ν]
θ /∈ Bk) ≤ k−1

Ex[|X [n,ν]
θ |d] ≤ K̃4(1 + |x|d)k−1, and the

same upper bound also holds for Px(X
[n,ν]
s /∈ Bk). Now, letting j → ∞ first and then

letting k → ∞ in (4.15) we obtain v∞ ≤ v + η. Finally we send η → 0.
Next we are going to show that v∞ ≥ v. Fix an arbitrary η > 0. Take

(nj,k,η, νj,k,η) ∈ Ad0 such that vj,k(t, x) ≥ supτ∈Tt
J j,k
t,x (n

j,k,η, νj,k,η, τ) − η. Then

there is τ j,k,η such that

v(t, x) ≤ sup
τ∈Tt

Jt,x(n
j,k,η, νj,k,η, τ) ≤ Jt,x(n

j,k,η, νj,k,η, τ j,k,η) + η,

where the first inequality follows from suboptimality of (nj,k,η, νj,k,η) for v(t, x). Re-
labelling the treble [(nj,k,η, νj,k,η), τ j,k,η] = [(n, ν), τ ], the above inequalities give the

bound v(t, x) − vj,k(t, x) ≤ Jt,x(n, ν, τ) − J j,k
t,x (n, ν, τ) + 2η. Similar estimates as in

(4.15) continue to hold, with a simplification that the inequality f j,k ≥ f allows us to
drop the second term in the final expression therein. Then, passing to the limit in j
and, then, in k we arrive at the desired conclusion.

Remark 4.6. Notice that if we introduce v̂∞ := lim infk→∞ lim infj→∞ vj,k, then
we can repeat the same arguments of proof as in Lemma 4.5 to show that v̂∞ = v =
v = v. Hence,

v = v = v = lim
k→∞

lim
j→∞

vj,k.

Moreover, it is clear from the proof (see in particular (4.15)) that the convergence
is uniform on any compact subset of R

d+1
0,T . This fact will be used later to prove

convergence of optimal stopping times.

We now want to extend the result above to the case of unbounded g and h.
Recalling that g, h ≥ 0, we can approximate them with bounded ones by setting
gm = g ∧m and hm = h ∧m for m ∈ N. Let us denote by vm the value of the game
associated with the functions gm and hm, which exists by Lemma 4.5. By construction
vm ≤ vm+1 and we denote the limit v∞ := limm→∞ vm.

Lemma 4.7. Let Assumptions 2.1 and 2.2 hold. For any (t, x) ∈ R
d+1
0,T we have

v∞(t, x) = v(t, x) = v(t, x), hence the value v of the game (2.4) exists.

Proof. Since hm ≤ h and gm ≤ g, it is immediate to verify that v∞ ≤ v. It
remains to verify that v∞ ≥ v.

Thanks to (sub)linear growth of g and h there is a sequence (R(m))m∈N such that
R(m) ↑ ∞ as m → ∞ and gm = g and hm = h on [0, T ] × BR(m). Let us denote
by Jm

t,x the expected payoff of the game with the payoff functions gm and hm and

Bm = BR(m). For fixed η > 0, we can find a pair (n, ν) = (nm,η, νm,η) ∈ Ad0 and a
stopping time τ = τm,η ∈ Tt such that

v(t, x)− vm(t, x) ≤ Jt,x(n, ν, τ)− Jm
t,x(n, ν, τ) + 2η

≤ Ex

[

g(t+τ,X [n,ν]
τ )1

{X
[n,ν]
τ /∈Bm}

+

∫ T−t

0

e−rs
1
{X

[n,ν]
s /∈Bm}

h(t+s,X [n,ν]
s )ds

]

+2η,

where we obtained the inequality simply by dropping the positive terms hm and gm
on the events when the process is outside the ball Bm = BR(m).
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By the strict sub-linear growth of g and h and using Hölder’s inequality we obtain

(4.16)

v(t, x)−vm(t, x)− 2η

≤ K1Ex

[

(

1+
∣

∣X [n,ν]
τ

∣

∣

β

d

)

1
{X

[n,ν]
τ /∈Bm}

+

∫ T−t

0

(

1+
∣

∣X [n,ν]
s

∣

∣

β

d

)

1
{X

[n,ν]
s /∈Bm}

ds
]

≤ K1

{

(

Ex

[
∣

∣X [n,ν]
τ

∣

∣

d

])β(
Px(X

[n,ν]
τ /∈ Bm)

)1−β

+

∫ T−t

0

(

Ex

[
∣

∣X [n,ν]
s

∣

∣

d

])β(
Px(X

[n,ν]
s /∈ Bm)

)1−β
ds

}

.

+K1Px

(

X [n,ν]
τ /∈ Bm

)

+K1

∫ T−t

0

Px

(

X [n,ν]
s /∈ Bm

)

ds.

For any σ ∈ Tt, Markov’s inequality and an estimate for Ex[|X [n,ν]
σ |d] from Corollary

3.9 give Px(X
[n,ν]
σ /∈ Bm) ≤ Ex

[
∣

∣X
[n,ν]
σ

∣

∣

d

]

(R(m))−1 ≤ K4(1 + |x|d)(R(m))−1. There-
fore, letting m→ ∞ in (4.16) we find v ≤ v∞ + 2η and, by arbitrariness of η > 0, we
conclude the proof.

Remark 4.8. As in Lemma 4.5, also in the lemma above the convergence of vm
to v is uniform on compact subsets of Rd+1

0,T . This is immediately deduced from (4.16)
and the concluding estimates in the proof.

Since |∇0vj,k|d0 ≤ f j,k a.e. for every j, k > 0 (Corollary 4.2), then |∇0v∞|d0 ≤ f a.e.
By the same rationale, also v∞ satisfies the same bound. That is stated formally in
the next corollary.

Corollary 4.9. Under Assumptions 2.1 and 2.2, the value function v is Lip-
schitz in the first d0 spatial coordinates with constant bounded by f in the sense that
|∇0v(t, x)|d0

≤ f(t) for a.e. (t, x) ∈ R
d+1
0,T .

The last result in this section concerns an optimal stopping time for the value
v = v∞. Given (n, ν) ∈ Ad0 , set θ∗ = τ∗ ∧ σ∗ as in (4.4).

Lemma 4.10. Let Assumptions 2.1 and 2.2 hold. For any (t, x) ∈ R
d+1
0,T and

(n, ν) ∈ Ad0 we have v(t, x) ≤ Jt,x(n, ν, θ∗), where we recall that θ∗ = θ∗(n, ν) depends
on the control pair. Hence

v(t, x) = inf
(n,ν)∈Ad0

Jt,x(n, ν, θ∗(n, ν))

and θ∗ is optimal for the stopper in the game with value v.

Proof. The proof follows similar arguments as those used in the proof of Thorem
4.4, so we provide only a sketch. Let g and h be functions that satisfy Assumption 2.2.
Form ∈ N, consider their truncations gm(t, x) = g(t, x)∧m and hm(t, x) = h(t, x)∧m.
We further mollify and localise those functions to fit into the setting of Theorem
4.4 as in the beginning of Section 4.2. Denote f j,km (t) := ((f+cm,k

j ) ∗ ζm,k
j )(t)+ 2m

k ,

gj,km (t, x) := (gm∗ζm,k
j )(t, x)ξk(x), h

j,k
m (t, x) := (hm∗ζm,k

j )(t, x)ξk(x), where (ζ
m,k
j )j∈N

is a sequence of standard mollifiers and cm,k
j is a sequence of positive numbers so that

estimates (4.10)-(4.11) hold, and the cut-off functions (ξk)n∈N are obtained with the
construction in (4.12).

Denote by vj,km the value function of the game with payoff functions f j,km , gj,km and

hj,km (c.f. (4.14)). An optimal stopping time for this game is θj,k,m∗ := τ j,k,m∗ ∧ σj,k,m
∗
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with

τ j,k,m∗ := inf
{

s ≥ 0
∣

∣ vj,km (t+ s,X [n,ν]
s ) = gj,km (t+ s,X [n,ν]

s )
}

,

σj,k,m
∗ := inf

{

s ≥ 0
∣

∣ vj,km (t+ s,X
[n,ν]
s− ) = gj,km (t+ s,X

[n,ν]
s− )

}

,

for an arbitrary pair (n, ν) ∈ Ad0 . The same arguments as in the proof of Lemma 4.3
and the uniform convergence of vj,km to v on compact subsets of Rd+1

0,T (Lemmas 4.5 and

4.7, and Remarks 4.6 and 4.8) yield lim infm→∞ lim infk→∞ lim infj→∞ θj,k,m∗ ≥ θ∗,
Px-a.s. Hence,

lim
m→∞

lim
k→∞

lim
j→∞

θj,k,m∗ ∧ θ∗ = θ∗, Px-a.s.(4.17)

The functions f j,km , gj,km , hj,km satisfy the assumptions of Theorem 4.4. Then, by
the same arguments as in the proof of that theorem, replacing uγ , θγ∗ , f

γ , g and h by
vj,km , θj,k,m∗ , f j,km , gj,km and hj,km , respectively, we obtain

(4.18)

vj,km (t, x) ≤ Ex

[

e−r(θj,k,m
∗

∧θ∗)vj,km

(

t+θj,k,m∗ ∧ θ∗, X [n,ν]

θj,k,m
∗ ∧θ∗−

)

]

+ Ex

[

∫ θj,k,m
∗

∧θ∗

0

e−rshj,km (t+s,X [n,ν]
s )ds+

∫

[0,θj,k,m
∗ ∧θ∗)

e−rsf j,km (t+s)dνs

]

.

We pass to the limit as j → ∞, k → ∞ and m → ∞ (with the limits taken in the
stated order). Using (4.17) and similar arguments as in (4.6), we have that Px-a.s.

limj,k,m→∞X
[n,ν]

θj,k,m
∗ ∧θ∗−

= X
[n,ν]
θ∗−

and

lim
j,k,m→∞

∫

[0,θγ
∗∧θ∗)

e−rsf j,k,m(t+ s)dνs =

∫

[0,θ∗)

e−rsf(t+ s)dνs.

We apply dominated convergence theorem to (4.18) justified by the linear growth
of all functions involved and the fact that one can restrict the attention to controls
(n, ν) ∈ Ad0 such that Ex[νT−t] ≤ c(1 + |x|d)/ infm,j,k f

j,k
m (T ) ≤ c̃(1 + |x|d) for some

c̃ <∞ (c.f. Lemma 3.1 and arguments leading to (4.7)). In the limit we obtain

v(t, x) ≤ Ex

[

e−rθ∗v
(

t+θ∗, X
[n,ν]
θ∗−

)

+

∫ θ∗

0

e−rsh(t+s,X [n,ν]
s )ds+

∫

[0,θ∗)

e−rsf(t+s) dνs

]

.

Corollary 4.9 and ideas from (4.8) and (4.9) yield v(t, x) ≤ Jt,x(n, ν, θ∗(n, ν)), which
concludes the proof.

We combine results from this section to prove Theorem 2.3.

Proof of Theorem 2.3. Lemma 4.7 shows that the game with expected payoff (2.2)
admits a value function v. The optimality of the stopping time θ∗ is asserted in Lemma
4.10. The continuity of the value function v follows from the continuity of vj,km in the
proof of Lemma 4.10 (from Theorem 3.3) and the uniform convergence of vj,km to v on
compact sets (see Remarks 4.6 and 4.8). Corollary 4.9 implies the Lipschitz continuity
of v in the first d0 spatial coordinates in the sense required in the statement of the
theorem. Finally, the growth condition is easily deduced from Assumption 2.2(ii) and
the uniform bound from Corollary 3.9.
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