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Abstract

Purpose: To establish the clinical applicability of deep-learning organ-at-risk
autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of
contour editing, prior to model training, on performance was evaluated for both
CT and MRI-based models. The correlation between geometric and dosimetric
measures was also investigated to establish whether dosimetric assessment is
required for clinical validation.

Method: CT and MRI-based deep learning autosegmentation models were
trained using edited and unedited clinical contours. Autosegmentations were
dosimetrically compared to gold standard contours for a test cohort. D1%,
D5%, D50%, and maximum dose were used as clinically relevant dosimet-
ric measures. The statistical significance of dosimetric differences between
the gold standard and autocontours was established using paired Student’s t-
tests. Clinically significant cases were identified via dosimetric headroom to the
OAR tolerance. Pearson’s Correlations were used to investigate the relationship
between geometric measures and absolute percentage dose changes for each
autosegmentation model.

Results: Except for the right orbit, when delineated using MRI models, the dosi-
metric statistical analysis revealed no superior model in terms of the dosimetric
accuracy between the CT DL-AC models or between the MRI DL-AC for any
investigated brain OARs. The number of patients where the clinical significance
threshold was exceeded was higher for the optic chiasm D1% than other OARs,
for all autosegmentation models. A weak correlation was consistently observed
between the outcomes of dosimetric and geometric evaluations.
Conclusions: Editing contours before training the DL-AC model had no sig-
nificant impact on dosimetry. The geometric test metrics were inadequate to
estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric
analysis is needed to evaluate the clinical applicability of DL-AC models in the
brain.
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1 | INTRODUCTION

With the advancement of technology and the increasing
number of brain cancer patients,' clinical use of brain
OARs deep learning autocontouring (DL-AC) models
in the radiotherapy department has become attrac-
tive. It promises to improve the standardization and
efficiency of organ-at-risk (OAR) contouring? How-
ever, appropriate evaluation of contour quality and
clinical acceptability is a challenge. While geometric
evaluation is straightforward, generalizable, and quan-
titative, its connection to clinical impact is difficult to
establish3# The most popular methods for evaluat-
ing autosegmentation geometric quality are the Dice
similarity coefficient (DSC) and distance-to-agreement
metrics (DTA).2 Overlap metrics can be sensitive to
structure size and are frequently poor predictors of
impact on clinically relevant dosimetric parameters.>*
Conversely, dosimetric analysis depends on local treat-
ment protocols and clinical criteria, as well as indi-
vidual patient anatomy and dose distributions, making
it harder to draw general conclusions about model
performance.

Researchers have reported that the optimal evalua-
tion method depends on the aim of autosegmentation?
Where autocontours will be checked and edited by
human operators, geometric or editing-time based anal-
ysis may be sufficient, although dosimetric analysis can
inform operators about the clinical significance of edit-
ing and hence maximize time savings.? If contours will
be used directly, for example, in online adaptive therapy,
with minimal or zero human intervention, a higher bar
of both geometric and dosimetric testing is needed to
ensure patient safety.

Therefore, to determine the clinical feasibility of
autosegmentation for radiation treatment planning and
delivery, several evaluation strategies, including geomet-
ric, dosimetric, and physician assessment, are ideally
required?

Dosimetric evaluation is most directly linked to
clinical relevance”* However, this analysis requires
treatment planning data® Also, there is no stan-
dard method or agreed threshold of acceptability
for dosimetric variation® Accordingly, there is little
research on the dosimetric effects of contour varia-
tions between manual and autosegmentation, and even
less on the dosimetric consequences of editing con-
tours either before model training (as here) or post
autosegmentation ®

Recent research?? raises questions about the cor-
relation between common geometric measures, dose
planning statistics, and clinical acceptability of OAR
contours. Hence, it is difficult to establish whether a seg-
mentation model is clinically usable in a specific clinical
scenario, sufficiently limiting the risk of overexposing
normal tissue and allowing the precise delivery of RT
dose to targets.

This study investigates the dosimetric impact of auto-
contouring OARs in the brain, in the context of RT
for common brain cancers. This work is built upon a
geometric evaluation which was previously published
and hence focusses on the clinically relevant dosimetric
aspects.” The correlation of dosimetry with the geo-
metric accuracy of MRI and CT-based DL-AC models,
established previously®%° is also addressed. Further,
we determine the dosimetric impact of editing clini-
cal contours to gold standard quality before training
CT and MRI DL-AC models. Previous geometric anal-
ysis showed that DL-AC models trained with edited
clinical contours successfully generated more segmen-
tations than the models trained with unedited clinical
contours. Also, editing contours on MRI before model
training improved the geometric performance.” However,
generating gold standard contours is a time-consuming
process that may require several clinicians, it severely
limits the amount of high-quality labeled data avail-
able for model training. Also, there are no specific
guidelines on the level of editing required, and the trade-
off between training data quantity and quality. While
DL-Autocontouring delineations are usually checked or
edited before use, poorer quality results from model
involving limited unedited data may cause loss of effi-
ciency and increase risk. However, if found editing
contours to be unnecessary before training the DL-
AC model, larger amounts of un-curated data could
be a more efficient route to high-quality autosegmen-
tation models for OARs in RT, particularly for MRI
models, where limited data with equivalent sequences
is available.

Understanding the impact of autosegmentation on RT
dosimetry could also improve guidance for the critical
assessment and editing of autocontours in clinical prac-
tice, maximizing time-efficiency gains while avoiding an
increased risk of toxicity from overexposing OARs.

Overdosing brain OARs can lead to, for example,
visual and hearing deficits, making understanding of
OAR segmentation accuracy a critical requirement in
delivering high-quality RT.'®

Previous studies of autocontouring for brain
OARs using deep learning relied only on geomet-
ric assessment.”""=13 By evaluating the correlation
between geometric and dosimetric measures, we aim
to establish whether geometric assessment alone is
sufficient to evaluate brain OAR autosegmentation tools
or whether an additional dosimetric evaluation is also
needed.

Regarding other treatment sites (thoracic,
esophageal, and head and neck), several studies
have assessed the dosimetric impact of deep learning
segmentation 889 Correlations between the geometric
and dosimetric measures in thoracic and head and
neck OARs have not been identified® In contrast, a
study investigating esophageal OARs revealed that
DSC and OAR dose had a statistically significant overall
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correlation, although this correlation was not always
present at the level of individual patients or OARs.?
Finally, it is essential to consider the clinical signifi-
cance of a dosimetric error. While for a given test case, it
is possible to say whether the dosimetric change caused
a dose constraint to be exceeded, this is highly depen-
dent on the details of the individual dose distribution
and may not generalize to other cases. Here, we detail
a pragmatic approach for determining the likely clinical
significance of dose differences across a patient cohort,
with a view to prospective clinical use of the model.

2 | MATERIALS AND METHODS

2.1 | Dataset and clinical protocol

As this study was built based on previously published
geometry study,’” you can find a summary of essential
details information such as data preparation, OAR selec-
tion, gold standard contours, and image acquisitions in
that earlier publication.”

A computer-generated simple-random list was used
to select randomly 60 Brain cases from a retrospec-
tive clinical cohort treated in our institution over the past
five years. Ethical approval for retrospective use of de-
identified patient data were given by Leeds East REC,
reference: 19/YH/0300, IRAS project ID: 255 585. This
UK ethics committee approval indicates that our study
is conformant with the Declaration of Helsinki, the UK
Policy Framework for Health and Social Care Research
and the EMA guidelines on Good Clinical Practice. The
data for training and testing was randomly chosen: 80%
for training (n = 48) and 20% for testing (n = 12), which
is the most popular split ratio (80/20). As the model
used was a commercially approved model, on which we
did not perform hyperparameter tuning, there was no
need for in-training validation. More information about
the available training parameter can be found in the
Supplementary Information.

Using the same dataset, two CT autosegmentation
models were trained with a total of 47/48 cases (one
case was excluded due to missing data), and three
MRI autosegmentation models were trained using 32
cases (16/48 cases were excluded due to inconsistent
MR slice thickness).” For testing, three test cases were
excluded. Two CT test cases were excluded because
no MRI images were associated with them (n = 10
cases) and one additional MRI test case was excluded
(n =9 cases) due to the use of different MRI sequence.’
In addition, All test cases were treated for either high-
grade or low-grade glioma using volumetric modulated
arc therapy (VMAT). Total RT dose was 60 Gy in 30 frac-
tions, for glioblastoma multiforme (GBM) and grade Il
glioma (protocol A), or total RT dose was 54 Gy in 30
fractions for low-grade glioma (protocol B). The clinical
OAR dose constraints are shown in Table 1.D1,5%,50%

TABLE 1 Dose constraints for glioma radical-primary VMAT
(60 Gy in 30# and 54 Gy in 30#).

OARs Dose constrains Dosimetric metrics
Brainstem 54 Gy D5%

Lenses 6 Gy D1%

Optic chiasm 54 Gy D1%

Optic nerves 54 Gy D1%

Orbit 45 Gy D1%

Lacrimal glands 30 Gy D1%

Pituitary 45 Gy Max dose

Cochlea 45 Gy D50%

denotes a minimum dose to the most exposed 1%, 5%,
or 50% of the OAR volume, respectively.

2.2 | Deep learning autosegmentation
training

The OAR contours used for clinical treatment were
based on a combination of the anatomy as seen on co-
registered MRI (specifically brainstem, optic chiasm, and
intra-cranial component of the optic nerves) and radio-
therapy planning CT (specifically extra-cranial portions
of the optic nerves, lenses, globes, cochlea, and lacrimal
glands). From these, the contours used in this project
were derived:

1. Unedited clinical contours as above (used for both CT
and MRI -based autosegmentation models, termed
the CT unedited and MRI unedited models, CTu and
MRIu, respectively- please see next paragraph)

2. Clinical contours edited to correspond with a depart-
mental contouring guide (the “gold standard”) and
edited to be entirely based on CT anatomy (used
for CT and MRI -based autosegmentation models,
termed the edited models CTeCT and MRIeCT-
please see next paragraph)

3. Clinical contours edited to correspond with a depart-
mental contouring guide and edited to be entirely
based on MRI anatomy alone (used for the MRI-
based autosegmentation model termed the MRI
edited model, MRIeMRI- please see next paragraph)

The same MRI and CT DL-AC models that were
built for geometric evaluation were used for dosimetric
evaluation as follows:’

DL-AC models were trained using a 3D U-net'* archi-
tecture (RayStation 11A, RaySearch Laboratories AB,
Stockholm, Sweden). Five separate autosegmentation
models (two CT- and three MRI-based) were trained:
i) CT-based, using the unedited clinical contours (CTu)
and ii) CT-based using contours edited to gold stan-
dard based on CT anatomy (CTeCT). Both contour
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sets were rigidly registered to T1-weighted gadolinium-
enhanced MRI (T1w-Gd MRI) to train the iii) MRI-based
model using the unedited clinical contours (MRIu), and
the iv) MRI-based model using the CT edited contours
(MRIeCT). Finally, an MRI-based model that used these
contours edited based on MRI anatomy (MRIeMRI).
After training, all the autosegmentation models were
used to generate automatic contours on the test cohort.

2.3 | Dosimetric evaluation

Dose statistics were computed (Raystation 11A) to com-
pare the CT and MRI autosegmentation models with
gold standard contours in each modality, where clinical
contours were edited based on each modality’s anatomy
in this test cohort (i.e., CTeCT and MRIeMRI). Dose
evaluation for MRI autosegmentation was performed by
copying the CT dose distribution to T1w-Gd MRI via rigid
image registration.

The statistical significance of differences in dose met-
rics due to autosegmentation models was evaluated
using a paired two-tailed Student’s t-test. The three MRI-
based models were compared statistically, as were the
two CT-based models. The Bonferroni corrected sta-
tistical significance threshold was p < 0.01 (0.05/3)
and < 0.05 for the MRI and CT dosimetric evaluations,
respectively. More information is available in the sup-
plementary materials about dosimetric evaluation and
statistical analysis.

2.4 | Clinical evaluation

The question of “what is a clinically significant dose dif-
ference?” is challenging. If an OAR dose is close to or
at tolerance, any change could be significant, but we
would normally accept a 2%—3% tolerance due to other
uncertainties in dose calculation and setup (for exam-
ple). However, that arbitrary 2%—3% tolerance would be
overly restrictive if the OAR dose were said 30% below
tolerance. Thus, the clinical significance of dosimetric
differences for each OAR was determined using a prag-
matic approach under the guidance of an experienced
radiation oncologist.

For first-order OARs (where the dosimetric tolerance
is a hard limit for RT dose planning) with near maximal
dose statistics (e.g.,D1% or D5%), the average dosimet-
ric headroom between the gold standard contour dose
and the tolerance dose in Table 1 was computed. 50%
of the average dosimetric headroom was used as the
clinical significance threshold for these first-order OARs:
brainstem, orbits, optic chiasm, and optic nerves. A case
was considered clinically significant if the dose changes
between the gold standard contour and autosegmenta-
tion was more than half the average dose headroom in
either direction (Figure 1a).

MEDICAL PHYSICS £

For second-order OARs (where dose tolerances are
optimal, rather than mandatory) where the dosimetric
statistics are mean-dose-like (e.g., cochlea D50%), the
approach was based on the worst-case scenario in
the test cohort. The worst-case scenario was defined
as the case with the least headroom to the tolerance
dose, using the gold standard OAR contours. 50% of the
worst-case scenario headroom was used as the clinical
significance threshold. A case was considered clinically
significant if the dose changes between gold standard
contours and autosegmentation was more than half of
this threshold in either direction (Figure 1b).

For other second-order OARs, the clinical signifi-
cance of the dosimetric change was more challenging
to define. The evaluation was therefore based on a com-
parison of relative model dosimetric performance as
above, rather than any clinical significance threshold.
This approach was applied for lenses, lacrimal glands,
and pituitary gland as they were treated in some cases
to more than the optimal tolerance dose, which would
result in a negative clinical significance threshold by the
methods described above.

All cases identified as having clinically significant dosi-
metric changes were visually reviewed in the treatment
planning system with an experienced clinical oncologist
to identify the cause (e.g., proximity of an OAR to a dose
gradient).

By aligning our approach with the perception of an
experienced radiation oncologist, we enhanced the reli-
ability of this clinically significant metric in identifying the
potential clinically significant cases. As we mentioned in
the introduction, there is no standard method or agreed
threshold of acceptability for dosimetric variation.

2.5 | Correlation between the geometric
and dosimetric output

Pearson’s Correlation Coefficient (r)'® was applied to
measure correlations between geometric test metrics
(the Dice Similarity Coefficient (DSC)'® sensitivity® and
mean distance to agreement (MDA)'” and absolute
percentage dose change for each autosegmentation
model.

3 | RESULTS

3.1 | Overall effect of using
autosegmentation versus gold standard
human contouring on dosimetry

Figures 2—4 represent the overall patterns of dosimet-
ric change for CT and MRI DL-AC models relative
to the gold standard contours. The lacrimal glands
are presented separately due to the relatively larger
dose changes. The dosimetric change for the MRI
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FIGURE 1 Clinical dose evaluation: (a) the average metric approach which relates to the average dose change, (b) the worst-case scenario
approach.
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FIGURE 2 Distribution of the dosimetric change of all OARs delineated by MRI DL-AC models (excluding lacrimal glands). The number of

failed segmentations is when autosegmentation model failed to produce structures. In some cases, the small dosimetric change is affected by
the number of failed cases such as cochlea, pituitary, and lens L. MRIu is shown in blue, MRIeCT in red, and MRIeMRI in green.
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FIGURE 3

Distribution of the dosimetric changes of all OARs delineated by the CT DL-AC relative to the gold standard contour. The

number of failed segmentations is when autosegmentation model failed to produce structures. In some cases, the small dosimetric change is
affected by the number of failed cases. CTu is shown in turquoise, while CTeCT is in orange. (*) indicates that outliers have been removed from

the plot for clarity.

autosegmentations versus gold standard contour was
greatest in the lacrimal glands D1%, followed by the
optic nerves D1% (Table 2) (Figures 2 and 4). The aver-
age absolute dosimetric change for the lacrimal glands
D1% and optic nerves D1% varied from 25% (MRIeMRI)
to 143% (MRIeCT) and 9% (MRIeMRI) to 20% (MRIu
and MRIeCT), respectively (Table 2). The remaining
OARs had less dosimetric change relative to the gold
standard contour, ranging from 1% to 12% (Table 2).
The greatest dosimetric change for the CT DL-AC ver-
sus gold standard contour was observed for the right
lens D1% and optic chiasm D1% for the CTu and CTeCT
models, respectively (Table 3 and Figure 3). The aver-
age absolute dosimetric change was 57% (CTu) for the
right lens D1% and 18% (CTeCT) for the optic chiasm
D1%. The marked dosimetric change was also reported
for L and R orbits D1% delineated by the CTu model
(21%, 25%) and L and R optic nerves D1% delineated
by the CTeCT model (14%, 15%) (Table 3). The remain-

ing OARs had less dosimetric change relative to the gold
standard contour, ranging from 1% to 17% (Table 3).

3.2 | Impact of editing

For orbits, optic nerves, and optic chiasm, the MRIeMRI
model showed less average dosimetric changes than
other MRI models (Table 2 and Figure 2). However, dif-
ferences between MRI DL-AC model dosimetry were not
statistically significant, except in the right orbit, where
a statistically significant effect was found comparing
the MRIu and MRIeMRI models (p = 0.012, effect size
(A median dosimetric change) = 7%). However, it was
clinically insignificant (Table S1).

The CTeCT model demonstrated smaller average
dosimetric changes, relative to the gold standard, than
the CTu model for the following structures: orbits, lenses,
and brainstem (Table 3 and Figure 3). Again, however,
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FIGURE 4 Distribution of the dosimetric change of the lacrimal glands segmented by (a) MRI DL-AC models and (b) CT DL-AC models
relative to the gold standard contour. MRIu is shown in blue, MRIeCT in red, while MRIeMRI in green, CTu is shown in turquoise, while CTeCT in

orange.

dosimetric differences between the CT DL-AC models
were not statistically significant (Table S2). In 3 cases,
the CTu model generated incorrectly located segmenta-
tions (DSC = 0) for several of these OARs. These cases
were visually qualitatively assessed in the treatment
planning system.

3.3 | MRI versus CT DL-AC—effect on
dosimetry

Differences in dosimetric changes relative to the gold
standard contour between the CT and MRI DL-AC mod-
els, were most noticeable in the lacrimal glands D1%
(Figure 4). The dosimetric change for lacrimal glands
D1% delineated by the CT DL-AC models versus gold
standard contour was considerably smaller than that
of the MRI DL-AC models. Additionally, the MRIeMRI
model failed to segment the lacrimal glands in nine
cases.

3.4 | Correlation between the geometric
and dosimetric evaluations

All models showed a weak correlation between absolute
dosimetric change and geometric evaluation metrics.
Negative correlations were observed between DSC
and absolute dosimetric change and between sensi-
tivity and absolute dosimetric change (r < —0.40 and
r < —0.38, respectively). A positive correlation was
observed between mean DTA and absolute dosimet-

ric change (r < 0.54) (Table 4). None of the observed
correlations reached statistical significance at p = 0.05.
All results related to the geometric output used for
this evaluation can be found in the previous published
work.”

3.5 | Clinical significance of
autosegmentation models on dosimetry

3.5.1 | First-order OARs

Tables 5 and 6 demonstrate the number of clinically
significant cases according to the definitions outlined
above, and the average dosimetric change relative to
the gold standard contour. In both CT DL-AC and MRI
DL-AC, the number of cases that exceeded the clin-
ical significance threshold for optic chiasm D1% was
higher than for other first-order OARs (n > 4 cases).
In both modalities, models trained with edited contours
based on CT scans (MRIeCT and CTeCT) demon-
strated the largest frequency of clinically significant
errors (n = 7 with A average dose = 590.0 and 1376.1
cGy, respectively) (Table 6).

Only one clinically significant case was observed for
the brainstem D5% in each MRI DL-AC model (n = 3
cases, A average dose = 203.5 cGy) (Table 5). However,
the MRIeCT exhibited greater dosimetric change rela-
tive to the gold standard contour than the MRIeMRI and
MRIu models (Table 5).

Training the CT DL-AC model with edited contours,
on the other hand, reduced the frequency of clinically
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TABLE 4 Correlation between geometric and dosimetric outputs.

Absolute dosimetric

Autosegmentation models change and DSC

Absolute dosimetric
change and mean DTA

Absolute dosimetric
change and sensitivity

MRIeCT r=-0.299
MRIeMRI r=-0.402
MRIu r=-0.304
CTeCT r=-0.343
CTu r=-0.386

r=-0.256 r=0.262
r=-0.381 r=20.328
r=-0.255 r=10.543
r=-0.378 r=0.288
r=-0.359 r=20.106

significant dosimetric errors for the brainstem D5% and
demonstrated smaller dosimetric changes relative to the
gold standard contour compared to the CTu model (n =3
cases, A average = 246.6 cGy) (Table 6).

3.5.2 | Second-order OARs

Amongst the second-order OARs (waterfall plots—
Figures S1 and S2), the lacrimal glands demonstrated
the largest dosimetric change in the MRI DL-AC mod-
els. In the worst case, the dose was changed in the left
lacrimal gland by 505% for the MRIeCT model (Figure
S1c), relative to the gold standard. On the other hand,
the right lens had the largest dosimetric change in the
CT DL-AC (446% worst-case for the CTu model) (Figure
S2b). Otherwise, the dosimetric changes associated with
DL-AC compared to gold standard were generally lower
for second-order OARs. For CT DL-AC, these ranged
from 0% to 40%, whereas they ranged from 0% to 22%
for the MRI DL-AC (Figure S1(a—e) and S2(a-e)).

4 | DISCUSSION

This study investigated the dosimetric impact of clinical
contour editing before training MRl and CT DL-AC mod-
els for brain OARs to establish clinical applicability. This
study also examined the correlation between geomet-
ric and dosimetric outcomes, in order to guide centers
as to whether the geometric assessment alone is suf-
ficient to evaluate and commission DL-AC models in
radiotherapy or whether a dosimetric evaluation is also
necessary.

Except for the right orbit, when delineated by the
MRI models, the dosimetric statistical analysis revealed
no superior model between the CT DL-AC models or
between the MRI DL-AC in terms of the dosimetric accu-
racy for any investigated brain OARs (Tables S1 and S2).
The significant finding for the right orbit likely results from
a slight registration inaccuracy in mapping CT-derived
evaluation contours to MRI, rather than any feature of
the DL-AC model. As a result, editing contours for brain
OAR structures on the CT or MRI scans before training
the model had no significant effect on OAR dosime-
try. The lack of superiority indicates that both models

perform well dosimetrically. This occurs for two main rea-
sons. Firstly, doses in brain RT for GBM are relatively
homogeneous, meaning that most differences between
these complex OAR contours lie in either uniformly high
or low dose regions. Only occasionally will a contouring
difference occur on a high dose gradient, leading to a
significant dosimetric impact. Secondly, the metrics used
clinically tend to be of the “near-maximal dose” type,
which are insensitive to contouring changes which occur
in regions of lower dose. This is in contrast to metrics
such as mean doses or V20Gy, which might be used in
the thorax for example.

Clinical dosimetric evaluation was performed as a
secondary assessment of potential clinical impact,
using the average metric approach and the worst-case
scenario approach.

The number of patients that exceeded the derived
clinical significance threshold for optic chiasm D1% was
higher compared to other OARs (brainstem D5%, orbits
D1%, optic nerves D1%, and cochlea D50%) in both
modalities.

The absolute dosimetric changes of the optic chiasm
D1% relative to the gold standard of the clinically sig-
nificant cases were <67% and <59% across all the CT
and MRI models, respectively. The DSC, sensitivity and
mean DTA scores were <0.37,0.54,1.44 cm and <0.74,
0.83,0.77 cm for the CT and MRI models, respectively.”
In comparison with the CTeCT model, the CTu model
shows a smaller number of significant cases with more
acceptable percentage change, which is surprising at
first sight since the edited contours should be more
closely correlated with the underlying CT anatomy. How-
ever, as the optic chiasm is very poorly visualized on
CT, the segmentation model relies not on the correla-
tion with imaging features, but more on the consistency
of the shape and location of the optic chiasm, to pre-
dict its segmentation. In the unedited data (used for the
CTu model), this consistency is high, due to the origi-
nal clinical contours being based on MRI rather than CT
anatomy (see Section 2.2), enabling the model to learn.
By editing the optic chiasm on CT anatomy alone (used
for the CTeCT model), this consistency is degraded,
and the correlation with image features is not improved,
as there are none present on CT. Hence, CTeCT per-
forms worse, as it struggled to learn a consistent shape
and location for the optic chiasm and hence produced
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Significant clinical cases and their average of the dosimetric change compared to gold standard.

TABLE 5

MRIeMRI MRIu

MRIeCT
A (n =5 cases)

Threshold (cGy)

Protocol A

B (n = 4 cases)

A (n =5 cases)

4cases)

B(n=

A (n =5 cases)

B (n = 4 cases)

Protocol B

OARs

(n=1)

(n=1) (n=1)
411.3 cGy

660.410

54.222

Brainstem D5%

140.3cGy

58.9 cGy

(n=1)

548.633 1001.294

Cochlea L D50%

636.4 cGy

(n=1)

(n=1)

380.431

42.351

Cochlea R D50%

54.5 cGy
(n=23)

1341.498 cGy

(n=1)

(n=2)

(n=5)

286.879

50.231

Optic Chiasm D1%

1745.9 cGy

298.1 cGy 722.0 cGy 160 cGy
(n=2) (n=1)

1015.2 cGy

164.8 cGy

(n=1)

(n=2)

1031.981

521.292

Optic Nrv L D1%

1192 cGy

(n=1)

1269.393 cGy

611.3 cGy

869.8 cGy

(n=1)

(n=1)

1063.127

1194.213

OpticNrv R D1%

1073.1 cGy

1123.8 cGy

1313.7 cGy

10

11

Total clinically significant cases

a high dosimetric change with more significant cases
compared to CTu.

On the other hand, MRleMRI showed a more accept-
able dosimetric change than other MRI models, showing
the benefits of editing optic chiasm on MRI prior to
model training. Based on visual inspection of the optic
chiasm in the treatment planning system, the level of
dose discrepancy was independent of dose gradient
location and appeared well correlated to the geometric
error. This is expected because optic chiasm is a small
structure and has a complicated shape. The model failed
to delineate all the optic chiasm on each slice accurately.
This indicates that post-segmentation editing may be
required for optic chiasm.

Regarding the Brainstem D5%, in a comparison with
the CTu model, the CTeCT model demonstrated a lower
number of significant changes for brainstem D5% (3
significant cases) (Table 6) with less dosimetric change
relative to the gold standard (<11% in either direction).
Notably, the CTu model segmented several OARs in
completely the wrong location, leading to the significant
increase in mean dosimetric errors for the brainstem
(and orbits). Editing prior to model training resolved
these failures.

On the other hand, the number of clinically significant
cases for the brainstem D5% for the MRI was just one for
each model (Table 5). The dosimetric differences com-
pared to the gold standard contour were <19% in either
direction, but the geometric error was low (DSC and sen-
sitivity scores >0.89 and 0.85, while mean DTA score
<0.10 cm).” This dosimetric error appears clinically sig-
nificant because in most clinical cases, D5% Brainstem
is at or near to the PTV, so even a slight difference is
significant.

It was noticeable that the geometric error of the
clinically significant cases for D5% brainstem in both
modalities was generally low (DSC score >0.8),” except
for CTu failure cases mentioned above. On visual
assessment, the superior part of the brainstem was
found to overlap PTV or at a distance, resulting in
significant dose gradients (Figure 5a). These results
show that clinical dosimetric evaluation is essential in
some cases, and the geometric evaluation alone is
insufficient to demonstrate the clinical utility of autoseg-
mentation, due to the extreme inhomogeneity of dose
distributions. Geometric errors only translate to dosi-
metric errors where they overlap steep dose gradients.
Similarly, a recent study evaluating the dose for the
thoracic OARs delineated by CNN-based autosegmen-
tation found that significant dose-volume variations were
more strongly correlated with areas of high-dose gra-
dient than geometric segmentation errors® Moreover,
previous studies have identified significant dosimetric
differences between test and standard segmentation
observed for OARs with high-dose gradients, even when
geometric measures show good overlap.* On the other
hand, OARs within homogeneous dose regions may
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TABLE 6 Significant clinical cases and their average of the dosimetric

change compared to the gold standard.

Threshold (cGy) CTu CTeCT
Protocol
OARs A Protocol B A (n =17 cases) B (n = 3 cases) A (n =17 cases) B (n = 3 cases)
Brainstem D5% 171.161 43.310 (n=3) (n=2) (n=2) (n=1)
447.9 cGy 279.4 cGy 395.8 cGy 97.3 cGy
Cochlea L D50% 287.110 79.972 - - (n=1) -
747.9 cGy
Cochlea R D50% 340.995 394.289 - - (n=1) -
668.8 cGy
Optic Chiasm D1% 186.969 161.208 (n=23) (n=1) (n=4) (n=23)
402.527 cGy 503.8 cGy 825.6 cGy 1926.5¢cGy
Optic Nrv L D1% 769.175 821.592 (n=1) (n=1) (n=2) (n=1)
768 cGy 1605.9 cGy 996.2 cGy 1025.7¢cGy
Optic Nrv R D1% 1092.199 561.628 (n=1) - (n=1) -
1226.1 cGy 1173.0 cGy
Orbit L D1% 1806.533 2038.483 (n=1) - - -
2572.2 cGy
Total clinically significant cases 13 16

FIGURE 5 (a) axial and (b) sagittal T1w-Gd MRI with overlying dose distribution, showing examples of different geometrical changes of
predicted MRI autosegmentations compared to the gold standard. Red outline represents the gold standard contour. The MRIeMRI contours are

depicted as yellow outlines, the CTeMRI contours as green outlines, and M

Rlu contours as blue outlines. The colorwash represents the

percentage dose distribution, relative the prescription dose, according to the inset colorbar. The dosimetric impact for a given geometric error is
large only in high-dose gradients (e.g., as seen on sagittal image, the dosimetric impact of the yellow contour, relative to the gold standard (red)

is 7% (411 cGy), as there is a steep dose gradient, whereas the dosimetric
1% (38 cGy), as it lies in a more homogenous region of dose). Overall, this
correlation of dosimetric impact and geometric error.

reveal poor volumetric agreement but minimal dosimet-
ric differences’* Accordingly, the superior part of the
brainstem autosegmentation must be corrected when
needed due to the poor performance of the contour-
ing models in this portion and due to its proximity to
PTV in many of the GBM cases (Figure 5a). For mod-
ern, highly conformal arc therapies, the PTV is often a
good surrogate for the location of high-dose gradients,
but care should be taken with fixed beam angle treat-
ments, where steep gradients may exist far from the
PTV.

It was noted that clinically significant dosimetric
changes for optic nerves were mostly reductions in dose

difference of the green contour relative to gold standard (red) is only
dependence on dose gradient leads to the observed weak overall

relative to the gold standard for two main reasons. First,
after reviewing the treatment planning system, the CT
models were found to have failed to correctly iden-
tify all the boundaries on each slice, while the MRI
models failed to identify the posterior limit of the optic
nerves (Figure 5b). In either case, the segmentation was
incomplete, resulting in reduced dose statistics. Sec-
ond, a considerable reduction in dose was noticed in
some other cases, even though there was relatively good
visual agreement between the generated contours and
the gold standard. In these cases, part of the gold stan-
dard contour was near PTV, whereas the DL-AC contour
was not.
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Regarding the small structures (lenses, lacrimal
glands, and pituitary), lacrimal glands delineated by
MRI models demonstrated a remarkably high dosimet-
ric change relative to the gold standard. This correlated
with geometric inaccuracy due to the difficulty visualiz-
ing this organ using T1-w MRI scans.” Uniquely, on CT,
these glands are more visible than on MRI. However,
CTu model showed that the right lens had the largest
dosimetric change (446% worst-case). This was a failed
segmentation, which falsely identified a region of the
brain far from the right lens, instead of simply producing
no contour. The dose in that region was approximately
4.5x higher than in the lens, as it was by chance on the
PTV boundary, leading to this extreme result.

This study found a weak correlation between the geo-
metric and dosimetric outcomes in both modalities. The
correlation direction of the geometric and dosimetric
results followed our expectations. The absolute percent-
age dose difference was negatively correlated with the
sensitivity and DSC scores, and positively correlated
with the mean DTA. Higher DSC and sensitivity scores
indicate improved geometric performance, whereas
higher mean DTA scores indicate larger geometric (and
hence dosimetric) errors.

This suggests geometric test metrics were insufficient
to predict the effect of contour inaccuracies on dose,
due primarily to variability in the location of dose gra-
dients. Also, geometry test metrics such as DSC can
be impacted by the structure size and are often a poor
indicator of clinically significant dosimetric impact.>#

A recent study examined the correlation between
geometrical measures and dose-volume variations for
thoracic OARs® Researchers found no significant cor-
relation between them 8 The weak correlation identified
in this current work may indicate that dose distribu-
tions exhibit more variance in the thorax than the brain;
hence, geometric performance was found to be an insuf-
ficient metric for clinical utility. Consequently, it is crucial
also to perform dosimetric tests to demonstrate the
clinical applicability and accuracy of autosegmentation
models.

The fact that specific organs are prone to exhibit-
ing large geometric errors, and the likelihood that these
are in high-dose gradient regions, potentially allows
human operators to prioritize their contour editing to
the critical organs that are likely to be in the vicinity
of high-dosegradients, further improving efficiency in
checking contours, and avoiding spending time editing
geometric errors which will not translate to dosimetric
errors.

This study has certain limitations. The relatively small
number of cases analyzed makes it possible that outlier
cases have not been captured (e.g., where a small OAR
lies very close to a high-dose gradient). Additionally, the
clinician’s time editing contours needs to be investigated
to measure efficiency savings from DL-AC.

MEDICAL PHYSICS L2
5 | CONCLUSION

As technology advances and the number of brain cancer
patients increases, clinical use of brain OARs DL-
AC models in the radiotherapy department becomes
attractive. However, adequate assessment of contour
accuracy and clinical applicability are essential. In this
study, the dosimetric impact of autocontouring OARs
in the brain was investigated. Specifically, the dosimet-
ric impact of editing clinical contours to gold standard
quality before training CT and MRI DL-AC models
was assessed. Moreover, the correlation of dosimetry
with geometric accuracy of MRI and CT-based DL-
AC models was determined. Generally, we found that
editing the clinical contour before training the model
had no statistically significant impact on the dosimetry,
despite clear geometric effects. However, by assessing
the clinical significance of dosimetric changes as a sec-
ondary assessment of potential clinical impact, some
geometric errors resulted in clinically significant dosime-
try changes, despite the small underlying geometrical
errors.

Our results suggest that an MRIeMRI model could
be used clinically for treatment planning despite some
structures requiring manual contour editing. This is due
to its generated segmentation generally showing less
dosimetric change relative to the gold standard con-
tours for most of the OARs. It also produced the fewest
clinically significant dosimetric errors, indicating that the
improvements in geometric performance can lead to
dosimetric improvements in specific cases.

Generally, a weak, and statistically insignificant corre-
lation between the geometric and dosimetric outcomes
for brain OARs in both modalities was found. Accord-
ingly, geometric test metrics are insufficient to estab-
lish the impact of autocontouring inaccuracies on RT
dose, mainly due to the variability in the location of
dose gradients relative to OARs and geometric errors.
For robust evaluation and commissioning of autocon-
touring, both geometric and dosimetric evaluation is
recommended.
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