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Abstract 26 

As the level of vehicle automation increases, drivers are more likely to engage in non-driving 27 

related tasks which take their hands, eyes, and/or mind away from the driving task. 28 

Consequently, there has been increased interest in creating Driver Monitoring Systems (DMS) 29 

that are valid and reliable for detecting elements of driver state. Workload is one element of 30 

driver state that has remained elusive within the literature. Whilst there has been promising 31 

work in estimating mental workload using gaze-based metrics, the literature has placed too 32 

much emphasis on point estimate differences. Whilst these are useful for establishing whether 33 

effects exist, they ignore the inherent variability within individuals and between different 34 

drivers. The current work builds on this by using a Bayesian distributional modelling approach 35 

to quantify the within and between participants variability in Information Theoretical gaze 36 

metrics. Drivers (N = 38) undertook two experimental drives in hands-off Level 2 automation 37 

with their hands and feet away from operational controls. During both drives, their priority was 38 

to monitor the road before a critical takeover. During one drive participants had to complete a 39 

secondary cognitive task (2-back) during the hands-off Level 2 automation. Changes in 40 

Stationary Gaze Entropy and Gaze Transition Entropy were assessed for conditions with and 41 

without the 2-back to investigate whether consistent differences between workload conditions 42 

could be found across the sample. Stationary Gaze Entropy proved a reliable indicator of 43 

mental workload; 92% of the population were predicted to show a decrease when completing 44 

2-back during hands-off Level 2 automated driving. Conversely, Gaze Transition Entropy 45 

showed substantial heterogeneity; only 66% of the population were predicted to have similar 46 

decreases. Furthermore, age was a strong predictor of the heterogeneity of the average causal 47 

effect that high mental workload had on eye movements. These results indicate that, whilst 48 

certain elements of Information Theoretic metrics can be used to estimate mental workload by 49 

DMS, future research needs to focus on the heterogeneity of these processes. Understanding 50 



this heterogeneity has important implications toward the design of future DMS and thus the 51 

safety of drivers using automated vehicle functions. It must be ensured that metrics used to 52 

detect mental workload are valid (accurately detecting a particular driver state) as well as 53 

reliable (consistently detecting this driver state across a population).  54 

Keywords:  Distraction, workload, monitoring, heterogeneity, automation, entropy 55 
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1 Introduction 69 

The influx of automated systems in road vehicles has generated increased interest in the 70 

development of Driver Monitoring Systems (DMS). DMS refers to a collection of sensors that 71 

aim to detect whether a driver is attentive, alert, or engaged. Not only are drivers more likely 72 

to engage in non-driving related tasks (NDRTs) as vehicles transform from manual to partial 73 

driving automation (Carsten et al, 2012), but in Level 3 automation drivers are allowed to 74 

actively engage in NDRTs (SAE, 2018). This may take their hands off the wheel and eyes and 75 

mind away from the main driving task. As such, a large body of research has aimed to measure 76 

the internal states of drivers whilst using partial or conditionally automated vehicles, and how 77 

these states might change in response to NDRTs. One elusive, yet extremely relevant, driver 78 

state for informing driver readiness is workload. Workload is a general term that can be defined 79 

as the demand or difficulty that is placed upon a driver (De Waard, 1996; da Silva, 2014; Fuller, 80 

2005; De Winter et al, 2014). Mental workload is more specific and has been defined as the 81 

proportion of information processing for a given task relative to an individual’s processing 82 

capacity (Brookhuis & De Waard, 1993; 2000; da Silva, 2014). It should also be noted that the 83 

terms cognitive distraction and cognitive load are often used interchangeably when researchers 84 

manipulate the cognitive demand of drivers. However, there is a distinct conceptual difference; 85 

the former referring to the general removal of attention away from the driving task toward a 86 

secondary task, and the latter referring to the quantity of the cognitive resource demanded by 87 

the secondary task (Engström et al, 2017). A key aspect of mental workload is that drivers have 88 

a limited pool of cognitive resources (Wickens, 2002). Underload from the monotony of 89 

monitoring autonomous systems can result in decreased vigilance (Young & Stanton, 2002) 90 

whereas overload may occur if a driver is engaging in an NDRT and can result in sub-optimal 91 

takeover performance (Gold et al, 2015; Zeeb et al, 2016). To ensure that a driver is ready to 92 

resume control, they should ideally have moderate workload levels to reduce the likelihood of 93 



safety-critical situations (Bruggen, 2015). Hence one goal of DMS development has been to 94 

identify valid and reliable indicators of mental workload to monitor the driver during automated 95 

driving. Therefore, a specific aim of this manuscript was to investigate a family of gaze-based 96 

metrics that have shown potential in estimating mental workload in human drivers.  97 

The dispersion of gaze has been a useful metric for measuring mental workload during manual 98 

and automated driving. Gaze dispersion is often measured as the standard deviation of raw gaze 99 

coordinates in the horizontal and vertical dimensions (Sodhi et al, 2002). During manual 100 

driving, the standard deviation of horizontal gaze reduces when the workload of the driver is 101 

increased with a secondary cognitively loading task; this phenomenon is known as visual 102 

tunneling (Reimer, 2009; Reimer et al, 2010; Wang et al, 2014). Similar effects have been 103 

observed when performing a cognitive loading secondary task during automated driving 104 

(Radlmayr et al, 2019; Wilkie et al, 2019). The sensitivity of raw gaze dispersion for detecting 105 

mental workload has proven to be a robust measure for driver monitoring systems. However, 106 

one limitation of this approach is that it does not account for the predictive nature of eye 107 

movements. Established accounts of gaze control focus on the where (spatial distribution) and 108 

the when (temporal sequence) of gaze, relative to task demands (Shiferaw et al, 2019). This 109 

can be interpreted as being driven by bottom-up or top-down processes (Shiferaw et al, 2019). 110 

Bottom-up processes refer to attention that is guided by stimulus saliency of a particular image 111 

or visual scene; top-down processes refer to attention that is guided by memory-based 112 

knowledge and/or behavioural requirements, originating from internal visual and cognitive 113 

systems (Henderson, 2003; Itti & Koch, 2001). In this sense, bottom-up processing uses “lower 114 

level” input (i.e., stimulus information) to modify “higher-level” representations (i.e., 115 

integrated information in the brain), whereas top-down processing uses higher-level 116 

representations to produce or modify lower-level information (Palmer, 1999; Rauss & Pourtois, 117 

2013). However, a growing body of literature has proposed that gaze control is a system of 118 



spatial prediction (Henderson, 2017; Talter et al, 2017). Hence fixation locations are not merely 119 

instructed by top-down and bottom-up influences, but their relative contributions towards 120 

prediction and error correction when constructing an internal representation of a visual scene 121 

(Parr & Friston 2017; Spratling et al, 2017; Shiferaw et al, 2019). The brain aims to minimize 122 

error between sensory information and the internal state (Clark et al, 2013). Hence via a 123 

combination of bottom-up and top-down processes, gaze control aims to optimize visual 124 

sampling in order to make better predictions regarding the location of subsequent fixations 125 

(Parr & Friston, 2017; Spratling et al, 2017). Considering the mechanisms involved in gaze 126 

control, it can be argued that measuring differences in visual scanning behaviour during 127 

varying stages of driving may provide information on changes in the underlying processes that 128 

are influenced by increased workload (Shiferaw et al, 2019). Information Theoretic concepts 129 

such as entropy are one such method, which focus on using gaze transitions to estimate internal 130 

states. 131 

Gaze entropy is an eye tracking metric that has shown promise for estimating mental workload 132 

and refers to the application of Information Theory to gaze data (Shiferaw et al, 2019). Within 133 

the field of Information Theory, entropy refers to the average amount of information or 134 

uncertainty for a given choice (Shannon, 1948). For a system with discrete processes, the two 135 

primary components are the source and output; the source being the total number of states that 136 

a given output can take. When applied to gaze data, there is an assumption that saccadic 137 

movements that produce fixations are outputs from a gaze control system that predicts the 138 

spatial locations of proceeding fixations (Shiferaw et al, 2019). The visual field represents all 139 

possible state spaces where a fixation could be located. To calculate the entropy of gaze 140 

fixations, fixation coordinates are divided into discrete spatial bins to generate probability 141 

distributions of a given fixation being within a given location (Shiferaw et al, 2019). The 142 

entropy value thus represents the predictability of a fixation location; a higher uncertainty (or 143 



entropy) represents a higher dispersion of gaze for a particular viewing period (Holmqvist et 144 

al, 2011). This is known as Stationary Gaze Entropy (𝐻𝑠). Another assumption is that 145 

subsequent fixations are better predicted by current fixations via conditional probability rather 146 

than only total probability (Weiss et al, 1989; Shiferaw et al, 2019). Therefore, this provides a 147 

measure of predictability of visual scanning patterns by considering the order of fixations; this 148 

is known as Gaze Transition Entropy (𝐻𝑡). Higher 𝐻𝑡 is indicative of less structured, more 149 

random scanning patterns (Shiferaw et al, 2019). Because organisms use eye movements to 150 

optimize inference through motor action sequences (Parr & Friston, 2017), it has been proposed 151 

that there is an optimal range of  𝐻𝑡 to efficiently sample information within the visual scene. 152 

Optimal 𝐻𝑡 is an ideal level of complexity that balances modulation from underlying bottom-153 

up influences with top-down prediction (Shiferaw et al, 2019). If there is an optimal range of 154 𝐻𝑡 then increased 𝐻𝑡 may reflect top-down interference whereby there is modulation of gaze 155 

beyond the requirements of a given task. This can manifest as highly erratic, random visual 156 

scanning for an otherwise simple road environment that contains few elements. For example, 157 

a car following situation may require fairly structured gaze transitions between safety critical 158 

locations (side mirrors, read-view mirror, forward headway) and thus unpredictable, random 159 

transitions would be beyond requirements and less efficient for the task in hand. Conversely, 160 

lower than optimal 𝐻𝑡 can result in insufficient top-down modulation thus producing 161 

insufficient visual scanning and exploration resulting in a driver potentially not attending to 162 

objects within the scene such as vehicles entering the ego-vehicles lane, or pedestrians waiting 163 

to cross. Whilst 𝐻𝑡 may change as a function of more visually demanding tasks or visual scenes, 164 

given an environment where these factors are experimentally controlled, 𝐻𝑡 may change as a 165 

function of top-down engagement (Shiferaw et al, 2019).  166 

𝐻𝑠 and 𝐻𝑡 provide a quantitative assessment of visual scanning in naturalistic environments 167 

and thus have been proposed as measures that can estimate mental workload in drivers. Testing 168 



the reliability and validity of gaze entropic metrics has largely been conducted within the 169 

domain of manual driving. Schieber & Gilland (2008) found reductions in 𝐻𝑡 as a function of 170 

secondary task load difficulty; this was further exacerbated for older drivers. The combination 171 

of older drivers having reduced visual-spatial processing resources alongside the increased 172 

demands of the secondary task resulted in this interaction effect. Schieber & Gilland (2008) 173 

proposed that metrics based on Information Theory held significant potential for monitoring 174 

driver behaviour as 𝐻𝑡 systematically changed as a function of increased mental workload. 175 

Pillai et al (2022) implemented a similar design to investigate whether gaze entropy 176 

differentiated varying levels of cognitive load during manual driving. By calculating the signal-177 

to-noise ratio (SNR), Pillai et al (2022) found that 𝐻𝑠 reliably differentiated between a control 178 

task (normal driving and a detection response task) and 2-back, control and 0-back, and 0-back 179 

and 2-back conditions. Conversely, 𝐻𝑡 could not reliably distinguish between any of these 180 

cognitive load comparisons. This suggests that it was the predictability of the dispersion of 181 

gaze, rather than gaze transitions, that was useful for estimating mental workload. One of the 182 

only experiments to study cognitive load estimation using gaze entropy during automated 183 

driving was conducted by Chen et al (2022). They investigated whether 𝐻𝑠 changed as a 184 

function of automation level (SAE L0, L1, and L2). 3-dimensional 𝐻𝑠 (applying the Shannon 185 

(1948) equation to coordinates in a 3-dimensional plane) negatively correlated with subjective 186 

workload during visual, auditory, or multi-modality cognitive tasks. This is indicative of gaze 187 

dispersion decreasing as a function of increased subjective workload, and thus supports similar 188 

findings of visual tunneling when cognitively loaded (Radlmayr et al, 2019; Reimer, 2009; 189 

Reimer et al, 2010; Wang et al, 2014; Wilkie et al, 2019). Chen et al (2022) concluded that 𝐻𝑠 190 

could be a valid indicator for visual and auditory task distractions within driver monitoring 191 

systems during partial automation.  192 



Despite evidence that gaze entropy measures can be useful for estimating mental workload, 193 

there are some limitations to this work. Chen et al (2022) utilized a desktop computer simulator 194 

where the keyboard was used for steering and pedal operations. There was also no simulated 195 

traffic or road; just a highly artificial virtual environment. Not only is this a poor replication of 196 

real driving, but the lack of stimuli within the visual scene may have produced insufficient 197 

bottom-up saliency. There was also no control condition without a secondary task, thus not 198 

allowing for any comparison of gaze entropy under normal workload situations. A wider 199 

limitation of the literature is the lack of investigation into the variation both within and between 200 

individuals. A metric that estimates mental workload must be valid (i.e., the metric 201 

systematically varies with mental workload) but it must also be reliable (i.e., the metric 202 

systematically changes in similar ways for a given population) if it is to be used in DMS within 203 

a wider population. Therefore, understanding how 𝐻𝑠 and 𝐻𝑡 vary is vitally important. Whilst 204 

mean differences are theoretically useful for establishing the existence of effects, they only 205 

existence in an abstract sense (Mole et al, 2020). To make applied predictions that relate to the 206 

wider population, it is vital to model and understand how a sample varies. Schieber & Gilland 207 

(2008) reported no indices of variance in 𝐻𝑡, thus providing no indication as to how variable 208 𝐻𝑡 was when drivers were under high mental workload. Chen et al (2022) reported large 209 

individual differences in the difficulty of the spatial N-back task which may have influenced 210 

subjective ratings of mental workload alongside eye tracking metrics. However, they did not 211 

formally model these differences, or investigate whether specific individual characteristics 212 

predicted this variation. Finally, Pillai et al (2022) investigated the effects of gaze entropy by 213 

calculating the signal to noise ratio (SNR); a lower SNR indicates that two means are more 214 

similar. Not only is this metric focused on mean differences but averages of gaze entropy in 215 

different conditions are weighted by variance across several participants. Whilst this accounts 216 

for variation in entropy, it treats all individual differences as noise. Whilst some individual 217 



variance is undoubtedly attributed to noise in eye tracking measurement (Bottos & Balasingam, 218 

2020; Velichkovsky et al, 1997), it is possible that individual differences could vary as function 219 

of theoretically useful variables (e.g., age, driving experience).    220 

The aim of the current study was to investigate the feasibility of using gaze entropic metrics to 221 

estimate mental workload whilst monitoring a Level 2 automated vehicle with their hands and 222 

feet away from operational controls. Previous research has shown that eye movements change 223 

as a function of increased mental workload (Radlmayr et al, 2019; Reimer et al, 2009; Reimer 224 

et al, 2010; Wilkie et al, 2019). However, using Information Theory to study gaze metrics can 225 

go beyond understanding the spatial distribution of gaze and focus on how efficiently drivers 226 

are scanning the visual scene. Thus far, there is evidence that 𝐻𝑠 and 𝐻𝑡 can be used to detect 227 

driver workload (Chen et al, 2022; Pillai et al, 2022; Schieber & Gilland, 2008). However, the 228 

methodology used to make these conclusions has seemingly ignored how these variables vary 229 

within a given population. Such variance is vital, if we are to understand whether these 230 

Information Theoretic metrics can be used by DMS to improve the safety outcomes for a wide 231 

range of users.  232 

2 Material and methods 233 

2.1 Participants 234 

41 participants were recruited from a university participant pool and took part in the experiment 235 

however three had to be removed before data analysis as they either did not follow experimental 236 

instructions, or eye tracking data were not captured. The remaining 38 participants (16 females, 237 

22 males, mean age = 38.81, range = 22-65) all had normal or corrected to normal vision. All 238 

participants had a valid UK driving licence (mean number of years = 17.8, range = 4-43) and 239 

were regular drivers (mean annual kilometres = 15055, range 8046-32186).   240 



2.2 Apparatus and materials 241 

The experiment was conducted at the University of Leeds Driving Simulator (see Figure 1). 242 

This is a motion-based driving simulator consisting of a Jaguar S-type cab encased within a 4 243 

m spherical projection dome. The dome has a 300° field of view projection to render the driving 244 

environment. Driver controls are fully operational; pedals and steering provide haptic feedback 245 

for participants to replicate real-world driving. Longitudinal and lateral movement is also 246 

provided via a hexapod motion base and a 5 m x 5 m X-Y table. Gaze data were collected using 247 

a Seeing Machines Driver Monitoring System eye tracker sampling at 60 Hz. Subjective ratings 248 

of workload were measured via the NASA-Task Load Index (NASA-TLX). The NASA-TLX 249 

consists of 6 subscales that measure subjective ratings of mental, physical, and temporal 250 

demands as well as frustration, effort, and performance of the task (Hart, 2006). 251 

 252 
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Figure 1: University of Leeds Driving Simulator 259 

2.3 Design  260 

A 2 x 2 Repeated Measures design was used in this study. The two within-participant factors 261 

were event criticality and mental workload. Event criticality was manipulated by changing the 262 

time to collision at the onset of a lead vehicle braking (TTC) after a period of hands-off Level 263 



2 automated driving. The aim of manipulating this variable was to create two levels of 264 

criticality: a “less severe” level (TTC = 5 s) that allowed participants to successfully take over 265 

without crashing, and a “severe” level that could lead to a crash if the participant was not 266 

monitoring the road correctly (TTC = 3 s). These values were chosen based on previous studies 267 

that have demonstrated that a 3 s TTC produces highly critical events, whilst a 5 s TTC provides 268 

sufficient time for takeovers (Gold et al, 2013; Mok et al, 2015; Louw & Merat, 2017). The 269 

second within-participants factor that was manipulated was mental workload. This was 270 

manipulated over two levels; a no-load condition and a high mental workload condition where 271 

participants had to complete a secondary task during the automated driving sections. To induce 272 

cognitive load, participants completed a verbal response delayed digit recall task (N-back) 273 

(Mehler et al, 2011) during the automated driving sections. The specific N-back used in the 274 

current investigation was a 2-back condition. This task was chosen because it is highly 275 

controlled, non-visual, and has been consistently shown to increase the workload of drivers 276 

during manual (Reimer, 2009; Reimer et al, 2010; Wang et al, 2014) and automated driving 277 

(Radlmayr et al, 2019; Wilkie et al, 2019).  278 

The experiment consisted of two drives for each participant. During one drive participants 279 

completed an N-back throughout the automated period; during the other drive there was no 280 

secondary task. The order of N-back was counter-balanced across participants. Each drive 281 

lasted approximately 35 minutes and all participants drove on the same 3-lane UK motorway. 282 

Each drive consisted of 10 discrete events, each consisting of 30 s of manual driving followed 283 

by approximately 2 minutes of automated driving. After 2 minutes of automated driving, a 284 

takeover request (TOR) was delivered. Four of these events were critical: two with a TTC of 3 285 

s, two with a TTC of 5 s. For 3 s TTCs, the lead vehicle braked suddenly and decelerated at a 286 

rate of 5.55 m/s2, whereas for the 5 s event, the lead vehicle decelerated at 2 m/s2. Decelerations 287 

began as soon as the takeover request (TOR) was triggered. The remaining six events were 288 



non-critical; two involved no lead vehicle, and the remaining four involved a lead vehicle that 289 

did not decelerate once the TOR was triggered. Lead vehicles appeared in front of the ego 290 

vehicle shortly before the automation was engaged. They entered the middle lane from the left-291 

hand lane and participants were instructed to allow the lead vehicle to pull in front. Once in the 292 

middle lane, lead vehicles matched the ego-vehicle’s speed at a distance of 25 m during 293 

automation. Participants drove in the middle lane, with ambient traffic flow in the left and right 294 

lanes. Once the lead vehicle was present, the automated system engaged.  295 

Figure 2: Schematic representation of an event. (A) represents the ego vehicle and (B) 296 

represents the lead vehicle. Lead vehicles entered from the left lane and matched the ego 297 

vehicle’s speed at a distance of 25 m. Following 2 minutes of automated driving, for critical 298 

trials the lead vehicle decelerated at 5.55 m/s2 (TTC = 3 s) or 2 m/s2  (TTC = 5 s). For non-299 

critical trials, a TOR was delivered but the lead vehicle did not decelerate. 300 



2.4 Procedure 301 

Informed consent was obtained, and standardized procedural instructions were delivered. All 302 

procedures were approved by the University of Leeds Research Ethics Committee (Reference 303 

code: 2022-0353-206). 304 

Upon arrival participants completed a number of pre-drive questionnaires (data from these 305 

questionnaires are not analysed or reported in this manuscript). Participants conducted a 306 

practice session to become familiar with all aspects of the experiment and the driving simulator 307 

dynamics. Participants were talked through the design of the   Human-Machine Interface (HMI) 308 

(see Figure 3), how to disengage the automation, and completed a static N-back task. During 309 

the driving portion of the practice the 3-lane motorway contained ambient traffic. Takeovers 310 

during the practice were non-critical. 311 

Figure 3: Icons used to indicate system status. Green steering wheels indicated the Level 2 312 

autonomous system was activated. Red steering wheels indicated that the driver needed to take 313 

over. During manual driving, the steering wheel was greyed out. In the experiment, the red 314 

steering wheel flashed until the vehicle was back into manual driving mode.  315 

For experimental drives, participants were instructed to enter the motorway and position 316 

themselves in the centre of the middle lane and maintain a speed of 70 MPH. After 317 

approximately 30 s of manual driving the automated system engaged automatically. This was 318 



indicated by a short auditory tone and the shifting of the steering wheel icon from grey (manual 319 

mode) to green (automation engaged) (see Figure 3). Once in automated driving mode, 320 

participants were instructed to take their hands off the wheel and feet away from the pedals and 321 

to monitor the road environment for any potential hazards. After approximately 2 minutes of 322 

automated driving, a TOR was delivered. The TOR was characterised by an auditory tone and 323 

the steering icon flashing red within the instrument cluster. Participants were instructed to take 324 

over once the TOR had been issued; this could be done by any steering input over 2°, pressing 325 

any of the pedals, or pressing a micro-switch button strapped to the steering wheel. During 326 

piloting it became apparent that some drivers wanted to deactivate the automated system 327 

without altering vehicular controls (akin to deactivating an adaptive cruise control system with 328 

a button press). Hence the option for transitioning to manual driving mode via a microswitch 329 

was included. If the driver of the ego-vehicle did not respond within 10 seconds, the automation 330 

would disengage by itself. Following the takeover, the participant engaged in 30 s of manual 331 

driving before the automated system engaged once more. If the driver exited the middle lane 332 

during takeovers, they were instructed to return as soon as possible. There were 10 discrete 333 

events per drive and each drive lasted approximately 35 minutes. During one drive participants 334 

completed an auditory-verbal N-back task when automation was engaged, which continued 335 

until a TOR was given. Participants were instructed that a safe drive was their primary goal. 336 

After each drive, participants filled out a NASA-TLX to collect data on subjective ratings of 337 

workload. After the second experimental drive, participants completed post-drive 338 

questionnaires (data from these questionnaires is not analysed or reported in this manuscript). 339 

2.5 Statistical modelling 340 

The main aim of this manuscript was to investigate changes in gaze entropic eye metrics during 341 

the 2-minute automation period with and without N-back, and with and without a lead vehicle. 342 

This includes critical and non-critical trials that included a lead vehicle. Thus, data relating to 343 



the takeover and manual driving portions are not analysed within this manuscript. Data and 344 

analysis code can be found in the following link 345 

(https://github.com/courtneygoodridge/gaze_entropy_heterogenous).  346 

2.5.1 Gaze entropy 347 

To calculate stationary gaze entropy (𝐻𝑠), the Shannon (1948) entropy equation was applied to 348 

the fixation data: 349 

 𝐻𝑠(𝑥) =  − ∑ 𝑝(𝑖)𝑙𝑜𝑔2𝑝(𝑖)𝑁
𝑖=1  

(1) 

Where 𝐻𝑠 is entropy for a given set 𝑥 (time period during automation for a given condition), 𝑖 350 

is the number of state spaces or locations (in a 2-dimensional coordinate plane) of each fixation 351 

in 𝑥, 𝑁 is the total number of fixations in 𝑥, and 𝑝(𝑖) is the proportion of fixations landing in a 352 

given state space. Gaze transition entropy (𝐻𝑡) was calculated by applying the conditional 353 

entropy equation to 1st order Markov fixations transitions: 354 

 355 

 𝐻𝑡(𝑥) =  − ∑ 𝑝(𝑖)𝑁
𝑖=1 [∑ 𝑝(𝑖 | 𝑗)𝑁

𝑖=1 𝑙𝑜𝑔2𝑝(𝑖 |𝑗)] , 𝑖 ≠  𝑗 
(2) 

 356 

When 𝑝(𝑖) is the stationary distribution of fixations, 𝑝(𝑖 | 𝑗) is the probability of transitioning 357 

to state 𝑗 given being currently in state 𝑖, and 𝑖 ≠  𝑗 excludes transitions that occur within the 358 

same state space (Ellis & Stark, 1986). Fixations were split into spatial bins to apply the 359 

equations. This is the primary method of discretisation in the literature (Di Stasi et al, 2017; 360 

Krejtz et al, 2014; 2015, Raptis et al, 2017) and has been proposed as the superior method for 361 

dynamic stimuli (Shiferaw et al, 2019). For interpretability, both 𝐻𝑠 and 𝐻𝑡 were normalized 362 

https://github.com/courtneygoodridge/gaze_entropy_heterogenous


by dividing by the maximum entropy, 𝐻𝑚𝑎𝑥. Maximum entropy is the logarithm (base 2) of all 363 

state spaces and thus represents when distributional information is at a maximum. For example, 364 

each fixation is equally spaced out within the visual scene, and each transition is completely 365 

random (Shiferaw et al, 2019). As such,  𝐻𝑠 and 𝐻𝑡 range from 0-1 and represent the percentage 366 

of maximum possible entropy.  367 

2.5.2 Analytic approach 368 

To develop human-centred driver monitoring systems that can reliably detect the mental 369 

workload of drivers, it is important to consider the distribution of driver responses rather than 370 

focusing merely on the mean. Whilst mean differences are useful for establishing the presence 371 

of effects across conditions, using mean values is limited, since it only exists in an abstract 372 

sense - no single driver can be considered “the average” (Mole et al, 2020). Furthermore, means 373 

do not contain within or between individual variability which are vital components for making 374 

real world predictions about human behaviour. Standard regression-based analyses aim to 375 

model the population mean (𝜇) whilst assuming that the within-participants variance (𝜎) is 376 

consistent. Not only is the assumption of homogeneity of variance often violated (Schielzeth 377 

et al, 2020) but there is also theoretical justification that 𝜎 might vary as a function of the 378 

manipulated variables in the experiment.  379 

As highlighted in the Introduction, the motor coordination of eye movements aims to optimise 380 

inference (Parr & Friston, et al 2017). This implies that there is an optimal level of 𝐻𝑡 for 381 

effective sampling of the visual scene whereby top-down processes modulate default bottom-382 

up activation (Shiferaw et al, 2019). Whilst increases or decreases in the 𝜇 of 𝐻𝑡 can be 383 

indicative of top-down interference or top-down modulation respectively (Shiferaw et al, 384 

2019), the trial-by-trial variance within individuals can also be a crucial index for measuring 385 

the efficiency of visual scanning. Under the assumption that the visual scene maintains an 386 

ambient level of complexity, optimal 𝐻𝑡 should be consistent within an individual. However, 387 



if increased mental workload results in decreases in 𝐻𝑡 via top-down modulation, it may also 388 

affect how efficiently individuals are able to maintain optimal 𝐻𝑡 from one trial to the next. 389 

The idea that a change in variance can indicate a change in a driver’s internal state is not new 390 

within the driver monitoring and distraction literature. Horrey & Wickens (2007) proposed that 391 

standard statistical methods that focus on mean differences (or other measures of central 392 

tendency) are insufficient for measuring driver distraction, and that modelling large deviations 393 

in attention can reveal infrequent lapses in visual sampling control; something that can be 394 

missed when only focusing on averages. Kujala & Saarilouma (2011) found reductions in the 395 

standard deviation of fixation durations for simpler in-vehicle information systems menu 396 

deigns, thus suggesting that the variance in fixations durations could be used to assess the 397 

efficiency of visual search performance. It is thus proposed in this manuscript that a similar 398 

effect might be present for 𝐻𝑡 , when increasing mental workload. To assess whether there are 399 

systematic changes in 𝜎 as a function of the predictor variables, the current analysis will apply 400 

distributional models. Distributional models relax the assumption of consistent 𝜎, and allow it 401 

to be predicted by parameters as can be done when predicting 𝜇 (Bürkner, 2017). 402 

It is also vital to quantify between-participants variance, as the overall aim of any analysis is 403 

to make predictions towards the population. This is particularly true for DMS, if these systems 404 

are to be reliable for establishing the state of a large and varying driver population. To model 405 

the between-participants variance, we used a multilevel modelling approach. The multilevel 406 

aspect of the model refers to the inclusion of fixed and random effects. Whilst fixed effects 407 

refer to the contribution of a predictor variable towards the average change, random effects 408 

model the variation between different participants on average, alongside how they vary in 409 

response to predictor variables (Lo & Andrews, 2015). 410 



2.5.2.1 Model development  411 

The population mean, 𝜇,  of all the gaze-based metrics were modelled as the linear combination 412 

of an intercept (𝛽0), N-back (𝑁, 𝛽𝑁), presence of a lead vehicle (𝐿, 𝛽𝐿), and an interaction term 413 

between these variables (𝑁𝐿, 𝛽𝑁𝐿). The N-back task was parameterised as 𝑁 ∈ {0, 1} where 414 𝑁 = 1 corresponds to the presence of the N-back during hands-off Level 2 automation. 415 

Similarly, lead vehicle was parameterised as 𝐿 ∈ {0, 1} where 𝐿 = 1 corresponds to the 416 

presence of a lead vehicle during automation. The standard deviation, 𝜎, was independently 417 

modelled as a linear combination of an intercept (𝛼0), N-back (𝛼𝑁), presence of a lead vehicle 418 

(𝛼𝐿), and an interaction (𝛼𝑁𝐿). Because 𝜎 cannot be negative, the 𝑙𝑜𝑔(𝜎) was modelled. The 419 

distributional model structure was specified as follows: 420 

 421 

 422 

 𝑌𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗, 𝜎𝑖𝑗) 𝜇𝑖𝑗 = (𝛽0 + 𝛽0𝑗) + (𝛽𝑁𝑁𝑖 + 𝛽𝑁𝑗𝑁𝑖) + (𝛽𝐿𝐿𝑖) + (𝛽𝑁𝐿𝑁𝐿𝑖)   
𝑙𝑜𝑔 (𝜎𝑖𝑗) = (𝛼0 + 𝛼0𝑗) + (𝛼𝑁𝑁𝑖 + 𝛼𝑁𝑗𝑁𝑖) + (𝛼𝐿𝐿𝑖)   

[𝛽0𝑗𝛽𝑁𝑗] ~ 𝑀𝑉𝑁 ([𝛽0𝛽𝑁] , 𝑆𝛽) 

[𝛼0𝑗𝛼𝑁𝑗] ~ 𝑀𝑉𝑁 ([𝛼0𝛼𝑁] , 𝑆𝛼) 

𝑆𝛽 =  ( 𝜎𝛽0𝑗2 𝜌𝜎𝛽N𝑗 𝜎𝛽0𝑗𝜌𝜎𝛽0𝑗 𝜎𝛽𝑁𝑗 𝜎𝛽𝑁𝑗2 ) 

𝑆𝛼 =  ( 𝜎𝛼0𝑗2 𝜌𝜎𝛼N𝑗 𝜎𝛼0𝑗𝜌𝜎𝛼0𝑗 𝜎𝛼𝑁𝑗 𝜎𝛼𝑁𝑗2 ) 

 

(3) 



Where 𝑌 denotes the response variable, 𝑖 specifies the condition of each variable, 𝑗 specifies 423 

the participant, and 𝑆𝛽 and 𝑆𝛼 are matrices corresponding to the variance or covariance 424 

parameters.  425 

A model was also built to investigate how N-back influenced subjective mental workload. The 426 

population mean, 𝜇,  was modelled as linear combination of an intercept (𝛽0) and N-back 427 

(denoted 𝑁, 𝛽𝑁): 428 

 𝑌𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗, 𝜎𝑖𝑗) 𝜇𝑖𝑗 = (𝛽0 + 𝛽0𝑗) + (𝛽𝑁𝑁𝑖 + 𝛽𝑁𝑗𝑁𝑖) 

[𝛽0𝑗𝛽𝑁𝑗] ~ 𝑀𝑉𝑁 ([𝛽0𝛽𝑁] , 𝑆𝛽) 

𝑆𝛽 =  ( 𝜎𝛽0𝑗2 𝜌𝜎𝛽N𝑗 𝜎𝛽0𝑗𝜌𝜎𝛽0𝑗 𝜎𝛽𝑁𝑗 𝜎𝛽𝑁𝑗2 ) 

(4) 

Where 𝑌 denotes the response variable, 𝑖 specifies the condition of each variable, 𝑗 specifies 429 

the participant, and 𝑆𝛽 is a matrix corresponding to the variance or covariance parameters.  430 

2.5.2.2 Model fitting  431 

A Bayesian approach was used in this manuscript to analyse the data. Posterior distributions 432 

were estimated using the No-U-Turn Sampler (NUTS) in the brms package in the R 433 

programming language (Bürkner, 2017). For parameters estimating mean (𝜇) differences 434 

between the predictor variables, informative priors were used. For distributional parameters, 435 

brms defaults were used to reflect that 𝜎 is a standard deviation and thus can only take positive 436 

values. The final models were reached by incrementally increasing model complexity. Model 437 

comparisons were made using leave-one-out cross validation and additional terms were only 438 

kept if they decreased prediction errors (Vehtari et al, 2017). 439 



Using a Bayesian approach, each parameter has an associated probability distribution which 440 

quantifies the level of uncertainty, conditioned on the data. In this manuscript, posterior 441 

distributions of parameters are described by their mean and a 95% Credible Interval (CI) 442 

whereby there is a 95% probability that the true parameter value will fall; values inside this 443 

density have higher credibility than those outside it (Kruschke, 2014). The probability of 444 

direction (𝑝𝑑) is also reported for each fixed effect parameter. The 𝑝𝑑 is defined as the 445 

probability that an effect is positive or negative (Makowski et al, 2019). The 𝑝𝑑 is strongly 446 

correlated with the Frequentist p value and thus can be used as an index of an effect’s existence. It 447 

should be highlighted that the term “existence” merely relates to the consistency of an effect in one 448 

direction; it makes no assumptions regarding the size, importance, relevance, or meaning of the effect 449 

(Makowski et al, 2019). Hence, the reader is discouraged in making dichotomous decisions when 450 

understanding whether there is an effect. Rather, they should use a combination of the 𝑝𝑑, the 451 

mean parameter values, and the 95% credible intervals to assess the size, direction, and 452 

uncertainty of the effects.  453 

3 Results 454 

3.1 Subjective measures 455 

To develop a ground truth regarding the cognitive loading effects of the N-back task, the mental 456 

demand facet of the NASA-TLX was compared between N-back conditions. The 𝛽𝑁 parameter 457 

predicts that the presence of N-back during hands-off Level 2 automated driving doubled 458 

subjective scores of mental demand on average from 38.994 to 78.705. The model predicts 459 

with high certainty that N-back produced large increases in subjective mental workload.  460 

 461 

 462 

 463 



Table 1: Posterior means and 95% CIs for fixed effect parameters predicting 𝜇𝑖𝑗 of NASA TLX 464 

mental demand 465 

Fixed effects  
 Dependent variable:  
 Mental demand 𝑝𝑑 𝛽0 38.994 (32.656, 45.257) 100% 𝛽𝑁 39.711 (32.057, 47.369) 100% 

Participants 38  

Observations 76  

 466 

3.2 N-back performance 467 

Performance data for the N-back task was only available for 37 out of 38 participants due to 468 

data loss. The average performance (percentage of correct scores) was reasonably high and 469 

homogenous across the sample (M = 70.77, SD = 15.13) however the high and low scores were 470 

quite different (range = 37.38–90.97). Previous research in manual driving had found that 471 

younger drivers had significantly better 2-back performance in comparison to older drivers 472 

(Öztürk et al, 2023). To investigate this, a univariate Bayesian correlation model was fitted on 473 

the standardised values of age and performance. The results indicate a negative correlation of 474 

-.349 (95% CI: -.666, -.037, 𝑝𝑑 = 98.50%) suggesting that older drivers tended to have worse 475 

N-back performance. This medium effect size is slightly lower than what was been found in 476 

manual driving (Öztürk et al, 2023) although the average correlation did highlight a lot of 477 

variability; the correlation could be up to -.666, or as low as -.03 (effectively zero).  478 

 479 

 480 



 481 

 482 

 483 

 484 

 485 

 486 

 487 

Figure 4: Correlation between age and percentage of correct 2-back responses. Values are 488 

standardized to maintain model stability. Black line represents the posterior mean surrounded 489 

by bands representing predictive intervals. 490 

3.3 Gaze behaviours 491 

Now that is has been established that N-back increased subjective mental workload between 492 

the different driving conditions, an investigation into differences in eye movements can be 493 

conducted to see if there were reliable differences in gaze entropic metrics as a function of N-494 

back.   495 

3.3.1 Stationary Gaze Entropy (𝐻𝑠) 496 

3.3.1.1 Distributional parameters for 𝐻𝑠 497 

The 𝛽𝑁 parameter predicted an average decrease in 𝐻𝑠 of -.141 (95% CI: -.178, -.101) when 498 

drivers completed the N-back task; equivalent to a 14 percentage point reduction in normalized 499 𝐻𝑠. The 𝛽𝐿 parameter predicted an average decrease in 𝐻𝑠 of -.041 (95% CI: -.058, -.022) when 500 

a lead vehicle was present during automation; equivalent to a 4 percentage point reduction. The 501 𝛽𝑁𝐿 parameter was estimated to be .017 suggesting that N-back reduced the difference in 𝐻𝑠 502 

between lead and no lead conditions by around 1.7 percentage points. However, as highlighted 503 



in Table 2 there is some uncertainty for this effect; only 92% of the most probable parameters 504 

values are above 0.  505 

Table 2: Posterior means and 95% CIs for fixed effect parameters predicting 𝜇𝑖𝑗 of 𝐻𝑠 506 

Fixed effects  
 Dependent variable:  
 𝐻𝑠 𝑝𝑑 𝛽0 .474 (.428, .520) 100% 𝛽𝑁 -.141 (-.178, -.101) 100% 𝛽𝐿 -.041 (-.058, -.022) 100% 𝛽𝑁𝑙 .017 (-.006, .040) 92.77% 

Participants 38  

Observations 744  

 507 

The direction of the effects for 𝜎𝑖𝑗 of 𝐻𝑠 are uncertain. N-back is predicted to decrease 𝜎𝑖𝑗 by 508 

15%, however the probability that the effect is negative is only 90%. A similar pattern of results 509 

is found for the presence of the lead vehicle and the interaction effect. 510 

Table 3: Posterior means and 95% CIs for fixed effect parameters predicting 𝜎𝑖𝑗 of 𝐻𝑠 511 

Fixed effects  
 Dependent variable:  
 𝐻𝑠 𝑝𝑑 𝛼0 -2.676 (-2.867, -2.475) 100% 𝛼𝑁 -.167 (-.420, .095) 90.23% 𝛼𝐿 .098 (-.103, .294) 83.35% 𝛼𝑁𝑙 .019 (-.265, .290) 55.13% 

Participants 38  

Observations 744  

 512 

Overall, the model predicts that N-back reduces the spatial distribution of gaze. This is 513 

evidence of reduced top-down engagement when monitoring the road environment during 514 

hands-off Level 2 automated driving. This supports previous research which has shown that 515 

increased mental workload during automated driving reduces gaze dispersion (Wilkie et al, 516 



2019) and suggests that 𝐻𝑠 could be a good metric for estimating mental workload in drivers. 517 

Modelling the trial-by trial variance in 𝐻𝑠 did not show strong effects of N-back or lead vehicle. 518 

This is highlighted in Figure 5, whereby the predictive intervals overlayed on raw data have 519 

similar ranges around their predicted means for all conditions. This suggests that variance in 520 

gaze dispersion from trial to trial was consistent across trials and thus changes in 𝜎𝑖𝑗 of 𝐻𝑠 may 521 

not be useful for detecting increased driver workload. 522 

Figure 5: Posterior predictive bands and posterior distribution of means plotted against raw 523 

data for conditions with and without a lead vehicle. The point-interval plot highlights the 524 

predicted mean differences between N-back/no N-back and lead/no lead vehicle alongside 50% 525 

and 95% credible interval bars. For both lead vehicle and N-back comparisons, the posterior 526 

predictive intervals are roughly of similar size highlighting the lack of evidence for N-back and 527 

lead vehicle affecting 𝜎𝑖𝑗 of 𝐻𝑠.  528 



3.3.1.2 Heterogeneity parameters for 𝐻𝑠 529 

Although the typical driver had reduced 𝐻𝑠 by 14 percentage points during the N-back 530 

condition, people differed in the size of this effect. Some participants had reductions as large 531 

as 29 percentage points, some as a low as 3 percentage points, whereas some demonstrated 532 

increases in 𝐻𝑠 by up to 8 percentage points (see Figure 6, left panel). Despite these outlying 533 

participants, the model estimates that 92% of the population are expected to have reductions in 534 𝐻𝑠 as a result of completing N-back during automation; the remaining 8% of the population 535 

are expected to see moderate increases in 𝐻𝑠 whilst cognitively loaded (see Figure 6, right 536 

panel).  537 

 538 

Figure 6: Left panel: strip plot displaying the range of causal effect of N-back on 𝐻𝑠. The black 539 

lines denote the average decrease in 𝐻𝑠 (fixed effect), the blue dashed lines denote the 540 

heterogeneity of the average casual effect of N-back (95% Credible Intervals) and the red solid 541 

lines denote the population heterogeneity of the effect of N-back. Right panel: population 542 

heterogeneity distribution implied by the model estimates of the mean and standard deviation. 543 

92% of the population are predicted to demonstrate decreases in 𝐻𝑠 when completing N-back 544 

tasks. 545 



These results suggest that 𝐻𝑠 is a strong contender for estimating mental workload during 546 

hands-off Level 2 automated driving. Reductions in 𝐻𝑠 during N-back are consistent across a 547 

population, with the model predicting that 92% of the population would have similar decreases 548 

under similar situations. Although the direction of this effect is consistent, the magnitude can 549 

vary drastically; up to 2.5 times larger than the average predicted from this sample.   550 

3.3.2 Gaze Transition Entropy (𝐻𝑡) 551 

3.3.2.1 Distributional parameters for 𝐻𝑡 552 

The 𝛽𝑁 parameter predicted that the average decrease in 𝐻𝑡 was -.021 (95% CI: -.037, -.004) 553 

when drivers were completing the N-back task during automated driving. This is equivalent to 554 

a reduction of 2 percentage points in 𝐻𝑡. It should be noted that the average effect could be as 555 

low as a reduction of .004 percentage points which would be effectively 0, or as high as a 3.7 556 

percentage point reduction. The model parameters for the effect of lead vehicle and the 557 

interaction between N-back and lead vehicle were estimated as close to 0 with high certainty, 558 

thus suggesting no meaningful effect on average 𝐻𝑡 (see Table 4). 559 

Table 4: Posterior means and 95% CIs for parameters predicting the 𝜇𝑖𝑗 of 𝐻𝑡 560 

Fixed effects  
  

 Dependent variable:  
 𝐻𝑡 𝑝𝑑 𝛽0 .215 (.208, .222) 100% 𝛽𝑁 -.021 (-.037, -.004) 99.25% 𝛽𝐿 .001 (-.003, .006) 73.12% 𝛽𝑁𝑙 -.005 (-.012, .001) 96.08% 

Participants 38  

Observations 744  

 561 

The model also predicted differences in the 𝜎𝑖𝑗 of 𝐻𝑡 as a function of N-back and lead vehicle 562 

(see Table 5). The 𝑒𝛼𝑁 parameter highlights an increase of 44% in within-participants variance 563 



in 𝐻𝑡 when completing the N-back during automation. The 𝑒𝛼𝐿  parameter indicates that 𝐻𝑡 564 

increased by 35% when a lead vehicle was present. The 𝑒𝛼𝑁𝐿  parameter suggests that the 565 

difference in within-participants variance between conditions with and without a lead vehicle 566 

were 23% smaller when drivers were not completing the N-back. However, there is some 567 

uncertainty with this effect; the probability of the effect being above 0 is 96%. 568 

Table 5: Posterior means and 95% CIs for parameters predicting the 𝜎𝑖𝑗 of 𝐻𝑡 569 

Fixed effects  
  

 Dependent variable:  
 𝐻𝑡 𝑝𝑑 𝛼0 -4.145 (-4.369, -3.920) 100% 𝛼𝑁 .369 (.042, .696) 98.53% 𝛼𝐿 .304 (.089, .524) 99.63% 𝛼𝑁𝑙 -.262 (-.568, .040) 95.95% 

Participants 38  

Observations 744  

 570 

Model parameters highlight that completing N-back during automated driving produces 571 

fixation transitions that are less erratic and more constrained within the visual scene. This 572 

average decrease suggests that N-back produced top-down modulation of visual scanning 573 

resulting in less complex, more constrained scanning behaviours.  The concurrent reduction in 574 

mean 𝐻𝑠 and 𝐻𝑡 as a function of N-back suggests that drivers did not perform sufficient 575 

exploration of the visual scene while under high workload, and thus had reduced top-down 576 

engagement whilst monitoring the automated system. This can be taken as evidence that, on 577 

average, drivers during Level 2 automation who were under high workload had reduced 578 

complexity of eye movements. The model also predicted increases in the  𝜎𝑖𝑗 of 𝐻𝑡 as a function 579 

of N-back. The increase in 𝜎𝑖𝑗 of 𝐻𝑡 is highlighted in Figure 7; raw data are dispersed across a 580 

broader range during N-back conditions. The systematic change in 𝜎𝑖𝑗 as a function of N-back 581 



tells us something about the relationship between visual scanning complexity and mental 582 

workload. Not only did drivers have reductions in scanning complexity, but they also failed to 583 

maintain a consistent complexity on a trial-by-trial basis. Instead, drivers demonstrated 584 

frequent fluctuations. 585 

The presence of a lead vehicle had no meaningful effect on mean 𝐻𝑡. However, 𝜎𝑖𝑗 did 586 

increased by 35% in the presence of a lead vehicle.  This suggests that when following a lead 587 

vehicle, drivers struggled to maintain their scanning complexity within an optimal range; 588 

instead, their trial-by-trial variance in 𝐻𝑡 was high.   589 

Figure 7: Posterior predictive bands and posterior distribution of means plotted against raw 590 

data for 𝐻𝑡. The point-interval plot highlights the predicted mean differences between N-591 

back/no N-back and lead/no lead vehicle alongside 50% and 95% credible interval bars. It is 592 

evident that there are small differences in predicted means between N-back and no N-back, 593 

however lead vehicle seems to have no effect on mean 𝐻𝑡. It is also evident that 𝜎𝑖𝑗 increases 594 

as a function of N-back and lead vehicle, which is highlighted by the wider predictive intervals 595 

and larger spread of the data. 596 



3.3.2.2 Heterogeneity parameters for 𝐻𝑡 597 

The heterogeneity parameters of the model highlight considerable variance; the random slope 598 

parameter (𝛽𝑁𝑗) is almost two and a half times bigger than the average causal effect (𝛽𝑁). 599 

Whilst the average reduction in 𝐻𝑡 during N-back was 2 percentage points, some people have 600 

decreases in 𝐻𝑡 of -.125 during N-back (12.5 percentage points) whereas some have increases 601 

of up to .043 (4 percentage points) (see Figure 8, left panel). Furthermore, over 40% of the 602 

sample show small-to-moderate increases in 𝐻𝑡 during the N-back; a reversal of the average 603 

trend. This suggests that a considerable proportion of the sample demonstrate more erratic and 604 

random sampling patterns when cognitively distracted. The model predicts that only 66% of 605 

the population will show an average decrease in 𝐻𝑡 when completing the N-back during Level 606 

2 automated driving (see Figure 8, right panel). The remaining 34% of the population are 607 

expected to show increases in 𝐻𝑡, resulting in more erratic fixations transitions when 608 

cognitively loaded.  609 

 610 

 611 

 612 



 Figure 8 The left panel shows a strip plot of the model predictions of the causal effect of 2-613 

back on 𝐻𝑡. The black lines denote the average mean decrease in 𝐻𝑡 (fixed effect), the blue 614 

dashed lines denote the heterogeneity of the average casual effect of N-back (95% Credible 615 

Intervals) and the red solid lines denote the population heterogeneity of the effect of N-back. 616 

The right panel shows the population heterogeneity distribution implied by the model’s 617 

estimates of the mean and standard deviation for effect of N-back on 𝐻𝑡. Only 66% of the 618 

population are predicted to demonstrate mean decreases in 𝐻𝑡 when completing the N-back 619 

task. 620 

Compare this to changes in 𝜎𝑖𝑗 of 𝐻𝑡 as a function of N-back. The random slope parameter 621 

predicting 𝜎𝑖𝑗 (𝛼𝑁𝑗) is only 1.5 times bigger than the average causal effect of N-back on 𝜎𝑖𝑗 622 

(𝛼𝑁). This is further supported by looking at individual changes in 𝜎𝑖𝑗 of 𝐻𝑡 as a function of 623 

the N-back (see Figure 9, left panel). Whilst there is variation in the size of the effect, the 624 

direction of the effect is more consistent across the sample. This is reflected in the model 625 

predictions for the population; it predicts that 76% of the population show average increases in 626 

trial-by-trial variance when completing the N-back task during Level 2 automated driving.  627 

 628 



Figure 9: The left panel shows a strip plot of the model predictions of the causal effect of N-629 

back on 𝜎𝑖𝑗 of 𝐻𝑡. The black lines denote the average decrease in 𝜎𝑖𝑗 (fixed effect), the blue 630 

dashed lines denote the heterogeneity of the average casual effect of N-back (95% Credible 631 

Intervals) and the red solid lines denote the population heterogeneity of the effect of N-back. 632 

The right panel shows the distribution of the individual effects of N-back on 𝜎𝑖𝑗 of 𝐻𝑡 in the 633 

population predicted by the model. 76% of the population are predicted to demonstrate 634 

increases in 𝜎𝑖𝑗 of 𝐻𝑡 when completing the N-back task. 635 

These findings provide further credence to the assessment of 𝐻𝑡 made in the previous section. 636 

Both 𝜇𝑖𝑗 and 𝜎𝑖𝑗 of 𝐻𝑡 change as a function of N-back. However, changes in 𝜎𝑖𝑗 are predicted 637 

to be more consistent across the population.  638 

3.4 Understanding heterogeneity in average causal effect 639 

Thus far is has been demonstrated that the mean of 𝐻𝑠 and 𝐻𝑡 change as a function of N-back. 640 

However, they both also demonstrate substantial variation across the sample, albeit in differing 641 

manners. 𝐻𝑠 decreases for a majority of the sample but at varying magnitudes. Conversely, 𝐻𝑡 642 

decreases for only two thirds of the sample with the remaining participants showing null effects 643 

or small reversals. Whilst this is theoretically useful, it is also important to understand why 644 



these effects are so variable. One possible explanation for entropic gaze metrics is age. Schieber 645 

& Gilland (2008) found that 𝐻𝑡 consistently decreased as secondary task load increased, and 646 

these effects were exacerbated for older (67–86 years old) versus younger (19-35 years old) 647 

drivers. Schieber & Gilland (2008) proposed that this could be explained by shortfalls in visual-648 

spatial resources of older drivers. A combination of loading these resources with a secondary 649 

task, and the demands of visual scanning during driving, could result in diminished scanning 650 

complexity under the interpretation of Wickens’ (2020) Multiple Resource Theory model. 651 

More recent research supports this notion, suggesting that age-related impairments of top-down 652 

attentional control can exacerbate the effects that secondary cognitive tasks have on 𝐻𝑡 653 

(Gazzaley et al, 2005; Shiferaw et al, 2019).  654 

To investigate whether age-related impairments of top-down attentional control influence the 655 

effect of N-back, an additional model parameter 𝛽𝐴 specifying the effect of age and its 656 

interaction with N-back was included for models of 𝐻𝑠 and 𝐻𝑡. For 𝐻𝑠, the model predicted 657 

that age accounts for 9.9% of the between-participants heterogeneity in the causal effect of N-658 

back (see Figure 10). A closer look at Figure 10 highlights that younger than average drivers 659 

still had decreases in gaze dispersion during N-back, although they were slightly smaller versus 660 

older than average drivers. 661 
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Figure 10: Individual effects of N-back on 𝐻𝑠 plotted against mean centred age. X axis vertical 681 

line denotes mean age, y axis horizontal line denotes the average effect of N-back. All people 682 

in the sample show decreases in gaze dispersion due to N-back. However, this effect is more 683 

prominent for older than average people.  684 

As for 𝐻𝑡, the model predicts that driver age accounts for 19% of between-participants 685 

heterogeneity in the effect of N-back. This suggests that age had a larger impact on how N-686 

back effected 𝐻𝑡 in comparison to how it impacted 𝐻𝑠. Furthermore, how the between-687 

participants variance manifested was different. Younger than average drivers tended to show 688 

null effects or even small reversals of the average causal effect, whereas older drivers observed 689 

large reductions in 𝐻𝑡 attributed to the effect of the N-back task (see Figure 11).  690 
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Figure 11: Individual effects of N-back 𝐻𝑡 on plotted again mean centred age. X axis vertical 709 

line denotes mean age, y axis horizontal line denotes the average effect of N-back. Younger 710 

than average people appear to have almost no effect of N-back on 𝐻𝑡, with even some slight 711 

reversals. Conversely, older than average people tend to have stronger than average effects of 712 

N-back on 𝐻𝑡. 713 

4 Discussion 714 

The aim of this study was to investigate whether gaze metrics based on Information Theory 715 

could be used to estimate mental workload during hands-off Level 2 automated driving. Drivers 716 

had to monitor a road environment before taking over during critical and non-critical situations. 717 

The data presented in this manuscript focused on whether changes in eye movements during 718 

automated driving were associated with changes in mental workload. The observed data 719 

revealed that 𝐻𝑠 was a reliable indicator of mental workload; the model predicted that 92% of 720 

the population would have decreases in 𝐻𝑠 when completing the N-back task. Despite this, 721 

there was substantial variability in the size of the effect, with some people predicted to exhibit 722 

effects more than double the size of the average causal effect. Conversely, in contrast to 723 

previous work (Schieber & Gilland, 2008) 𝐻𝑡 was found to be much less reliable for detecting 724 



mental workload. Although the model predicted average reductions in gaze transition 725 

complexity for high workload conditions, only 66% of the population would exhibit similar 726 

decreases in 𝐻𝑡 during N-back. Participant age appeared to be a strong predictor for how N-727 

back influenced gaze entropic measures, accounting for 9.5% and 19% of the between-728 

participants heterogeneity in the causal effect of N-back on 𝐻𝑠 and 𝐻𝑡, respectively.  729 

The current manuscript supports previous work that gaze dispersion reduces when mental 730 

workload increases (Reimer et al, 2009; 2010; Louw & Merat, 2017; Wilkie et al, 2019). The 731 

analysis also aligns with previous work that gaze complexity decreases under high mental 732 

workload (Schieber & Gilland, 2008). However, the analytic approach employed in this paper 733 

improves upon previous work by explicitly modelling and quantifying a key assumption of 734 

human behaviour; that people are inherently heterogenous. To build theories of psychological 735 

processes that inform eye movements during partial and conditional automated driving, it is 736 

advisable to take into account the heterogeneity of the sample (Bogler et al, 2019). This is 737 

especially vital when heterogeneity is sufficient such that null effects or reversals are observed 738 

in the data (Bogler et al, 2019). In the current manuscript, this was observed for 𝐻𝑡 as a function 739 

of N-back. Under the assumption that this variance is not due to poor experimental control, 740 

such theories will need to include subpopulations that differ in causal processes. One previous 741 

attempt at this approach was by Reimer et al (2009) who considered the pattern of visual 742 

tunneling under high mental workload in the population by computing change scores from pre-743 

task periods of gaze dispersion for each individual. Although this identifies whether individuals 744 

in the sample follow average trends, it does not generate a population distribution of the effects 745 

of mental workload on eye movements. Instead, the current manuscript constructed a 746 

population heterogeneity distribution implied by the models estimate of the population mean 747 

(𝜇) and standard deviation (𝜎) for each gaze entropic metric. 748 



The effect of N-back on 𝐻𝑠 and 𝐻𝑡 differed as function of age, albeit in slightly different ways. 749 

For 𝐻𝑠, a majority of the sample showed reductions in the spatial distribution of gaze as a 750 

function of N-back; this reduction was weaker for younger than average participants. 751 

Conversely, for 𝐻𝑡 there was no effect of N-back for the younger than average sample. There 752 

were even small increases in gaze complexity when completing the N-back. The older than 753 

average drivers showed a strong decrease in gaze transition complexity. It is important to note 754 

that age had minimal effects on 𝐻𝑠 and 𝐻𝑡 directly; rather, age influenced how much N-back 755 

affected gaze. In this sense, the current findings support previous work that report the lack of 756 

a direct effect of age on gaze centralization (Reimer et al, 2010; 2012). One explanation for the 757 

indirect effect of age on gaze entropy could be due to a healthy age-related cognitive decline. 758 

Top-down modulation underlies selective attention by suppressing the neural activity 759 

associated with the interference of task irrelevant representations (Gazzaley et al, 2005; Ploner 760 

et al, 2001). In the context of gaze control, top-down modulation also allows for efficient 761 

sampling of the environment by overriding bottom-up input, thus allowing drivers to efficiently 762 

monitor dynamic scenes (Shiferaw et al, 2019). However, research has found that older 763 

populations struggle to suppress task irrelevant information (Gazzaley et al, 2005). 764 

Consequently, this combination leads to a reduction in scanning complexity due to the 765 

interference of the N-back task, in combination with already weakened top-down selective 766 

attention processes of older than average participants.  767 

In terms of their implications, these results can provide DMS designers with some important 768 

principles for using the correct metrics for detecting mental workload. A key aspect to be 769 

considered is that driver demographics should be taken into account when using DMS to 770 

establish driver state in vehicles. This analysis demonstrates that age was associated with the 771 

extent to which N-back changed gaze-based metrics. As such, if DMS were to use 𝐻𝑠 as an 772 

indicator of mental workload, differing thresholds might be necessary for drivers of different 773 



ages. For example, it might be necessary for a smaller threshold in the reduction of spatial 774 

dispersion for younger drivers as their gaze might be less effected by N-back, even though they 775 

might be experiencing high levels of mental workload, which could, in turn, impair their 776 

takeover performance. Another element to for DMS engineers to consider is which parameter 777 

of the gaze metric distribution should be used to establish a change in driver state. The current 778 

state of the art assumes that changes in central tendency should be used (e.g. a change in mean 779 𝐻𝑡 establishes that N-back induces high mental workload). However, the current findings 780 

suggest that changes in variance may be more reliable. Increases in the trial-by-trial variance 781 

of 𝐻𝑡 were predicted to be found in 76% of the population during high mental workload; only 782 

66% of the population were predicted to follow average trends regarding a change in mean 𝐻𝑡. 783 

This suggests that changes in the variance of gaze complexity were more reliable than changes 784 

in the mean. High trial-by-trial variance during N-back suggests that drivers had frequent 785 

fluctuations in the complexity of their gaze from one trial to the next.  Rather than finding an 786 

optimal level of gaze transitions that were suitable for all trials, the randomness of the 787 

transitions changed frequently. It has been proposed that the motor controls involved in eye 788 

movements aim to optimize inference (Parr & Friston, 2017) which implies that there are 789 

optimal levels of 𝐻𝑡 to sample the environment efficiently (Shiferaw et al, 2019). Hence the 790 

results in the current manuscript suggest that high mental workload disrupts this eye movement 791 

optimization, resulting in variable, inefficient monitoring of the driving environment. The 792 

utilization of variance as an indicator for mental workload supports results from research within 793 

the visual distraction domain. These show, for example, that presentation of information by 794 

certain in-vehicle information systems reduces variations in fixation durations, supporting 795 

more efficient information processing (Horrey & Wickens, 2007; Kujala & Saarilouma, 2011). 796 

A similar suggestion is made here; without N-back trial-by-trial variance is small suggesting 797 

drivers establish and optimal 𝐻𝑡 that allows them to efficiently sample the road. As mental 798 



workload increases, so does the variance in 𝐻𝑡, which is proposed as an indicator for visual 799 

scanning inefficiency. These findings suggest more research is needed to understand whether 800 

different parameters of response distributions can be used as indicators of mental workload.  801 

Another interesting result from this study was the effect of lead vehicle presence. There was a 802 

small but consistent decrease in the spatial distribution of gaze for trials with lead vehicles. 803 

This supports previous research that drivers reduce the spread of their gaze and reallocate 804 

attention towards lead vehicles (Crundall et al, 2004). A key difference is that Crundall et al 805 

(2004) observed reductions in gaze dispersion only when instructing drivers to follow a lead 806 

vehicle during manual driving. Conversely, participants in the current study were instructed to 807 

monitor the entire road environment for hazards. Despite this request, the lead vehicle was 808 

clearly a salient object within the road environment and thus likely attracted drivers’ attention. 809 

This may pose a problem for DMS in the real world, given that gaze dispersion has been shown 810 

to decrease in the presence of a lead vehicle, irrespective of increasing mental workload. 811 

Therefore, DMS will need to ensure that it can distinguish between drivers attending towards 812 

vehicles on the road ahead, and those under increased mental workload. It should be noted that 813 

the average reduction in gaze dispersion was much smaller for lead vehicles versus N-back 814 

conditions, however this still will not disentangle drivers who had smaller reductions in gaze 815 

dispersion during N-back conditions.  816 

Another thing to highlight is the artificial nature of the N-back task as a method for inducing 817 

mental workload. Human Factors researchers have used a range of tasks to induce non-visual 818 

mental workload during manual and automated driving experiments. One of the most common 819 

is the N-back task because is easy to control and systematically manipulate the level of mental 820 

workload (Reimer, 2009; Reimer et al, 2010; Wang et al, 2014) and to quantify performance 821 

(Goodridge et al, 2023). However, other tasks have been used such as the Sustained Attention 822 

Response Task (SART) (Hawkins et al, 2014) and the Paced Auditory Serial Addition Task 823 



(PASAT) (Thompson et al, 2012). What these tasks share is that they all involve drivers having 824 

to maintain digits (or sometimes letters in the case of N-back and the SART) in their working 825 

memory, thus loading these cognitive resources. Although these tasks allow for tight control 826 

of mental workload manipulations, in the real world, it is unlikely that drivers will practice 827 

keeping letters and numbers in their memory. Some have proposed that more natural tasks 828 

should be used to better reflect the sorts of NDRTs that real drivers will complete during higher 829 

levels of automation (Goodridge et al, 2023). Whilst some studies have used more naturalistic 830 

hands-free phone conversations (Recarte & Nunes, 2003; Treffner & Barrett, 2004), it is harder 831 

to experimentally control and thus test, the effects that these conversations might have on gaze 832 

behaviours. The Twenty Questions Task (TQT) has been used which is still conversational 833 

(and thus more realistic) but has elements of experimental control regarding the target word a 834 

driver must reach (Merat et al, 2012). Future research should compare artificial and natural 835 

modes of mental workload induction to investigate whether they have differing effects on eye 836 

movements that could be used by DMS.  837 

One limitation of the current work is that these model predictions need to be validated on a 838 

wider range of datasets. A statistical model is only as good as the data used to fit it. Whilst age 839 

ranges and gender balance were representative in the current sample, they mostly represented 840 

white, British drivers in the north of England. As such, whether their behaviours translate well 841 

to drivers from different cultures remains to be seen. Another limitation with the current work 842 

is the use of a Gaussian distribution as the likelihood for the modelling. Whilst the data were 843 

approximated by a Gaussian distribution, and the posterior predictive checks appear to fit the 844 

data well, normalized 𝐻𝑠 and 𝐻𝑡 are technically continuous variables bounded between 0 and 845 

1. Conversely, any value is possible for a Gaussian distribution. The Beta distribution is a 846 

candidate that might be better suited for modelling these types of variables (Paolino, 2001; 847 

Ferrari & Cribari-Neto, 2004). Whilst a comparison of Gaussian and Beta likelihoods on 848 



clinical data highlighted that the estimates were very similar (Kurz, 2023) the Beta distribution 849 

is a better conceptual fit and produced slightly more precise estimates. Future research may 850 

compare these methods to investigate any differences in the context of gaze metrics.    851 

In conclusion, Information Theoretic eye-based metrics have shown some promise in 852 

identifying increased mental workload in drivers engaging in an N-back task during hands-off 853 

Level 2 automated driving. Both 𝐻𝑠  (Pillai et al, 2022) and 𝐻𝑡 (Schieber & Gilland, 2008) 854 

were found to decrease as a function of increasing task load. However, the current research 855 

suggests that this assessment is incomplete. Whilst the average trends are consistent with 856 

previous research, there is substantial variance in how eye movements change as a function of 857 

task load across a population. For future DMS systems that apply to a multitude of drivers, this 858 

variance needs to be properly measured and quantified. One potential source of this 859 

heterogeneity is age, and thus DMS designers should consider how their input metrics are 860 

influenced by differing demographic variables. 861 
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