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A human neural crest model reveals the
developmental impact of neuroblastoma-
associated chromosomal aberrations

Ingrid M. Saldana-Guerrero 1,2,3,13, Luis F. Montano-Gutierrez 4,13,

Katy Boswell 1,2, Christoph Hafemeister 4, Evon Poon 5, Lisa E. Shaw 6,

Dylan Stavish 1,2, Rebecca A. Lea 1,2, Sara Wernig-Zorc4, Eva Bozsaky 4,

Irfete S. Fetahu 4,12, Peter Zoescher 4, Ulrike Pötschger4, Marie Bernkopf 4,7,

Andrea Wenninger-Weinzierl4, Caterina Sturtzel4, Celine Souilhol1,2,8,

Sophia Tarelli1,2, Mohamed R. Shoeb 4, Polyxeni Bozatzi4, Magdalena Rados4,

Maria Guarini 9, Michelle C. Buri 4, Wolfgang Weninger6, Eva M. Putz 4,

Miller Huang 10,11, Ruth Ladenstein 4, Peter W. Andrews 1,

Ivana Barbaric 1,2, GeorgeD. Cresswell 4, Helen E. Bryant 3, Martin Distel 4,

Louis Chesler 5, Sabine Taschner-Mandl 4, Matthias Farlik 6,

Anestis Tsakiridis 1,2,14 & Florian Halbritter 4,14

Early childhood tumours arise from transformed embryonic cells, which often

carry large copy number alterations (CNA). However, it remains unclear how

CNAs contribute to embryonic tumourigenesis due to a lack of suitable

models. Here we employ female human embryonic stem cell (hESC) differ-

entiation and single-cell transcriptome and epigenome analysis to assess the

effects of chromosome 17q/1q gains, which are prevalent in the embryonal

tumour neuroblastoma (NB). We show that CNAs impair the specification of

trunk neural crest (NC) cells and their sympathoadrenal derivatives, the

putative cells-of-origin of NB. This effect is exacerbated upon overexpression

of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs

potentiate the pro-tumourigenic effects of MYCN and mutant NC cells

resemble NB cells in tumours. These changes correlate with a stepwise

aberration of developmental transcription factor networks. Together, our

results sketch a mechanistic framework for the CNA-driven initiation of

embryonal tumours.

Cancers in early childhood are driven by sparse genetic aberrations

arising in utero, which are thought to lead to defective differentiation

and uncontrolled proliferation1–4. Most tumours harbour large geno-

mic rearrangements and chromosomal copy number alterations

(CNA), which co-occur with mutations in tumour suppressors or

tumourigenic transcription factors (TF)5,6. The mechanistic interac-

tions between different mutations and early developmental processes

are likely foundational drivers of tumour heterogeneity. However,

since visible tumours are only detected long after their initiation, early

mutation-driven interactions leading to the healthy-to-tumour transi-

tion have remained largely intractable.

Neuroblastoma (NB) is the most common extra-cranial solid

tumour in infants and an archetypal “developmental cancer”7–9.

NB tumours are usually found in the adrenal gland or sympathetic

ganglia, tissues derived from the trunk neural crest (NC) lineage during

embryonic development10,11, and studies using transgenic animal
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models and transcriptome analysis have anchored NB tumourigenesis

in impaired sympathoadrenal differentiation of trunk NC cells12–23.

CNAs, such as gains of the long arms of chromosomes 17 (chr17q) and 1

(chr1q) have been identified in the majority (up to 65%) of NB

tumours24–28 and their emergence is considered an early tumourigen-

esis “priming” event29. Chr17q/1q gains often co-occur with amplifica-

tion of theMYCN oncogene24,28,30–33 (at least one CNA in >95% ofMYCN-

amplified tumours34), suggesting they may jointly contribute to

tumourigenesis. However, despite our advanced understanding of the

genetic anddevelopmentalorigin ofNB, it remains unclear todatehow

CNAs disrupt embryonic cell differentiation and lead to NB initiation.

Here, we used a human embryonic stem cell (hESC)-based model

to experimentally dissect the links between NB-associated CNAs,

MYCN amplification, and tumour initiation. We interrogated the step-

wise specification of trunk NC and sympathoadrenal lineages using

directeddifferentiation of isogenic hESC lineswith chr17q/1q gains and

inducible MYCN overexpression. We found that (i) CNAs derail differ-

entiation by potentiating immature NC progenitor phenotypes. Com-

bining CNAs withMYCN overexpression completely disrupted normal

NC differentiation; (ii) Mutant NC cells acquired tumourigenic hall-

marks in vitro, the capacity to form tumours in xenografts, and

resemble distinct subpopulations of heterogeneous NB tumours; (iii)

An extensive re-wiring of chromatin connects the observed tran-

scriptional and functional aberrations with a dysregulated network of

developmental TFs. Collectively, our data put forward a CNA-driven

distortion of trunk NC and sympathoadrenal differentiation as a

priming mechanism for subsequent MYCN-induced tumour initiation.

Results
Differentiationof humanembryonic stemcells recapitulates key
stages of trunk NC and sympathoadrenal development
To model the initiation stage and cell types relevant to NB tumour-

igenesis, we turned to an in-vitro modelling approach. We have pre-

viously described an efficient strategy to produce human trunk NC,

sympathoadrenal progenitors, and sympathetic neurons from

hESCs35,36. Our protocol involves treatment with defined cocktails of

signalling pathway agonists/antagonists that induce neuromesodermal-

potent axial progenitors (NMPs) at day 3 of differentiation (D3)37, and

subsequently steer NMPs toward trunk NC cells (D9) and their sym-

pathoadrenal derivatives (>D14). At D19, the protocol yields

catecholamine-producing sympathetic neurons marked by peripherin-

expressing axons35 (Fig. 1a, Supplementary Fig. 1).

As a prerequisite for studying the effects of CNAs on trunk NC

differentiation, we first needed to define a molecular roadmap of

normal hESC differentiation as a control. Therefore, we employed our

protocol for the differentiation of karyotypically normal hESCs (H738;

46XX) and performed droplet-based single-cell RNA sequencing

(scRNA-seq) at key differentiation stages (D0 ≈ hESCs, D3 ≈NMPs, D9 ≈

trunk NC, D14 ≈ sympathoadrenal progenitors, D19 ≈ early sympa-

thetic neurons) and intermediate/late time points (D6, D10, D12, D28)

to examine the resulting cell populations (up to five replicates each;

Supplementary Data 1). We obtained 29,857 cells that passed quality

control, which we allocated to 14 distinct clusters (C1-C14) (Fig. 1b;

Supplementary Fig. 2a–g). We bioinformatically annotated these cell

clusters using two complementary approaches: (i) by identifying

characteristic marker genes (Fig. 1c; Supplementary Fig. 2h; Supple-

mentary Data 2), and (ii) by mapping our data to single-cell tran-

scriptomes of trunk NC derivatives in human embryos15,16 (Fig. 1d–f,

Supplementary Fig. 2i, j). This strategy identified cells at different

stages of trunk NC development, including NMP-like cells (marked by

CDX1/2, NKX1-2, and FGF signalling-associated transcripts37; cluster C2

in Fig. 1c, Supplementary Data 2) and later cell populations of a pre-

dominantly trunk axial identity (Supplementary Fig. 2h) exhibiting

characteristics of Schwann cell precursors (SCP), sympathoblasts

(SYM), as well as mesenchymal features (MES). For example, D9 cells

split into subpopulations expressing markers of trunk NC/early SCPs

(C3; e.g., SOX1016, Fig. 1c; weak SCP-like signature, Fig. 1e) and sensory

neurons (C5; ONECUT139, Fig. 1c; weak SYM-like signature, Fig. 1f). At

D14, cells started to assume a sympathoadrenal/autonomic progenitor

(C8; ASCL1) or mesenchymal (C11; FN1) identity, and by day D19, we

observed three distinct fractions: mature SCP-like cells (C9; POSTN40;

strong SCP signature), autonomic sympathoblasts (C12-C14; PHOX2A/

B, ELAVL416,41; strong SYM signature), and MES-like cells (C11; COL1A1,

FN1). This is in line with findings showing that trunk NC and SCPs are

competent to generate mesenchyme40,42,43. Interestingly, we also

found cells at the intersection ofMES and SYM identity, as observed in

mice39 and NB cell lines44–48 (Supplementary Fig. 3; Supplementary

Data 3). After 4 weeks (D28), we also observed some cells with a partial

chromaffin-like cell identity (part of C14; CHGA+, PMNT-) (Fig. 1d).

Together, these data confirm that our hESC-based model suc-

cessfully captures trunk NC and sympathoadrenal cells as found in

embryos during the onset of NB tumourigenesis. Moreover, they reveal

twomajor developmental branching events: (i) an early commitment of

trunk NC toward a sensory neuron fate; (ii) the late generation of

multipotent SCP/sympathoadrenal progenitors, which subsequently

give rise to three distinct cell types: mature SCPs, MES, and SYM.

CNAs and MYCN cumulatively disrupt human trunk NC
differentiation
Having established a reliable model of trunk NC lineages relevant for

NB pathogenesis, we next asked how chr17q and chr1q gains and their

interplay with MYCN overexpression, which often co-occur in

NB24,28,30–34, influence NC development. To this end, we employed two

clonal isogenic hESC lines with NB-associated CNAs thatwere acquired

by H7 hESCs (“WT”; used in Fig. 1) as a result of culture adaptation49

(Fig. 2a; Supplementary Fig. 4a): (i) a gain of chromosome arm 17q11-

qter (“17q”)50, and (ii) an additional gain of chr1q in the 17q background

(“17q1q”). Whole-exome sequencing of 17q and 17q1q cells compared

to the parental H7 hESCs revealed a small number of additional

mutations and a loss of a small region in chromosome 2 (Supple-

mentary Fig. 4b; Supplementary Data 4, 5). For brevity, we labelled the

cell lines by theirmajorCNAs,which overlap regions commonly gained

inNB tumours51 (Supplementary Fig. 4c). 17q1q hESCswere engineered

to include a Doxycycline (DOX)-inducibleMYCN expression cassette to

mimic MYCN amplification in a temporally controlled manner

(“17q1qMYCN”). DOX treatment of 17q1qMYCN resulted in robust

induction of MYCN, similar to expression levels in MYCN-amplified

tumours (Supplementary Fig. 4d–f). In our experiments, we induced

MYCN overexpression at D5 (when cells adopt a definitive NC

identity35) to avoid bias toward central nervous system differentiation,

as seen upon MYCN overexpression in earlier pre-NC progenitors52.

Equipped with these three isogenic mutant hESC lines, we per-

formed differentiation toward trunk NC and carried out scRNA-seq as

described above, yielding a combined dataset comprising 95,766 cells

(Supplementary Data 1). To assess how differentiation was affected in

each mutant cell line, we first focused on stages D9, D14, and D19 for

which we had data from all four experimental conditions, and bioin-

formatically mapped the transcriptomes of mutant cells to our refer-

ence of normal trunk NC differentiation (cp. Fig. 1b). While many 17q

cells intertwinedwith allWT cell types (~98%matching the cognateWT

stage), fewer 17q1q and 17q1qMYCN cells advanced beyond WT D14

(only ~48% and ~22%matched withWT, respectively; Fig. 2b). Only ~4%

of 17q1qMYCN cells mapped to mature cell types (Fig. 2b). Altogether,

at this level of resolution, we found no evidence that 17q affected

differentiation. In contrast, 17q1q and 17q1qMYCN cells matched WT

cells of earlier developmental stages, suggesting impaired differ-

entiation (Fig. 2c).

Next, we tested whether the cell types induced from mutant

hESCs still truthfully recapitulated in-vivo cell types as seen for WT.

Mapping mutant cells onto the same human embryonic adrenal gland
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reference16 identified proportionally fewer SYM- and MES-like cells in

17q1q and 17q1qMYCN (Fig. 2d, e). For cells mapped to the respective

cell types, we observed a slightly stronger SCP signature in 17q and

17q1q, while the expression of both MES and SYM genes was weaker

relative to the WT (Fig. 2f). In 17q1qMYCN, the expression of all sig-

natureswasweak, suggesting a failure to fully specify the expected cell

types (Fig. 2d–g). Consistently, antibody staining for SOX10 and

HOXC9 and flow cytometry revealed depletion of SOX10+ trunk NC

cells in 17q1qMYCN cultures (Fig. 2h; Supplementary Fig. 5). The

reduced ability of 17q1qMYCN hESCs to differentiate toward trunk NC

derivatives was also reflected by their failure to generate PERIPHERIN-

positive neuronal axons (Supplementary Fig. 4g). A similar, albeit

milder effect was observed upon DOX-induced MYCN overexpression

at later timepoints (Supplementary Fig. 4h).

Differential analysis identified 941 (17q vs. WT), 2039 (17q1q vs.

WT), and 5915 (17q1qMYCN vs. WT) differentially expressed genes

(DEG) at D9 (Supplementary Data 6). As expected, many upregulated

genes were located within the known CNAs (41.4% within chr17q for

17q cells; 18.7% within chr17q and 25.6% within chr1q for 17q1q cells;

Supplementary Fig. 6a). Pathway analysis indicated an enrichment of

genes related to E2F and MTORC1 signalling components for DEGs on

chr17q (e.g., BRCA1, NME1), and of apoptosis-related and members of

the p53 pathway on chr1q (e.g., the anti-apoptotic regulator MCL1;

Fig. 3a–c; Supplementary Data 7). Notably, genes upregulated in 17q1q

also include the p53 inhibitor MDM453 (Supplementary Data 6). These

perturbed pathways may contribute to deregulation of expression of

genes outside CNAs (e.g., upregulation of MYC targets and oxidative

phosphorylation, and downregulation of G2-M checkpoint-related

genes in 17q1qMYCN; Fig. 3a). To better resolve the molecular impact

of each mutation, we integrated all datasets into a joint projection of

WT and aberrant trunk NC differentiation (Fig. 4a; Supplementary

Figs. 6b–h; Supplementary Data 8). The strongest changes were

observed in 17q1qMYCN, which formed disconnected cell clusters not

normally produced in our protocol. To delineate the stepwise altera-

tion of transcriptional programmes, we placed cells from D9 on a

spectrum fromWT to 17q1qMYCNby scoring eachcell between0 and 1

based on the fraction of mutant cells among its gene expression

neighbours (“mutation score”; Fig. 4b). This allowed us to identify four

Fig. 1 | In-vitro culture efficiently generates human trunk NC cells and their

sympathoadrenal derivatives from hESCs. a Diagram depicting (top) the

extrinsically supplemented signals employed to direct hESCs toward trunk NCcells

and their downstream derivatives, sample harvesting time points for scRNA-seq

analysis (the colours indicated in this schematic are used throughout the manu-

script to refer to the respective days), and immunofluorescence analysis (bottom)

of PERIPHERIN protein expression illustrating the generation of sympathetic neu-

rons at D19. Cell nuclei were counterstained using Hoechst 33342. All experiments

were repeated at least three times with similar results. b UMAP of scRNA-seq data

from wild-type hESCs collected at 9 stages (indicated by different colours) of dif-

ferentiation to trunk neural crest and sympathoadrenal derivatives. Cells were

divided into 14 distinct clusters as indicated by the contours. c Heatmap of gene

markers for each cluster in (b). Selected genes have been highlighted and UMAPs

indicate the expression level of canonical markers for stem (POU5F1), neural crest

(SOX10),mesenchymal (FN1), and sympathetic (PHOX2B) cells. Allmarker genes are

reported in Supplementary Data 2. d UMAP as in (b), labelled by their closest

matching cell type from the human embryonic adrenal gland reference16 via label

transfer. Cells in grey could not be verified with markers (Supplementary Fig. 2i) or

couldnot be assigned to a single type.eCells frompanel d colouredby the strength

of their SCPmarker signature (Seuratmodule score) in red. The score distinguishes

a cluster of early SCP-like/trunk NC (low score) and a late cluster with moremature

SCP-like cells (high score). f Same as above but visualising simultaneously SYM

(orange) andMES (teal)marker signature. Cells with overlappingmarker signatures

appear in grey tones, with the highest mixture in C12. An early diverging cluster of

sensory neuron-like cells has a weak match to the SYM signature. A pseudotime

trajectory for the MES-SYM transition in clusters C11-C14 can be found in Supple-

mentary Fig. 3. Source data are provided as a Source Data file. hESC, human

embryonic stem cells; D0/3/6/9/10/12/14/19/28, day 0/3/6/9/10/12/14/19/28; UMAP

Uniform Manifold Approximation and Projection, C1-C14 cell clusters, SCP

Schwann cell precursor, SYM sympathoblast, MES mesenchymal.
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sets of genes (D9_1–D9_4) thatwere correlatedwithmutations (Fig. 4c,

Supplementary Fig. 7a, b; SupplementaryData 9): Gain ofCNAs led to a

decrease in expression of genes (gene set D9_3, Fig. 4c) involved in NC

development (e.g., TFAP2B54,55) and gradual induction of genes (D9_4,

Fig. 4c) associated with NC/NB cell migration (e.g., ZIC2, HOXD3,

GPC356–58). MYCN overexpression in 17q1qMYCN further repressed

genes related to NC development (D9_2; e.g., WNT-antagonist SFRP159

and nuclear receptors NR2F1/260) and led to upregulation of MYCN

targets implicated in NB (D9_1; e.g., NME1 on 17q61; Supplementary

Data 9). Interestingly, we had also found SFRP1 and NR2F1 to mark the

SYM-MES transition state in WT differentiating sympathoadrenal cells

(cp. Supplementary Data 3). Moreover, we found that many of genes

that are upregulated in 17q1qMYCN (D9_1) were also highly expressed

in NB tumours (Supplementary Fig. 7c).

We further sought to disentangle the relative contributions of

MYCN overexpression and CNAs to the observed differentiation block

phenotype in 17q1q cells. To this end, we generated additional cell

lines derived from WT and 17q H7 hESCs by equipping each with

a DOX-inducible MYCN construct (WTMYCN, 17qMYCN; Supplemen-

tary Fig. 8a). Moreover, we introduced the same inducible MYCN

expression cassette into a second female hESC cell line38 (H9) which

had independently acquired chr17q and 1q gains (H9-WT, H9-17q1q,

H9-17q1qMYCN). The differentiation trajectories of these cell lines in

the presence and absence ofMYCN overexpression were interrogated

using split-pool single-cell RNA-seq. To ensure consistency, we also

included the previously analysed H7 cell lines (WT, 17q, 17q1q,

17q1qMYCN) and performed 2–4 replicate experiments.We obtained a

total of 45,546 cells (all D9) post-QC and mapped each dataset onto

our WT reference, as we had done before (Supplementary Fig. 8b).

Starting with gain of chr17q, we found a reduction in cells allocated to

sensory neuronal differentiation (cluster C4 in Fig. 1b, c) and instead a

slight increase in a transitional progeny (C7). With chr1q, we also saw

an increase of cells in C10. On top of these changes, MYCN over-

expression led to most cells allocating to earlier developmental stages

including clustersC2 andC3 (Supplementary Fig. 8b, c) – reflecting the

differentiation block we had observed before (cp. Fig. 2b, c). The

observed changes were consistent for derivatives of both parental

hESC lines (H7 and H9). Analysis ofmarker gene expression associated

with the altered cell clusters (C2, C4, C7, C10) in the different

mutant cell lines identified an upregulation of genes like AZIN1 in all

Fig. 2 | Copy number alterations and overexpression of MYCN impair the spe-

cification of trunk NC derivatives. a Scheme depicting the different hESC genetic

backgrounds employed, the time points of sample collection, and the timing of

DOX-induced MYCN overexpression during trunk NC differentiation. b scRNA-seq

data from mutant cells (17q, 17q1q, 17q1qMYCN at D9, D14, and D19; coloured by

stage) were mapped to the WT reference (cp. Fig. 1; undifferentiated hESC cluster

C0 was excluded for simplicity). Glasswork UMAP plots depicting the destination

clusters of mapped cells. Fewer 17q1q and 17q1qMYCN cells mapped to late stages

(highlighted by arrows). c Alluvial plots comparing the stage at which each mutant

cell was harvested versus its transcriptionally closest stage in the WT reference

(based on label transfer as in b). In each subplot, the top bar indicates the pro-

portion of cells collected at each stage (D9, D14, D19). The bottombar indicates the

distribution of matches for the same cells in WT, and streams indicate which sub-

populations flow into cognate or non-cognate WT stages. The plots suggest that

cells from 17q1q/17q1qMYCN mapped to earlier stages compared to WT.

dGlasswork UMAPs of mapped 17q, 17q1q, and 17q1qMYCN cells (as in b) coloured

by closest-matching cell type in an adrenal gland reference16. The category “other”

comprises other cell types in the reference dataset andmappings that could not be

validated by cell type markers (Supplementary Fig. 2i). e Percentage of cells map-

ped to each cell type in (d), split by cell line. f Violin plots indicating the strength of

the SCP/SYM/MES (left to right) signature (Seurat module score) for cells mapped

to the respective cell type, split by cell line. g Plot indicating the change in mean

expression (colour) and the percentage of cells expressing the gene (size) for each

gene in the signatures from panel e relative to WT. WT squares (size = 1, white) are

shown for reference. h Flow cytometric analysis of trunk NC markers HOXC9 and

SOX10 of WT, 17q, 17q1q, and 17q1qMYCN at D9. All experiments were repeated at

least three timeswith similar results. Source data are provided as a Source Data file.

WT wild-type H7 hESCs; D0/6/3/9/10/12/14/19/28, day 0/6/3/9/10/12/14/19/28;

UMAP Uniform Manifold Approximation and Projection, SCP Schwann cell pre-

cursor, SYM sympathoblast, MES mesenchymal.
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MYCN-overexpressing cells that was not active in their wild-type or

CNA-only counterparts (Supplementary Fig. 8d). Conversely, these

cells downregulated developmental regulators. For instance, even

though MYCN-overexpressing cells still expressed remnant gene sig-

natures leading them to map to differentiating WT cell clusters they

downregulated genes in developmental pathways like HHIP in cluster

C7 or WNT1 in C10. Moreover, the neurogenic capacity of the mutant

trunk NC cells (as reflected by the presence of PERIPHERIN-positive

neuronal axons) was found to be disrupted by MYCN overexpression

primarily in the presence of CNAs, with the strongest phenotype being

observed in the presence of both chr17q and chr1q gains (Supple-

mentary Fig. 8e), in line with our earlier findings. Collectively, these

data indicate that CNAs potentiate the MYCN-driven block to the

induction of a trunk NC/sympathoadrenal identity.

We conclude that NB-associated CNAs alter the differentiation

landscape of hESC-derived trunk NC lineages by promoting transi-

tional progenitor states at the expense ofmature sympathoadrenal cell

types. In conjunction with MYCN elevation, they block differentiation

and trigger atypical transcriptional programmes incompatible with

normal trunk NC development.

Impaired trunk NC differentiation correlates with acquisition of
tumourigenic hallmarks
We observed that ectopic MYCN induction altered the morphology of

cultures byD14 only in the presence of CNAs as cells lost their ability to

spreadout and formneurites, and 17q1qMYCNcells even formed tight,

dome-like colonies (Fig. 5a). As this phenomenon is reminiscent of

loss of contact inhibition, a cancer hallmark, we next examined

whether CNAs/MYCN overexpression led to further cellular changes

that are typical of tumourigenesis. We first carried out cell cycle

analysis of trunk NC cells (D9) generated from each MYCN-over-

expressinghESC line (fromWT/17q/17q1qbackgrounds)bymonitoring

EdU (5-ethynyl-2´-deoxyuridine) incorporation via flow cytometry.

We found a significant increase in the proportion of cells in S-phase

only whenMYCN overexpressionwas combined with CNAs (p =0.0233

and p =0.0073 respectively; two-way ANOVA; Fig. 5b), indicating

altered cell cycle and increased replication similar to NB tumours and

cell lines62–64. Immunofluorescence analysis of Ki-67 expression further

showed that 17q1qMYCN and 17qMYCN cultures exhibited a higher

proliferation rate by D14 compared to their CNA-only counterparts

(p < 0.0001 and p =0.0078, respectively; two-way ANOVA; Fig. 5c).

We next tested howCNAs/MYCN influenced colony formation, another

hallmark of tumourigenesis. Low-density plating of trunk NC cells (D9)

and image analysis showed significantly increased clonogenicity

(p = 0.0109; two-way ANOVA) exclusively in 17q1qMYCN cells (Fig. 5d).

DOX treatment of the unedited parental wild type and chr17q gain cell

lines had no effect (Supplementary Fig. 9a).

Previous work has indicated that MYCN overexpression alone is

associated with increased apoptosis in early sympathoadrenal cells65,66

and can trigger tumourigenesis only in combination with additional

mutations13,14,67. Therefore, we also examined apoptosis levels during

the transition of D9 trunk NC cells toward the SCP/sympathoblast stage

(D14) by assessing cleaved Caspase-3 levels using flow cytometry. We

found that MYCN overexpression indeed resulted in a higher rate of

apoptosis in theWTbackground,while this increasewas reversed in 17q

cells (Supplementary Fig. 9b). However, thiswas not the case in cultures

derived from MYCN-overexpressing cells with chr17q1q gains, which

exhibited apoptosis levels similar to their MYCN-overexpressing WT

counterparts (Supplementary Fig. 9b, c). This phenomenon may be

linked to the presence of both pro- and anti-apoptotic genes in chro-

mosome arm chr1q (cp. Fig. 3c) as well as increased DNA damage

(assessed by the presence of γH2AX foci) following MYCN over-

expression specifically in the 17q1q background (Supplementary

Fig. 9d, e). Interestingly, we detected lower levels of DNAdamage in the

absence of MYCN overexpression in 17q and 17q1q trunk NC cells at D9

compared to WT controls suggesting a potential protective effect of

Fig. 3 | Copy number alterations and MYCN overexpression influence cancer-

associated pathways. a We performed differential expression analysis between

WT and mutant cells at D9 (two-sided tests using DESeq2147 and aggregated pseu-

dobulk counts per replicate133; P values were corrected for multiple hypothesis

testing using theBenjamini-Hochbergmethod;Padj≤0.05, |log2FoldChange| > 0.25)

and summarised differentially expressed genes (DEG) using pathway enrichment

analysis. Enrichment was determined by hypergeometric tests (hypeR135, back-

ground: all detected genes in our scRNA-seq dataset) using pathways from

MSigDB134. The overlap between up- and down-regulated DEGs with the pathway

genes is indicated as a positive (green/orange/magenta colour bars) or negative

(grey colour) number, respectively. We additionally distinguished between DEGs

located on chromosome arms chr17q, chr1q, or anywhere else in the genome to

analyse potential direct and indirect effects of CNAs (split from top to bottom). All

adjusted P values for enriched terms are shown (Padj≤0.1; P values were adjusted

for multiple hypothesis testing using the Benjamini-Hochberg method). Selected

pathways are shown in the figure and all DEGs and pathway enrichments are

available in Supplementary Data 6 and 7. DEGs located on chr17q (b) and chr1q (c)

from the enriched pathways in (a). The heatmap indicates the mean normalised

expression difference between each indicatedmutant cell line andWT (at D9). The

annotation bars on top of the heatmaps indicate membership (black colour) of

genes in the selected pathways (MSigDB hallmark database). Source data are pro-

vided as a Source Data file. WT, wild-type H7 hESCs; MUT, a mutant hESC line (17q,

17q1q, or 17q1qMYCN); D9, day 9.
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17q/1q gains (Supplementary Fig. 9d). Moreover, we investigated whe-

ther MYCN-overexpressing cells from different backgrounds had

acquired additional mutations during differentiation. Whole-exome

sequencing analysis at D19 of differentiation did not reveal any new

large CNAs and detected only few mutations (<10 mutations with var-

iant allele frequency ≥0.2 between D19 and its common ancestor with

D0; Fig. 5e, Supplementary Fig. 9f; Supplementary Data 4). None of the

discovered mutations have previously been reported in NB, leading us

to conclude that the observed phenotypic changes in 17q1qMYCNwere

likely a product of the CNAs and MYCN overexpression rather than an

expansion of new clonal cell populations with additional pathogno-

monic mutations. Despite an increase of proliferation (cp. Fig. 5b, c),

MYCN overexpression did not yield more high-frequency mutations

during the short timeframe of our differentiation experiments, con-

sistentwith earlierwork in humanneuroepithelial stemcells in vitro and

after xenotransplantation68 (p =0.3458, two-sided, paired Wilcoxon

test, n = 3 per group; Supplementary Fig. 9g).

Finally, we sought to examine the tumourigenic potential of

17q1q-, 17q1qMYCN- and WT-derived trunk NC (D9 of differentiation)

cells in vivo by xenografting them into immunodeficient NSGmice.We

first injected aliquots of about 1 million cells subcutaneously into the

recipient animals (n = 6 per cell line) and monitored tumour volume

over time. After 3–5 weeks with continuous DOX administration, all

17q1qMYCN-injected mice developed visible tumours at the injection

site (Fig. 6a). In contrast, neither WT- nor 17q1q-injected control ani-

mals displayed any signs of tumours for up to 16 weeks (Fig. 6a).

Likewise, orthotopic injection into the adrenal gland (n = 3 mice per

condition) yielded tumour growths visible by magnetic resonance

imaging (MRI) after 5 weeks only when MYCN overexpression was

induced by DOX in 17q1qMYCN-grafted animals (Fig. 6b, c). We found

that both subcutaneous and adrenal xenograft-derived tumours con-

sisted of undifferentiated, small round cells similar to tumours from

transgenic Th-MYCNmice12 (Supplementary Fig. 10a). Complementary

to our analysis in mice, we also performed exploratory xenografts of

the same cell lines in zebrafish larvae. To this end, we labelled our

17q1qMYCN and WT cells at D9 with a fluorescent dye (CellTrace

Violet) and injected them into theperivitelline spaceof zebrafish larvae

on day 2 post fertilisation. Consistent with our results in mice, we

found that 17q1qMYCN cells survived longer in zebrafish than WT,

which had diminished in number at day 1 post injection (dpi) and were

completely absent at 3 dpi (Supplementary Fig. 10b, c). In contrast,

17q1qMYCN cells survived until 3 dpi, with 16% of larvae even showing

an increase in xenotransplant size. For comparison, injection of cells

from aMYCN-amplified NB cell line (SK-N-BE2C-H2B-GFP69) resulted in

engraftment with subsequent tumour cell growth in 84% of larvae

(Supplementary Fig. 10d).

Together, our results demonstrate that CNA-carrying trunk NC

cells transit into an undifferentiated pre-tumourigenic state and

acquire altered cellular properties reminiscent of cancer hallmarks,

such as increased proliferation, clonogenic and tumour formation

capacity under the influence of MYCN overexpression. Our data also

suggest that CNAs enhance the pro-tumourigenic effects of MYCN.

In-vitrodifferentiationofmutant hESCs capturesNB tumour cell
heterogeneity
Given that cells in our in-vitromodel exhibit similarities to NB cells, we

asked whether our data could provide insights into cellular hetero-

geneity in NB tumours. To this end, we collected scRNA-seq data from

Fig. 4 | Neuroblastoma-like genetic aberrations cumulatively distort trunk NC

differentiation. a Top: UMAP of scRNA-seq data from WT and mutant hESCs

(indicated by colour) throughout differentiation. Bottom: the same dataset

coloured by closest-matching cell type in an adrenal gland reference16. The cate-

gory “other” comprises other cell types in the reference dataset andmappings that

could not be validated by cell type markers (Supplementary Fig. 2i). b Illustration

(top) of the calculation of mutation scores m as average score of each cell’s

neighbours (k-nearest neighbour average). In this calculation, each neighbour

weighs inby its cell line (0=WT, 1/3 = 17q, 2/3 = 17q1q, 1 = 17q1qMYCN) such that the

mutation score allows ordering cells from WT to MYCN mutation. Only cells from

D9, D14, and D19 were used, for which data from all conditions were available. The

actual scores are shown overlaid on the UMAP from panel a (bottom). c Heatmap

showing the expression of the top genes correlated with the mutation score (from

b) across all cells fromD9.Genes havebeendivided into four groups by hierarchical

clustering, and selected TFs, receptors, and ligands are highlighted in different

colours. All correlated genes are reported in Supplementary Data 9. Genes located

on chr17qor chr1q are indicated. Sourcedata are provided as a SourceDatafile.WT,

wild-typeH7hESCs;D9/14/19, day9/14/19; UMAPUniformManifoldApproximation

and Projection, m mutation score, TF transcription factor, SCP Schwann cell pre-

cursor, SYM sympathoblast, MES mesenchymal.
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tenMYCN-amplifiedNB tumours from three independent sources15,17,23.

For eachdataset, we curatedMYCN+ tumour cells andbioinformatically

mapped these to our reference (Fig. 7a). For example, this approach

matched most cells from tumour dataset Jansky_NB1415 to clusters C13

and C14, which correspond to late SYM-like cell states (Fig. 7b; cp.

Fig. 1). A few cells also mapped to clusters C11 and C12, i.e., cells with

MES-like characteristics. The observed transcriptional heterogeneity

was surprising, given that most tumour cells appeared karyotypically

homogeneous (including a chr17q gain) and expressedMYCN (Fig. 7b).

Extending the in-vitro reference mapping to all ten tumours

portrayed a spectrum of MYCN-amplified cells with a majority C13- or

C14-like expression profile, and a subset of cells mapping to other

differentiating trunk NC cell states (Supplementary Fig. 11a, b). We

observed apparent differences between studies and tumour types, but
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to date there is only a limited amount of single-cell data from NB

tumours to robustly interpret such heterogeneity. We therefore

sought to interrogate a large collection of bulk RNA-seq data from NB

tumours (SEQC70,71).Wefirst intersected the development-related gene

signatures (C1-C14 from Fig. 1) with marker genes identified for the

tumour cells that had been mapped to those respective clusters (from

all 10 investigated samples; Fig. 7c; Supplementary Data 10) and

labelled each refined signature with an asterisk to distinguish it from

the original gene signature (e.g., signature C13* contained genes such

as DLC1 and RORA; Fig. 7c). Applying these gene signatures to the NB

tumour data, we found that expression signatures C5* (sensory

neuron-like cells) and C13* (differentiating SYM-like cells), jointly

separated MYCN-amplified and non-amplified tumours, as well as

tumours at different clinical stages (Fig. 7d). The C13* signature

effectively stratified tumours with a good and poor survival across the

entire cohort even when corrected for INSS stage,MYCN amplification

status, and age (Cox regression analysis with covariates; Fig. 7e; Sup-

plementary Data 11).

Jointly, these observations demonstrate that our in-vitro model

generates cell types that transcriptionally resemble different NB cell

subpopulations and that it facilitates the systematic dissection of intra-

tumour heterogeneity in NB tumours.

CNAs and MYCN disrupt the configuration of NC regulatory
circuits during differentiation
NB tumours and cell lines are marked by a re-wiring of non-coding

regulatory elements (e.g., enhancers) giving rise to tumour-specific

regulatory circuitries44,45,72–76. We therefore hypothesised that disrup-

tion of developmental TFs also underpins the aberrant differentiation

observed in our mutant hESCs (cp. Figs. 2, 3) and employed the assay

for transposase-accessible chromatin followed by sequencing (ATAC-

seq)77 to profile chromatin accessibility in the same samples used for

Fig. 5 | Impaired trunk NC specification correlates with acquisition of

tumourigenic hallmarks. a Representative brightfield images of D14 cultures

following differentiation of hESCs with the indicated genotypes. All experiments

were repeated at least three timeswith similar results.b Flowcytometric analysis of

cell cycle in D9 cultures of each cell line. Top: Representative FACS plots. Bottom:

Percentage of cells in each cell cycle stage. G1 (17q vs. 17qMYCN, p =0.0266 = *;

17q1q vs. 17q1qMYCN, p =0.0153 = *), S (17q vs. 17qMYCN, p =0.0233 = *; 17q1q vs.

17q1qMYCN, p =0.0073 = **). Only comparisons examining the effect of MYCN

overexpression in different backgrounds are shown. c Immunofluorescence ana-

lysis of the cell proliferation marker KI-67 (green) in D14 cultures of each cell line.

Cell nuclei were counterstained using Hoechst 33342 (blue). Left: Representative

images. Right: Percentage of KI-67-positive cells. 17q vs. 17qMYCN, p =0.0078 = **;

17q1q vs. 17q1qMYCN, p =0.0001 = ***.d Low-density plating of D9 cultures of each

cell line (n = 3 biological replicates). Left: Representative brightfield images after

84h. Right: Number of colonies counted after 5 days. 17q1q vs. 17q1qMYCN,

p =0.0109 = *. b–d Bar plots showing the mean of n = 3 biological replicates (error

bars = SD). Statistical analysis was performed using ordinary two-way (b, c) or one-

way (d) ANOVA with Tukey correction. Only comparisons examining the effect of

MYCN overexpression in different backgrounds are shown. e Phylogenetic tree

indicating the genetic relationship and distance (number of SNVs detected by

whole-exome sequencing) between different hESC lines before (D0) and after dif-

ferentiation (D19). Node shape indicates samples without a MYCN overexpression

cassette (unfilled circles), with an inactive cassette (filled circles), and with an

activated (by addition of DOX from D5 onwards) cassette (filled squares). The

colours match those used elsewhere in the paper, without specific meaning. Short

distances (<10 mutations) between differentiated cells and the shared ancestor

with the matching D0 samples suggest that few additional mutations occurred

during differentiation. Supplementary Data 4 and 5 report SNVs/CNAs identified in

our analyses. Source data are provided as a SourceData file. D0/5/14/19, day 0/5/14/

19; WT, wild-type H7 hESCs, SD standard deviation, SNV single-nucleotide variant,

CNA copy number alteration.

Fig. 6 | hESC-derived trunk NC cells with CNAs form tumours in mice upon

MYCN overexpression. a Left: Representative images of subcutaneous xenografts

of trunk NC cells derived from the indicated cell lines in the presence (17q1qMYCN)

and absence (WT, 17q1q) of DOX treatment. Right: Graph showing tumour growth

permouse corresponding toxenografts of indicated cell lines (n = 6 animals per cell

line). b Left: Representative MRI sections of mice at week 5 following xenografting

of indicated cell lines in the adrenal gland and DOX treatment regimens. The white

lines indicate the tumour perimeter. Right: Graph showing survival of the recipient

animals after xenografting (n = 3 animals per cell line). c Summary of mouse

xenograft experiments. Source data are provided as a Source Data file. DOX dox-

ycycline, MRI magnetic resonance imaging.
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scRNA-seq analysis (n = 51; Supplementary Data 1). Chromatin acces-

sibility serves as a proxy for the dynamic regulatory DNA element

activity during differentiation. For instance, the promoters of the hESC

regulator POU5F1 and trunk NC regulator SOX10 were accessible only

at D0 and D9, respectively (Fig. 8a), while the PHOX2B promoter

exhibited reduced accessibility in 17q1q and 17q1qMYCN cells at D19

consistent with impaired differentiation (Fig. 8b).

Unsupervised analysis of chromatin patterns on a global level

showed that WT and 17q hESCs changed consistently throughout dif-

ferentiation (Fig. 8c). In contrast, 17q1q and 17q1qMYCN appeared not

to follow the same path as WT in this low-dimensional projection, in

line the differentiation defects observed in our previous analyses (cp.

Fig. 2b, c). To delineate chromatin changes in detail, we performed

differential accessibility analysis between all differentiation stages per

cell line and between all cell lines at matched stages (Supplementary

Data 12, 13). As in our DEG analysis, we found an increasing number of

regions with altered accessibility in 17q (n = 477 regions), 17q1q

(n = 2826), and 17q1qMYCN (n = 6663; Fig. 8d). In total, there were

45,583 regions with differential accessibility in at least one compar-

ison, which we divided into nine chromatin modules R1-R9 (Fig. 9a).

Modules R1-R7 reflect differentiation order, e.g., regions in module R1

were mostly accessible at D0, and R6 comprises regions accessible at

D14 and D19. Most changes observed in mutant hESC-derivatives

fell within these modules (Supplementary Fig. 12a, b). 17q1q and

17q1qMYCN cells failed to close chromatin that is usually specific toD9

(R4, R5) and conversely to open chromatin regions indicative of late

sympathoadrenal differentiation (R6, R7; Supplementary Fig. 12c).

Additionally, modules R8 and R9 comprised regions with reduced and

increased accessibility in mutant hESC derivatives, respectively, inde-

pendently of differentiation stage.

Fig. 7 | Comparison to hESC-based trunkNC differentiation resolves structured

heterogeneity across neuroblastoma tumours. a We curated tumour cells from

10MYCN-amplified NB samples15,17,23 from three studies andmapped them onto our

WT in-vitro reference (cp. Fig. 1)126.Mapping is represented as cells in eachclusterof

the reference (depicted as contours).bHeatmapdepicting relative gene expression

in dataset Jansky_NB1415. Values are inferCNV139 copy number estimations per gene,

relative to haematopoietic cells ordered by genomic position and chromosome

(1–22). Cells (one per row) are ordered by the respective cluster that they were

mapped to (C11 to C14) and therein by MYCN expression levels (depth-normalised

sliding window average, width = 20 cells). Mappings of other datasets are shown in

Supplementary Fig. 11. c Heatmap showing markers from gene expression sig-

natures C4*, C5*, C9*, C13*, and C14* (rows, top to bottom) in cells from 10 tumour

datasets that were mapped to our in-vitro reference (cp. a). Each signature is the

intersection of the cluster markers in our reference (as in Fig. 1) and differentially

expressed genes between the respective tumour cells. Markers for tumour cells

mapped to C2 and C3 showed no overlap with in-vitro cluster markers; hence, only

mapped cells are shown. All genes identified in this analysis are reported in Sup-

plementary Data 10. d Scatterplots evaluating the strength of signatures C5* and

C13* (from c; calculated using GSVA148) in bulk RNA-seq data from SEQC70,71. Each

dot indicates one tumour dataset coloured by MYCN amplification status (left) or

clinical stage (right). Thedensity of points (kernel density estimate) in each group is

indicated in themargins. e Survival analysis fordata from the SEQCcohort stratified

by strength of the C13* signature. Groups were split by the median. Cox regression

adjusted for age-group (<18, 18–60, or >60 months), INSS stage 4 (yes/no), and

MYCN amplification (yes/no). n = 249 patients per group, or 136 [C13* low] and 47

[C13* high] events. All results are reported in Supplementary Data 11. Source data

are provided as a Source Data file. UMAP Uniform Manifold Approximation and

Projection, EFS event-free survival, INSS International Neuroblastoma Staging

System, FDR false discovery rate.
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We sought to annotate our chromatin modules by looking for

overlaps with genomic regions accessible in human tissues78–80 (Sup-

plementary Data 14). In line with our transcriptome data, we found a

stepwise change toward chromatin resembling differentiated tissues,

e.g., neural tissues in R3-R5 and mesenchyme/stroma in R6/R7 (Sup-

plementary Fig. 12d–f). Next, we examined the identity of genes near

the chromatin modules (Fig. 9b). For each module, we found enrich-

ments of specific marker genes identified in our scRNA-seq analysis of

WT trunk NC differentiation (i.e., clusters C1-C14 from Fig. 1b, c). For

example, chromatin module R7 (accessible in late differentiation

stages, lost in mutants) was linked to clusters C11/C12 (MES-like cells).

Next, we examined TF binding motifs in each module to identify

potential upstream regulators (Fig. 9c). We found an enrichment of

known regulators of each developmental stage, e.g., TFs associated

with trunk NC in R3-R5 (e.g., SOX10) and with sympathetic neuron

development in R6/R7 (e.g., PHOX2A/B)39. Moreover, we found enri-

ched overlaps of modules R2/R4/R5/R8/R9 with super-enhancers

identified in mesenchymal NB cell lines or adrenergic super-

enhancers (in the case of R8), depending on the source annotation

used44,45. Furthermore, R7 and R9 overlapped with super-enhancers

associated with subsets of NB tumours73 with mesenchymal char-

acteristics and with non-MYCN-amplified high-risk tumours, respec-

tively (Fig. 9d). No significant overlap was found with super-enhancers

specific forMYCN-amplified NB. Finally, we examined the accessibility

of each module across a range of NB cell lines (Supplementary

Fig. 12g). As expected, we found that modules R1 and R2 (undiffer-

entiated, early embryonic developmental stages) and modules R4 and

R5 (early trunk NC to sympathoadrenal differentiation) were not

accessible in NB cell lines, while modules R6-R8 (late sympathetic

neurons and consistently open in mutants) were often highly acces-

sible in cell lines. Interestingly, R3 (accessible at NMP and NC stage)

was accessible in most NB cell lines examined except in those with

mesenchymal characteristics (SK-N-AS and SHEP; Supplementary

Fig. 12g). Using data fromother studies, we found that R6-R8were also

accessible in non-NB cell lines and tissues, while R3 was only found

accessible in brain tissue (Supplementary Fig. 12g).

Together, our results suggest a systematic reprogramming of

chromatin throughout trunk NC differentiation. In cells with CNAs and

MYCN overexpression, this orderly reconfiguration of chromatin was

severely disrupted in amanner similar toNBcells, providing aplausible

mechanism for the link between the observed developmental defects

and tumour initiation.

CNA/MYCN-driven cell identity loss is mediated by sets of
developmental transcription factors
Finally, we investigated the links betweenCNA/MYCN-induced changes

in chromatin dynamics, gene-regulatory networks, and the distorted

differentiation trajectories observed at the transcriptional level. In our

scRNA-seq analyses, we had recorded a stepwise alteration of expres-

sion from WT to 17q1qMYCN at D9 comprising four gene sets: D9_1 –

D9_4 (cp. Fig. 4c), which revealedMYCN-driven disruptions of early NC

and the sensory neuron lineage specification. We hypothesised that

these mutation-linked gene sets were also regulated by distinct TFs

and therefore we employed an algorithm to identify TF targets

based on correlated expression patterns81 (Fig. 10a). This analysis

identifiedNR1D1 and TFAP4 as putative TF targets ofMYCN (Fig. 10b, c;

Supplementary Fig. 13a, b; Supplementary Data 15). The nuclear

receptor NR1D1 has been shown to correlate withMYCN amplification

in NB patients82,83 and TFAP4 inhibition leads to differentiation of

MYCN-amplified neuroblastoma cells84,85, supporting the validity of the

inferred target genes.

We intersected the inferred lists of TF targets with the mutation-

linked gene sets (D9_1 – D9_4) and found an enrichment (Fig. 10d;

Supplementary Data 16) of MYCN, NR1D1, TFAP4, and ZIC2 targets in

D9_1 (highly expressed in 17q1qMYCN). Conversely, the gene set D9_2

(expressed in WT/17q/17q1q) was enriched for targets of TFs expected

at this stage of differentiation, e.g., SOX4/5/10, TFAP2A/B, and nuclear

receptors NR2F1/2. The expression of targets of these TFs increased or

decreased along the mutational spectrum, corroborating their asso-

ciation with the mutations (Fig. 10e). While many TF targets switched

expression rapidly with MYCN overexpression, others showed a con-

tinuous pattern with up-/down-regulation already detectable in 17q

and 17q1q, e.g., targets of vagal and early NC regulators HOXB3 and

CDX286 (up), or of sensory neurogenesis regulator NEUROD139 (down).

To aid interpretation, we visualised cell-line-specific interactions

between TFs and targets as edges in connected network diagrams

Fig. 8 | Copy number alterations andMYCN overexpression disrupt chromatin

reconfiguration during trunk NC differentiation. a ATAC-seq read coverage for

WT cells at three example loci. The area reports the normalised read count

aggregated per genomic bin (width = 500bp). Multiple semi-transparent plots are

overlaid for each replicate. Genes within each locus are shown on top with thin/

thick lines indicating introns/exons. The arrows next to gene names indicate the

direction of transcription. Selected peaks have been highlighted manually (dashed

orange lines). b ATAC-seq read coverage of WT and mutant cells at D19 near the

PHOX2B locus. Plots as in (a). c Principal component analysis of all ATAC-seq

datasets, split by condition. Each data point represents one ATAC-seq sample with

the shape indicating the stage at which the sample was collected. The geometric

means of all data of the same stages are connected by arrows to visualise the

stepwise chromatin changes. d Euler diagram visualising the overlap of differen-

tially accessible regions in mutant hESC-derived trunk NC derivatives compared to

WT (DEseq2147; Padj≤0.005, |log2FoldChange|≥ log2(1.5)). Numbers indicate the

total number of regions per cell line aggregated over all stages. Source data are

provided as a Source Data file. D0/3/9/14/19, day 0/3/9/14/19; WT, wild-type

H7 hESCs.
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(Fig. 10f; Supplementary Fig. 13c). These diagrams showcased the

emergence of a new subnetwork of TFs in 17q1qMYCN that centred on

MYCN and incorporated TFs like NR1D1 and TFAP4. In contrast, a

subnetwork involving NC-related TFs such as SOX10 and TFAP2A/B

was lost in these cells. Intriguingly, downregulation of TFs linked to

sensory neuronal development (NEUROD1, ONECUT1) was visible

already in 17q cells (Fig. 10f), perhaps explaining why sensory neuron-

like derivatives were less abundant in 17q cultures (Fig. 2b). In 17q1q,

we additionally observed upregulation of TFs related to early posterior

NC specification includingHOXB3, LEF1, andCDX2, whichwaspartially

reversed (HOXB3) upon MYCN overexpression (Fig. 10f). While many

of the TFs implicated in these developmental gene-regulatory net-

works are weakly or not at all expressed in NB tumours (Supplemen-

tary Fig. 14a), we found that the targets ofMYCN-related TFs (based on

our analysis) are highly expressed in MYCN-amplified tumours (Sup-

plementary Fig. 14b). Our analysis also revealed that the targets of 17q/

1q-related TFs are strongly expressed in groups of tumours, but we

could not determine whether these contained the corresponding

CNAs due incomplete annotations.

In summary, our data suggest a subtle rewiring of gene-regulatory

networks in CNA-carrying hESCs, whichmay be linked to the depletion

of mature sensory NC derivatives and increased early SCP signature

found in our single-cell analyses (cp. Fig. 2). Overexpression of MYCN

resulted in a switch in favour of known NC-linked TFs downstream

of MYCN.

Discussion
Although CNAs are a principal genetic hallmark of paediatric cancers,

it has remained difficult to determine their exact role in tumour

initiation due to the lack of suitable human models. In this study, we

used hESCs carrying CNAs that are prevalent in NB (chr17q and chr1q

gains). The NC is a transient embryonic tissue that is inaccessible after

Fig. 9 | Differentiation of wild-type and mutant hESCs is associated with

changes in distinct chromatin modules. a Heatmaps showing normalised read

counts for all DARs (columns) in anypairwise comparisonof two stages or conditions

(DEseq2147; two-sided tests,P values adjusted formultiple hypothesis testing using the

Benjamini-Hochberg method; Padj≤0.005, |log2FoldChange| ≥ log2(1.5);

ntotal=45,583). Regions have been divided into nine non-overlapping modules

(R1–R9) by hierarchical clustering. Three annotation columns are shown to the right

indicating regions called down- (blue) and up-regulated (red) in each condition. All

DARs are reported in Supplementary Data 12 and 13. b Comparisons of regions

belonging to the nine chromatin modules (from a) and proximal cluster markers

defined in our scRNA-seq analysis (cp. Fig. 1). An enrichment analysis was performed

using hypergeometric tests (hypeR135; background: all genes associated with at least

one ATAC-seq peak) and the size and transparency of circles indicate the odds ratio

and P value, respectively. Significant results are indicated with filled circles (P values

adjusted for multiple hypothesis testing using the Benjamini-Hochberg method;

Padj≤0.005). All results are shown in the figure, and reported in Supplementary

Data 14. c Enrichment analysis for overlaps between chromatin modules and known

TF motifs (HOCOMOCO database154, v11). Statistical tests and plots are as in (b), with

the exception that only overlaps with Padj≤0.0000001 and |

log2FoldChange|≥ log2(2) were marked as significant (background: all peaks with at

least one motif match). The top results per module are shown and all results are

reported in Supplementary Data 14. d Enrichment analysis of overlaps between

regions belonging to the nine chromatin modules and super-enhancers specific to

certain NB epigenetic subtypes44,45,73 (background: all peaks with at least one over-

lapping region annotated in the super-enhancer analyses). Statistical tests anddisplay

as in (b). Sourcedata areprovidedas aSourceDatafile.D0/9/19, day0/9/19;WT,wild-

type H7 hESCs; MUT a mutant hESC line (17q, 17q1q, or 17q1qMYCN); DAR, differ-

entially accessible region; R1-R9, chromatin region modules; n.s., not significant; TF,

transcription factor; NB, neuroblastoma; ADR, adrenergic; MES,mesenchymal; MNA-

HR, notMYCN-amplified high-risk; MNA-LR, not MYCN-amplified low-risk.
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birth; therefore, hESC differentiation allowed us to experimentally

study the effects of these mutations on human sympathoadrenal

progenitors, the putative cells-of-origin of NB.

We provide a comprehensive knowledge base of transcriptomic

and epigenetic changes in this model on a temporal (i.e., during dif-

ferentiation) and a genetic (i.e., with different mutations) axis. Our

data show that chr17q/1q gains impair trunk NC differentiation and

potentiate an SCP-like gene signature. In this aberrant cell state,

overexpression of MYCN (mimicking MYCN amplification commonly

found along with chr17q/chr1q gains in NB tumours) leads to a com-

plete derailment of sympathoadrenal lineage specification, and a

proliferative, tumour-like cellular phenotype that correlates with the

emergence of NB-like tumours in vivo. Moreover, chr17q/1q gains

were found to enhance the MYCN-driven differentiation block and

acquisition of tumourigenic hallmarks such as proliferation, clono-

genicity, and resistance to apoptosis. In line with recent studies29,87,

we speculate that CNAs provide an early selective advantage

manifested by the expansion of undifferentiated cells, which act
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Fig. 10 | Copy number changes facilitate MYCN-mediated blockage of differ-

entiation via developmental transcription factor networks. aTodefine putative

target genes of TFs, we linked TF motif matches in ATAC-seq peaks with proximal

genes and used GRNboost281 to identify highly correlated TF-to-target gene candi-

dates based on our scRNA-seq data. b Top-2500 predicted targets of MYCN.

Putative targets without support in our ATAC-seq data (motif in ≥1 peak near the

gene) have been removed. The Pearson correlation coefficient (r) between each TF

and target gene determined the direction of the putative interaction (r >0.1 =

activating, r < −0.1 = inhibitory, others =marginal). The top-5 TFs have been high-

lighted. All results are reported in Supplementary Data 15. c Average expression

(Seurat module score) of theMYCN target genes (activated targets from b) in our

integrated scRNA-seq dataset (cp. Fig. 4a). d Heatmap displaying the percentage

of gene sets D9_1 to D9_4 (correlated with mutation score, cp. Fig. 4b, c) over-

lapping targets of the indicated TFs. TFs with significant overlaps in at least one

comparison are shown (hypergeometric test, hypeR135; P values adjusted for

multiple hypothesis testing using the Benjamini-Hochberg method; Padj ≤ 0.05, |

log2FoldChange| ≥ log2(4), frequency ≥5%). All results are also reported in Sup-

plementary Data 16. e Smoothed line plots evaluating target gene expression

(Seurat module score) with increasing mutation scores (from Fig. 4b, c). We

curated selected TFs from (d) into groups of TFs losing or gaining activity. The

cell line of each data point is indicated at the bottom. f Network diagrams

visualising putative TF-to-target relations for enriched TF targets (cp. c–e). Each

node represents a TF or target gene, and each edge is a TF-to-target link.Wemade

these networks specific to each condition by using colour to indicate the mean

scaled expression at D9 (edges coloured by source TF) and node size to indicate

themean scaled TTF target score of eachTF.Only labels of TFswithpositive scaled

expression are shown and selected groups of TFs have been merged for visuali-

sation. A diagram with all node labels is shown in Supplementary Fig. 13c. Source

data are provided as a Source Data file. D9, day 9; TF, transcription factor; WT,

wild-type H7 hESCs; r, Pearson correlation coefficient.
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subsequently as a NB-initiating entity upon a second oncogenic hit

such as MYCN overexpression.

The accumulation of NB-associated lesions correlated with a fail-

ure to reprogram chromatin during trunk NC differentiation. Follow-

ing gain of chr17q/1q, cells lost the activity of TFs associated with

sensory differentiation (e.g., NEUROD1) and instead upregulated vagal

NC TFs like HOXB3 and WNT-related effector LEF186,88. MYCN over-

expression on top of theseCNAs abolished chromatin states indicative

of sympathoadrenal differentiation, and instead led to the inductionof

targets of NR1D1, TFAP4, and other TFs of the reported NB regulatory

circruitry44,45,72–76. TFAP4 is a well-established downstream effector of

MYCN84,85, and NR1D1 (Rev-erbα) is a circadian rhythm and metabolic

regulator, and a downstream effector ofMYCN hyperactivity in NB82,83.

Together with the appearance of sensory-related signatures in NB

tumours (C4* and C5*, Fig. 7) our “early MYCN onset” scenario reveals

previously uncharted disruptions of the early sensory NC lineage,

which might complement the currently prevailing model of dichoto-

mic mesenchymal/adrenergic heterogeneity in NB11,44–46,76,89–92. Thus,

ourmodel will facilitate the functional dissection of these TFs via loss-/

gain-of-function approaches to decipher their crosstalk with MYCN/

CNA-driven tumourigenesis.

Complementing earlier studies using cell lines and animal

models12–14,18,19,22, recent single-cell transcriptomic analyses of NB

tumours and metastases15–17,23 corroborated an origin of NB from neu-

roblastic, SCP-like progenitors, and highlighted intra-tumour hetero-

geneity comprising subtypes of tumour cells with adrenergic and

mesenchymal properties. In our in-vitro experiments, we also observed

cells expressing signatures of both cell types, suggesting that ourmodel

could be useful to experimentally investigate the transition between

these and other NB-relevant cell types, providing a new scope into their

role in therapy resistance89. Furthermore, MYCN overexpression (in

conjunctionwithchr17q/1qgains) innascent trunkNCcellswas sufficient

to drive tumourigenic traits, suggesting that in some cases NB initiation

might occur before SCP/neuroblast emergence and that acquisition of

an SCP-like identity may also be a consequence of mutations in earlier

stages rather than the origin. We also observed that MYCN induction

resulted in an apparent block of differentiation when activated at other

stages. In future, our cell models will provide the means to dissect the

specific effects ofMYCN at different timepoints and in specific cell types.

In this study we exploited the phenomenon of culture adaptation

of hESCs49, to obtain sets of cell lines with CNAs that are commonly

observed in NB in an otherwise largely isogenic background. Our

detailed genetic analyses of the used cell lines revealed other muta-

tions that had naturally arisen in these cell lines (Supplementary

Data 4), including a point mutation in the BCL6-interacting cor-

epressor BCOR (BCORL1673F). BCOR mutations have been previously

observed in human induced pluripotent stem cell cultures93,94 and NB

patients with BCOR mutations exhibit a high frequency of CNAs87.

BCORmutations have also been reported together with CNAs in other

cancers, e.g., retinoblastoma95. It would be tempting to speculate that

BCOR dysfunction might facilitate the ability of cells to tolerate the

emergence of certain CNAs; however, to date a causal relationship

remains to be established.

Our hESC-based model provides a tractable system for analysing

tumour initiation events within disease-relevant human embryonic

cell-like populations. In this study, we focused on cell-intrinsic tran-

scriptional regulation since our cultures lack tumour-relevant, non-NC

cell types (e.g., immune cells or Schwann cells) and do not recapitulate

the structural andphysical properties of the human tumourmicro- and

macroenvironment96–99. In the future, itwill bepossible to combineour

systemwith 3D co-culture approaches with defined cell types or to use

biomimetic scaffolds to emulate cell-cell interactions and extrinsic

environmental influences.

In conclusion, this study unravels the developmental effects of

NB-associated mutations and proposes the progressive corruption of

gene-regulatory networks by CNAs as an early step toward tumour

initiation by selection of undifferentiated progenitor phenotypes.

Transformation is then triggered by a second hit with MYCN over-

expression, which tilts cells toward increased proliferation and for-

mation of aberrant cell types. Our data provide a direct link between

CNAs that commonly emerge in hESC cultures with impaired differ-

entiation and the acquisition of tumourigenic hallmarks, thus high-

lighting the importance of rigorous monitoring of such cultures prior

to their use in diseasemodelling or cell therapy application in line with

recent recommendations from the International Society for Stem Cell

Research49,100.

Methods
Human embryonic stem cell (hESC) cell culture and
differentiation
Cell lines and cell culture. We employed H7 (https://hpscreg.eu/cell-

line/WAe007-A) and H9 (https://hpscreg.eu/cell-line/WAe009-A)

hESCs as karyotypically normal, female WT controls38. Use of human

embryonic cells has been approved by the Human Embryonic Stem

Cell UK Steering Committee (SCSC23-29). Their isogenic chr17q

counterparts carry a gain in chromosome 17q (region q27q11) via an

unbalanced translocation with chromosome 6 (H7) or a gain of 17q via

an unbalanced translocation with chromosome 21 with breakpoints at

17q21 and 21p11.2 (H9)50,101. The chr17q1q hESC lines were clonally

derived, after their spontaneous emergence following the genetic

modification of chr17q hESCs. The H7 chr17q1q-MYCN hESC line was

generated by introducing a TetOn-PiggyBac plasmid (PB-TRE3G-

MYCN, plasmid#104542, Addgene) carrying the wild-type version of

theMYCN gene102 while the H9 chr17q1q-MYCN and H7WT-MYCN and

17q-MYCN hESC lines were produced using a Tet-On “all-in-one”

inducible expression cassette containing the TRE3G promoter driving

the expression ofMYCN with a 2A peptide-linked fluorescent reporter

(mScarlet) and a pCAG promoter-driven rtTA3G transactivator103,104.

Plasmids were introduced via nucleofection using either the NeonNxT

Electroporation System (Thermo Fisher Scientific) or the Lonza 4D-

Nucleofector System. In the case of the latter, the Amaxa 4D-

Nucleofector Basic Protocol for Human Stem Cells was employed

with the followingmodification: 2 × 106 cells were transfectedwith 2 µg

plasmid in 100 µl Nucleocuvettes. All cell lineswere tested regularly for

mycoplasma and expression of pluripotency markers. Karyotypic

analysis was carried out using G-banding (number of cells examined =

20–30). A rapid quantitative PCR (qPCR) assay was also regularly

employed to detect the emergence of common CNAs such as chr17q

and 1q gains in our hESC lines105. hESCs were cultured routinely in

feeder-free conditions at 37 °C and 5% CO2 in E8 media106 com-

plemented with GlutaMax (Cat# 35050061, Thermo Fisher Scientific)

on Vitronectin (Cat# A14700, Thermo Fisher Scientific) or on Geltrex

LDEV-Free Reduced Growth Factor Basement Membrane Matrix (Cat#

A1413202, Thermo Fisher Scientific) as an attachment substrate. All

hESC lines described in thismanuscript are available upon request and

completion of a Material Transfer Agreement.

Differentiation toward trunk neural crest. hESC differentiation

toward trunk NC and its derivatives was performed using our estab-

lished protocols35,36. Briefly, hESCs were harvested using StemPro

Accutase Cell Dissociation Reagent (Cat# A1110501, Thermo Fisher

Scientific) and plated at 60,000 cells/cm2 in N2B27 medium supple-

mented with 20 ng/ml of FGF2 (Cat# 233-FB/CF, R&D) and 4μM of

CHIR 99021 (Cat# 4423, Tocris) and 10μMof Rock Inhibitor (Y-27632)

(Cat# A11001, Generon) in a volume of 300 µl/cm2. The N2B27medium

consisted of 50:50 DMEM F12 Merck Life Science/Neurobasal medium

(Gibco) and 1x N2 supplement (Cat# 17502048, Invitrogen), 1x B27

(Cat#17504044, Invitrogen), 1x GlutaMAX (Cat# 35050061, Thermo

Fisher Scientific), 1x MEM Non-essential amino acids (NEAA;

Cat#11140050, Thermo Fisher Scientific), 50μM 2-Mercaptoethanol
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(Cat# 31350010, Thermo Fisher Scientific). After 24 h, media was

refreshed removing the Rock Inhibitor and cells were cultured for a

further 2 days in FGF2/CHIR to generate NMPs (300 µl/cm2). NMPs at

D3 were then re-plated at 50,000 cells/cm2 (H7) or 40,000 cells/cm2

(H9) in neural crest inducing medium consisting of DMEM/F12, 1x

N2 supplement, 1x GlutaMAX, 1x MEM NEAA, the TGF-beta/Activin/

Nodal inhibitor SB-431542 (2μM, Cat# 1614, Tocris), CHIR99021 (1μM,

Cat# 4423, Tocris), BMP4 (15 ng/ml, Cat# PHC9534, Thermo Fisher

Scientific), the BMP type-I receptor inhibitor DMH-1 (1μM, Cat# 4126,

Tocris), 10μM of Rock Inhibitor (Y-27632) on Geltrex LDEV-Free

Reduced Growth Factor Basement Membrane Matrix (Cat# A1413202,

Thermo Fisher Scientific) in a volume of 300 µl/cm2. 48 h later (D5),

media was replaced removing the Rock Inhibitor. Media was refreshed

atD7 andD8 increasing volume to 500 µl/cm2. OnD5, the expressionof

MYCN was induced by supplementing the neural crest media with

100ng/ml (H7-17q1q-MYCN), 200ng/ml (H7WT-MYCN, 17q-MYCN), or

1000 ng/ml (H9-derived lines) of Doxycycline (Cat#D3447,Merck). On

D9, cells were re-plated at 150,000–250,000 cells/cm2 in plates coated

with Geltrex (Thermo Fisher Scientific) in the presence of medium

containing BrainPhys (Cat# 05790, Stem Cell Technologies), 1x

B27 supplement (Cat# 17504044, Invitrogen), 1x N2 supplement (Cat#

17502048, Invitrogen), 1x MEM NEAA (Cat# 11140050, Thermo Fisher

Scientific) and 1x Glutamax (Cat# 35050061, Thermo Fisher Scientific),

BMP4 (50 ng/ml, Cat# PHC9534, Thermo Fisher Scientific), recombi-

nant SHH (C24II) (50 ng/ml, Cat# 1845-SH-025, R and D) and purmor-

phamine (1.5 µM, Cat# SML0868, Sigma) and cultured for 5 days (=D14

of differentiation) in a volumeof 250 µl/cm2.Mediawas refresheddaily.

For further sympathetic neuron differentiation, D14 cells were swit-

ched into amediumcontainingBrainPhys neuronalmedium (StemCell

Technologies), 1x B27 supplement (Invitrogen), 1x N2 supplement

(Invitrogen), 1x NEAA (Thermo Fisher Scientific) and 1x Glutamax

(Thermo Fisher Scientific), NGF (10 ng/ml, Cat#450-01 Peprotech),

BDNF (10 ng/ml, Cat# 450-02, Peprotech) and GDNF (10 ng/ml, Cat#

450-10, Peprotech) for a further 5–14 days (volume of 300 µl/cm2

changing media every other day). Volume was increased up to 500 µl/

cm2, depending on cell density, after day 17 of differentiation.

Immunostaining. Cells were fixed using 4% PFA (P6148, Sigma-Aldrich)

at room temperature for 10min, then washed twice with PBS (without

Ca2+, Mg2+) to remove any traces of PFA and permeabilised using a PBS

supplementedwith 10%FCS,0.1%BSAand0.5%TritonX-100 for 10min.

Cells were then incubated in blocking buffer (PBS supplemented with

10% FCS and 0.1% BSA) for 1 h at RT or overnight at 4 °C. Primary and

secondary antibodies were diluted in the blocking buffer; the former

were left overnight at 4 °C and the latter for 2 h at 4 °C on an orbital

shaker. Samples were washed twice with blocking buffer between the

primary and secondary antibodies. Hoechst 33342 (H3570, Invitrogen)

was added at a ratio of 1:1000 to the secondary antibodies’ mixture to

label nuclei in the cells. We used the following primary antibodies

SOX10 (D5V9L) (Cell Signalling, 89356S, 1:500); HOXC9 (Abcam,

Ab50839,1:50); MYCN (Santa Cruz, SC-53993, 1:100); PHOX2B (Santa

Cruz, SC-376997, 1:100);MASH1 (ASCL1) (Abcam,Ab211327, 1:100); Ki67

(Abcam, Ab238020, 1:100); PERIPHERIN (Sigma-Aldrich, AB1530,

1:400); Cleaved Caspase 3 (Asp175) (Cell Signalling, 9661S, 1:400),

yH2AX (Cell Signalling, S139/9718S, 1:400). Secondary antibodies: Goat

anti-Mouse Affinipure IgG+IgM (H+ L) AlexaFluor 647 (Stratech (Jack-

son ImmunoResearch) 115-605-044-JIR, Polyclonal 1:500); Donkey anti-

Rabbit IgG (H+ L) Alexa Fluor 488 (Invitrogen, A-21206, 1:1000).

Intracellular flow cytometry staining. Cells were detached and

resuspended as single cells using StemPro Accutase Cell Dissociation

Reagent (Cat# A1110501, Thermo Fisher Scientific) and then counted.

Next, 10 million cells/ml were resuspended in 4% PFA at room tem-

perature for 10min. Then cells were washed once with PBS (without

Ca2+, Mg2+) and pelleted at 200 g. Cells were resuspended in PBS at 10

million/ml and used for antibody staining. Permeabilisation buffer

(0.5% Triton X-100 in PBS with 10% FCS and 0.1% BSA) was added to

each sample, followed by incubation at room temperature for 10min.

Sampleswere thenwashedoncewith stainingbuffer (PBSwith 10%FCS

and 0.1% BSA) and pelleted at 200 g. Then samples were resuspended

in staining buffer containing pre-diluted primary antibodies: SOX10

(D5V9L) (1:500; 89356S, Cell Signalling); HOXC9 (1:50; Ab50839,

Abcam); cleavedCaspase 3 (Asp175) (Cell Signalling, 9661S, 1:400). The

samples were left at 4 °C on an orbital shaker overnight. Then, the

primary antibodies were removed, and samples were washed two

times with staining buffer. After washing, staining buffer with pre-

diluted secondary antibodywasadded to the samples and incubated at

4 °C for 2 h. The secondary antibodies used were Goat anti-Mouse

Affinipure IgG+IgM (H+ L) AlexaFluor 647 (Stratech (Jackson Immu-

noResearch) 115-605-044-JIR, Polyclonal 1:500); Donkey anti-Rabbit

IgG (H+ L) Alexa Fluor 488 (Invitrogen, A-21206, 1:1000). Finally,

samples were washed once with staining buffer, resuspended in

staining buffer and analysed using a BD FACSJazz or a CytoFLEX

(Beckman Coulter) flow cytometer. A secondary antibody-only sample

was used as a control to set the gating.

Cell cycle analysis. The 5-ethynyl-2´-deoxyuridine (EdU) assay was

performed following the manufacturer’s instructions (Thermo Fisher

Scientific, C10633 Alexa Fluor 488). We used 10μM of Edu for a 2-h

incubation. Cells were analysed in the flow cytometer (BD FACSJazz)

using the 405 nm laser to detect the Hoechst/DAPI staining and

488 nm to detect the EdU staining.

Low-density plating. Day 9 trunk NC cells derived from hESCs as

described above were harvested and plated at a density of 500 cells/

cm2 in plates pre-coated with Geltrex LDEV-Free Reduced Growth

Factor Basement Membrane Matrix (Cat# A1413202, Thermo Fisher

Scientific) in the presence of DMEM/F12 (Sigma-Aldrich), 1x

N2 supplement, 1x GlutaMAX, 1x MEM NEAA, the TGF-beta/Activin/

Nodal inhibitor SB-431542 (2μM, Tocris), CHIR99021 (1μM, Tocris),

BMP4 (15 ng/ml, Thermo Fisher Scientific), the BMP type-I receptor

inhibitor DMH-1 (1μM, Tocris) and ROCK inhibitor Y-27632 2HCl

(10μM) (300 µl/cm2). The culture medium was replaced the following

day with medium containing BrainPhys (Stem Cell Technologies), 1x

B27 supplement (Invitrogen), 1x N2 supplement (Invitrogen), 1x NEAA

(Thermo Fisher Scientific) and 1x Glutamax (Thermo Fisher Scientific),

BMP4 (50ng/ml, Thermo Fisher Scientific), recombinant SHH (C24II)

(50ng/ml, R and D) and Purmorphamine (1.5 µM, Sigma) (250 µl/cm2).

Plateswere then incubated at 37 °C at 5%CO2. Themediawas refreshed

every 48h. After 5 days of culture, cells werefixed (PFA 4%/10min) and

stained with Hoechst 33342 (Cat# H3570, Invitrogen) for 5min. Colo-

nies were detected using an InCell Analyser 2200 (GE Healthcare) at a

4X magnification. Images were processed using Cell Profiler.

DNA damage analysis. DNA damage was measured by assessing the

phosphorylation state of the histone H2AX on the SerCells were fixed

and immunostained using the anti-yH2AX as described above at dif-

ferent time points. Stained cells were imaged using the InCell Analyser

2200 (GE Healthcare) at 40X magnification. Image analysis was per-

formed using a pipeline in CellProfiler that allowed us to detect the

number of foci of yH2AX antibody per nuclei.

Quantitative real-time PCR. RNA extractions were performed using

the total RNA purification kit (Norgen Biotek, 17200) according to the

manufacturer’s instructions. cDNA synthesis was performed using the

High-Capacity cDNA Reverse Transcription kit (ThermoFisher,

4368814). Quantitative real-time PCR was performed using PowerUp

SYBR master mix (ThermoFisher, A25780) and run on a QuantStudio

12 K Flex (Applied Biosystems). Primers used for MYCN: cca-

caaggccctcagtacc (forward), tcttcctcttcatcatcttcatca (reverse).
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Mouse experiments
Cell preparation for xenotransplantation. H7 wild type, 17q1q, and

17q1qMYCN hESCs were differentiated up to day 9 following the pro-

tocol described above. Cells were harvested using Accutase to create a

single cell suspension, counted, and resuspended with media con-

taining Matrigel before injection.

Mice and in-vivo experiments. All animal experiments were approved

by The Institute of Cancer Research AnimalWelfare and Ethical Review

Body and performed in accordance with the UK Home Office Animals

(Scientific Procedures) Act 1986, the UK National Cancer Research

Institute guidelines for the welfare of animals in cancer research and

the ARRIVE (animal research: reporting in-vivo experiments) guide-

lines. Female NSGmicewere obtained fromCharles River and enrolled

into trial at 6–8weeks of age.Miceweremaintained on a regular diet in

a pathogen-free facility on a 12 h light/dark cyclewith unlimited access

to food and water.

Subcutaneous xenograft. One million cells with 50% Matrigel were

injected subcutaneously into the right flank of NSG mice (female;

6–8 weeks old) and allowed to establish a murine xenograft model.

Studies were terminated when the mean diameter of the tumour

reached 15mm. Tumour volumes were measured by Vernier caliper

across two perpendicular diameters, and volumes were calculated

according to the formula V = 4/3π [(d1 + d2)/4]3; where d1 and d2 were

the two perpendicular diameters. The weight of the mice was mea-

sured every 2 days. Mice were fed with either regular diet or DOX diet

(chow containing 20 g of DOX per kg of diet) to induce the expression

of MYCN.

Orthotopic (adrenal)xenograft. 100,000 cells with 50%Matrigel were

injected into the right adrenal gland of NSG mice (female; 6–8 weeks

old) and allowed to establish a murine xenograft model. Detection of

xenografted tumours was performed by magnetic resonance imaging

(MRI). The weight of the mice was measured every 2 days. Mice were

fed with either standard diet or DOX diet (chow containing 20 g of

DOX per kg of diet) to induce the expression of MYCN. Magnetic

resonance images were acquired on a 1 Tesla M3 small animal MRI

scanner (Aspect Imaging). Mice were anesthetised using isoflurane

delivered via oxygen gas and their core temperaturewasmaintained at

37 °C. Anatomical T2-weighted coronal images were acquired through

the mouse abdomen, from which tumour volumes were determined

using segmentation from regions of interest (ROI) drawn on each

tumour-containing slice using the Horos medical image viewer.

Pathology. Tissue sections were stained with haematoxylin and eosin

(H&E) or specific antibodies (MYCN, Merck; Ki67, BD Pharmingen).

Immunohistochemistry was performed using standard methods.

Briefly, 5μm sections were stained with antibodies, including heat-

induced epitope retrieval of specimens using citrate buffer (pH 6) or

EDTA buffer.

Zebrafish experiments
Cell preparation for xenotransplantation. Pre-differentiated neural

crest cells were frozen on D7 during their in-vitro differentiation as

described above, shipped, and subsequently thawed in DMEM at room

temperature. All cells were retrieved in complete neural crest media as

described above and plated onto Geltrex-coated wells in the presence

of Rock inhibitor (50 µM) for 24 h. 17q1q cells were additionally treated

with DOX (100ng/ml) to induceMYCN expression. On D8, media were

refreshed, and respective DOX treatment was continued but Rock

inhibitor was discontinued. On D9, cells were collected for xeno-

grafting experiments and labeled with CellTraceTM Violet (Invitrogen,

Thermo Fisher Scientific) for imaging. For this, cells were harvested

with Accutase (PAN-Biotech) and resuspended at a concentration of

1*106 cells/ml in PBS. CellTraceTM Violet was added to a final con-

centration of 5 µM for an incubation time of 10min at 37 °C in the dark.

The cell-staining mixture was filled up with 5 volumes of DMEM sup-

plemented with 10% FBS and the suspension was incubated for 5min.

After gentle centrifugation (5min, 500 g, 4 °C) the collected cells were

resuspended in fresh DMEMmedium supplemented with 10% FBS and

incubated at 37 °C for 10min. Adhering/ clumping cellswere separated

via a 35 µm cell strainer. The cell number was adjusted to a con-

centration of 100 cells/nl in PBS. The freshly stained cells were kept on

ice until transplantation. SK-N-BE2C-H2B-GFP cells69 (a kind gift of F.

Westermann) were cultured in RPMI 1640 medium with GlutaMAXTM

(Cat# 61870044, Thermo Fisher Scientific) supplemented with 10% (v/

v) fetal bovine serum (Cat# F7524500ML, Sigma), 80 units/ml peni-

cillin, 80 µg/ml streptomycin (Cat# 15140122, Thermo Fisher Scien-

tific), 1 nM sodium pyruvate (Cat# P0443100, PAN-Biotech), 25mM

Hepes buffer (PAN-Biotech) and 8 µl/ml G418. For zebrafish xeno-

transplantations, the GFP-labelled cells were harvested and resus-

pended in PBS at a density of 105/µl as described above.

Zebrafish strains, husbandry, and xenotransplantation. Zebrafish

(Danio rerio) were reared under standard conditions in a 14 h/10 h light

cycle according to the guidelines of the local authorities (Magis-

tratsabteilung MA58 of the municipal administration of Vienna,

Austria) under licenses GZ:565304-2014-6 and GZ:534619-2014-4.

For xenotransplantation experiments, the pigment mutant strain

mitfab692/b692; ednrbab140/b140 was used. mitfab692/b692; ednrbab140/b140

embryos raised at 28 °C were anaesthetised with Tricaine (0.16 g/l

Tricaine (Cat# E1052110G, Sigma-Aldrich), adjusted to pH 7 with

1 M Tris pH 9.5, in E3) and xenotransplanted at 2 days post fertili-

sation (dpf)107. For xenotransplantation, a micromanipulator (Cat#

M3301R, World Precision Instruments) holding a borosilicate glass

capillary (Cat# GB100T-8P, without filament, Science Products)

connected to a microinjector (FemtoJet 4i, Eppendorf) was used.

Transplantation capillaries were pulled with a needle puller (P-97,

Sutter Instruments) and loaded with approximately 5 µl of tumour

cell suspension. Cells were injected into the perivitelline space

(PVS) of larvae. Visual inspection was carried out at 2 h post-

injection on an Axio Zoom.V16 fluorescence microscope (Zeiss,

Jena) and only correctly injected larvae were used in subsequent

experiments and further maintained at 34 °C.

Automated imaging andquantification. One day post injection (1dpi)

and 3dpi xenografted larvae were anaesthetised in 1x Tricaine and

embedded in a 96-well ZF plate (Hashimoto Electronic Industry) with

0.5% ultra-low gelling agarose (Cat# A2576-25G, Sigma-Aldrich) for

automated imaging on a high-content imager (Operetta CLS, Perki-

nElmer). Images were acquired with a 5x air objective. Exposure times

for brightfield images was 40ms at 10% LED power. CellTrace Violet

was recorded with an excitation of 390–420 nm at 100% LED power

and detection at 430–500 nm using an exposure time of 600ms. GFP

was excited with 460–490nm and detected at 500–550nm with an

exposure time of 400ms. 23 planes with a distance of 25 µm were

imaged per field of view of the laterally orientated larvae to cover the

whole tumour. Tumour size was quantifiedwithHarmony Software 4.9

(PerkinElmer).

Ethical use of data
This study did not generate any new genomics data from patients.

However, we performed re-analyses of previously published (sc)RNA-

seq and SNP-array data that was previously collected at our institutions.

The collection and research use of human tumour specimen was per-

formed according to the guidelines of the Council for International

Organisations of Medical Sciences (CIOMS) and World Health Organi-

sation (WHO) andhas been approvedby the ethics boardof theMedical

University of Vienna (Ethikkommission Medizinische Universität Wien;
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EK2281/2016, 1216/2018, 1754/2022). Informed consent has been

obtained from all patients or parents/guardians/legally authorised

representatives. The age-adapted informed consent for the CCRI Bio-

bank covers the use of left over materials from medically necessary

surgery or biopsy, which after completion of routine diagnostic pro-

cedures is biobanked (EK1853/2016) and available for research pur-

poses, including genetic analysis, that are further specified in EK1216/

2018 and EK1754/2022: to conduct genetic and transcriptomic analysis

and link to clinical data for survival analysis. All data obtained from

external sources derived from studies where informed consent was

given for broad research use.

Whole-exome sequencing
Library generation and sequencing. Genomic DNA (gDNA) from cell

lineswas isolatedusing adesaltingmethodand library preparationwas

performed with 100 ng gDNA and the Enzymatic Fragmentation

(undifferentiated hESC lines; Supplementary Fig. 4b, c) or Enzymatic

Fragmentation 2.0 (cells after differentiation; Fig. 5e, Supplementary

Fig. 9f, g) kit, and Twist Universal Adapter System (Twist). For whole-

exome sequencing, the libraries were pooled and enriched with the

Exome v1.3 and RefSeq (Human Comprehensive Exome) spike-in

capture probes (Twist) according to the manufacturer’s protocols.

Libraries were quantified (Qubit 4 Fluorometer) and quality-checked

on4200TapeStation and2100Bioanalyzer automated electrophoresis

instruments (Agilent) and diluted before sequencing by the Biomedi-

cal Sequencing Facility at CeMM on an Illumina NovaSeq SP flowcell in

2x100bp paired-end mode (median coverage 87.2; Supplemen-

tary Data 1).

Variant identification and annotation. Raw reads were processed

using the nf-core sarek108,109 WES pipeline version 2.7.2. Variant calling

was performed in a tumour-normal matched mode, with the parental

H7 line serving as the matched normal sample. Three variant callers,

Mutect2, Strelka, and Manta110–112, were employed for comprehensive

variant identification. Resulting VCF files from Mutect2 and Strelka

were normalised using bcftools norm (v1.9)113 and subsequently anno-

tated using the Ensembl Variant Effect Predictor (VEP; v99.2)114. The

identified variants were filtered based on the default quality control

measures implemented in each tool (FILTER column in the VCF con-

tains “PASS”). To identify biologically relevant variants a filtering

strategy was applied that was partly inspired by MAPPYACTS115: (i)

exclude variants for which GERMQ or STRQ Phred-scaled values are

<30; (ii) exclude variants with a population allele frequency of over

0.1% (in 1000 Genomes or gnomAD); (iii) only include variants

that have any of “coding_sequence_variant”, “frameshift_variant”,

“incomplete_terminal_codon”, “inframe_deletion”, “inframe_insertion”,

“missense_variant”, “protein_altering_variant”, “start_lost”, “stop_-

gained”, “stop_lost” as Consequence; (iv) only include variants that

have any of IMPACT = =HIGH, SIFT == “deleterious”, PolyPhen ==

probably_damaging or damaging116,117; (v) exclude variants that have a

variant allele frequency <= 5%.

Copy number calling. CNAs were called by Sequenza (version

3.0.0)118. GC content was calculated for hg38 using sequenza-utils

gc_wiggle. Depth ratio and B-allele frequency information was calcu-

lated using bam2seqz for each non-parental cell line using the parental

cell line as a normal reference, single nucleotide polymorphisms

(SNPs) were considered heterozygous if the allele frequencywas in the

range 0.4 to 0.6 (--het 0.4). Data was then binned using the seqz_bin-

ning command. Autosomes and the X chromosome were then

extracted using Sequenza (sequenza.extract) and, as the cell lines are

not contaminated with normal cells as is common place in tumour

tissue samples, cellularity was tested in a range of 1 to 1.0002 to ensure

a pure solution was produced by Sequenza. Copy number profiles

were then plotted using ComplexHeatmaps119. Breakpoints were

considered telomeric if they were within 1Mbp of the beginning or end

of the chromosome. Aberrant segments with 100 or more B-allele

frequency observations (N.BAF) were considered to be confidently

supported and are reported in Supplementary Data 5.

Phylogenetic analysis. Mutations called by Mutect2120 with the PASS

filter and of VARIANT_CLASS SNV as annotated by VEP114 that over-

lapped with the exome target panel without padding were used

for phylogenetic analysis. Mutations were required to have a mini-

mum variant allele frequency (VAF) of 0.2 to ensure only high

frequency clonal mutations were included in the phylogeny. Phylo-

genetic trees were constructed using parsimony and the phangorn R

package121. The parsimony ratchet method (pratchet) was used to

search for the best tree and the tree was rooted on the parental cell

line. Branch lengths were calculated using the acctran function.

Distance between tree tips was calculated using the distTips function

in the adephylo R package122. Phylogenetic trees were plotted using

ggtree123.

Pre-processing and analysis of NB SNP-array data. SNP-array data

from tumour or bone marrow obtained at diagnosis from Austrian

cases with INSS stage 4 high-risk NB51 were re-analysed for chr17 and

chr1 CNAs using VARAN-GIE (v0.2.9), yielding 88 samples with CNAs

(>10 kb) on at least one of these chromosomes. Genomic segments

weremanually curated andplotted using ggplot2 (v3.3.5). The available

CNA annotations based on the human genome reference hg19.

Because of this, the breakpoint annotations for our own cell lines have

been brought from hg38 to hg19 using liftOver from the R package

rtracklayer (v1.54.0).

Single-cell RNA sequencing (10x Genomics)
Library generation and sequencing. Single-cell suspensions were

barcoded using oligo-conjugated lipids following the MULTI-seq

workflow and frozen live124 for G1-G13 (note, G2 was removed due to

a technical failure), or frozen live and barcoded after thawing using the

CELLPLEX (10x Genomics) workflow for G14-G27. After thawing cells

were stained with DAPI. A maximum of 10,000 live cells per sample

were sortedwith a FACS-Aria v3 and pooled in sets of 3 or 4 samples by

differentiation stage (from 3 to 5 independent replicate differentiation

experiments). Each pooled group was processed using the 10X Geno-

mics Single Cell 3’ v3.1 workflow following the manufacturer’s

instructions. Enriched barcode libraries were indexed following the

MULTI-seq workflow124. After quality control, libraries were sequenced

on the Illumina NovaSeq S4 (G1-13) or S2 (G14-27) platform in

2 × 150bp paired-end mode. Supplementary Data 1 includes an over-

view of sequencing data and performance metrics.

Raw data processing and alignment. Raw sequencing data were

processedwith theCellRangermulti v7.1.0 software (10xGenomics) for

cell-level demultiplexing and alignment to the human reference tran-

scriptome (refdata-gex-GRCh38-2020-A assembly provided by 10x

Genomics). Following initial data processing, all subsequent analyses

were performed in R (v4.1.3) using Bioconductor packages and the

Seurat125–127 (v4.1.0) package.

Default basic processing.We applied processing of scRNA-seq data in

many instances across this manuscript. Unless parameters are other-

wise specified, the default processing of scRNA-seq counts involved

the following steps. Counts were normalised for read depth using

Seurat’s SCTransform128 v0.3.3 (parameters: method = “glmGamPoi”;

variable.features.n = 5000), followed by RunPCA (keeping the top 50

components), and inference of cell neighbourhoods by FindNeighbors

on the PCA reduction. Finally, Uniform Manifold Approximation and

Projection (UMAP) was performed using Seurat’s RunUMAP function

with default parameters. Clusteringwasperformedusing FindClusters.
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Quality control. For each dataset, we first assessed technical covari-

ates and characteristic expression profiles separately. We kept cells

with less than 15% mitochondrial UMI counts, and at least

1000 detected genes and applied basic scRNA-seq processing and

clustering of the cells (SCTransform128 v0.3.3, parameters: method = “

glmGamPoi”). Cell cycle scoring was calculated as recommended by

Seurat and added as a variable to regress in SCTransform (vars.to.re-

gress = ”ccvar”). We used clusters devoid of markers and/or char-

acterised by abnormally high mitochondrial expression, to derive a

library-specific UMI count andmitochondrial percentage threshold for

high-quality cells (thresholds for counts/mitochondrial percentage:

G1: 3162/10%; G3: 10000/7.5%; G4: 10000/8%; G5: 3162/10%; G6:

10000/8%; G7: 12589/8%; G8: 7943/10%; G9: 7079/10%; G10: 3981/7.5%;

G11: 3981/10%; G12: 5012/10%; G13: 10000/10%; G14: 5500/13%; G15:

3500/5%; G16: 3000/8%; G17: 2000/8%; G18: 3500/10%; G19: 1800/6%;

G20: 3000/15%; G21: 6000/8%; G22: 5000/6%; G23: 3000/6%; G24:

1500/6%; G25: 3500/5%; G26: 2000/10%; G27: 3000/15%). In addition,

empty and doublet droplets were flagged with Emptydrops129 (v1.14.2;

default parameters) and scDblFinder130 (v1.8.0; parameters:dbr =0.01),

respectively. We retained only cells with Emptydrops FDR >0.05 and

individual scDblscore cutoffs for the datasets were: G1: 0.01; G3: 0.016;

G4: 0.005; G5: 0.005; G6: 0.003; G7: 0.005; G8: 0.005; G9: 0.005; G10:

0.005; G11: 0.005; G12: 0.005; G13: 0.005; G14: 0.005; G15: 0.005;

G16: 0.0075; G17: 0.002; G18: 0.007; G19: 0.00375; G20: 0.01; G21:

0.007; G22: 0.007; G23: 0.0125; G24: 0.003; G25: 0.007; G26: 0.005;

G27: 0.007.

Sample demultiplexing. To demultiplex cells belonging to different

pooled samples, we used deMULTIplex2131 (v1.0.1) with default para-

meters on each dataset using the tag counts from CellRanger multi. All

non-singlet cells were filtered out from the dataset.

Normalisation, clustering, and marker gene analysis for the main

dataset. Raw UMI counts were normalised using Seurat’s

SCTransform128 (parameters: variable.features.n= 5000, method = ”

glmGamPoi”, vars.to.regress= ”ccvar”) to account for differences in

sequencing depth and cell cycle phase (the variable “ccvar” variable was

calculated as the difference of S and G2/M scores using Seurat’s Cell-

CycleScoringmethodwith default parameters). To integrate data from 3

to 5 independent differentiation experiments (replicates; Supplemen-

tary Data 1), we used scVI132 (v0.20.3; parameters: n_epochs= 50) using

5000 highly variable features of the input data with Python 3.11 via

reticulate (v1.24). Nearest neighbours were identified using Seurat’s

FindNeighbors function (parameters: k= 30) on the ten scVI compo-

nents. The same scVI reduction was used to find a low dimensionality

UMAP projection using Seurat’s RunUMAP for both the WT-only

(n.neighbours = 50, min.dist =0.5, dims= 1:8) and full dataset (n.neigh-

bours: 30, min.dist=0.4, dims = 1:8 method= ”umap-learn”, metric = ”

correlation”). Clusters on the UMAP projection were defined using

Seurat’s FindClusters (parameters [full dataset]: resolution =0.6, para-

meters [WT-only]: resolution =0.4, algorithm =4).Neighbouringclusters

that shared functional markers weremergedmanually and relabelled to

roughly reflect differentiation order. Finally, markers for each cluster

were identified using the FindAllMarkers2 function (DElegate133 v1.1.0;

parameters: method = ”deseq”, min_fc = 1, min_rate =0.5, replicate_-

column = ”replicate”), with each cluster compared to all the other cells in

the dataset. Genes with an adjusted P value less than 0.05 were selected

as markers. (Supplementary Data 2, 8). To compare mutant and wild-

type cells, we filtered the integrated dataset to cells from D9 and iden-

tified pairwise DEGs (Padj ≤0.05, |log2FoldChange | > 0.25) between each

mutant condition and WT using the findDEfunction (Delegate v1.1.0;

parameters: group_column = “condition”, method= “deseq”, replicate_-

column = “day_rep”). We discarded DEGs that were not expressed in at

least 20% of cells on one side of the comparison. Up- and down-

regulated DEGs on chr1q, on chr17q, and outside either CNA were then

tested separately to identify significant overlaps with MSigDB

HALLMARK134 gene sets using the hypergeometric test implemented in

the hypeR135 package (v1.10.0). DEGs and enriched pathways are listed in

Supplementary Data 6 and Supplementary Data 7.

Pseudotime trajectory analysis. Pseudotime trajectories were infer-

red using Slingshot136 (v2.2.0; default parameters) using a filtered

dataset comprising only MES-SYM clusters C11, C12, C13, and C14 (cp.

Fig. 1d; Supplementary Fig. 3). The filtered dataset was reprocessed

using the basic scRNA-seq processing workflow as described above

and the first two principal components were used to find trajectories

between two extreme clusters. Only one trajectory was found. Genes

whose expression was associated with the trajectories were identified

with the generalised additive model and association test as imple-

mented in tradeSeq137 (v1.8.0; parameters: knots = 5). The top genes

with the highest Wald statistic were selected for reporting (Supple-

mentary Data 3). Transcription factors were identified based on the

human transcription factors database138 in Supplementary Fig. 3b.

Cross-dataset annotation, label transfer, and signature scores. To

map data between scRNA-seq datasets, we employed Seurat’s

label transfer workflow. Both query and reference datasets were pro-

cessed using the default basic scRNA-seq processing workflow as

described above and mapped (FindTransferAnchors, TransferData,

IntegrateEmbeddings, NNTransform, and MappingScore functions;

default parameters) using the 50first principal components of the PCA

reduction from both datasets. To visualise cell mappings, we used

“glasswork plots” (see below). In this study, the following mappings

were performed with the same processing and parameters:

1. Human foetal adrenal reference datasets15,16 mapped onto WT-

only (Fig. 1d–f; Supplementary Figs. 2i, j, 3c) and full in-vitro

(Figs. 2d–f, 4a; Supplementary Fig. 6g) scRNA-seq references.

Upon obtaining consistent results for both (Supplementary Fig.

2j), the reference provided by Kameneva et al. was used

throughout the analysis because of the curated cell type markers

they provided (Supplementary Fig. 2i). These gene signatures

were also quantified with Seurat’s AddModuleScore function

(default parameters) in Figs. 1e, f, 2f.

2. Ourmutant scRNA-seq datamapped onto the wild-type reference

(Fig. 2b, c).

3. NB tumour scRNA-seq data mapped onto our WT-only reference

(Fig. 7b, c; Supplementary Fig. 11). See additional details about

these datasets and processing in the section “Pre-processing and

mapping of NB tumour data” below.

4. Extended data from a split-pool scRNA-seq (Parse Biosciences)

mapped to the WT-only dataset (10x Genomics) (Supplementary

Fig. 8b, c).

Validation of label transfers. WT mappings to adrenal gland refer-

ences were validated by the presence of relevant markers (Supple-

mentary Fig. 2i). Mutant and tumour cell mappings were not strictly

curated via markers (i.e., they were allowed to deviate). When analys-

ing markers of mapped mutant and tumour cells, cells with a predic-

tion score of 0.4 or higher were used to minimise ambiguous

mappings and maximise marker discovery. Shared markers were

consistently found between the query and the cognate cells in the

reference, even though their number varied (Fig. 7c, Supplementary

Fig. 8d).

Visualising label transfers with glasswork plots. To visualise cell

mappings, we used “glasswork plots”, in which the UMAP of the

reference was used to define the coordinates of concave hulls for each

cluster (calculated with R package concaveman v1.1.0). Query cells

mapping to each cluster were plotted at random positions within their

mapped target cluster hull to mitigate overplotting. Input cell
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populations for the plot were downsampled evenly by condition and

stage (n = 1000 cells) to avoid sampling effects.

Mutation score analysis. To calculate the mutation score, we focused

on days 9, 14, and 19 as they contained samples from all conditions.

We encoded each cell’s genotype as a number G based on the

genetic lineage of hESC lines: G(WT) =0, G(17q)=1, G(17q1q)=2, and

G(17q1qMYCN)=3. We then calculated themutation scorem as themean

G of the cell’s K nearest neighbouring cells (K= 30) in the scVI reduc-

tion’s neighbourhood graph (see “Normalisation, clustering, andmarker

geneanalysis”). Divisionby3 yieldeda scorebetween0and 1. Intuitively,

the mutation score of a cell indicates whether a cell phenotypically

resembles wild-type cells or cells with a given number of relevant

alterations independent of its own genotype. To find genes correlated

with the mutation score, we calculated Pearson correlation coefficients

with gene expression in three settings: (i) correlation for each genewith

m in all cells; (ii) correlation for each gene with m leaving out the

17q1qMYCN cells, to emphasise subtle correlations with CNAs; and (iii)

correlation for each gene and the neighbourhood entropy (Shannon

entropy of all genotype scores G of the K nearest neighbours), to find

genes appearing in mixed regions. All non-duplicate absolute correla-

tions (calculated using R’s cor.test, parameters: method = ”pearson”,

exact =TRUE) were subject to Bonferroni correction and ranked. The

top correlated genes (p ≤0.05) per differentiation stage (D9, D14, D19)

are reported in Supplementary Data 9.

Pre-processing and mapping of NB tumour data. We collected

scRNA-seq data for tumours with reported MYCN amplification from

three sources from the stated database or the corresponding authors:

– Three samples (all primary adrenal, 2 male [Dong_T162,

Dong_T230], 1 female [Dong_T200]; accession GSE137804 [Gene

Expression Omnibus])17,

– three samples (1 primary adrenal, 1 primary intraspinal, 1 relapse/

occipital subcutaneous bone metastasis [Jansky_NB14]; 1 female

[Jansky_NB08], 2 male [Jansky_NB01, Jansky_NB14]; accession

EGAS00001004388 [European Genome-Phenome Archive])15,

– and four samples (all metastatic bone marrow; 3 female [Feta-

hu_M1, Fetahu_M3, Fetahu_M4], 1 male [Fetahu_M2]; accession

GSE216176 [Gene Expression Omnibus])23.

Additional details about each dataset are available from the ori-

ginal research articles. In each dataset, cells with more than 500 reads

per barcode and mitochondrial DNA less than 20% were kept for fur-

ther analysis. We then performed an adrenal gland mapping16 (same

workflow as described above) and discarded cells mapping to the

category “HSC_and_immune”. This process left us with strong CNA

profiles (see below) at key genomic positions such as chr2p (MYCN

locus). Cells were then subjected to default basic scRNA-seq proces-

sing (see above) andmapped onto ourWT-only reference (see above).

Inference ofCNAprofiles fromscRNA-seq data. To infer tumour cell

CNAprofiles fromscRNA-seq expressiondata,weused the infercnv139R

package (v1.10.1). We first removed cells with less than 500 UMI

counts. Then, we created a pan-patient healthy reference cell popula-

tion by sampling from each patient 500 cells that we determined to be

HSC/immune cells based on amapping to a human embryonic adrenal

gland reference16. For every patient, we then ran infercnvwith the non-

HSC/immune cells as themain input and the pan-patient HSC/immune

cells as a reference. The cutoff parameter was set to 0.1, all other

parameters were left at their default values.

Pre-processing and analysis of NB bulk RNA-seq data. We obtained

bulk RNA-seq counts and associated metadata from patient-derived

NB samples from three sources: TARGET24 (phs000467 [Genomic Data

Commons]), SEQC70,71 (GSE49711 [Gene Expression Omnibus]) and

fromour institution96,99,140–146 (labelled “CCRI” in thefigures; GSE94035,

GSE147635 and GSE172184 [Gene Expression Omnibus]). Open access

unstranded counts fromTARGET patients were obtained directly from

the GDC data portal (subsection TARGET:NBL, phs000467). Counts

from the CCRI patients were obtained in-house. Both CCRI and TAR-

GET datasets were normalised using DESeq2147 (v1.34.0) and trans-

formed using the variance stabilising transformation. A prenormalised

log2 SEQC matrix was exponentiated, rounded to the nearest integer,

and subjected to variance stabilising transformation. In all datasets,

the names of relevantmarker genes were harmonisedmanually in case

the gene was found with a different name. Each dataset was analysed

separately due to differences in count quantification and normal-

isation. PCA projections of the normalised variables revealed mainly

biological/clinical variables (and not technical variables) having major

weight in the variance of the datasets. Only NB data collected at

diagnosis were used for our analyses (discarding, e.g., gang-

lioneuroblastoma and relapse data). To quantify the in-vitro cluster

signature strength, we used the intersection of markers found both in

our in-vitroWT-only dataset (SupplementaryData 2) and in the tumour

scRNA-seq datasets (Supplementary Data 10). We then used the func-

tion gsva (from GSVA148 v1.42.0; parameters: method = ”ssgsea”) to

calculate signature scores for each of the shared cluster signatures.

Survival analysis. We obtained survival data for the SEQC cohort from

the original publication70. Event-free survival (EFS) was defined as time

from diagnosis to any of the following events: Relapse/progression of

disease, or death due to any cause and secondary malignancies.

Patients without events were censored at last follow-up evaluation.

Statistical analyses were performed using SAS (v9.4). Cluster sig-

natures (see previous section) were dichotomised using the median

value, and the impact of these signatures on EFS was evaluated in a

Cox-proportional hazards model adjusting for stage4 (yes/no), age-

group (<18, 18–60, >60) andMYCN amplification status (yes/no). Each

cluster signature was evaluated separately. Two-sided P values were

adjusted for multiple hypothesis testing using the Benjamini-

Hochberg method and are reported together with hazard ratios and

two-sided 95% confidence intervals in Supplementary Data 11.

Split-pool single-cell RNA sequencing (Parse Biosciences)
Library generation and sequencing. Cells were harvested with

Accutase to create a single-cell suspension, then were counted using

Bio-rad Tc10 Automated cell counter in the presence of Trypan Blue

Stain (Bio-rad). For cell fixation we used the Evercode Fixation v2

Kit (SKU: ECF 2001, Parse Biosciences, Seattle, USA) as per manu-

facturer instructions. A maximum of 5000 cells per sample were

multiplexed using the Evercode WT Mega v2 kit (Parse Biosciences).

Three rounds of combinatorial barcoding were performed, and cells

were then pooled and split into 16 sub-libraries (one small 5000-cell

sub-library and 15 large sub-libraries of 32,000 cells each). After DNA

amplification and library prep, the small library was sequenced as

part of a larger Illumina NovaSeq S4 flowcell and the 15 large sub-

libraries on one dedicated NovaSeq S4 platform in 2 × 150 bp paired-

end mode.

Raw data processing and alignment. Raw sequencing data were

processed with the split-pipe v1.0.6p software (Parse Biosciences) for

cell-level demultiplexing and alignment to the human reference tran-

scriptome (refdata-gex-GRCh38-2020-A assembly provided by 10x

Genomics; parameters: -m all -c v2). Following initial data processing,

all subsequent analyses were performed in R (v4.1.3) using Bio-

conductor packages and the Seurat125–127 (v4.1.0) package.

Basic processing, quality control, and marker analysis. We applied

the cb_filter_count_matrix (default parameters) function from canceRbits

(v0.1.6; default parameters) to remove cells with high mitochondrial
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counts (>15%), unusually high/low number of genes (<300 genes or

z-score of log(genes) not in range (−3, 3)), abnormally high/low number

of reads (z-score of log(transcripts) not in range (−3, 3)), or an abnormal

transcript-to-gene ratio (z-score of residuals of loess fit of “log(genes) ~

log(transcripts)”not in range (−5, 5)), and the cb_seurat_pipeline function

(parameters: seurat_max_pc= 15, metric = “manhattan”, k_param= 20,

n_neighbors =40, cluster_res=0.3) to perform a standard Seurat analysis

workflow including data normalisation, dimensionality reduction, and

clustering. Subsequently, the data were mapped to our 10x-based WT-

only reference as described above. To identify marker genes for cells

mapped to different clusters of the WT reference (for cells with pre-

diction score >=0.4) we again used DElegate::FindAllMarkers2. (DEle-

gate v1.1.0; parameters: method = ”deseq”, min_fc = 1, min_rate=0.5,

replicate_column = ”replicate”), and kept all genes with adjusted pvalue

of 0.05 of less.

Chromatin accessibility mapping (ATAC-seq)
Library generation and sequencing. ATAC-seq was performed using

established protocols77. Briefly, 20,000 to 50,000 cells were lysed in

the transposase reaction mix (12.5μl 2xTD buffer, 2μl TDE1 [Illumina],

10.25μl nuclease-free water, 0.25μl 1% digitonin [Promega], and 0.5μl

of 50x cOmplete Mini EDTA-free Protease Inhibitor Cocktail [Roche])

for 30min at 37 °C. Following DNA purification with the MinElute kit

(Qiagen) eluting in 12μl, 1μl of elutedDNAwas used in a qPCR reaction

to estimate the optimum number of amplification cycles. The

remaining 11μl of each library were amplified for the number of cycles

corresponding to the Cq value (i.e., the cycle number at which fluor-

escence has increased above background levels) from the qPCR using

custom Nextera primers149. Library amplification was followed by SPRI

(Beckman Coulter) size selection to exclude fragments larger than

1200bp. Library concentration was measured with a Qubit fluo-

rometer (Life Technologies), and librarieswerequality checked using a

2100 Bioanalyzer (Agilent Technologies). Libraries were sequenced by

the Biomedical Sequencing Facility at CeMM using the Illumina HiSeq

4000 platform in 1 × 50bp single-end mode. Supplementary Data 1

includes anoverviewof the sequencing data and performancemetrics.

Raw data processing, alignment, and quality control. Raw sequen-

cing data were processed using PEPATAC150 (v0.9.5; default parameters)

including alignment to the human genome (refdata-cell ranger-atac-

GRCh38-1.2.0 assembly provided by 10x Genomics for maximum com-

patibility with scRNA-seq analyses). Following initial data processing, all

subsequent analyses were performed in R (v4.1.3) using Bioconductor

packages and ggplot2151 (v3.3.5) and ComplexHeatmap119 (v2.10.0) for

plotting. After discarding low-quality data (NRF <0.65 or PBC1 <0.7 or

PBC2 < 1 or FRiP <0.025), we removed peaks overlapping blacklisted

regions from ENCODE (http://mitra.stanford.edu/kundaje/akundaje/

release/blacklists/hg38-human/hg38.blacklist.bed.gz) and merged

overlapping peaks across all ATAC-seq datasets to create a common set

of consensus genomic regions for subsequent analysis (Supplementary

Data 12). Next, we quantified for each input dataset the number of

reads overlapping these consensus peaks using featureCounts152 (Rsu-

bread v2.8.2).

Differential accessibility analysis and chromatinmodules. Raw read

counts were loaded into DESeq2147 (v1.34.0; default parameters, design:

~lane+batch+sample_group) for normalisation (variance-stabilising

transformation) and differential analysis. In doing so, we estimated

count size factors for normalisation excluding regions on chromo-

somes with known chromosomal aberrations (i.e., chr1, chr17) to avoid

overcompensation due to differences in global signal strength. We

queried all pairwise comparisonsof samplegroups stratifiedbycell line/

condition stratified (time-wise differences, e.g., WT-D3 vs. WT-D0) and

between conditions stratified by stage (condition-wise differences, e.g.,

17q-D9 vs.WT-D9) and recorded all significantly differentially accessible

regions (Padj≤0.005, |log2FoldChange|≥ log2(1.5); parameters: pAdjust-

Method = “BH”, lfcThreshold=log2(1.5), independentFiltering =TRUE;

Supplementary Data 13). To define chromatin regulatory modules, we

divided time-wise differences in WT hESCs (n =41,699 regions) into six

chromatin modules (R1-R6) and condition-wise differences (n = 3914

regions) into three chromatin modules (R7-R9) by hierarchical cluster-

ing using the Ward criterion (parameter: method = “ward.D2”). To

associate ATAC-seq regions with putative target genes, we used the

GenomicRanges153 package (v1.46.1) to assign each region to all genes

(using the refdata-gex-GRCh38-2020-Agene annotationprovidedby 10x

Genomics) with overlapping promoters (transcription start side) or to

distal genes whose promoter within a maximum distance of 250 kb

whose expression was significantly correlated with the region’s acces-

sibility. To this end, we calculated the correlation coefficient between

normalised read counts in our ATAC-seq data with the normalised read

counts in ourmatching scRNA-seq data (mean of cells per sample; note,

the ATAC-seq was collected from the same experiments as the first

replicate experiments for scRNA-seq). We calculated an empirical false

discovery rate (FDR) by shuffling RNA/ATAC assignments (10 repeti-

tions) and retained associations with a value ≤0.05. Annotated reg-

ulatory regions from the analysis of ATAC-seq data are listed in

Supplementary Data 12.

Overlap enrichment analysis for chromatin modules. To character-

ise the chromatin modules, we interrogated overlaps with genomic

regions or associated genes using the hypergeometric test imple-

mented in the hypeR135 package (v1.10.0) via the cb_hyper function

(canceRbits v0.1.6; parameters: collapse = FALSE, min_size = 5, max_size

= (<75% of the size of the background dataset)). We looked at three

types of overlaps: (a) Annotated reference regions from the DNase

hypersensitivity index78, from the Cis-element Atlas79, from the Enhan-

cer Atlas80, and NB subgroup-specific super-enhancers73, which all cat-

alogue regulatory elements active in different cell or tissue types. (b)

Matches to known TF motifs from the HOCOMOCO database154 (v11).

Here, we downloaded motifs from the HOCOMOCO website (HOCO-

MOCOv11_full_annotation_HUMAN_mono.tsv) and used motifmatchr

(v1.16.0) to scan the DNA sequences underlying each genomic region

formatches. Regionswith at least onematch to themotifwere recorded

as potential binding sites. (c)Marker genes fromour scRNA-seq analysis

of WT hESC differentiation (Fig. 1c; Supplementary Data 2). For this

purpose, genomic regions were associated with genes as described

above. In each case, we used the entire set of all analysed genomic

regions as abackground for the enrichment analysis, andwe considered

overlaps with an FDR-corrected P value less than 0.005 as significant.

Formotifs, wefind the reported P values are inflated and therefore used

stricter thresholds: Padj≤0.0000001, |log2 odds| > log2(2). All enrich-

ment results are reported in Supplementary Data 14.

Integration with published ATAC/DNaseI-seq data. To interrogate

accessibility of the chromatin modules in existing data from NB cell

lines we used fast gene set enrichment analysis fgsea (v1.20.0)155. We

obtained ready-processed genomic coverage tracks (wig or bigwig

files) from three studies profiling NB cell lines73,156,157 (GSE138293,

GSE224241, GSE136279). Additionally, we obtained data from three

studies profiling breast158 (GSE202511) and lung cancer159 lines

(GSE228832), or human tissue data160 (https://epigenome.wustl.edu/

epimap) as controls. For studies based on older genome assemblies

(GSE138293, GSE224241, GSE136279, GSE228832, and EpiMap used

hg19), we converted our peak coordinates to hg19 using the liftOver R

package (v1.18.0). We then used the GenomicRanges153 (v1.46.1) and

plyranges161 (v1.14.0) packages to identify genome segments over-

lapping our peaks and to aggregate the corresponding mean score

reported in the coverage tracks, which were then used for gene set

enrichment analysis via the cb_fgsea function (canceRbits v0.1.6;

parameters: max_size = Inf).
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Identification of transcription factor targets. To identify putative

target genes of TFs, we used GRNboost281 (arboreto library v0.1.6, with

Python v3.8.17 via reticulate [v1.24]) to identify genes whose expression

could be predicted from the expression of each TF. We tested all TFs in

the HOCOMOCO database154 for which at least one motif could be

identified in our dataset.We found that stronger association valueswere

reported for stem-cell-related factors, likely because of a proportional

overrepresentation of this developmental stage in our dataset. To alle-

viate this effect and createmorebalanceddata to build ournetworks on,

we downsampled our dataset to nomore than 500 cells per cluster and

took the average importance value of ten random samples forward for

further analysis. Putative targets with high importance values but with-

out a supporting nearby ATAC-seq peak with a motif matching the

respective TF were considered indirect targets and discarded from the

target gene sets. We found that the range of importance values varied

between TFs. We therefore calculated a TF-specific threshold on the

importance score to define target genes. To this end, we ranked

importance values and used the changepoint package (v2.2.3; default

parameters) to identify the first point at which the mean values of the

curve of importance values changed (disregarding the top 1% highest

importance values which often were outliers and disrupted this analy-

sis). The resulting target gene sets were divided into putative activating

and inhibiting interactions by the sign of the Pearson correlation coef-

ficient r of the respective TF-target pairs (using the mean correlation

value of the same eight random samples as used for GRNboost2). Inter-

actionswith |r| < 0.1 were discarded. To calculate the average expression

of target genes in each cell we used only activated targets (r>0.1) and

the Seuratmodule score. To identify significant overlaps between target

genes and gene sets D9_1 – D9_4 (Supplementary Data 15), we used the

hypeR135 package (v1.10.0) via the cb_hyper function (canceRbits v0.1.6;

parameters: collapse = FALSE, min_size = 0, max_size = Inf), considering

TFs with Padj≤0.05, |log2 odds|≥ log2(4), and frequency ≥5% as sig-

nificant. All target gene sets are reported in Supplementary Data 15 and

all enrichment results in Supplementary Data 16.

Gene-regulatory network visualisation. For the visualisation of gene-

regulatory networks, we used the igraph package (v1.3.1). A directed

graph was constructed from edges between genes in the gene sets

D9_1, D9_2, D9_3, or D9_4 (Supplementary Data 9) and TFs found

enriched in the overlap with these genes (Fig. 10d). The same auto-

mated graph layout (function layout_with_fr()) was used to draw

mutant-specific network diagrams. To generate mutant-specific net-

works (Fig. 10f), we selected cells derived at D9 and parameterised

node colour to indicate the mean scaled expression of the genes in

those cells and node size to indicate the mean scaled TF target score

(Seurat module score) for TFs or the mean scaled expression for non-

TFs. To simplify plots, we only labelled TFs with positive mean scaled

expression values (>0.05) andmanually aggregatedmany overlapping

values, but all node labels are shown in Supplementary Fig. 13c.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The single-cell RNA-seq andATAC-seq data generated in this study have

beendeposited in theGene ExpressionOmnibus (GEO) under accession

code GSE219153. The public scRNA-seq data from NB tumours used in

this study are available in GEO under the accession codes GSE147821,

GSE216176, and GSE137804, and in the European Genome-Phenome

Archive (EGA) under accession code EGAS00001004388. Public ATAC-

seq data from NB cell lines and controls used in this study are available

in GEO under accession codes GSE138293, GSE224241, GSE136279,

GSE202511, and GSE228832, and from the EpiMap website (https://

epigenome.wustl.edu/epimap). Bulk RNA-seq data from NB tumours

are available in GEO under accession codes GSE49711, GSE94035,

GSE147635, and GSE172184, and in dbGAP under accession code

phs000467 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs000218]. Source data are provided with this paper.

Additionally, processed data from this paper can be accessed and

browsed interactively via our GitHub page [https://github.com/

cancerbits/saldana_montano2024_ncnb/] and via the R2 Genomics

Analysis and Visualisation Platform [http://r2platform.com/

halbritter24/]. Source data are provided with this paper.

Code availability
Computer codeused for thedata analysis in this study is available via our

GitHub page (https://github.com/cancerbits/saldana_montano2024_

ncnb/) and a persistent copy of this repository is available via Zenodo

(https://doi.org/10.5281/zenodo.10891507).
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