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ABSTRACT: Hysteresis is observed commonly in sorption
isotherms of porous materials. Still, there has so far been no
unified approach that can both model hysteresis and assess its
underlying energetics. Standard approaches, such as capillary
condensation and isotherms based on interfacial equations of
state, have not proved to be up to the task. Here, we show that a
statistical thermodynamic approach can achieve the following needs
simultaneously: (i) showing why adsorption and desorption
transitions may be sharp yet continuous; (ii) providing a simple
(analytic) isotherm equation for hysteresis branches; (iii) clarifying
the energetics underlying sorption hysteresis; and (iv) providing macroscopic and nanoscopic perspectives to understanding
hysteresis. This approach identifies the two pairs of parameters (determinable by fitting experimental data) that are required to
describe the hysteresis: the free energy per molecule within the pore clusters and the cluster size in the pores. The present paper
focuses on providing mechanistic insights to IUPAC hysteresis types H1, H2(a), and H2(b) and can also be applied to the isotherm
types IV and V.

■ INTRODUCTION

Hysteresis in sorption isotherms (i.e., the existence of the
adsorption and desorption branches)1−3 is observed frequently
in the vapor (gas) isotherms of porous materials.3,4 The shape
of a hysteresis loop is known to be “fairly closely related” to the
structure and network of the pores and the underlying
adsorption mechanism (Figure 1).4 However, there is still a
gap between the proposed mechanistic insights (Figure 1) and
the isotherm equations in an analytically tractable form. To fill
this gap, the following aims of the present paper will be the
key:

I. to show why adsorption and desorption transitions may
be sharp yet continuous;

II. to derive a simple (analytic) isotherm equation for
hysteresis branches;

III. to clarify the energetics underlying sorption hysteresis;
and

IV. to offer macroscopic and nanoscopic perspectives to
understanding hysteresis.

Our theoretical foundation is the statistical thermodynamic
fluctuation theory5−9 based on sorbate number correlations
and the interfacial Kirkwood−Buff integrals.8,10 Their link to
molecular distribution functions shares the language not only
with atomistic simulations11−13 that have been successful in
reproducing sorption hysteresis but also with liquid sol-
utions,14−19 colloids and nanoparticles,20−22 and interfa-
ces.5,6,8,9,23 With the language of molecular distribution, our
four aims will provide a link between the collective behavior of

sorbates to the energetics of adsorption and desorption via an
analytically tractable theory.

In the following, we will identify the reasons why these four
aims have been difficult to achieve simultaneously by the
conventional approaches to analytic isotherms (i.e., capillary
condensation and isotherm models) and why the statistical
thermodynamic theory of sorption7,24 is capable of overcoming
their limitations.

Capillary Condensation Models. Why is a higher relative
pressure required for the adsorption transition (i.e., the sudden
rise of isotherm) than the desorption transition (i.e., the
sudden drop)? Capillary condensation1−4,25,26 answers this
question based on the following assumptions: (i) vapor−liquid
equilibrium takes place within a pore; (ii) a sudden rise/drop
of an isotherm branch is analogous to the vaporization/
condensation of the bulk liquid; and (iii) the critical pressure
for vaporization/condensation in (ii) depends on the pore
size.1−4,25,26 Consequently, the lower critical pressure for the
desorption line comes from the smaller space within the pore
available for vapor as has been shown via the Kelvin equation
and its modifications.4,25,26 This is the foundation for the
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classical approaches to determining pore size distributions,
such as the Barrett−Joyner−Halenda (BJH)27 and t-method.28

However, the Kelvin equation significantly underestimates the
pore sizes of uniform mesopores (such as MCM-41),4,29 which
contributes to inaccuracies in the isotherm equations on the
nanoscale (aims II and IV). Moreover, the macroscopic
thermodynamic nature of the Kelvin equation makes it difficult
to explain why the transitions are sharp yet continuous for
micropores and mesopores (aim I).

Isotherm Models. Some isotherm models have been
successful in reproducing hysteresis, including (i) the site-
specific adsorption models, with the introduction of lateral
sorbate−sorbate interactions, such as the Frumkin30 and
Fowler−Guggenheim models,31−33 and (ii) the models based
on the equations of states (EOS) for the spreading
pressure,1,33,34 such as Hill-de Boer.35,36 Hystereses in these
models arise from the multivalued nature of sorbate activity
(when expressed as a function of the amount of sorption),
analogous to first-order phase transitions.37 However, these
models introduce transition discontinuity a priori rather than
explaining why transitions are sharp yet continuous (aim I). In
addition, the isotherm equations are often implicit functions,33

which makes it difficult for fitting experimental data (aim II).
Statistical Thermodynamic Quasi-equilibrium Iso-

therms. We recently developed a universal approach to
sorption isotherms5,6,8,38 through (i) a generalization of the
statistical thermodynamic fluctuation theory for solutions14−18

to interfaces, in combination with (ii) the Gibbs isotherm to
arbitrary interfacial geometry.5 This new theory provides a
common language for experimental isotherms and atomistic
simulations (such as molecular dynamics simulations11−13 and
numerical density functional theory39−42) via molecular
distribution functions, sorbate number correlations, and the
Kirkwood−Buff integrals8,10 as a natural extension of the
theory for liquid solutions,14−19 colloids and nanopar-
ticles,20−22 and interfaces.5,6,8,9,23 Our initial approach to
hysteresis branches followed the traditional assuption43−46 that
thermodynamic isotherms can be utilized for long-lived
metastable states, such as adsorption and desorption
branches.7 By circumventing the difficulty of explicitly treating
hysteresis branches,7,9,24 our cooperative isotherm was derived
directly from the excess number relationship (i.e., the
fundamental relationship of the fluctuation sorption theory)
and was applied successfully to adsorption on porous
materials.7,24 This approach is capable of (i) expressing

isotherm in an analytic form (aim II) and (ii) attributing a
large (yet not infinite) isotherm gradient to sorbate cluster size
(aim I).7,24 However, how the distinct energetics of adsorption
and desorption can be described (aim III) has remained
unclear.

Our Approach. To achieve all four aims for the elucidation
of sorption hysteresis, we will take the following four-step
strategy.

Objective I: To Understand Why Transitions Are Sharp yet

Continuous.3,4 To fulfill this objective, we will derive (in the
Theory section) the thermodynamic stability conditions for
the pore (nanoscale) and the entire interface (macroscale) for
which sorbate number fluctuation will play a key role. This will
be achieved by extending our recent thermodynamic stability
theory under nanoscale confinement47 to the vapor/solid
interface. From this approach, the isotherm branch steepness,
which has played an important role in hysteresis classification
(Figure 1), will be translated to microscopic insights.

Objective II: To Derive the Branch Isotherm Equations.

Based on the sorbate number fluctuation underpinning the
stability condition, we will derive an analytical isotherm
equation. Its parameters, whose interpretive clarity comes from
the fluctuation theory, will capture the mechanism underlying
the hysteresis types.

Objective III: To Reveal the Energetics Underlying
Hysteresis Branches. Linking an isotherm branch to the
interfacial free energy (from the Gibbs isotherm) is essential
for understanding the energetic basis of hysteresis, as will be
achieved in the Theory section. We will show how (i) the
stabilization of sorbate at the interface and (ii) the change of
sorbate cluster affect the interfacial free energy (see the Results
and Discussion section). Through this, we will link the
mechanistic insights in the literature (e.g., “delayed con-
densation” and “pore blocking/percolation”4) to the interfacial
free energy.

Objective IV. An alternative to the fluctuation theory to
achieve objectives I−III comes from Hill’s thermodynamics of
small systems48−50 via a consideration of vapor−liquid
transition within a pore and the entropy of arranging vapor
and liquid pores throughout the interface. Its equivalence to
the fluctuation theory will be demonstrated when there is no
correlation between the pores (see the Results and Discussion
section).

Figure 1. (Top). The IUPAC hysteresis types that this paper focuses on. Type H1 hysteresis loop “is found in materials which exhibit a narrow
range of uniform mesopores”.4 Type H2 is found in “more complex pore structures in which network effects are important”.4 The steeper
desorption branch of type H2(a) is attributed to “pore blocking/percolation in a narrow range of pore necks or to cavitation-induced evaporation”.4

Type H2(b) is “typical for materials with a narrow pore cavity size distribution and in the absence of percolation effects,”63 whose shallow
desorption branch is “also associated with pore blocking, but the size distribution of neck widths is now much larger.”4 (Bottom) The isotherm
equation derived in this paper (eq 16a) with a brief summary of the physical interpretations of its parameters.
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■ THEORY

This section furnishes the theoretical foundation necessary for
our four objectives set out in the Introduction section, in
preparation for achieving them in the Results and Discussion
section.

Quasi-thermodynamic Stability Theory. Macroscopic
Formalism. To understand why the transitions are sharp yet
continuous (objective I of the Introduction section), we will
develop a thermodynamic stability theory for porous
adsorption. To establish the stability theory, here, we
generalize our recent work on confined solutions47 to
interfaces. We consider a vapor−solid system with an interface,
together with the two reference systems, i.e., the bulk gas
(vapor) (g) and solid (s) systems with no interface. The
interfacial free energy, following Gibbs,51 is defined as the
difference between that of the system and those of the
reference systems, generalized in our previous papers to
interfaces of arbitrary geometry and porosity.5 Absorption and
sorbent structure changes can also be considered by our
theory. The three systems are surrounded by the reservoir. The
key quantity is the minimum excess work done by an external
medium on the system + reservoir, δR, that accompanies the
exchange of sorbates (species 2), which can be expressed (see
Supporting Information section A) in the following quadratic
form for the system and the reference states:
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where N1 and N2 are the numbers of sorbent and sorbate, δN2

is the deviation from the mean, and μ2 is the chemical potential
of the sorbate. Our goal is to obtain an expression for the
minimum excess work, δΔR = δR − δRs − δRg, i.e., the
difference in R between the system and the gas/vapor (g) and
solid (s) reference systems. We introduce the following
postulates:

A. The effect of an interface is confined within a finite
distance, denoted by v (volume of the interface), n2

(number of sorbates within v), and n1 (number of
sorbents affecting n2)

B. Reference systems contribute negligibly to sorbates for
vapor sorption with limited absorption into sorbents, so
that the surface excess, Δn2 = n2 − n2

s − n2
g, can be

approximated as Δn2 ≃ n2.

Using postulates (A) and (B), δΔR can be expressed in a
simple manner (see Supporting Information section A) as
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Noting that δΔR, a positive definite, has an intensive order of
magnitude (δΔR = O(1)), it follows that

i

k

jjjjj

y

{

zzzzz
>

n
0

T V n

2

2 , , 1 (3a)

as the stability condition for an interface. Assuming the
Gaussian distribution, we obtain
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where kB is the Boltzmann constant and ⟨ ⟩ denotes an

ensemble average . Note tha t = O(1)
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when the stability condition is satis-

fied.47 Equation 3b can be rewritten as
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which is the fundamental equation of the fluctuation sorption
theory, i.e., the excess number relationship, which links the ln−

ln gradient of an isotherm( )n

a
T v n

ln

ln
, ,

2

2
1

to the excess number

of sorbates around a probe sorbate, N22.
5,6,8,52 Equations 3b

and 3c have been derived previously via the standard Gibbsian
approach (by the μ2 derivative of ⟨n2⟩).5,6 However, the
relationship between number fluctuation and thermodynamic
stability was not clear in this approach. Consequently, the
present rederivation via the minimum excess work will be
demonstrated to be advantageous for providing a direct
connection to thermodynamic stability in nanoscale systems.

Nanoscale Stability. Now, we generalize eq 3b to nanoscale
systems, such as pores. To achieve this, the macroscopic
stability theory (eqs 1−3c) alone is insufficient. The
generalization can be executed by employing the following
postulates:47

C. An ensemble consisting of a macroscopic number of
nanoscale systems obeys the classical macroscopic
thermodynamics.48−50

D. A stability condition must be written down in an
ensemble size-independent manner, per an extensive
quantity that characterizes the constituent nanoscale
system.47,53

Following postulate (C), here, we derive a nanoscale
counterpart to eq 3b. The first step is to regard eq 3b as a
relationship for a macroscopic ensemble consisting of
nanoscale systems (such as pores). Note that has the
macroscopic order of magnitude. We introduce the following
thermodynamic quantities for the nanoscale system denoted
with a tilde:

= =n n n n,1 1 2 2 (4a)

Considering the statistical independence of the nanoscale
systems within the macroscopic ensemble,54 we obtain the
following scaling relationship:

=n n n n
2 2 2 2 (4b)

Using eqs 4a and 4b, eq 2 can be rewritten as
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Assuming the Gaussian distribution,47,53,54 we obtain
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eq 5b is identical in form to the macroscopic relationship (eq
3b). Thus, we have shown that the sorbate number fluctuation
for a nanoscale system can be calculated in a manner analogous
to its macroscopic ensemble.
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Following postulate (D), we express the quadratic form (eq
5a) and the fluctuation relationship (eq 5b) in a size-invariant
manner, using the quantity whose magnitude is characteristic
of the nanoscale system. Our previous paper on confined fluids
has chosen ñ1 (i.e., the number of boundary objects) as the
characteristic quantity.47 Here, instead, we choose ⟨ñ2⟩ because
it is experimentally observable. Under this choice, eqs 5a and
5b become:
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Note that N22 in eq 6b can be rationalized by eq 4b and the
constancy of when carrying out differentiation.

Excess Number Relationship from Macroscopic and
Nanoscopic Perspectives. We have arrived at an important
result: the same excess number N22 results from the macroscale
(eq 3c) and the nanoscale (eq 6b) isotherm gradients, namely
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which guarantees that the isotherm measurement, that is
macroscopic in nature, is sufficient to probe the sorbate
distribution at the nanoscale. This is the consequence of
subdivision into nanoscopic subsystems (postulate (C) and its
corollary (eq 4a)). This important relationship (eq 7, referred
to as the excess number relationship9) relies on the
independence of on a2. (We will later show how may
differ between the adsorption and desorption branches; see the
Results and Discussion section.) The ln−ln gradient of an
isotherm, via eq 7, reflects the stability condition both on
macroscopic and nanoscopic scales for an interface subdivided
into nanoscopic subsystems. (Such a ln−ln gradient may be
obtained via a direct numerical differentiation of the raw data
or using the fitting functions with physical or empirical origin.)

Subdivision Caps Fluctuation and Isotherm Gradient.
Here, we show that the “transition” of an isotherm cannot be
discontinuous when an interface (of the macroscopic
characteristic length, L) is subdivided into nanoscale
“subsystems” (such as pores, with the nanoscopic characteristic
length, L). The basic idea for the proof is the following. In
the absence of subdivision, sorbate number fluctuation can
reach the same order of magnitude as the macroscopic
interface (Figure 2a). However, the nanoscale subdivision caps
sorbate number fluctuation (Figure 2b), which cannot exceed
the nanoscale order of magnitude (Supporting Information
section B).

First, we show that the sorbate excess number is nanoscopic.
To do so, let us express the excess sorbate number in the
macroscopic and nanoscopic expressions, which will be the key
for demonstrating the nonabruptness of transitions in nano-
pores. Remembering that ñ2 and δñ2 are additives under
statistical independence (eqs 4a and 4b), substituting eqs 4a
and 4b into eq 3c yields
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showing that the macroscopic ( )n n
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relative fluctuations are the same under subdivision.

Consequently, the maximum nanoscopic relative fluctuation,
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(Supporting Information section B), is the

macroscopic relative fluctuation, as
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Second, we will show that the isotherm gradient does not
diverge to macroscopic scale under the fluctuation cap. To do

so, let us combine (i) n n

n

2 2

2

is the ln−ln gradient of an

isotherm (eq 7 and Figure 3a,b); (ii) = O( )
n n

n

22 2

2

from eq

Figure 2. Schematic representation of (a) a macroscopic interface
without subdivision viewed from the direction normal to the interface
with L being its characteristic length scale and (b) a macroscopic
interface (represented by the square) subdivided into nanoscopic
pores (represented by the circles) with being their characteristic
length scale. The red spheres represent sorbate molecules. Note that

(i.e., the total number of nanoscopic pores, within a macroscopic
system) is macroscopic in order, unlike this schematic diagram. While
sorbate fluctuation of the macroscopic size scale is possible for an
unsubdivided macroscopic system as depicted in (a), subdivision into
nanoscale pores in (b) restricts the size scale of fluctuations.

Figure 3. Schematic representation of the derivation of branch
isotherm equations based on (a) the subdivision of an interface and
enumerating the difference in sorbate number between a pore
(highlighted with a yellow box) with a probe sorbate (yellow) and the
rest of the pores (with orange boxes) that do not contain the probe.
(b) The difference in average sorbate number between the pore with
the probe (the probe with ⟨ν2⟩2 other sorbates, yellow) and the pores
without the probe (orange) yields the ln−ln gradient of the isotherm.
(c) In the absence of subdivision into nanopores, the number of
sorbates around a probe (yellow) may reach a macroscopic order of
magnitude, causing a macroscopic-scale deviation from the mean
sorbate number in the absence of (away from) the probe. This leads
to the divergence of the isotherm’s ln−ln gradient.

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.4c00606
Langmuir 2024, 40, 11504−11515

11507

https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.4c00606/suppl_file/la4c00606_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.4c00606/suppl_file/la4c00606_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00606?fig=fig3&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.4c00606?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


8b; and (iii) isotherm gradient divergence takes place when
n n

n

2 2

2

, which is intensive (i.e., O(1)) under stability

conditions, becomes extensive (i.e., O(L2)) or reaches the
macroscopic order of magnitude (Figure 3c and Supporting

Information section B). However, under subdivision, n n

n

2 2

2

is

capped at O( )2 , never reaching O(L2). Hence, the isotherm
gradient never diverges, and the isotherm never becomes
discontinuous.

From a nanoscopic perspective, fluctuation of the order

O( )2 violates the stability condition. However, from a
macroscopic point of view, such a fluctuation does not break
the stability condition. Indeed, there are only intensive (O(1))
and extensive (O(L2)) thermodynamic quantities for a

macroscale system; hence, O( )2 is viewed as intensive

=O O( ( ) (1))
2 from a macroscopic point of view (Supporting

Information section B). Thus, the same fluctuation can be
interpreted as (i) liquid−vapor transition (phase instability) in
the nanoscale and (ii) local number fluctuation of a stable
macroscopic system. These two perspectives will serve as the
theoretical foundation for the two alternative approaches (i.e.,
the fluctuation theory and Hill’s thermodynamics of small
systems) to elucidate the interactions underlying isotherm
branches in the Results and Discussion section, as well as for
proving their equivalence.

Equations for Adsorption and Desorption Branches.
Here, we derive isotherm equations that can describe
adsorption and desorption branches (objective II). Our
foundation is the sorbate excess number (eq 8a), which has
incorporated the effect of subdivision into nanopores.
Following our previous paper (with details to be found in
eqs 4a−5a of ref 9), let us consider a simple case, in which
sorbate−sorbate correlation is restricted within the same pore.
The mean sorbate number, conditional to the presence of the
probe within the same cluster, m = ⟨ν2⟩2 + 1, deviates from
that of other 1 clusters, ⟨ν2⟩, which do not feel the effect
of the probe. Hence, ⟨n2⟩2 of the total interface can be
expressed as

+ = +n m1 ( 1)2 2 2 (9a)

Its deviation from the probe-free clusters, =n
2 2

, yields

+ = =N m m n1
1

22 2 2 (9b)

by virtue of N22 = ⟨n2⟩2 − ⟨n2⟩, which has been represented
schematically in Figure 3a,b. With the introduction of
fractional saturation

= =

n

m

n

m

2 2

(10a)

we can express the excess number relationship in a compact
form

+ =N m1 (1 )22 (10b)

where m is supposed to be constant independent of a2.
Combining eq 10b with eq 7 yields the differential equation for
the adsorption and desorption branches, as
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which can be integrated to yield
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where am is an integration constant that corresponds to the
maximum isotherm gradient.24 We emphasize here that eq 11b
was derived originally as a special case of a more general
isotherm that contains adsorption processes involving 1, 2, ···,
and ν sorbates sorbing together.7 This general isotherm
reduces to eq 11b under the condition that the contribution
from the sorption of m sorbates is dominant.7 In doing so,
contributions from smaller clusters, which may also be present,
have been neglected. However, eq 11b can fit experimental
isotherms for porous materials successfully despite its
simplicity.7,24

As shown in our previous papers, a2 = am is at the steepest
isotherm gradient (whose approximate position of am can easily
be located by the eye). This makes RT ln am, the transfer free
energy of a sorbate from the saturated vapor to the interface
(see Supporting Information section C), easily accessible from
experimental isotherm data. Based on the above, we propose to
use the simple cooperative isotherm equation (eq 11b) both
for the adsorption and desorption branches. As will be
demonstrated in the Results and Discussion section, the
sorbate cluster sizes for the adsorption and desorption
branches (m and m′) and their points of steepest gradient
(am and am′) will be sufficient to explain the difference between
the two branches. Note that eq 11b on its own does not satisfy
Henry’s law at a2 → 0,7,9,24 which will be resolved for fitting
experimental data (see the Results and Discussion section).
Thus, we have derived the isotherm equations for the
hysteresis branches (objective III).

The cooperative isotherm (eq 11b), derived quasi-
thermodynamically in our previous papers,7,9,24 has now
been linked to thermodynamic stability condition; the finite
gradient of an isotherm comes from finite m, arising from the
nanoscopic subdivision of a macroscopic interface (Figure 3a).
Note that eq 10a assumes simplistically that the cooperative
sorption of m sorbates fill up the pore. Such a process can
capture the salient features of experimental isotherms,7,9,24 yet
it entirely neglects additional adsorption of sorbates on
cooperatively sorbed sorbate clusters. We will later argue that
this additional adsorption on clusters plays a key role in the
switching from the metastable adsorption branch to desorption
(objective III; see the Results and Discussion section).

Linking an Isotherm Branch to Interfacial Free
Energy. To clarify the energetics underlying hysteresis
(objective III), we need to evaluate the interfacial free energy
underlying an isotherm branch. To do so, the fluctuation
sorption theory, from which the branch isotherms have been
derived, must be synthesized with the Gibbs Isotherm. (Note
that our generalized Gibbs isotherm applies to interfaces with
any geometry or porosity, even with sorbent structural
changes, because of its ensemble-based foundation.5,6 Since
the details of the derivation have already been published,5,6 we
summarize its outlines in Supporting Information section D.)
The key quantity is γ1, the interfacial free energy per unit
amount of sorbent. Using N1 (the amount of sorbent), the
total excess interfacial free energy, FI, can be expressed as (see
Supporting Information section D):

=F N
I 1 1 (12a)
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Following the previous subsection, both FI and N1 can be
decomposed into nanoscale quantities, F̃I and Ñ1, in analogy to
eq 4a, via

= =F F N N,
I I 1 1 (12b)

Combining eqs 12a and 12b leads to

=F N
I 1 1 (12c)

Thus, γ1 signifies the interfacial energy per unit sorbent
quantity on the macroscale (eq 12a) as well as on the
nanoscale (eq 12c).

With the above preparation, now we show how to evaluate
γ1 underlying an isotherm. An experimental isotherm is
routinely reported as ⟨n2⟩/N1, i.e., the amount of sorption
per unit sorbent quantity or may be converted to the fractional
saturation θ. We start with the generalized Gibbs isotherm
(Supporting Information section D)
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Integrating eq 13a with respect to a2 yields how γ1 changes
with a2

=
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(13b)

where a2′ is the variable for integration and γ1 = 0 at a2 = 0 was
chosen as its baseline. eq 13b expresses γ1 as a function of a2.
An alternative to eq 13b for θ can be obtained by combining
eq 13a with eq 10a
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Here, we introduce the normalized interfacial free energy

=

N( / )n

1

1 (14b)

expressed per N/ 1, the maximum sorption capacity per unit
amount of sorbent. Integrating eq 14a, in combination with eq
14b, yields

=

RT a
ad

n
a

0 2

2

2

(14c)

This integration will be executed in the Results and Discussion
section to yield the interfacial free energy as a function of
sorbate activity.

The excess sorbate cluster number, N22 + 1, contributes to
the gradient of the interfacial free energy. This can be shown
by combining eq 7 with the generalized Gibbs isotherm (see
Supporting Information section D for derivation), through
which we obtain the following result for the macroscopic
system:

i

k

jjjjj

y

{

zzzzz

i

k

jjjjj

y

{

zzzzz
= =

+

N

RT n

a

n N

ln

ln

1

1
T T

1 1

2

2

2 22 (15a)

The nanoscale system can be expressed similarly as
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Note that the same relationship between N22 and γ1 applies to
eq 15a (macroscopic) and 15b (nanoscopic). N22 + 1 in eqs
15a is a ⟨n2⟩-gradient (or θ-gradient) of the interfacial free
energy, instead of the a2-gradient in eq 13a. This distinction
will play a crucial role when understanding hysteresis via the
underlying interfacial free energies; we emphasize that a2, not
⟨n2⟩, is the natural variable for isotherms.

To summarize, we have shown how the interfacial free
energy can be expressed as a function of sorbate activity (eqs
13b and 14c). Its application to the isotherm equations will
reveal the energetic basis of isotherm hysteresis in the Results
and Discussion section (objective III).

■ RESULTS AND DISCUSSION

Why Transitions Are Sharp yet Continuous (Objec-
tive I). In the Theory section, we have shown that the
subdivision of a macroscopic interface into nanoscale
subsystems caps the magnitude of fluctuation (Figure 2b).
Consequently, the ln−ln gradient of the adsorption and
desorption branches (Figure 3a,b) remain finite, thereby
achieving objective I.

Two Approaches to Hysteresis. The resolution of objective
I, via the macroscopic and nanoscopic representations of N22 +
1 (eq 7), offers two approaches to sorption hysteresis. First,
from a macroscopic perspective, a sorbate number fluctuation
is still within thermodynamic stability, leading to the derivation
of the cooperative isotherm (eq 13b) by the fluctuation
sorption theory. Second, from a nanoscopic perspective, the
fluctuation breaks the nanoscale stability condition and liquid−
vapor phase transition. Consequently, the macroscopic inter-
face (as a whole), when viewed nanoscopically, is no longer
homogeneous, necessitating the incorporation of the configura-
tional entropy of arranging liquid and vapor pores throughout
the interface. This will lead to a nanoscopic derivation eq 7 as
will be demonstrated later.

Advantages over Capillary Condensation Models. The
difference in gradient between the adsorption and desorption
branches is central to the IUPAC hysteresis classification
(Figure 1). However, the capillary condensation model focused
exclusively on critical activities while neglecting the gradient. In
the EOS-based approaches to sorption hysteresis, assuming
abrupt transitions has made it impossible to draw any
conclusions on sorbate cluster size. In contrast, the relationship
between the gradient of an isotherm branch and the sorbate
cluster size (eq 8a), derived via the fluctuation theory, is
capable of attributing cooperative sorbate cluster size under-
lying the gradient of isotherm branches.

Capturing Hysteresis Loop by the Key Mechanistic
Parameters (Objective II). Here, we demonstrate that (i)
our cooperative isotherm can be applied to fit the experimental
hysteresis loop and (ii) hysteresis types (Figure 1) can be
captured via m and am for adsorption and m′ and am′ for
desorption.

Application to Ordered Mesoporous Materials (Step (i)).
To apply the cooperative isotherm (eq 11b) to experimental
data, we have to account for the low a2 contributions. This can
be achieved by the patchwise-additivity principle24 by
introducing the ABC isotherm for the simpler (nonporous
and microporous52) surface patches alongside the cooperative
isotherm. The following equation can be used both for the
adsorption and desorption branches:
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The parameters in eq 16a have a clear physical meaning: A,
B, and C signify sorbate-surface, disorbate, and trisorbate
interactions, respectively; w is the maximum sorption capacity
of the cooperative term; m is the sorbate cluster number; and
am is the activity at the steepest isotherm gradient.6,8,52 (Note
that we have expressed the experimental isotherm explicitly via
⟨n2⟩/N1, i.e., the amount of sorption per unit mass of sorbent
in eq 16a. When working solely with the excess number
relationship eq 8a, as in our previous papers, ⟨n2⟩/N1 can be
handled as ⟨n2⟩. However, handling experimental isotherms
explicitly as ⟨n2⟩/N1 will facilitate the discussion involving γ1.)

The parameters (A, B, C, w, m, am) can be determined by
fitting eq 16a to the isotherm data for both branches. We have
chosen the published experimental argon adsorption data on
two ordered mesoporous materials, SBA-15 and SBA-16, that
exhibit type H1 and type H2 behaviors, respectively.55 For
SBA-15, eq 16a gives a good fit except for the lowest activity
range (Figure 4a and Table 1). For SBA-16, eq 16a could fit

the hysteresis region upward, yet this equation showed
deviations from experimental data at low a2, even with the
adoption of different (A′,B′,C′) for the desorption branch

(Figure 4b and Table 1). However, a local fitting of an
isotherm, around the region of interest, has been shown to be
sufficient for identifying the mechanism around this region.52

Consequently, mechanistic insights on hysteresis can be
drawn from a reasonable regional fitting around the loop.52

The difference between the branches, i.e., hysteresis loop, can
be attributed to the cooperative parameters, am, am′, m, and m′.
Note that am (and am′) and m (and m′) have a direct
relationship to the shape of a branch (Supporting Information
section C). Indeed, isotherm fitting shows that (i) reduction
from am to am′, signifying the lowering of sorbate free energy at
the interface, happens for both SBA-15 and SBA-16; (ii) for
SBA-15, a slight reduction in sorbate cluster number from m to
m′ takes place (Table 1); and (iii) for SBA-16, a significant
increase of sorbate cluster number from m to m′ takes place
(Table 1).4

It is well-known that SBA-15 has a hexagonal array of
mesopores with “sponge-like” microporosity on the pore
walls.56 The functional shape of isotherm branches at lower a2

has been attributed to micropore filling.52 Recently, we have
demonstrated that the adsorption on microporous materials
can be captured by the ABC isotherm,52 which has been
adopted in this paper as the first term of eq 16a. Consequently,
the capacity of the ABC term to capture the shape of isotherm
branches at lower a2 fulfills its previous attribution to
micropore filling.52 Intuitively speaking, because of the small
number of sorbates involved in micropore filling, taking up to
trisorbate interaction is sufficient to capture the micropore
filling.

Thus, our theory can capture adsorption on porous materials
that involve multiple pore size scales. The ABC term captures
micropore filling while mesopore filling is modeled by the
cooperative term. We emphasize that our theory does not start
with a particular pore geometry (shape, size, or distribution) to
construct an isotherm model from bottom up. Instead, our
theory focuses on sorbate−sorbent and sorbate−sorbate
interactions that are influenced by the geometry of the pores
that surround the sorbates. With this alternative approach, not
only does our theory provide a simple description of isotherms
with a minimum number of assumptions but also reveal the
underlying physical mechanism through its parameters.

Mechanisms Underlying Hysteresis Types (Step (ii)). Our
next step is to capture the IUPAC hysteresis types4 via the
cooperative isotherm. Let us start with the following simple
isotherm equation applicable to both adsorption and
desorption branches:
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Figure 4. (a) Adsorption of argon on SBA-15. The literature
experimental adsorption (red, filled) and desorption (red, open)
branches, reported by Villarroel-Rocha et al.,55 were fitted with eq 16a
(adsorption: solid curve, desorption: dashed curve), with the
parameters summarized in Table 1. (b) Adsorption of argon on
SBA-16. The literature experimental adsorption (blue, filled) and
desorption (blue, open) branches, reported by Villarroel-Rocha et
al.,55 were fitted with eq 16a (adsorption: solid curve, desorption:
dashed curve), with the parameters summarized in Table 1.

Table 1. Fitting Parameters for Figure 4 (eqs 16a) for the Adsorption and Desorption Branches of Argon on Ordered
Mesoporous Materials

SBA-15a SBA-16a

adsorption desorptionb adsorption desorptionb

A 9.75 × 10−3 9.75 × 10−3 5.90 × 10−3 1.52 × 10−3

B −6.68 × 10−2 −6.68 × 10−2 −6.72 × 10−2 −8.62 × 10−2

C 4.12 × 10−2 4.12 × 10−2 −6.24 × 10−3 9.86 × 10−3

w 1.56 × 101 1.53 × 101 2.55 × 10° 3.62 × 10°

am 0.815 0.707 0.625 0.328

m 84.9 73.4 18.8 107

aSample B of Villarroel et al.55 bReferring to A′, B′, C, w′, am′, and m′ for the desorption branch.
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via the weighted ( f) average of (1) the Langmuir-type
isotherm (i.e., a special case of the statistical thermodynamic
AB isotherm8) with the vapor/interface partition coefficient K
(as the generalization of the Langmuir constant8) and (2) the
cooperative isotherm (eq 11b with different parameters for the
adsorption and desorption branches). The advantage of eq 16b
is in its straightforwardness for integration to obtain the
interfacial free energy, compared to a complex form arising
from the first term of eq 16a.

While the isotherm behavior at low a2 comes from the
Langmuir-like term, which is common to the adsorption and
desorption branches, hysteresis comes predominantly from the
cooperative isotherm (the second term of eq 16b; Figure 5a−
c).

Type H1 hysteresis shape is observed (Figure 5a) when the
sorbate cluster size (m = m′) and the total number of clusters
(nanoscale subsystems) ( = ) change little from
adsorption to desorption. This is consistent with the IUPAC
report: “[u]sually, network effects are minimal”4 for type H1.

Type H2(a) hysteresis shape is observed (Figure 5b) when
the sorbate cluster size increases (m′ > m) and the total
number of clusters decreases ( > ) from adsorption to
desorption. This is consistent with some of the common
proposals on the mechanism underlying type H2(a). (i) The
“network effect” of the pores4 is consistent with larger sorbate
clusters and a smaller total number of clusters in desorption.
(ii) The cavitation-induced evaporation for desorption (i.e.,
“the bottle could empty via a cavitation process with the neck
remaining filled”57), caused by “spontaneous local density
fluctuation,”58 is equivalent to a large N22, leading to a large m′.

Type H2(b) hysteresis shape is observed (Figure 5c) when
the sorbate cluster size decreases (m′ < m) and the total
number of clusters increases ( > ) from adsorption to
desorption. This is consistent with the previous mechanistic
proposals. First, “the absence of percolation”12 in the IUPAC
report is consistent with cluster size decrease (m′ < m).

Second, “pore blocking affected desorption”59 (from which
“the pore neck size distribution can be calculated from the
desorption branch”4), if it causes increased subdivision

>( ), leads to a smaller sorbate cluster to be desorbed
cooperatively (m′ < m).

Thus, the cooperative isotherm can fit experimental
hysteresis data and reproduce types H1, H2(a), and H2(b)
of the IUPAC hysteresis classifications. The hysteresis types
are distinguished by a comparison of sorbate cluster sizes
between the adsorption and desorption branches. However,
although the comparison of m versus m′ governs the isotherm
hysteresis types, they cannot explain the energetics of
hysteresis.

Energetics of Hysteresis (Objective III). Interfacial Free
Energies of the Adsorption and Desorption Branches. Here,
we reveal the energetic basis of the hysteresis loop (objective
III). To do so, we need to establish a link between an isotherm
branch and the interfacial free energy by combining eq 16b
with eq 14c, which yields
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The application of eq 17 shows that the desorption branch is
more stable (in terms of the normalized interfacial free
energies) than the adsorption branch (Figure 5d−f).

We have shown above that the IUPAC hysteresis
classification is founded on a comparison between the sorbate
cluster size between the adsorption and desorption branches.
Indeed, types H1, H2(a), and H2(b) isotherm loops are all
different from one another (Figure 5a−c). However, hysteresis
loops, observed via the interfacial free energy, all look very
similar (Figure 5d−f). Indeed, unlike θ (Figure 6a), how γn

depends on sorbate activity is almost independent of m for m >
20 (i.e., the parameter range corresponding to ordered
mesoporous materials, Table 1), as observed in Figure 6b.

Figure 5. (a) IUPAC type H1 hysteresis reproduced via eq 16b with
the parameters m = m′ = 75. (b) IUPAC type H2(a) hysteresis
reproduced with the parameters m = 25, m′ = 75. (c) IUPAC type
H2(b) hysteresis reproduced with the parameters m = 75, m′ = 25.
(The rest of the parameters, am = 0.8, am′ = 0.7, K = 8 and f = 0.6,
were common to panels (a−c).) (d−f) The normalized interfacial free
energies, γn, underlying the corresponding isotherms (a−c), calculated
using eq 17.

Figure 6. (a) Changing m within the same am affects the isotherm
shape. f = 0 (green), f = 0.6 and am = 0.8 (red). and f = 0.6 and am =
0.7 (black) at m = 20, 40, 60, and 80 (sharing the parameter range for
Figure 4 and 5 and Table 1), plotted using eq 16b. (b) Changing m
within the same am hardly affects the sorbate activity dependence of
the normalized interfacial free energy (γn/RT), plotted using eq 17.
Unlike the isotherm (a), the cooperative contribution to the
interfacial free energy is minor, and the variation of m hardly changes
γn/RT for m ≥ 20 and shows a limiting behavior.
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Note that when a2 > am, the second term of eq 17, at m → ∞,

tends to an m-independent form, f ln
a

am

2 .

However, there is a clear gap in the interfacial free energies
between the adsorption and desorption branches (Figure 6b).
Since this gap is regardless of m, it is driven by am′ < am or
increased stability of a sorbate molecule for the desorption
branch, as inferred from the transfer free energy of a sorbate
(from saturated vapor to the interface, RT ln am′ < RT ln am).

To summarize, the difference in sorbate cluster size between
the adsorption and desorption branches, while playing the
major role in classifying the hysteresis loops based on
isotherms, is a minor contribution to the interfacial free
energy difference within a branch (Figure 6). While N22 + 1,
hence m, is the gradient (first-order derivative) of isotherm (eq
8a), it is also a second-order derivative of the interfacial free
energy (via eqs 8a and 13a). Consequently, m is useful for
isotherm classification but plays a secondary role in interfacial
free energies.

Switching from Adsorption to Desorption (Step (iii)). The
interfacial free energy underlying the cooperative isotherm has
clarified that (1) the stabilization of the desorption branch (i.e.,
lowering of the interfacial free energy, γn) is the key to the
emergence of sorption hysteresis and that (2) stabilization
comes predominantly from the increase in sorbate stability of
the desorption branch (am′ < am; or a more negative sorbate
transfer free energy from the saturated vapor to the interface,
RT ln am′ < RT ln am). Here, we discuss its possible
mechanisms. First, percolation/network effects, proposed for
type H2(a),4 can strengthen the sorbate−sorbate and sorbate−
interface interactions, leading to increased sorbate stability. A
sufficient chance of pores neighboring, with additional sorption
for connecting the pore, is its possible mechanism. We
emphasize that it is am′ < am, not m′ > m, that is the key to
hysteresis. Second, pore blocking (“on desorption the bottle
cannot empty until the necks are emptied”57) has been inferred
for both types H2(a) and H2(b),4 despite their opposite
behavior in the change of sorbate cluster sizes (m′ > m and m′
< m). However, as in the case of percolation, the difference
between m and m′ (despite its dominant role in the isotherm
shape) plays a minor role in the interfacial free energy.
Consequently, “pore blocking” should be chiefly about sorbate
stabilization induced by additional postcooperative sorption
that maximizes sorbate−interface contact. Note that sorbent
structure changes that our theory can incorporate may also
contribute to the above stabilization. Thus, am′ < am plays a
dominant energetic role, whereas m′ and m play a minor role,
which is crucial for translating the proposed hysteresis
mechanisms to a language of energetics and stability.

Branch Isotherm Equations from Hill’s Thermody-
namics of Small Systems (Objective IV). The statistical
thermodynamic fluctuation theory led to (i) the cooperative
isotherms for adsorption and desorption branches in the
Theory section, (ii) the interfacial free energy representation of
the hysteresis loop, and (iii) a link between (i) and (ii) to the
mechanisms of switchover (i.e., sorbate stabilization and
sorbate cluster growth via percolation) in the previous
subsection. Objective III was already addressed macroscopically,
enabling us to elucidate a hysteresis loop based on a few
parameters that capture its mechanism.

Perspective from Hill’s Thermodynamics of Small
Systems. The goal of this subsection is to demonstrate that
the branch isotherm eq (eq 11b) can also be derived from

Hill’s thermodynamics of small systems.48−50 From the
perspective of small systems, thermodynamic instability
induces vapor/liquid transition, making each of the nanopores
take one of the two states (i.e., A: filled, B: unfilled). Our goal
is to express the interfacial free energy FI in terms of the
numbers (

A
and

B
) and the interfacial energies (γA and γB)

of each pore state. (Here, we summarize the outline, leaving
the details of derivation to Supporting Information section E.)
We assume the following form for FI:

49

= +
!

! !
F RT ln
I A A B B

A B (18)

where the final term is the entropy of arranging two pore types.
In the absence of sorbates, = 0

A
, FI = 0 must hold; hence, γB

= 0, which signifies the zero interfacial free energy contribution
from an empty pore. (The discussion here is analogous to
Hill’s two-state model for phase transitions in small systems on
p119 of ref 49). Minimizing FI with respect to

A
(while

keeping , the number of total pores, constant) under
Stirling’s approximation, we obtain
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Combining eqs 18 and 19 (under Stirling’s approximation, see
Supporting Information section E), yields

=F RT ln(1 )
I (20)

Rewriting eq 20 using the definition of γ1 (eq 12a) and
differentiating it with respect to θ leads to
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by restoring ⟨n2⟩ via eq 10a, eq 21a becomes
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which leads via eq 15a to N22 + 1 = m(1 − θ), identical to eq
10b from the fluctuation theory. Thus, the cooperative
isotherm for sorption branches (eq 11b) was also derived
from Hill’s thermodynamics of small systems (objective III).

Nanopore as a Pseudophase. When working with
nanoscopic systems, it is important to clarify how they relate
to experimental measurements. Experimental isotherms are
macroscopic, defined as the surface excess of sorbates (i.e.,
approximated as ⟨n2⟩/N1 for sufficiently strong sorption
detectable by measurements). According to the Gibbs phase
rule, a two-component system (sorbate and sorbent) forming
two phases (sorbate vapor and sorbent) has F = 2−2 + 2 = 2
degrees of freedom. Under constant temperature, one degree
of freedom is left for sorbate activity (or relative pressure)
without any room for additional phase equilibria. We
emphasize that complexity in interfacial geometry (e.g.,
porous), or the consequent number fluctuation, does not add
an extra degree of freedom.

From a perspective of macroscopic thermodynamics, we are
dealing with inhomogeneity in sorbate distribution that can be
captured by N22.

22,60 Consequently, the nanoscale “phase”
transition (or “condensation” and “evaporation” in the context
of the capillary condensation model) does not refer to real
phases, as has been made clear by the Gibbs phase rule. We
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emphasize here that the arrangement of filled and unfilled
pores at a value of sorbate activity (whose entropy is the
foundation for deriving the cooperative isotherm from the
small systems perspective, via eq 21b) means that the “phase
boundary” is blurred, which is true especially for small m or
N22 + 1. Instead, nanophases can be considered as
pseudophases convenient for studying finite-sized clusters,
just like the treatment of micelles as a phase (Supporting
Information section F).22,60

We emphasize also that our statistical thermodynamic
fluctuation theory does not introduce any explicit assumptions
on the “state” of the pseudophase. Consequently, our theory is
valid for liquid-like and “solidified pore condensates”61 alike
and hence can deal with capillary sublimation as has been
reported for argon at low temperatures.61

Comparison of the Two Perspectives. First, we compare
the fluctuation theory and Hill’s thermodynamics of small
systems48−50 as applied to the sorption onto porous interfaces:

• The fluctuation theory is local in its perspective. It
focuses on sorbate−sorbate number correlation or,
equivalently, the excess number of sorbates around a
probe sorbate.

• Hill’s thermodynamics of small systems48−50 is global in
its perspective. It focuses on the entropy of distributing
phase-separated pores throughout the system.

For the simple case (i.e., an interface constituting statistically
uncorrelated pores), the two perspectives lead to mathemati-
cally equivalent branch isotherm equations, in which Hill’s
thermodynamics of small systems48−50 captures fluctuation via
the arrangement of filled/empty pores. Despite the demon-
strated equivalence between the two, we point out that the
fluctuation theory shares its common language (i.e., molecular
distribution functions as the foundation of number correla-
tions) with molecular simulations and liquid theory. Hill’s
thermodynamics of small systems,48−50 despite its appeal
arising from the use of elementary thermodynamic concepts
like mixing entropy, makes an indirect link to molecular
distribution functions.

■ CONCLUSIONS

This paper has aimed to answer the following fundamental
questions on sorption hysteresis:

I. Why are the transitions sharp yet continuous (see Figure
1)?

II. What is the energetic basis of sorption hysteresis?

III. How can we derive an isotherm equation for hysteresis
loops with its parameters with direct mechanistic
relevance?

IV. What is the relationship between the fluctuation theory
and Hill’s thermodynamics of small systems?

These questions are key to linking the current mechanistic
insights underlying the IUPAC hysteresis classification to
isotherm equations to the underlying thermodynamic
principles. To answer these questions, a statistical thermody-
namic foundation is necessary. To this end, this paper has

1. established the thermodynamic stability condition for
the macroscale and for the constituent nanoscale;

2. derived the branch isotherm eq (Figure 1, bottom) and
identified the sorbate cluster size and per-sorbate
stability as its key parameters;

3. expressed how the interfacial free energy for hysteresis
branches changes with the sorbate activity; and

4. established how fluctuation can be viewed alternatively
via the arrangement of vapor and liquid pores.

These new theoretical tools enabled us to investigate hysteresis
via not only isotherm shapes but also underlying energetics.

The transitions are continuous because of the nanoscale
subdivision of an interface, which caps the fluctuation scale
(question I). Even when sorbate excess number (N22) breaks
nanoscale stability, the macroscopic interface (constituting a
macroscopic number of nanoscale systems) is well within the
thermodynamic stability.

Isotherm equations for hysteresis branches were derived
from two perspectives, macroscopically from the statistical
thermodynamic fluctuation theory (question II) and Hill’s
thermodynamics of small systems48−50 (question IV). The
capacity for two equivalent approaches has been demonstrated
in the case of cooperative sorption when multiple sorbates sorb
together as a cluster. While the derivation from the fluctuation
theory focused on an enumeration of sorbate excess numbers,
the thermodynamics of small systems focused on the entropy
of distributing filled and unfilled pores.

A clear picture of hysteresis has been presented via the
interfacial free energies underlying hysteresis branches
(question III). The key points are (i) the lower interfacial
free energy of the desorption branch and (ii) a switch-over
from the adsorption branch to desorption. The driving force
for (i) was identified as the increased sorbate stabilization for
the desorption branch (am′ < am). Even though the difference
in sorbate cluster size between adsorption and desorption
branches (m and m′) plays a major role in determining
hysteresis shapes underlying the IUPAC classifications, the
energetics of hysteresis come predominantly from sorbate
stabilization (am' < am). Consequently, the proposed
mechanisms of hysteresis, such as “pore blocking”, “percola-
tion”, and “cavitation,” should be chiefly about sorbate
stabilization. Indeed, while m and m′ are the gradients (first-
order derivatives) of isotherm branches, thereby an important
feature of isotherm hysteresis, they are the second-order
derivatives of interfacial free energies; hence, their role is minor
in the energetics of hysteresis.

The generality of the fluctuation sorption theory offers
advantages over the previous thermodynamic approaches. The
sorbate excess number provides a direct microscopic insight
into the structure and distribution of sorbate molecules at the
interface. Such a local insight is inevitably replaced with the
global distribution of filled pores according to Hill’s
thermodynamics of small systems.48−50 However, the local
view is closer to molecular simulations through the direct
relationship between excess energy and molecular distribution
functions. Thus, the universal facility of the fluctuation theory
in capturing inhomogeneity in sorbate distribution at the
interface has been demonstrated through the elucidation of
sorption hysteresis. Application to scanning isotherm loops62

will be presented in a forthcoming paper.
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