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A B S T R A C T   

Protein and polyphenols are often found as self-assembled structures in plants. Inspired by nature, this study 
looked at controlled engineering of hybrid nanoparticles using plant-based proteins and plant-derived flavonoid 
crystals. These nanoparticles have been shown to stabilize Pickering emulsions over several months. Potato 
protein (PoP) and flavonoid quercetin (QC) crystals in mass ratios (PoP:QC) ranging from 100:1 to 5:1, were used 
to fabricate the hybrid (PoPQC) nanoparticles at pH 7.0. The hydrodynamic diameter (dH), scattering pattern via 
small angle X-ray scattering (SAXS) and ζ-potential of the PoPQC as well as the protein conformation via circular 
dichroism (CD) and fluorescence were studied. The oil-in-water (O/W) emulsions stabilized by PoP and PoPQC 
nanoparticles with degrees of conjugation ranging 0.18–16.55% were analyzed by droplet sizing, ζ-potential 
measurements, and microscopy across a wide range of length scales. Both CD and SAXS analyses revealed that 
the conjugation of PoP with QC caused conformational changes in the secondary structure of PoP with the ar
omatic amino acids interacting with phenolic rings of QC, mainly through hydrophobic interactions. The 
addition of QC had a considerable impact on both particle size of PoPQC (~50–~400 nm) and consequently the 
droplet size of the corresponding Pickering emulsions stabilized by these spherical particles (d4, 3 ~2–~35 μm). 
The droplet size increased significantly (p < 0.05) as the QC content of the particles was increased, whilst the 
ζ-potential became more negative. Nevertheless, the Pickering emulsions were capable of resisting coalescence 
over several months, suggesting the application of nature-inspired hybrid nanoparticles.   

1. Introduction 

Pickering emulsions (PEs) are composed of two immiscible liquids, 
generally oil-in-water (O/W) or water-in-oil (W/O), stabilized by solid 
particles, although recently this definition seems to be stretching to 
include semi-solid and microgel particles as alternatives to classic low 
molecular weight surfactant emulsifiers. The key feature is that all these 
particles are effectively irreversibly adsorbed at the oil-water interface 
due to their high energy of detachment (ΔGd), whilst also generating 
significant steric stabilization of droplets by virtue of the particle size, 
thereby offering ultrastability against coalescence and even Ostwald 
ripening (Binks, 2002; Dickinson, 2012; Nimaming et al., 2023; Sarkar & 
Dickinson, 2020). In addition to the growing demand for sustainable and 
biocompatible sources of Pickering particles, there has been significant 
interest in the utilization of plant-based proteins for generating such 
particles. Several plant-based protein particles have been fabricated via 
various processes and shown to have efficacy in stabilizing emulsions 
apparently via the Pickering mechanisms, including soy protein 

nanogels (Chen et al., 2014), soy protein particles (Zheng et al., 2023), 
pea protein microgels (Zhang & Sarkar, 2020b), gliadin nanoparticles 
(Peng et al., 2018), peanut protein isolate particles or microgels (Jiao 
et al., 2018; Wang et al., 2023), potato protein microgels (Aery et al., 
2023), and quinoa protein isolate nanoparticles (Qin et al., 2018; Qin 
and Peng, 2018; Zhang et al., 2021), to name just a few. Nevertheless, 
the use of single-component particles means that they are often sus
ceptible to disruption by environmental factors such as pH, ionic 
strength, and temperature, so that the corresponding emulsions can lose 
the ultrastability (Carpentier et al., 2022; Fu et al., 2019; Hu & Xiong, 
2022; Yi et al., 2021; Zhang et al., 2020a; Zhou et al., 2018). 

An alternative approach for improving the particle properties is the 
fabrication of hybrid particles wherein the particle properties are 
modulated by using a combination of different food-grade materials 
(Nimaming et al., 2023). Numerous investigations have shown that 
modification of proteins by complexation with other biopolymeric ma
terials can provide emulsions with higher stability to adverse environ
mental and biological conditions as well improve other functional 
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properties such as resistance to lipid oxidation, dual delivery of encap
sulated bioactives, etc. (Chang et al., 2022; Dai et al., 2020; Sui et al., 
2018; Tavasoli et al., 2022). 

In Nature, plant-derived phenolic compounds such as flavonoids 
tend to co-exist in self-assembly with proteins (Zhang & Wang, 2021b). 
The self-assembly is a result of mainly non-covalent interactions, i.e., 
hydrogen bonding and/or hydrophobic interactions, depending on the 
locations(s) of the hydroxyl group(s) in the flavonoid ring structure (Liu 
et al., 2022). The polyphenolic residues of such hybrid particles are 
thought to be largely responsible for any additional benefits of inhibiting 
oxidative degradation initiated at the interface. The complexation of 
dairy proteins with polyphenols as hybrid Pickering particles has been 
investigated (Chen et al., 2023; Li et al., 2021) but conjugation with 
plant proteins is a relatively new endeavour. A detailed understanding of 
stabilizing properties of plant protein hybrid particles is complicated by 
the relative insolubility and high tendency for self-aggregation of the 
proteins on their own. This study is an attempt to gain such an under
standing for a relatively well characterized pair of materials: quercetin 
(QC) and potato protein (PoP) 

PoP has traditionally been considered as a large volume by-product 
of starch production, whilst more recently it has started to be investi
gated as a useful functional ingredient by various food manufacturers 
(Okeudo-Cogan et al., 2024). Given the huge scale of potato cultivation, 
the transformation of PoP into a more high value-added material would 
offer major implications for agronomy and the environment. PoP is 
especially more water-soluble compared to most other plant storage 
proteins and therefore potentially more useful as a colloidal ingredient 
(David & Livney, 2016; Edelman et al., 2019; Hu et al., 2021; Kew et al., 
2021). PoP is usually categorized into three fractions of total soluble 
proteins: patatin (40%) with an isoelectric point (IEPs) between pH 4.5 
to 5.2, protease inhibitors (50%) with IEPs ranging from pH 5.1–9.0 
(Bergmann & Glatter, 2000; Hussain et al., 2021a, Hussain et al., 2021b) 
and other high molecular weight proteins (10%). The patatin and pro
tease inhibitor have been shown to exhibit antioxidant activities, and 
they have great foaming and emulsifying properties for delivering 
bioactive compounds (David & Livney, 2016; Edelman et al., 2019; van 
Koningsveld et al., 2006; Waglay et al., 2014). 

Polyphenols, of which flavonoids are a sub-group, are secondary 
plant metabolites. Many studies have proposed that they may be bene
ficial to human health (Ji et al., 2022; Quan et al., 2019). QC is one of the 
most prevalent dietary flavonoids, composed of three aromatic rings 
with hydroxyl groups substituting the hydrogen atoms at positions 3, 5, 
7, 3′, and 4′-pentahydroxyflavone (Liu et al., 2022), widely distributed in 
very many plant species and potentially offers diverse biological activ
ities such as anti-inflammatory, anti-cancer, and antioxidant effects. 
However, its physicochemical instability and insolubility in water 
reduce its bioavailability and pose a significant barrier to the utilization 
of QC in functional nutraceutical products or foods in general (Fang 
et al., 2011; Ji et al., 2022; Liang et al., 2021; Liao et al., 2022; Ma et al., 
2021). Complex formation with a protein such as PoP can be a strategy 
to deliver QC, whilst also creating hybrid particles for Pickering stabi
lization of emulsion droplets where QC alone is apparently not as 
effective (Zembyla et al., 2019), at same time retaining the anti-oxidant 
properties of both components. 

Hence, the objective of this study is to investigate the fabrication of 
hybrid particles composed of PoP and QC and understand their effi
ciency as Pickering stabilizers compared to conventional emulsions 
stabilized by PoP molecules alone. The hybrid particles were examined 
in terms of their physicochemical characteristics, protein conforma
tional changes and their morphology across various length scales via 
microscopy and small angle X-ray scattering (SAXS). The stability of 
Pickering emulsions stabilized by hybrid PoPQC particles was examined 
over 6 months via measurements of particle size and ζ-potential, mi
croscopy at multiple lengthscales. 

2. Materials and methods 

2.1. Materials 

PoP powder was purchased from Henley Bridge (Lewes, UK) con
taining 90.5% protein, with patatin as the main protein according to 
Kew et al. (2021). HEPES buffer (2-(4-(2-hydroxyethyl)-1-piperazinyl)- 
ethanesulfonic acid) was purchased from PanReac AppliChem, ITW 
Reagents, UK. Quercetin hydrate, a yellow-coloured powder, was pur
chased from Fluorochem, Hadfield, UK. The solvents used were of 
analytical grade. Milli-Q water with a resistivity of 18.2 MΩ cm at 25 ◦C 
(Millipore Corp., Bedford, UK) was used for preparation of the HEPES 
buffer and 0.1 M hydrochloric acid (HCl) or sodium hydroxide (NaOH) 
was used to adjust the pH of the solutions to pH 7.0. Sodium azide 
(SigmaAldrich, UK) at 0.02 wt% was employed as an antimicrobial 
agent. 

2.2. Preparation of potato protein (PoP) solutions and hybrid potato 
protein-quercetin (PoPQC) particles 

PoP solution at 5.0 wt% was prepared as described previously by 
Kew et al. (2021), i.e., by dispersing PoP powder in 20 mM HEPES buffer 
(at pH 7.0) and stirring continuously for 2 h. The solution was centri
fuged at 5000 rpm for 15 min and then the supernatant was collected 
and used as the useable PoP. A stock solution of QC was prepared by 
dissoving QC crystals at 1.0 wt% concentration in pure ethanol. For 
hybrid particle fabrication, different volumes of QC stock solution were 
added slowly to 5.0 wt% PoP to give different mass ratios of PoP: QC, 
namely 100: 1, 20: 1, 10: 1, 10: 1.5, and 5: 1 (w/w) at pH 7.0 under the 
magnetic stirring. The corresponding PoP/QC molar ratios were 0.13, 
0.66, 1.32, 1.99, and 2.65, respectively where molar mass of PoP was 
taken from patatin. The ethanol was then evaporated, re-preciptating 
the QC in the presence of the PoP and the hybrid particles formed 
(PoPQC) are subsequently referred to as PoPQC100: 1, PoPQC20: 1, 
PoPQC10: 1, PoPQC10: 1.5, and PoPQC5: 1, respectively. 

2.3. Characterization of hybrid PoPQC particles 

2.3.1. Dynamic light scattering 
The mean hydrodynamic diameter (dH) of the PoP and PoPQC dis

persions at pH 7.0 was measured by dynamic light scattering (DLS) at 
25 ◦C using a Malven Zetasizer Nano-ZS (Malvern Instruments, Malvern, 
UK) using a standard disposable cuvette. The absorption coefficient of 
the PoP and hybrid particles (PoPQC) was set as 0.001. These samples 
were diluted to 1 mg/mL with Milli-Q water (pH 7.0) and the mean 
value of dH, particle size distribution (PSD), and polydispersity index 
(PDI) were reported. 

2.3.2. ζ-potential measurements 
A particle electrophoresis instrument (Zetasizer, Nano ZS series, 

Malvern Instruments, Worcestershire, UK) was used to determine the 
ζ-potential of PoP, PoPQC and the corresponding emulsions. The PoP 
and PoPQC samples were diluted to 0.1 mg/mL and the emulsions were 
diluted to 0.01 wt% oil with Milli-Q water and then fed to a folded 
capillary cell (Model DTS 1070, Malvern Instruments Ltd., Worcester
shire, UK). 

2.3.3. Small-angle X-ray scattering (SAXS) 
The structural characteristics of PoP and PoPQC samples varying in 

QC levels were investigated by SAXS analysis. SAXS measurements were 
performed on an Anton Paar SAXSpace camera in line collimation (0.5 
× 20 mm beam size) with Cu-Kα radiation (λ = 1.54 Å) at room tem
perature (25 ◦C) with an exposure time of 1800s. The samples were filled 
into 1.5 mm quartz glass capillary tubes (QGCT 1.5) (Capillary Tube 
Supplies LTD, UK) and subsequently sealed to prevent evaporation. The 
investigations were carried out in a vacuum environment to minimise 
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the scattering caused by air. A 1D Mythen X-ray detector (Dectris Ltd., 
Baden, Switzerland) was used to record the scattering data. The 1D 
scattering curves were corrected for the primary beam position using 
SAXStreat (Anton Paar, Austria). The empty capillary and buffer solu
tion profiles were used to subtract the background scattering. The 
background subtracted SAXS profiles were further analyzed by the in
direct Fourier transformation approach (Bergmann & Glatter, 2000; 

Glatter, 1977) to obtain the real-space curves, i.e. the pair distance 
distribution function (PDDF) and the radius of gyration (Rg) could be 
calculated. The calibration has been done using the Silver Behenate and 
the exact sample to detector distance has been saved in the operating 
software of the SAXSPace instrument. The specific design for this setup 
enable controlling the sample to detector distance electronically with 
0.001 mm precision. 

2.4. Conformational changes of hybrid PoPQC particles during 
conjugation 

2.4.1. Free amino acid group determination 
The free amino acid group contents and degree of conjugation (DC) 

of PoP and PoPQC were determined using a standardized ortho-phthal
dialdehyde (OPA) method based on the study by Araiza-Calahorra, 
Akhtar, & Sarkar, 2020. Briefly, 3.81 g of sodium tetraborate, 0.088 g of 
dithiothreitol and 0.1 g sodium dodecyl sulphate (SDS) were mixed 
gently. The 0.08 g OPA was dissolved in 2 mL of methanol before Milli-Q 
water was added to make the final volume of OPA solution to 100 mL. 
The solution was kept in the dark before use. OPA solution (160 μL) was 
added to 1 mg/mL PoP or PoPQC in a disposable PMMA cuvette (45 ×
12.5, H × W, 10 mm pathlength) and then mixed for 5 s; OPA mixed with 
HEPES buffer was used as a blank. The absorbance was measured at 340 
nm using UV-VIS spectrophotometer (6715 UV/VIS Spectrophotometer, 
Jenway, UK). The degree of conjugation (DC) was be determined via the 
following equation: 

Degree of conjugation (DC) %=

(
Cunconjugate − Cconjugate

)

Cunconjugate
× 100% (1)  

where, Cunconjugate is the free amino acid content of PoP and Cconjugate is 
the free amico acid content of the hybrid particles. A calibration curve of 
L-leucine solutions (0–200 μM) was used as a reference. 

2.4.2. Circular dichroism (CD) analysis 
A Chirascan Plus CD spectrophotometer was used. The PoP and 

PoPQC solutions were diluted with 20 mM HEPES buffer (pH 7.0) to 
obtain a protein concentration of 0.2 mg/mL. The diluted solution was 
injected into a 1 mm path length quartz sample cell at 20 ◦C. The 
scanning wavelength was selected to be between 200 and 250 nm with a 
bandwidth of 2 nm at a scan speed of 1 nm/s. 

2.4.3. Fluorescence spectroscopy 
PoP and PoPQC were diluted with Milli-Q water to 0.5 mg/mL (final 

protein concentration). The fluorescence emission spectra of PoP and 
PoPQC were recorded between 300 and 500 nm with the excitation 
wavelength fixed at 280 nm. The width of slit for both excitation and 
emission was set to 10 nm. 

2.5. Preparation of Pickering emulsions (PEs) 

PEs were prepared using commercially purchased sunflower oil 
(Tesco Supermarkets, UK) and PoPQC as a Pickering stabilizer at an oil: 
aqueous phase ratio of 1: 4 (v/v) with 1.0 wt% protein concentration in 
the final emulsions. Coarse emulsions were prepared by homogenization 
in an Ultra Turrax T25 homogenizer (IKA-Werke GmbH & Co., Staufen 
Germany) at 10,000 rpm for 1 min. The coarse emulsions were then 
passed twice through the Leeds Jet Homogenizer (two-chamber ho
mogenizer, School of Food Science and Nutrition, University of Leeds, 
UK) at 300 bar to obtain fine emulsion droplets, abbreviated as E- 
PoPQC. A control, conventional emulsion was also prepared using PoP 
as emulsifier, abbreviated as E-PoP. 

2.6. Droplet sizing 

The emulsion droplet sizes were evaluated for a period of 6 months 

Fig. 1. Mean free amino acid contents (A), CD spectra (B), and fluorescence 
intensity (C) of PoP ( ), PoPQC100: 1 ( ), PoPQC20: 1 ( ), PoPQC10: 1 ( ), 
PoPQC10: 1.5 ( ), and PoPQC5: 1 ( ) (n = 3 × 3). Excitation wavelength =
280 nm. 
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using static light scattering using a Mastersizer (3000S series, Malvern 
Instruments Ltd, Malvern, UK). The average particle size was reported as 
the surface mean diameter (d3,2) and the volume mean diameter (d4,3), 
and the full particle size distribution (PSD). 

2.6.1. Scanning electron microscopy (SEM) 
The native PoP, QC, and hybrid PoPQC particles were mounted on 

specimen stubs then dried using hot air. The morphology of the samples 
was obtained using a Hitachi SU8230 FESEM (Hitachi, Japan). The 
images of all specimens were acquired at 2.0 mV, emission current was 
21500 nA at a magnification of 50,000 × . 

2.6.2. Cryogenic-scanning electron microscopy (cryo-SEM) 
The microstructure of emulsions stabilized by PoP and hybrid PoPQC 

particles was characterized using a FEI – Helios G4 CX Dual beam FIB
SEM (Oregon, USA) with cryo-stage. Heptane was used instead of sun
flower oil as the dispersed phase in order to mitigate the impact of oil 
crystallization during the freezing process (Araiza-Calahorra & Sarkar, 
2019; Zhang et al., 2021c). The emulsion samples were positioned on 
sample stubs and flash-frozen in a liquid nitrogen at − 180 ◦C prior to 
being transferred to the cryo-preparation chamber on the SEM. The 
frozen samples were subjected to − 95 ◦C for 4 min then coated with 5 
nm of platinum. Afterwards, the Pt-coated samples were transferred to 
the FEI chamber for imaging at − 135 ◦C. The emulsion images were 
captured at 2.0 kV, 0.1 nA at magnifications of 100,000 ×. 

2.6.3. Confocal scanning laser microscopy (CLSM) 
The microstructure of the emulsions was also studied using a Zeiss 

LSM 880 inverted confocal microscope (Carl Zeiss MicroImaging GmbH, 
Jena, Germany). A stock solution of Nile Red (1 mg/mL) was used to 
stain the oil phase and a stock solution of Fast Green (1 mg/mL) was 
used to stain the protein phase. Nile Red and Fast Green were excited at 
wavelengths of 488 and 633 nm, respectively, while the auto
fluorescence of QC excitation was at 405 nm. To minimise the Brownian 
movement of oil droplets, the stained samples had been mixed with a 
sufficient amount of xanthan gum (1.0 wt %). Emulsion samples were 
placed into a laboratory-made welled slide and then gently covered by a 
coverslip (0.17 mm thickness) avoiding trapping air bubbles. A 63 ×
objective lens (oil immersion) was used to observe the emulsions. 

2.7. Statistical analyses 

Data are reported as means and standard deviations of at least three 
readings done on triplicate samples prepared on independent days. The 
statistical analyses were conducted using one-way ANOVA and multiple 
comparison test using SPSS software (IBM, SPSS statistics, version 24) 
and the significant difference between samples were considered when p 
< 0.05. 

3. Results and discussion 

3.1. Conjugation of PoP and QC to hybrid PoPQC particles 

Firstly, we tested whether incorporation of QC affects the structural 
features of PoP during the fabrication of the hybrid PoPQC particles. Any 
changes in primary structure were tested for by measuring the free 
amino acid group content via the OPA method. The results are shown in 
Fig. 1A. At the lowest QC tested (PoP: QC100: 1) the free amino acid 
group content (~1210 μmol/mg protein) did not change significantly (p 
≥ 0.05). In fact, the free amino acid group content of PoPQC gradually 
reduced as the fraction of QC was increased beyond this level (p < 0.05). 
Phenolic hydroxyl groups in flavonoids such as QC may interact with 
proteins via hydrogen bonding through their –NH and –SH functional 
groups (Pan et al., 2023). The free amino acid group content was used to 
estimate the degree of conjugation (DC) of the hybrid particles, shown in 
Table 1. The DC ranged from 0.18% to 16.55% as the fraction of QC was 
increased. However, OPA reagent is composed of 1% SDS, which is a 
denaturant and may destroy non-covalent interactions between 
protein-protein or quercetin-protein, assuming that covalent interaction 
between PoP and QC may be responsible for decreasing in free amino 
acid group content (Cheng et al., 2020). 

CD measurements in far-UV (200–250 nm) region were used to 
determine changes in protein secondary structure when conjugated with 
QC (Chen et al., 2018; Liu et al., 2017). The CD spectra of PoP and 
PoPQC are shown in Fig. 1B. The CD spectra of native PoP has a char
acteristic broad negative band containing two minima around 208 and 
221 nm excited at 280 nm, indicating the existence of α–helix confor
mations (Cao & Xiong, 2015; Liu et al., 2017). The introduction of QC 
led to alterations in the CD spectra: the maximum negative ellipticities 
showed a gradual increase. This suggests unfolding of the PoP, 
decreasing in the α–helix content (Chen et al., 2018; Chen et al., 2020). 
The addition of QC to PoP may disrupt hydrogen bonding interactions 
between the carbonyl groups (C––O) and amino groups (–NH2) in the 
α–helix structure (Cao & Xiong, 2015). This may lead to enhanced 
exposure of the PoP hydrophobic regions and strengthen its interaction 
with QC. The percentage of the secondary structures was calculated 
using BeStSel (Beta Structure Selection) and revealed that PoP composed 
of 77.8% α-helix, 15.5% β-sheet, and 6.7% unordered structure 
(Table S1.). After PoP complexed with QC, the content of α-helix 
decreased whilst the β-sheet slightly increased as a function of QC. 

The intrinsic fluorescence spectra of proteins also offers insights into 
the molecular interactions associated with the conformational changes 
in their tertiary structure (Liu et al., 2017). The intrinsic fluorescence of 
PoP as a function of QC is shown in Fig. 1C. The fluorescence intensity of 
native PoP was maximal at ~349 nm, which may be attributed mainly to 
the intrinsic fluorescence of tryptophan (Trp) residues at this excitation 
wavelength (280 nm) (Chen et al., 2021; Du et al., 2022). There was a 
reduction in the maximum fluorescence intensity when QC was intro
duced, indicating a fluorescence quenching effect which may imply 
protein unfolding and a change in the polarity of the Trp microenvi
ronment. Generally, Trp residues are located inside the hydrophobic 
core of the folded protein structure, which has a high quantum yield, 
resulting in a high fluorescence intensity. The fluorescence intensity 
reduces when the Trp residues are exposed to a hydrophilic environment 
due to the partially unfolded protein (Cao & Xiong, 2015; Cheng, Zhu, & 
Liu, 2020). 

It was also noted that the wavelength of the maxium emission in
tensity of PoPQC shifted from 349 to 355 nm as the fraction of QC was 
increased. The presence of red-shift implies that the Trp residues of PoP 
were subjected to a hydrophilic environment, and fluorescence intensity 
decreases due to the interaction with QC, a quencher, providing addi
tional evidence for the conformational changes of PoP. This suggests 
that the QC molecules become increasingly more embedded in the in
ternal hydrophobic region core of the partial unfolded protein mole
cules, the aromatic rings of QC associating directly with Trp residues, 

Table 1 
Degree of conjugation (DC) of hybrid particles with different amount of QC 
evaluated by OPA method.  

Samples Free amino acid group content (μmol/mg 
protein) 

DC (%) 

PoP 1213.14 ± 0.38a control 
PoPQC100: 1 1211.00 ± 1.03a 0.18 ± 0.08e 

PoPQC20: 1 1110.81 ± 1.23b 8.44 ± 0.10d 

PoPQC10: 1 1071.19 ± 7.46c 11.70 ± 0.62c 

PoPQC10: 1.5 1051.33 ± 0.79d 13.34 ±
0.06b 

PoPQC5: 1 1011.14 ± 0.71e 16.55 ± 0.06a 

Mean values with different letters (a-e) within the same column are statistically 
different (p < 0.05). 
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which have been shown to act as specific binding sites for other hy
drophobic bioactive compounds (Chen et al., 2021; Cuevas-Bernardino 
et al., 2018; Du et al., 2022; Fang et al., 2011). The fluorescence 
quenching mechanism of QC with PoP was calculated from the 
maximum fluorescence intensity of PoP according to Stern-Volmer 
equation: 

F0

F
= 1 + Ksv[Q] (2)  

where, F0 and F are the maximum fluorescence intensity of PoP without 
quencher and hybrid particles with different concentrations of QC, 
respectively. [Q] is QC concentration (mM), and KSV is the Stern-Volmer 
quenching constant. 

The fitted Stern-Volmer plot of PoP and QC fluorescence quenched 
by varying concentrations of QC exhibited a linear relationship of 
quenching interaction between PoP and QC. The Ksv values of PoP and 
hybrid particles are shown in Table S2, which indicates a binding be
tween PoP and QC. The Ksv values decreased as a function of QC con
centration suggesting that QC possessed the capability to quench the 
intrinsic fluorescence of the hybrid particles (Gong et al., 2021; Li et al., 
2023). In summary, the addition of QC resulted in partially unfolded PoP 
under natural conditions, and the major interactions between QC and 
PoP were predominantly attributed to hydrogen bonding and hydro
phobic interactions. 

3.2. Physicochemical and nanostructural characteristics of hybrid PoPQC 
particles 

The mean particle sizes, PSDs, polydispersity (PDI) and ζ-potential of 
native PoP and PoPQC are presented in Fig. 2. The hydrodynamic 
diameter (dH) of PoP and QC were measured as 57 and 277 nm, 

respectively. Of more importance than these exact values, the addition 
of QC is seen to cause a significant increase in dH of the hybrid particles 
to 385 nm (p < 0.05), although there was no significant difference when 
the mass ratio of hybrid particles was between PoPQC100: 1 and 
PoPQC10: 1 (Fig. 2A). Particularly, with the highest PoPQC ratio the dH 
was higher than QC alone (277 nm), which suggests protein-induced 
aggregation of the QC (Han et al., 2022). The PSDs of the native PoP 
and hybrid particles determined by DLS are illustrated in Fig. 2B. The 
PoP showed two main peaks between 7 and 300 nm, in agreement with 
Kew et al. (2021), representing the protein monomer and its aggregates, 
respectively. Meanwhile, QC showed a polymodal distribution between 
86 nm and 364 nm and the highest PDI (1.953) among the samples 
tested (p < 0.05). The hybrid PoPQC particles, particularly with the low 
QC, showed a single the main peak in the 100 nm range with low PDI 
(Fig. 2C). It is to be expected that QC should have the largest PDI (p < 
0.05) since it is largely insoluble in water and its crystals are anisotropic 
(rod-shaped) (Zembyla, Murray, & Sarkar, 2018) whilst the dynamic 
light scattering (DLS) fits all the distribution to spherical form factor. 
The mean dH of QC should therefore be taken with caution. 

Both PoP and QC apparently had negative charge at pH 7.0, with 
ζ-potentials of − 14.4 and − 19.2 mV, respectively. The negative charge 
of PoP is attributed to the abundance of anionic groups (Hussain et al., 
2021b; Li, 2023), whilst the dissociation of the C7–OH on the QC nucleus 
proceeds in alkaline conditions which could account for the presence of 
the negative charge (Zembyla et al., 2018). Interestingly, hybrid parti
cles exhibited a significant increase in the magnitude of the negative 
values of their ζ-potential relative to PoP and QC alone (Fig. 2D) (the 
exception being the ratio PoPQC20: 1). This is not straightforward to 
interpret from this type of measurement, but again hints at significant 
rearrangement of the structure of the PoP and the binding of the QC. 

In order to probe the structure deeper in length scales, PoP and 

Fig. 2. Mean hydrodynamic diameter (dH, black bars) (A), mean particle size distribution (B, black bars) of PoP ( ), PoPQC100: 1 ( ), PoPQC20: 1 ( ), PoPQC10: 1 
( ), PoPQC10: 1.5 ( ), and PoPQC5: 1 ( ) and QC ( ), mean PDI (C, black bars), and mean ζ-potential (black bars) (D). Error bars represent standard deviation (n =
3 × 3). Parameters denoted with the same lower case subscripts do not differ statistically at the confidence of p ≥ 0.05. 
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hybrid PoPQC particles were also analyzed by SAXS (Fig. 3). The sig
nificant increase in scattering intensity in the low q region as well as the 
shifts in the form of the scattering profile of hybrid particles in relation 
to the variation in QC is apparent. All SAXS curves intensities decreased 
slightly at small q (q < 0.5), whilst decreased sharply at the large q > 0.5. 
The decay of scattering intensity is significantly faster at small q values, 
particularly in the case of complexation with a large proprtions of QC 
(PoPQC20: 1 to PoPQC5: 1) (Fig. 3A), indicating that the large hybrid 
particles are being formed (Cheng et al., 2022). The changes in the slope 
of intensity of PoP and PoPQC demonstrated the changes in the struc
tural characteristics of the hybrid PoPQC particles (Boukari, Lin, & 
Harris, 1997; Cheng et al., 2019). The pair-distance distribution function 
(PDDF) of native PoP and the hybrid PoPQC particles are shown in 
Fig. 3B. The PDDF of native PoP demonstrated a maximum dimension of 
32 nm and a radius of gyration (Rg) of 9.35 nm in solution, being 
comparable with the crystalline dimensions of PoP, well characterized 
previously (Green et al., 2013; Rydel et al., 2003). The PDDF also shows 
a bimodal pair-distance distribution, which most likely originate from 
the small and the large molecular weight proteins of PoP (i.e. patatin and 
the potato multicystatin). 

Patatin is the predominant protein with a molecular weight ranging 
from 40 to 42 kDa glycoproteins. Potato multicystatin is a protease in
hibitor which presents in high quantities as distinct crystals in the 
cortical parenchyma cells, molecular weight of these crystals ranges 
from 5 to 25 μm (Schmidt, Damgaard, Greve-Poulsen, Larsen, & 
Hammershøj, 2018; Schmidt et al., 2019; Waglay et al., 2014). However, 
it may also be plausible that some sort of complexation occurs between 
patatin and the protease inhibitory proteins available in PoP, leading to 
a dumbbell like structure formation, showing a bimodal PPDF. The SAXS 
analysis reveals minimal changes in the PoP nanoscale structure upon 
addition of low content of QC (PoPQC100: 1 and PoPQC20: 1). In the 
presence of high QC content, the SAXS profiles show a faster decay at 
small q values (following an intensity decay by q− 1) and the PDDF 
represents an asymmetric size distribution with a right-truncated shape 
that almost linearly decays in the right tail and stretches up to 42 nm in 
the case of PoPQC5: 1. Such asymmetric behaviour in pair-distance 
distribution function is an indication of elongated structures, likely 
originating from the elongated proteins and/or complexation and ag
gregation of PoP facilitated by hydrophobic region of QC (Glatter, 2018; 

Liu et al., 2021), in line with the structural changes observed in Fig. 1. 
The morphology of PoP, QC and PoPQC was also observed via SEM, 

as shown in Fig. 4. The native PoP appeared as relatively small and 
spherical particles (Fig. 4A), in agreement with the findings of Hussain 
et al., 2021b, whilst QC exhibited the classic, rod-like crystalline shape 
(Fig. 4B) (Zembyla, Murray, Radford, & Sarkar, 2019). As the PoPQC 
mass ratio increased, the morphology of the PoPQC ranged from bridged 
individual, spherical-type particles to a more condensed and larger 
network-like structure of such particles (Fig. 4C–E). The surfaces of the 
aggregated PoPQC particles at low QC contents appeared to be smooth 
(Fig. 4C–E), but as the proportion of QC increased the particles started to 
appear more polyhedral (Fig. 4F and G) with rough edges. This is 
possibly QC crystals starting to be revealed, embedded within the mixed 
structure. As always, however, it is possible that some of these structures 
might be influenced to some extent by the SEM sample preparation. 

3.3. Emulsion and Pickering emulsion stabilization by PoP, hybrid 
POPQC particles, and storage stability 

Having characterized the properties of hybrid particles on their own, 
their behaviour as Pickering emulsion (PE) stabilizers was assessed. 
Cryo-SEM images of PEs stabilized by PoPQC are shown in Fig. 5A–F 
with zoomed in regions focusing on the oil-water interface. The micro
structure of the interfacial layer most notably varied as the QC contents 
of the PoPQC particles was varied. At low QC contents (Fig. 5B) the 
interfaces appeared to be covered by small and smooth spherical 
structures. With hybrid PoPQC particles of higher QC content, densely 
interconnected stuctures were seen at the interface (Fig. 5C–F), similar 
to the structures observed for the hybrid particles on their own (Fig. 4). 

Emulsion stability was also observed over 6 months storage at 4 ◦C, 
via particle sizing, ζ-potential and confocal microscopy (CLSM) and 
macroscopic images are presented in Fig. S1. The droplet characteristics 
were measured at neutral pH (7.0) and room temperature (25 ◦C), 
shown in Table 2. The PSDs are shown in Fig. 6. At the beginning of the 
storage time d4,3 of E-PoP was smallest with a monomodal droplet size 
distribution. The mean diameter of the fresh emulsions increased (e.g., 
d4,3 from 1.4 to 43.4 μm) significantly (p < 0.05) with increasing QC 
content of the PoPQC (Table 2) although all the PSDs were monomodal 
(Fig. 6A) except for E-PoPQC10: 1.5 and E-PoPQC5: 1 (Fig. 6B–F). Large 

Fig. 3. SAXS profiles (A) and radius of gyration (Rg) (B) of PoP ( , ), PoPQC100: 1 ( , ), PoPQC20: 1 ( , ), PoPQC10: 1 ( , ), PoPQC10: 1.5 ( , ), and 
PoPQC5: 1 ( , ). 
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droplet sizes are expected when the stabilizing particles are larger. The 
ζ-potential of the freshly emulsions ranged from − 16 to − 27 mV 
(Table 2). 

Over 6-months storage, d3,2 and d4,3 of E-PoP increased, the PSD 
became wider and bimodal (Fig. 6A–Table 2) indicating coalescence. On 
the contrary, d3,2 and d4,3 for E-PoPQC100: 1 and E-PoPQC 20: 1 
exhibited minimal variation over the storage period (Fig. 6B and C). The 
remaining E-PoPQCs, i.e., with higher QC contents, showed decreases in 
droplet size whilst remaining polymodal (Fig. 6D–F). This apparent 
reduction must have been due to the rapid rise of flocs of droplets to
wards the top of the samples, hindering their detection for droplet size 
analysis. The ζ-potential of all emulsion samples showed only a slight 
change over 6-months storage (Table 2). 

The microstructure of the fresh and 6-months old PEs was evaluated 
using confocal microscopy (CLSM), shown in Fig. 7. The CLSM micro
graphs indicated that all emulsion samples showed the formation the 

interfacial layers of either PoP or PoPQC (labelled green for PoP, and 
labelled yellow for QC) (Fig. 7A1-7F1). The aqueous phase of the 
emulsions shows a green colour indicating the presence of unadsorbed 
protein. The images confirmed the larger droplet sizes of the PoPQC- 
stabilized emulsions compared to E-PoP (Fig. 7A1-7A2). More impor
tantly, all the PEs (Fig. 7B1–7F1, 7B2–7F2) showed bridging of droplets 
due to the formation of a connected network in the continuous phase, 
potentially inhibiting coalescence. These networks resembled those 
formed by the particles on their own (Fig. 4). Consequently, any emul
sion stabilizing effects of the PoPQC particles could be due to both their 
adsorption and/or this network formation in the bulk. This needs further 
characterization in the future. 

4. Conclusions 

Hybrid particles of PoP and QC have been successfully fabricated 

Fig. 4. The SEM micrographs of PoP (A), QC (B), PoPQC100: 1(C), PoPQC20: 1 (D), PoPQC10: 1.0 (E), PoPQC10: 1.5 (F), and PoPQC5: 1 (G). Scale bar is 1 μm.  
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under ambient conditions and used to stabilize Pickering oil-in-water 
(O/W) emulsions over 6 months storage. The PoP and QC were com
plexed spontaneously via non-covalent interactions, particularly hy
drophobic interactions, and hydrogen bonding causing conformational 
changes in the protein structure. The obtained hybrid PoPQC particles 
were spherical but tended to aggregate and interconnect in the bulk as 
their QC content was increased. Indeed, this increased aggregation also 
appeared to occur at the interface of the emulsion droplets and also in 
the bulk aqueous phase of the emulsions. This aggregation contributed 
to greater stability to coalescence of the PoPQC-stabilized emulsions 
compared to the conventional emulsions stabilized by PoP alone, 
although the mean droplet sizes of the latter were still smaller. These 
findings should provide impetus to fabricating novel food-grade hybrid 
particle stabilizers with dual functionality but based on more sustain
able, plant-based ingredients and simple, physical processing. Ongoing 

studies are focusing on interfacial properties and structure of the 
adsorbed films of hybrid PoPQC particles to pinpoint more clearly the 
effects of PoP vs QC on the physicochemical and biophysical implica
tions for the corresponding emulsions. 
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Fig. 5. Cryo-SEM of emulsions stabilized by PoP (A), and Pickering emulsions stabilized by PoPQC100: 1(B), PoPQC20: 1 (C), PoPQC10: 1.0 (D), PoPQC10: 1.5 (E), 
and PoPQC5: 1 (F), respectively. The smaller inserts are zoomed in regions of the interface. The scale bars are 1 μm in the larger micrographs and 100 nm in the 
zoomed in regions, respectively. 
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Table 2 
Evolution of mean droplet size (d3,2, d4,3) and ζ-potential of conventional emulsions stabilized by PoP and Pickering emulsions stabilized by hybrid PoPQC particles 
over 6 months of storage.  

Samples Droplet size (μm) ζ-potential (mV) 

d3,2 d4,3 

fresh 1 month 6 months fresh 1 month 6 months fresh 1 month 6 months 

E-PoP 0.3 ± 0.01eB 0.2 ± 0.01fC 0.9 ± 0.03bA 1.4 ± 0.02eB 1.1 ± 0.11dC 4.9 ± 1.19bA − 16.6 ± 1.50aA − 33.6 ± 0.25dC − 29.0 ± 0.36cB 

E-PoPQC100: 1 1.3 ± 0.01dA 0.8 ± 0.01eB 0.6 ± 0.17cB 2.8 ± 0.03dA 1.7 ± 0.04cdB 2.5 ± 0.24bcA − 26.2 ±
0.95bcA 

− 28.2 ± 0.22bB − 30.3 ± 1.35cC 

E-PoPQC20: 1 1.5 ± 0.01cA 0.9 ± 0.02dB 0.3 ± 0.11dC 2.8 ± 0.03dA 2.5 ± 0.11cB 1.8 ± 0.13cC − 26.5 ±
1.00bcA 

− 32.5 ± 0.41dC − 28.3 ±
0.31bcB 

E-PoPQC10: 1 4.4 ± 0.04aA 1.9 ± 0.02cB 0.2 ± 0.01eC 5.8 ± 0.08cA 2.3 ± 0.06cB 1.3 ± 0.03dC − 27.0 ± 1.18cA − 29.4 ±
0.06bcB 

− 32.1 ± 0.65dC 

E-PoPQC10: 1.5 3.3 ± 0.02bA 3.1 ± 0.02bB 0.3 ± 0.06dC 15.9 ± 0.83bA 7.7 ± 0.11bB 2.7 ± 0.13bcC − 27.3 ± 0.40cA − 31.0 ±
1.77bcB 

− 27.0 ± 1.02bA 

E-PoPQC20: 1 4.4 ± 0.02aB 4.8 ± 0.13aA 3.3 ± 0.13aC 43.4 ± 0.50aA 34.7 ± 1.30aB 11.8 ± 1.85aC − 24.4 ± 1.32bC − 22.6 ± 5.17aB − 20.9 ± 4.17aA 

Mean values with different lowercase letters (a-f) with the same column, and uppercase letters (A− C) with the same row indicate significant differences (p < 0.05). 

Fig. 6. Mean droplet size distribution of emulsions stabilized by PoP (A) PoPQC100: 1 (B), PoPQC20: 1 (C), PoPQC10: 1 (D), PoPQC10: 1.5 (E), and PoPQC5: 1 (F) 
over 6 months of storage at 4 ○C (n = 2 × 3). 
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