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Gold Chemistry Hot Paper

A Gold(I)–Acetylene Complex Synthesised using Single-Crystal
Reactivity

Chloe L. Johnson, Daniel J. Storm, M. Arif Sajjad, Matthew R. Gyton, Simon B. Duckett,*

Stuart A. Macgregor,* Andrew S. Weller,* Miquel Navarro,* and Jesús Campos*

Abstract: Using single-crystal to single-crystal solid/gas
reactivity the gold(I) acetylene complex [Au(L1)(η2-
HC�CH)][BArF4] is cleanly synthesized by addition of
acetylene gas to single crystals of [Au(L1)(CO)][BArF4]
[L1= tris-2-(4,4’-di-tert-butylbiphenyl)phosphine, ArF=
3,5-(CF3)2C6H3]. This simplest gold-alkyne complex has
been characterized by single crystal X-ray diffraction,
solution and solid-state NMR spectroscopy and periodic
DFT. Bonding of HC�CH with [Au(L1)]+ comprises
both σ-donation and π-backdonation with additional
dispersion interactions within the cavity-shaped
phosphine.

Acetylene, HC�CH, is the simplest of all alkynes, and an
important chemical feedstock due to its availability and high
reactivity.[1] Despite this, transition metal catalyzed trans-
formations of acetylene are relatively underdeveloped.[2]

While cationic gold(I) complexes, exemplified by [Au(L)]+

(L=phosphine or NHC), have been shown to be powerful,
and tuneable, catalytic systems for the electrophilic activa-
tion of substituted alkynes,[3] their use with acetylene is
limited to recent reports by Echavarren, who demonstrated
its use as a C2-building block in aryloxyvinylation or cyclo-
propanation reactions.[4] In such transformations π–acetylene
gold(I) intermediates are postulated, but their isolation or

even spectroscopic detection remains elusive. This contrasts
with the well-developed coordination chemistry of gold(I)
alkyne adducts more generally.[5] Additional interest in π-
acetylene adducts of d10 coinage metals stems from the
fundamental insight they provide into metal-ligand bonding,
especially the role of back-donation from their filled d-
orbitals to the π-ligand.[6] However, synthetically, such
studies are restricted to a handful examples of isolated Cu
and Ag-complexes, with no Au-examples known, and none
of which are of direct revelence to the cationic [Au(L)]+

systems so popular in catalysis (Figure 1A).[6b,7] For example
the group of Dias recently described a set of π–acetylene
complexes of silver and copper, but the isolation of
analogous gold(I) complexes was unsuccessful due to rapid
decomposition.[8]

We have recently reported on the use of sterically
demanding terphenyl phosphine ligands, with PMe2(C6H3-
2,6-(C6H3-2’,6’-iPr2)2) as our archetypal example, to synthe-
size otherwise unstable gold(I) complexes through kinetic
stabilization, for instance hydrocarbyl-bridged cationic di-
gold complexes.[9] However these phosphine complexes did
not provide access to π–acetylene adducts, whose formation
could only be postulated during acetylene activation by Au-
based bimetallic frustrated Lewis pairs.[10] In contrast the
even bulkier, cavity-shaped, ligand tris-2-(4,4’-di-tert-
butylbiphenyl)phosphine, L1 (Figure 1B), does allow for the
isolation of the dicoordinate gold(I) ethylene complex,
[Au(L1)(η2-H2C=CH2)][SbF6], 1[SbF6], and its reaction with
CO to form [Au(L1)(CO)][SbF6], 2[SbF6], Figure 1B.

[11] We
now describe the use of this ligand in the synthesis, isolation
and characterization of a gold(I) π-acetylene adduct. Note-
ably this complex is best accessed by sequential single-
crystal in crystallo[12] ligand exchange reactions (Figure 1C).

Informed by the synthesis of the ethene adduct, 1-
[SbF6],

[11a] the reaction of Au(L1)Cl with the halide-abstract-
ing agent Ag[SbF6] was undertaken in CH2Cl2 solution
(298 K, 1 hr) in the presence of excess acetylene (1.5 bara,
bara=bar absolute). However, rather than forming a gold(I)
π-acetylene complex, only unidentified decomposition prod-
ucts were observed. The addition of acetylene (1.5 bara) to
CD2Cl2 solutions of 1[SbF6] or 2[SbF6] was also investigated.
However, all attempts to make the target acetylene adduct
using these complexes resulted in only partial conversion of
the starting materials, and decomposition on removal of the
acetylene atmosphere under vacuum, to give a black
precipitate of gold(0) and free phosphine, L1.

Recognizing the now well-established role counterions
play in the reactivitiy and stability of cationic gold(I)
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complexes,[3b] the anion [SbF6]
� was swapped for the less-

coordinating [BArF4]
� anion [ArF=3,5-(CF3)2C6H3] (Sup-

porting Materials) to form the corresponding ethene 1

[BArF4], and CO 2[BArF4], adducts. Charging 1[BAr
F
4] with

acetylene (1.5 bara) resulted in 85% conversion to form a
new complex, while full conversion was obtained using
2[BArF4]. This new species was assigned to the acetylene
adduct [Au(L1)(η2-HC�CH)][BArF4], 3[BArF4], by in situ
NMR spectroscopy. However, definitive characterisation of
pure 3[BArF4] in the absence of acetylene (and its associated
acetone carrier solvent) was hindered by decomposition
(~20%) on the application of a dynamic vacuum to the
solution.

In crystallo[12] solid-state molecular organometallic
chemistry (SMOM)[13] has emerged as a useful methodology
to access solution-unstable organometallic species by single-
crystal to single-crystal (SC-SC) reactivity, for example
cationic group 9 σ-alkane complexes.[14] For such cationic
species, the periodic arrangement of [BArF4]

� anions in the
lattice has been shown to provide a well-defined micro-

environment where non-covalent interactions provide
stabilization,[15] while substrate-accessible hydrophobic chan-
nels allow for solid/gas reactivity.[16] Given the solution-
based substitution chemistry noted above to generate
3[BArF4] we hypothesized that solid/gas SC-SC reactivity
could be used to isolate this gold(I) acetylene complex in a
pure form without the decomposition observed using
solution routes.

Crystals of the starting material 1[BArF4] were therefore
grown from 1,2-difluorobenzene/heptane solution. Visual
inspection revealed them to be colourless blocks, that exist
in two different polymorphs for 1[BArF4], having space
groups P21/n (1[BArF4]) and P1 (1’[BArF4]). Both phases
are susceptible to solvent loss, however crystals of 1’[BArF4]

are particularly sensitive under an extended argon purge,
resulting in multiply faceted crystals which do not diffract.
Both polymorphs show the same cation structure, within
error, and motif of [BArF4]

� anions, but show a variation in
the lattice solvent of crystallization. We restrict a detailed
discussion to 1[BArF4]. A single crystal X-ray diffraction
(SCXRD) study of 1[BArF4] reveals a structure for the
[Au(L1)(η2-H2C=CH2)]

+ cation very similar to that reported
for 1[SbF6],

[11a] Figure 2A. Noteably, the C=C double bond
of 1.199(6) Å [150 K] is shorter than in free ethylene
[1.313 Å].[17] Previously this was suggested to be due to
miminal backbonding from the cationic d10 center. While
this may be the case, an additional interpretation is that the
ethene shows torsional libration[6b,18] in the solid-state that
artificially shortens the measured C···C distance. Support for
this comes from the fact that the C···C bond appears to
shorten at higher data collection temperatures [1.302(5) Å,
100 K; 1.199(6) Å, 150 K; 1.089(9) Å, 200 K; 1.04(1) Å,
250 K] as the amplitude of alkene libration increases. The
[BArF4]

� anions form a bicapped square prismatic packingFigure 1. A) Examples of structurally-characterized d10 acetylene com-
plexes. B) Ligand exchange at [Au(L1)(η2-H2C=CH2)][SbF6], 1[SbF6]. C)
Access to stable gold acetylene adduct [Au(L1)(η2-HC�CH)][BArF4],
3[BArF4], using solid/gas SC-SC reactivity (SC-SC=single-crystal to
single-crystal).

Figure 2. (A) Molecular representation of solution-grown crystals of
1[BArF4], showing the relationship between the cation and a proximal
[BArF4]

� anion Displacement ellipsoids shown at 50% probability.
Hydrogen atoms are excluded for clarity. (B) Packing diagram of
1[BArF4] (van der Waals radii), with solvent of crystallization high-
lighted.
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motif, with two crystallographically identical cations of 1+

enclosed by 10 anions (Figure 2B). 1,2-F2C6H4 (0.9 occu-
pancy) and heptane (0.75 occupancy) are fractionally occu-
pied within the lattice of polymorph 1’[BArF4], while
1[BArF4], has only heptane incorporated into its lattice.

This ensemble of 1[BArF4] and 1’[BAr
F
4] was character-

ized by solution (CD2Cl2) and solid-state NMR spectroscopy
(SS NMR). The former shows the [Au(L1)(η2-H2C=CH2)]

+

cation to be essentially unchanged from that reported for
1[SbF6].

[11a] A broad signal at δ 109.4 is observed in the
13C{1H} SS NMR spectrum for bound ethene. Consistent
with two polymorphs, in the 31P{1H} SS NMR spectrum two
environments are observed at δ 16.5 and 11.7. No significant
coupling to quadrupolar 197Au (I= 3/2) nucleus is observed.

[19]

(1)

Addition of CO (4 bara, 10 min) to the ensemble of
crystalline 1[BArF4]/1’[BAr

F
4] results in the complete con-

version to 2[BArF4]/2’[BAr
F
4] as measured by SCXRD,

31P{1H}/13C{1H} SS NMR spectroscopy, infrared (IR) spectro-
scopy and solution (CD2Cl2) NMR of the dissolved product,
Equation 1. The 13C{1H} SS NMR spectrum shows a doublet
corresponding to the Au(CO) group at δ 182.0 [2JCP=
110 Hz] and an absence of the ethene signal at δ 109.4. In
the IR spectrum ν(CO)=2170 cm�1.[20] Analysis by SCXRD
(space group=P1) of 2[BArF4] shows the cation is very
similar to 2[SbF6], Figure 3.

[11a] The arrangement of [BArF4]
�

anions, and the lattice solvent, are retained from 1[BArF4].
This reaction is reversible, and on addition of ethene

(2 bara) to crystals of 2[BArF4] full conversion to 1[BAr
F
4] is

observed.
Addition of acetylene (1.5 bara, 30 mins) to crystals of

the ensembles of polymorphs of 1[BArF4], or 2[BAr
F
4],

resulted in the formation of the gold π-acetylene complex
3[BArF4], as determined by solution

31P{1H} NMR spectro-
scopy of the dissolved crystals. However, full conversion to
3[BArF4] was only observed from the CO-complex 2[BArF4]
in these solid/gas reactions, as measured by solution and
solid-state NMR, SCXRD and IR spectroscopy. In the
1H NMR spectrum of dissolved crystalline material (CD2Cl2)
a new doublet was observed at δ 2.02 [3JHP=2.6 Hz] this is
assigned to the bound acetylene, which collapses to a singlet
on decoupling 31P. The corresponding acetylene peak was
observed as a doublet at δ 76.0 [2JCP=9 Hz] in the 13C{1H}
NMR spectrum (Figure 4), while a single resonance is
recorded in the 31P{1H} NMR spectrum (δ 8.9). These
spectroscopic markers are consistent with a bound acetylene
at an {AuP} fragment;[21] i.e. [Au(L1)(η2-HC�CH)][BArF4],
3[BArF4]. These signals are shifted slightly to higher
frequency than those of free acetylene [1H: δ 1.80, 13C{1H}:
δ 71.9].[8] In the corresponding 13C{1H} SS NMR spectrum
two broad signals (fwhm~35 Hz) are observed at δ 76.3 and
75.2 for the acetylene in the two polymorphs; while two
environments are observed at δ 10.2, 8.0 in the 31P{1H}
SS NMR spectrum.

(2)

Figure 3. (A) Synthesis of 3[BArF4]. (B) Molecular structures of solution-grown crystals of the cations [2]+ and [3]+ (110 K collection). Displacement
ellipsoids shown at 50% probability All hydrogen atoms, [BArF4]

� and lattice solvent are excluded for clarity. Selected bond lengths (Å): 2[BArF4],
C1�O, 1.058(8); Au�C1, 2.001(6); Au�P, 2.3002(11); 3[BArF4] Au�P, 2.2747(7). (C) Alternative representation of [3]+ showing the torsional disorder
at 110 K and 200 K data collection temperatures, highlighting the acetylene ADPs and key structural metrics. Calculated distances from Periodic
DFT.
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By using doubly 13C labelled acetylene gas, the isotopo-
logue [Au(L1)(η2-H13C�13CH)][BArF4],

13C-3[BArF4], was
synthesized using the same solid/gas SC-SC route (Equa-
tion 2). In the resulting solution 1H and 13C NMR spectra
signals for an AA’MM’X spin system for bound acetylene
are observed, that were successfully simulated using gNMR
(Supporting Materials).[22] Figure 4 shows the 13C NMR
spectrum. The 1J(CC) value was determined to be 134 Hz,
which is considerably lower than that of free acetylene,
172 Hz.[23] 1J(CH) and 2J(CH) values are 261 and 47 Hz
respectively, the former being larger than for free acetylene
(248 and 47 Hz respectively),[24,25] and considerably larger
than for other acetylene complexes.[26]

The formation of 3[BArF4] arises from two sequential
SC-SC solid/gas transformations, that result in some crystal-
degradation. This meant that although a gross structure
could be obtained for the cation from a SCXRD experiment,
the precise location of the acetylene could not be deter-
mined, likely due to the torsional vibration of bound
acetylene (vide infra). Importantly, unlike in solution, in the
crystalline phase 3[BArF4] does not lose acetylene under
extended vaccum (72 hrs, 10�2 mbar), although single-
crystallinity is lost, along with lattice heptane (NMR).[27]

This chemical stability allows for subsequent recrystalliza-
tion of 3[BArF4] from 1,2-difluorobenzene/heptane to give
high quality single-crystalline materials in which the
acetylene ligand is now better defined. Screening these
block-like crystals again revealed the existence of two
different polymorphs, and both provided good quality
diffraction data, allowing for two independent structural
solutions of the gold(I)-acetylene complex to be collected.
3[BArF4] crystallizes in space group P21/n, and 3’[BAr

F
4] in

P1. Both show the bicapped square prismatic motif of
[BArF4]

� anions with 1,2-F2C6H4 lattice solvent, but only the
latter also has heptane incorporated into the lattice. Both
cations offer very similar structural metrics (Supporting

Materials), and only 3[BArF4] is discussed in detail. The
31P{1H} and 13C{1H} SS NMR data of this ensemble are
essentially identical to those obtained by direct SC-SC
reactivity. This reaction is reversible, and addition of CO to
crystalline 3[BArF4] regenerates 2[BAr

F
4]. These are rare

examples of sequential single-crystal to single-crystal solid/
gas transformations with gold complexes, although top-
otactic transformations are known,[28] as well as solid/gas
transformations on Cu(I) and Ag(I) systems.[29]

Figure 3 shows that the gold(I) centre adopts a linear
coordination geometry, with the acetylene ligand bound in
an η2-fashion. Similar to 1[BArF4], the C�C triple bond
[1.023(11) Å, collected at 110 K] appears artificially shorter
than that of free acetylene [1.2033(2) Å],[30] a result of
torsional vibrations. Similar behaviour has been discussed in
detail for silver and copper acetylene adducts.[8] Consistent
with this, there is a trend for the C�C bond to appear
shorter at higher data collection temperatures: 1.023(11) Å,
110 K; 0.980(9) Å, 150 K; 0.923(11) Å, 200 K (Figure 3C),
although within error these distances are the same. The
ADPs for C1 and C2, and trend in Au···C distances, suggest
a torsional pivot around Au�C2. At the lowest collection
temperature (110 K) the Au···C distances are apparently
shorter [2.197(7), 2.179(6) Å] than reported for the related
gold(I) alkyne complex [Au(PtBu3)(η2-MeC�CtBu)][SbF6]
where no such disorder is reported: 2.238(12), 2.239-
(10) Å.[21] Thus while the structure shows gold/acetylene
binding, the metrical data do not allow for a detailed
analysis of bonding. Using the empirical correlation pro-
posed by Dias,[8] a weak IR band for the C�C stretch that is
observed at 1656 cm�1, shifted 318 cm�1 from free acetylene
(1974 cm�1), provides an estimated C�C distance of 1.27 Å.
This C�C stretch compares with those reported for the d10

complexes (R2PC2H4PR2)Pd(η2-HC�CH), R=tBu, 1626 cm�1;
R=iPr, 1619 cm�1.[26] The acetylene C�H stretch in 3[BArF4]
is observed at 3185 cm�1. This band shifts to 3175 cm�1 in the
isotopologue 13C-3[BArF4] (calculated 3176 cm

�1); while the
13C�13C stretch is no longer observed (calculated 1592 cm�1)
due to masking by the broad C�H vibration of L1 at
1611 cm�1.

To resolve the torsional disorder seen crystallographi-
cally the structure of 3[BArF4] was fully optimised in the
solid state using periodic DFT. This gave a C�C distance of
1.24 Å, while retaining asymmetric Au�C distances
(Au�C1=2.27 Å; Au�C2=2.24 Å, see Figure 3C). This
behaviour is also seen in calculations on the isolated cation
and is therefore not a solid state effect, but reflects the C2H2

orientation within the binding pocket provided by the L1
ligand, with C2�H2 pointing directly at one aryl substituent
and C1�H1 directed between the other two.

An ETS-NOCV analysis on the optimised 3+ cation built
from L1Au+ and C2H2 fragments gives an interaction energy
of �41.3 kcal/mol, made up of destabilising steric interac-
tions (+22.9 kcal/mol) and stabilizing orbital (�57.6 kcal/
mol) and dispersion interactions (�6.6 kcal/mol). The key
orbital interactions are displayed as deformation density
channels in Figure 5. The major component is alkyne σ-
donation to a Au�P σ*-acceptor that is dominated by
Au(6 s) character (58.4%; ΔE=�28.3 kcal/mol). This is

Figure 4. Acetylene region of 13C NMR (A) 13C{1H} NMR spectrum
3[BArF4] (298 K, CD2Cl2). (C)

13C NMR spectrum 13C-3[BArF4] (298 K,
CD2Cl2).
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supplemented by Au(5d) to alkyne π* j j donation
(�16.9 kcal/mol), consistent with previous calculations show-
ing π-back donation[31] from Au(I) can be significant.
Repeating this analysis with a truncated model where the
appended p-tBu�C6H4 substituents are replaced by H gives a
lower interaction energy of �35.8 kcal/mol. This reduction
reflects a lower dispersion contribution (�1.2 kcal/mol)
indicating that the full L1 binding pocket does confer some
added stability on C2H2 binding. The presence of weak
interactions between the alkyne and the surrounding ligand
environment was confirmed by QTAIM, NCI and IGMH
studies (see Supporting Materials).

In summary, we have synthesized and structurally
characterized the first gold(I)–acetylene complex, [Au(L1)-
(η2-HC�CH)][BArF4] (3[BArF4]; L1= tris-2-(4,4’-di-tert-
butylbiphenyl)phosphine). This simplest alkyne complex has
been characterized by variable temperature single crystal X-
ray diffraction, solution and solid-state NMR spectroscopy,
including the use of doubly 13C labelled acetylene gas and
periodic DFT. The synthesis of 3[BArF4], that provides
structural and spectroscopic markers for the coordination of
acetylene in Au(I)-mediated catalysis, hinges on the syner-
gistic interplay of two pivotal factors: ligand confinement
and in crystallo solid/gas reactivity. Firstly, the use of the
cavity-shaped phosphine L1 establishes a confined environ-
ment that imparts enhanced stability to the Au-bound
acetylene through steric protection within the binding
pocket, as well as some further stabilizing weak interactions
for the C2H2 fragment. An ETS-NOCV analysis identifies σ-
donation from the alkyne to gold as the primary bonding
interaction, that is supplemented by substantial π-back-
donation. Secondly, the isolation of 3[BArF4] in pure form
was made possible only through single-crystal to single-
crystal (SC-SC) reactivity. This represents a futher illustra-
tion of the potential of solid-state molecular organometallic
chemistry (SMOM) for isolating complexes that are unstable
in solution.
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A Gold(I)–Acetylene Complex Synthesised
using Single-Crystal Reactivity

The existence of π-acetylene gold(I)
compounds as intermediates in catalysis
has been postulated, but their isolation
or spectroscopic detection has remained
elusive. Herein, the combination of a
bulky cavity-shaped phosphine along
with single-crystal to single-crystal reac-

tivity allowed for the isolation of the first
gold(I)–acetylene complex, which was
thoroughly characterized by X-ray diffrac-
tion, solution and solid-state NMR,
periodic DFT, and electronic structure
analyses.
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