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Parametric coupling of waves is one of the most

efficient mechanisms of energy transfer that can lead

to the growth or decay of waves. This transfer occurs

at frequencies close to their natural frequencies. In

partially ionized solar plasma, there are a multitude of

waves that can undergo this process. Here, we study

the parametric coupling of Alfvén waves propagating

in a partially ionized solar plasma with ionization-

recombination waves identified by our study to

appear in a plasma in ionization non-equilibrium.

Depending on the parameters that describe the

plasma (density, temperature), coupling can lead to

a parametric resonance. Our study determines the

occurrence conditions of parametric resonance, by

finding the boundaries between stable and unstable

regions in the parameter space. Our results show

that collisions and non-equilibrium recombination

can both contribute to the onset of unstable

behaviour of parametrically resonant Alfvén waves.

2024 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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This article is part of the theme issue ‘Partially ionized plasma of the solar atmosphere: recent

advances and future pathways’.

1. Introduction
The temperature of the lower part of the solar atmosphere (photosphere and chromosphere) is a

few thousand K, meaning that the plasma (for simplicity, here assumed to be purely hydrogen

plasma) is in a partially ionized state, where electrons, positively charged ions (protons) and

neutral particles can interact with each other through collisions. Collisions are a very effective

way to exchange momentum and energy and for the thermalization of the plasma. Research in the

dynamics of partially ionized plasmas, over the past decade, has undergone a significant increase

driven by high-resolution observations and numerical investigations (for a comprehensive review

of the observations and modelling of dynamics in astrophysical partially ionized plasmas

see, e.g. [1]).

The framework in which dynamics in a partially ionized plasma is described depends on the

frequency regime of interest. In particular, for dynamical changes for which the spatial scales

are of the order of the mean free path of particles and temporal scales are of the order of the

collisional time between particles (therefore, velocities are of the order of thermal velocity), one

has to employ a framework where the equations that describe the dynamical evolution of the

plasma contains information about the interaction between the fluids that make up the plasma.

Since the coupling of electrons and ions in the solar chromosphere is much stronger than the

coupling with neutrals [2], it is often enough to treat the plasma as a two-fluid system (charged

particles and neutrals) and the frequencies of interest would be of the order of the ion-neutral

collisional frequency. The equations that describe the state of the plasma and the associated waves

have been discussed earlier by several studies, see, e.g. [1–8].

In many engineering, physical, electrical, chemical and biological systems, the oscillatory

behaviour of the dynamic system owing to periodic excitation is of great interest. Such systems

can exhibit a diversity of dynamic regimes with periodic, aperiodic and even chaotic oscillations.

In general, the differential equations describing such systems are non-autonomous and solutions

are obtained using, e.g. numerical methods, perturbation and averaging theory, point mapping

methods [9].

When dynamics is driven by periodic excitation, the responses of physical systems can be

categorized as forced oscillations and parametric oscillations. Forced oscillations appear when

the dynamical system is excited by a periodic input. If the frequency of an external excitation

is close to the natural frequency of the system, then the system will experience resonance,

i.e. oscillations with a large amplitude. Parametric oscillations are the result of having time-

varying (periodic) parameters in the system. In this case, the system could experience parametric

resonance, and again the amplitude of the oscillations in the output of the system will be large.

Current studies attempt to determine the occurrence conditions for parametric resonance, by

detecting the boundaries between stable and unstable regions in the parameter space. In general,

the secular growth of amplitude owing to parametric coupling between modes is suppressed by

applying various renormalization techniques [10–12]; however fundamental physical processes

can be recovered when studying the parametric coupling of waves since this process is often

associated with amplification or decay of wave amplitude, to heating of the plasma or acceleration

of particles.

Parametric coupling of waves has received special attention in the literature as one of the

most effective ways to transfer energy and momentum between waves. In the solar wind,

parametric coupling is believed to play an important role in the development of turbulent

Alfvén wave cascades that can lead to instabilities that depend parametrically on the pump wave

amplitude and the plasma beta [13–15]. The same parametric coupling between waves (although
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referred to as swing interaction) was studied in a series of papers in [16–18] and it refers to the

parametric interaction of waves that results in the energization of waves, where the energy of

non-electromagnetic origin transforms into the energy of electromagnetic oscillations.

The appearance of Kelvin–Helmzholz (KH) parametric instability in the presence of oscillatory

flows at a tangential discontinuity has been proposed by [19] as a mechanism to extract energy

from magnetohydrodynamic (MHD) kink waves in flux tubes, and to drive dissipation of this

wave energy through turbulence. The variation of the Lagrangian displacement of the interface

was given as a Mathieu-type equation, and two kinds of instabilities were recovered: a traditional

KH instability and a parametric instability involving resonance between the oscillatory shear

flow and two surface Alfvén waves. The latter occurs when the system is KH stable, thus

favouring modes that vary along the flux tube, and as a consequence provides an important and

additional mechanism to extract energy. The characteristic time scale for these instabilities was

found to be around 100 s, for wavelengths of 200 km. The authors also found that the parametric

instability is more likely to occur for smaller density contrasts and larger velocity shears, making

its development more likely on coronal loops than on prominence threads. [20] used Si iv lines

observed by the Interface Region Imaging Spectrometer (IRIS) in the transition region of a polar

coronal hole to evidence parametric decay instability in the lower solar atmosphere. The power

spectrum of density fluctuations near the solar transition region observed by these authors

resembles the power spectrum of the velocity fluctuations but with the frequency axis scaled

up by a factor of approximately 2. Their analysis also showed that the density fluctuations have a

radial velocity of approximately 75 km s−1 and that the velocity fluctuations are much faster with

an estimated speed of 250 km s−1. Their analysis suggests an interaction between sound waves

and Alfvén waves in the transition region, which is evidence for the parametric decay instability.

In general, studies on the effect of partial ionization on wave propagation and the development

of instabilities assume that the plasma is in ionization equilibrium, i.e. during the investigated

temporal and spatial changes, the chemical composition of the plasma does not change, i.e. the

processes of additional ionization and recombination are neglected. This assumption is very often

violated, as the characteristic times for ionization and recombination are shorter or comparable

with the temporal scales involved in the problem, e.g. the period of waves. Changes in the

chemical composition of the plasma (in addition to temperature and pressure) are a way to

bring the system to non-equilibrium [21]. The present study aims to investigate the nature and

properties of non-propagating waves in a partially ionized plasma in ionization non-equilibrium,

and the effect of the parametric coupling of these waves to Alfvén waves. The present contribution

is structured as follows: in §2, we present the physical considerations that stay at the core of the

studied problem as well as the mathematical background necessary to analyse the ionization-

recombination waves. Section 3 is devoted to the investigation of the parametric coupling of

ionization-recombination waves with Alfvén waves propagating in a partially ionized plasma,

and we establish the conditions under which the coupling may lead to instability. Finally, our

results are concluded and summarized in §4.

2. Physical consideration and mathematical background
In general, the standard way to study waves assumes that the equilibrium is stationary, or at least

it varies over much longer time scales than any dynamical time scale of the physical problem. In

a partially ionized plasma, the stationary equilibrium state is not always reached, as ionization of

neutral atoms and recombination of ions and electrons often take place over time scales that are

comparable with other temporal scales. That is why non-stationarity may be generated by atomic

processes taking place in a plasma

Let us consider a partially ionized solar plasma made up of hydrogen atoms, protons and

electrons. The physical extent of the plasma is much larger than the Debye radius, meaning

that we have a quasi-neutral plasma in which the number densities of electrons and protons

are equal. The collisions between these particles provide an ideal channel for momentum and

energy transfer between species. According to standard solar atmospheric models (e.g. [22]) the
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ionization degree of the plasma (proportional to the ratio of the number density of neutrals to

ions) varies between very large limits, from approximately 104 in the solar photosphere to values

of the order of unity at the top of the chromosphere. For our purposes, we assume that the

plasma is weakly ionized, so our investigation is relevant to conditions we can find in the solar

photosphere and lower chromosphere. In the solar corona, the plasma can be considered as being

fully ionized.

It is well known that ionization and recombination are endotherm and exotherm processes,

respectively. Equally, the ionization probability increases with the temperature of electrons, while

lower-temperature electrons favour recombinations.

Since the degree of ionization is sufficiently small, the collisions of charged particles with

neutral particles dominate over collisions between charged particles. In this limit, it is normal to

assume that through ionization-recombination processes the variation of neutral number density

is small compared to the total neutral number density. The ion temperature is assumed to

be everywhere equal to the neutral gas temperature, and is therefore a constant. The electron

temperature is assumed to be large compared with the neutral gas temperature; consequently, the

neutrals are ionized only by collisions with the hot electrons and the dominant ionization and

recombination processes are given by electron impact ionization and radiative recombination.

Initially, the high-temperature electrons will increase the ionization of the plasma, as the

ionization probability increases with temperature. This process will lead to the cooling of

electrons, which favour the recombination as the recombination rate increases with the decrease

in temperature. Each recombination results in photons emitted that are absorbed by electrons via

various processes (e.g. inverse Bremsstrahlung). According to the Langdon effect [23], the increase

of electrons temperature applies mainly to cool particles increasing their temperature. As a result

of this process, the distribution function of electrons tends towards a super-Gaussian distribution,

which can transform into a Maxwelian distribution through mutual collisions of electrons. The

enhanced temperature will lead, again to an enhanced ionization and the two processes repeat

themselves. This cyclic variation of ionization and recombination leads to a non-propagating

ionization-recombination wave resulting in a temporal change of the electron number density.

Assuming that the plasma is made up of single-level (bound) hydrogen, the temporal variation

of the electron and neutral number densities as a result of ionization and recombination processes

are given by

dna

dt
= KRn2

e − KInane (2.1)

and
dne

dt
= −KRn2

e + KInane, (2.2)

where na and ne are the number densities of neutral atoms and electrons, respectively. The

ionization and recombination rates (in m3 s−1) are given based on a semi-empirical model for

the ionization of hydrogen by electron impact that assumes ionization from the ground state (1 s)

[24,25]

KI = 2.34 × 10−14X−1/2 e−X

and

KR = 5.2 × 10−20
√

X(0.4288 + 0.5 ln X + 0.4698X−1/3),

where X = 0.6ǫi/T(eV) and ǫi = 13.6 eV is the ionization potential of the hydrogen atom with

an electron in the ground state. These rates do not include photo-ionization or ionization from

excited states, which are known to be important in the chromosphere. As the physical mechanism

described in the present study requires hot electrons involved in ionization and cool electrons

involved in recombination, we will differentiate between the dimensionless quantity X in KI

and KR and label them as XI and XR, respectively. The variation of the two rates for a large

range of temperatures is shown in figure 1. While the recombination rate is fairly constant over

the investigated temperature range, the ionization rate increases with temperature. For lower
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Figure 1. The variation of the ionization, KI (green surface), and recombination, KR (red surface), rates with temperature.

temperatures, recombination is indeed larger, while for a hot plasma, ionization is the dominant

mechanism.

The system of equations (2.1) and (2.2) can be reduced by eliminating the neutral number

density in favour of electron number density. We assume that the plasma is weakly ionized and

the physical process leads to a small change in the number of neutral atoms, therefore we write

na = na0 + na1, with na0 being a time-averaged constant number density and na1 ≪ na0. Collecting

terms according to the powers of na1, we obtain that the temporal evolution of electron density is

described by

d2ne

dt2
+ na0n2

e (3KIKR + K2
I ) − K2

I n2
a0ne =O(na). (2.3)

In addition, in the above equation, we have neglected terms that are proportional to ne/na0. Let us

write equation (2.3) in dimensionless form and denote α1 = 3KIKR + K2
I and α2 = K2

I . We write the

number density of electrons as ne = ne0 + ne1 = ne0(1 + r), where ne0 is a time-averaged constant

density of electrons and ne1 a perturbation of arbitrary magnitude. Furthermore, we introduce

ω2
I = α1na0ne0 = na0ne0(3KIKR + K2

I ) and x = α2na0/(α1ne0). Using the new notation, the governing

equation reduces to

1

ω2
I

d2r

dt2
+ r2 + (2 − x)r + 1 − x = 0. (2.4)

Equation (2.4) is a nonlinear ordinary differential equation that admits periodic nonlinear wave

solutions (known as cnoidal waves) that can be expressed in terms of elliptic functions. To reduce

this equation to a form that can be solved, let us multiply the whole equation by dr/dt and

integrate with respect to t, leading to

(

ω−1
I

dr

dt

)2

+ 2

3
r(r − r1)(r − r2) = 0, (2.5)
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Figure 2. The variation of the two values r1 and r2 given by equation (2.6) as a function of the variable x.

where

r1,2 = −3

4

[

(2 − x) ±
√

(x + 2)(x − 2/3)
]

. (2.6)

It is well known that a differential equation of the type dq dz−1 = ±
√

G(q) (similar to equation

(2.5)) admits periodic nonlinear wave solutions expressed in terms of elliptical functions if G(q)

is a cubic or quartic function with distinct roots and at least two of them are real with G(q) being

negative between them. That is why equation (2.5) can describe oscillatory motion in a potential

well where the function r(t) is negative. The variation of the two quantities r1 and r2 with respect

to the variable x is shown in figure 2. Depending on the value of the variable x, we can distinguish

two different cases:

Case 1: 2/3 < x < 1. This case involves a moderate temperature difference between the ionizing

and recombining electrons and a moderate ratio of the neutral and electron number densities for

which the weakly ionized limit is not always satisfied. From figure 2, it is obvious that in this case

r1,2 < 0 and the solution of the differential equation (2.5) can be written as

r(t) = r2sn2

(

√

|r1|
6

ωIt; k1

)

, (2.7)

where sn(x; k) is Jacobi’s elliptic sine function and k1 = √
r2/r1 is the elliptic modulus. Using the

properties of elliptic functions, the frequency of the ionization-recombination wave is

ωir = ωI

2K(k1)

√

|r1|
6

, (2.8)

with K(k1) being the complete elliptic integral of the first kind. For a more intuitive understanding

of the period of the ionization-recombination wave, we can consider the connection between the

complete elliptic integrals and hypergeometric functions [26]. Accordingly, we have

K(ζ ) = π

2
2F1

(

1

2
,

1

2
; 1; ζ

)

.

It is clear that r2/r1 ≪ 1, therefore using the series expansion of the hypergeometric function, we

have

ωir = ωI

π

√
|r1|/6

1 + √
r2/r1/4 +O(k1)

. (2.9)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

2
 M

ay
 2

0
2
4
 



7

royalsocietypublishing.org/journal/rsta
P
h
il.
Tra
n
s.
R
.So

c.
A
382:20230226

...............................................................

x

0

–0.2

–0.4

–0.6

–0.8

–1.0

r(t)

r
(t

)

40

20

0

–0.5

–1.0

0.7

0.8

0.9

1.0

w
I
t

Figure 3. The variation of the dimensionless perturbation of the electron number density, r(t), with respect to dimensionless

time,ωIt, and the variable x corresponding to case 1, i.e. when 2/3< x < 1.
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Figure 4. The variation of the frequency of the ionization-recombination wave,ωir , with respect to the dimensionless variable

x and frequencyωI corresponding to case 1.

The variation of the dimensionless electron density, r(t), with respect to the variable x and time

t is shown in figure 3. The amplitude of oscillations in r(t) (the dimensionless electron number

density) is higher for smaller values of x, i.e. in regimes that correspond to a more ionized plasma.

The amplitude of oscillations suggests that changes are nonlinear, while a more linear behaviour

is obtained for values of x closer to 1.

The variation of the frequency of the ionization-recombination, ωir, as given by equation (2.8)

is displayed in figure 4. This variation shows that the frequency of these waves (for given value

of temperature) is smaller for the case when the plasma is strongly ionized and the frequency

increases with decreasing the equilibrium electron number density, i.e. when the plasma tends

more towards a weakly ionized state. Given the limitations that apply for this case, and the

typical values of particle number densities and temperatures relevant for the solar atmosphere,

the obtained solutions remain to a large extent mainly of mathematical interest.

Case 2: x > 1 that corresponds to r1 < 0 < r2. In this case, the restrictions on number densities

and temperatures do not apply, and the results are more relevant to solar atmospheric conditions.

Here, the solution of the differential equation reduces to

r(t) = r1r2sn2(Z1; k2)

r1 − r2 + r2sn2(Z1; k2)
, (2.10)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

2
 M

ay
 2

0
2
4
 



8

royalsocietypublishing.org/journal/rsta
P
h
il.
Tra
n
s.
R
.So

c.
A
382:20230226

...............................................................

x

r(t)

r
(t

)

40

20

0

1

2

0
1.0

1.5

2.0

2.5

ω
I
t

0

0.5

1.0

1.5

2.0

2.5

Figure 5. The same as in figure 3, but here we show the variation of the frequency of the ionization-recombination wave for
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where the function Z1 and the elliptic modulus, k2, are defined as

Z1 = ωIt

2

[(

x − 2

3

)

(x + 2)

]1/4

and k2 =
(

r2

r2 − r1

)1/2

.

Again, using the properties of the elliptic function, the frequency of the ionization-recombination

wave is given by

ωir = ωI

4K(k2)

[(

x − 2

3

)

(x + 2)

]1/4

. (2.11)

As before, we can use the connection between the complete elliptical integral and the 2F1

hypergeometric function. It can be shown that the elliptical modulus, k2, always remains smaller

than 1, so the series expansion of the hypergeometric function leads to an algebraic expression of

the ionization-recombination frequency of the form

ωir = ωI

2π

[(x + 2)(x − 2/3)]1/4

1 + k2/4 +O(k2
2)

.

The variation of the quantity r(t) with respect to the variable x and the dimensionless parameter

ωIt is shown in figure 5 and it is clear that the amplitude of waves increases with the value of

x. Similar to the previous case, the variation of the frequency of the ionization-recombination

wave in terms of the dimensionless quantity x and the frequency ωI is shown in figure 6 and this
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quantity shows a small increase with the value of x and shows smaller amplitudes (i.e. closer to a

linear description) for values of x closer to 1. It is interesting to note that at x ≈ 1 the frequency of

the ionization-recombination waves in the two cases become equal and this value is given by

ωir = ωI

4K(0)
= ωI

2π
.

A special case constitutes the limit when |x − 1| ≪ 1, which would also imply that r ≪ 1, so we are

dealing with a linear approach. In this case, the governing equation (2.4) reduces to a simple small

amplitude harmonic non-homogeneous equation with frequency ωI and the time-dependent

electron density becomes

ne(t) = ne0 + ne0ǫ cos ωIt, (2.12)

where we used the notation ǫ = 1 − r and the frequency ωI was defined earlier and depends on the

ionization/recombination rate and the equilibrium number densities of ions and neutrals. In this

limit, ωI represents the frequency of the ionization-recombination waves. The temporal change in

the number density of electrons owing to ionization-recombination processes will influence the

other waves that can appear in the plasma and this influence can appear as a parametric resonance

between the two oscillations. The variation of ωI with respect to the electron and neutral number

densities is presented in figure 7 for a fixed recombination temperature of 6500 K and for three

different values of the ionization temperature. These results should be interpreted carefully, as

one of the key requirements of the model discussed in our study is the weakly ionized character

of the plasma, so we would always need to choose a combination of number densities such that

na0 > ne0. Clearly, the largest values of the ionization-recombination frequency is obtained for very

large ionization temperature. Finally, we should mention that for values of x < 2/3 the solutions

of the governing equation (2.5) are aperiodical.
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3. Parametric resonance of Alfvén waves
Let us consider that the partially ionized plasma is permeated by a homogeneous magnetic field

oriented in the z-direction. In this environment charged particles and neutrals collide, providing

an effective channel for momentum and energy exchange between the two species. Alfvén waves

will propagate along the z-axis and will be polarized along the y-axis. Since we assumed that

the plasma is quasi-neutral, ni0 = ne0, the equilibrium ion number density will be consistently

replaced by the equilibrium electron number density. In order to simplify the mathematical

description, we consider a reference frame where neutrals are at rest. As a result, the governing

equations of the charged species are given by

mine(t)
∂viy

∂t
= B0

µ0

∂by

∂z
− mine(t)(νi + ne(t)KR)viy (3.1)

and
∂by

∂t
= B0

∂viy

∂t
, (3.2)

where viy and by are the velocity and magnetic field perturbations associated with the charged

species, the electron (and consequently the ion) number density, ne, is given by equation (2.12)

and µ0 is the permeability of free space. Having considered the neutral species as immobile, the

quantity νi in equation (3.1) refers to the inverse of the mean free time of ions, i.e. the average

of time between two collisions. For simplicity, we consider that the collisional frequency, νi is

a constant quantity. Considering immovable neutrals, we eliminate the entropy mode, a non-

propagating, purely damped, solution of the dispersion relation that exists only when collisions

are taken into account. The term on the right-hand side of equation (3.1) that contains the

recombination rate KR denotes the loss of momentum of ions caused by recombination.

Assuming that perturbations are proportional to eikz, the above system can be reduced to a

single ordinary differential equation for the velocity perturbation:

d2viy

dt2
+ a(t)

dviy

dt
+ b(t)viy = 0, (3.3)

where the time-dependent coefficients a(t) and b(t) are given by

a(t) = νi + ne0KR − ǫ(ωI sin ωIt − δ cos ωIt

and

b(t) = k2v2
A − ǫ[k2v2

A cos ωit + ωI(νi + 2δ) sin ωIt],

where vA = B0/
√

mine0µ0 is the Alfvén speed, δ = ne0KR and all terms O(ǫ2) have been neglected.

This equation is a Mathieu-type differential equation that can also be written as a the well-known

Hill differential equation by introducing a new function so that

Viy = viy exp

(

1

2

∫
a(t) dt

)

. (3.4)

As a result, the governing equation for Alfvén waves reduces to a Hill-type differential equation

of the form
d2Viy

dt2
+ Ω2(t)Viy = 0, (3.5)

where now

Ω2(t) = b(t) − 1

2

da(t)

dt
− 1

4
a2(t) = k2v2

A − 1

4
(νi + δ)2

− ǫ cos(ωIt)

[

k2v2
A −

ω2
I

2
+ δ

2
(νi + δ)

]

− ǫωI sin(ωIt)
(νi

2
+ δ

)

+O(ǫ2). (3.6)

The coefficient of this equation is periodic, i.e. Ω(t + T) = Ω(t) and the above equation is invariant

to the transformation t → t + T. This equation is known to be susceptible to parametric resonance
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and this occurs when the pumping frequency (the frequency of the ionization-recombination

waves), ωI, satisfies the condition ωI = 2kvA/m + β, with β ≪ 1 being the resonance detuning

factor. The most intensive form of parametric resonance occurs when m = 1, therefore we

investigate the case when ωI = 2kvA + β.

Let us return to equation (3.3), which is a modified Mathieu differential equation. When

ǫ = 0 the equation (now with constant coefficients) describes the temporal variation of the

eigenfunction connected to Alfvén waves and, provided kvA > ν̃i/2, the solution can be simply

written as

viy = e−ν̃it/2

(

A cos
√

k2v2
A − ν̃2

i /4t + B sin
√

k2v2
A − ν̃2

i /4t

)

,

where ν̃i = νi + δ. This result confirms the standard knowledge on linear oscillators with damping,

i.e. the ion-neutral damping and the loss of momentum caused by recombination cause a decaying

amplitude in time and a reduction of the frequency of Alfvén waves provided the natural

frequency of Alfvén waves, kvA, is greater than (νi + δ)/2. If the above condition is not satisfied,

the solution of equation (3.3) is represented by a non-propagating, exponentially decaying signal

in time. The condition imposed for this solution also means that Alfvén waves will be able to

propagate as long as k > 2ν̃i/vA, so collisions act as a filter, only wavelengths smaller than 4πvA/ν̃i

will propagate. From now on, for simplicity, we denote the natural frequency of Alfvén waves by

ωn.

In what follows, for an arbitrary value of ǫ ≪ 1 we use the multiple scale analysis method

[27,28] to study the resonant coupling between ionization-recombination waves and Alfvén

waves. According to this method, the temporal evolution of the eigenfunction contains two

distinct behaviours: one is connected to the periodicity of the wave, while the other one is

connected to the damping in time of the wave. That is why we introduce a fast and a slow

time variable such that ξ = ωIt and η = ǫωIt. Since the equation is linear, no stretching variable

is needed. Although transforming an ordinary differential equation into a partial differential

equation may look counterintuitive, this method allows us to simplify the mathematics by

considering the dominant physical effect. As a result, the governing equation (3.3) transforms

into

∂2viy

∂ξ2
+ 2ǫ

∂2viy

∂ξ∂η
+ ǫ2

∂2viy

∂η2
+

(

ν̃i

ωI
− ǫ sin ξ + δ

ωI
cos ξ

)(

∂viy

∂ξ
+ ǫ

∂viy

∂η

)

+ ω2
n

ω2
I

viy − ǫ
ω2

n

ω2
I

cos ξviy − ǫ

(

ν̃i

ωI
+ 2δ

ωI

)

sin ξviy = 0. (3.7)

In what follows, we denote by α the ratio of the natural frequency and the pumping frequency,

i.e. α = ωn/ωI. Next, we expand the eigenfunction viy into power series, such that

viy(ξ , η) = v
(0)
iy (ξ , η) + ǫv

(1)
iy (ξ , η) + · · · .

In this approach, the dissipation is a second-order effect, therefore we rescale the collisional and

recombination frequencies such that ν̂i = ǫν̃i and δ̂ = ǫδ. In the first-order approximation (O(ǫ0)

terms), equation (3.7) reduces to

∂2v
(0)
iy

∂ξ2
+ α2v

(0)
iy = 0. (3.8)

The solution of this second-order differential equation is of the form

v
(0)
iy = A0(η) cos αξ + B0(η) sin αξ , (3.9)

where the η dependence of the coefficient functions A0 and B0 means that these coefficients are

slowly varying functions of t.
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Collecting terms O(ǫ), the second-order approximation of equation (3.7) leads to an equation

of the form

∂2v
(1)
iy

∂ξ2
+ α2v

(1)
iy = −2

∂2v
(0)
iy

∂ξ∂τ
−

(

ν̂i

ωI
− sin ξ + δ̂

ωI
cos ξ

)

∂v
(0)
iy

∂ξ
+ α2 cos ξv

(0)
iy . (3.10)

The left-hand side of the above equation is similar to the equation obtained in the first-order

approximation, while the right-hand side terms are all expressed in terms of the unknown

function v
(0)
iy . Using the particular expression of v

(0)
iy (see equation (3.9)) and some fundamental

trigonometric identities, the second-order approximation can be written as

∂2v
(1)
iy

∂ξ2
+ α2v

(1)
iy = α

[

2A′
0(η) + ν̂i

ωI
A0(η)

]

sin αξ − α

[

2B′
0(η) + ν̂i

ωI
B0(η)

]

cos αξ

− αA0(η)

2
[cos ξ (α − 1) + cos ξ (α + 1)] + αB0(η)

2
[sin ξ (α + 1) − sin ξ (α + 1)]

− α

2

(

δ̂

ωI
B0(η) − αA0(η)

)

[cos ξ (α + 1) − cos ξ (α − 1)]

+ α

2

(

δ̂

ωI
A0(η) + αB0(η)

)

[sin ξ (α − 1) + sin ξ (α + 1)]. (3.11)

Secular growth in the solution of equation (3.11) is given by the first two terms of the right-hand

side of the above equation. Indeed, choosing

A0(η) = A0 exp

(

− ν̂iα

2ωI
η

)

and B0(η) = B0 exp

(

− ν̂iα

2ωI
η

)

,

with A0 and B0 two arbitrary constant amplitudes, these terms vanish; however this solution

would not take into account the presence of the driving trigonometric term in the original Mathieu

equation. Instead, if we choose α = 1/2, additional resonant terms can be recovered and, in this

case, the right-hand side of the equation can be written as

1

2

[

2A′
0(η) + ν̂i

ωI
A0(η)

]

sin
ξ

2
− 1

2

[

2B′
0(η) + ν̂i

2ωI
B0(η)

]

cos
ξ

2

− A0(η)

4

[

cos
ξ

2
− cos

3ξ

2

]

+ B0(η)

4

[

sin
3ξ

2
+ sin

ξ

2

]

+ 1

4

(

δ̂

ωI
A0(η) + B0(η)

2

)

[

sin
3ξ

2
− sin

ξ

2

]

− 1

4

(

δ̂

ωI
B0(η) − A0(η)

2

)

[

cos
3ξ

2
+ cos

ξ

2

]

.

The choice of α = 1/2 covers the case of exact resonance, i.e. the case when the pumping frequency

ωI is exactly twice the natural frequency of Alfvén waves, kvA. However, the parametric resonance

occurs for a larger frequency interval, meaning that we write the quantity α in the form of an

expansion given by

α = 1

2
+ ǫα1 + ǫ2α2 + · · · ,

where terms O(ǫ) denote the detuning of the system from exact resonance. In this case, equation

(3.11) becomes

∂2v
(1)
iy

∂ξ2
+ 1

4
v

(1)
iy = −2

∂2v
(0)
iy

∂ξ∂τ
−

(

ν̂i

ωI
− sin ξ + δ̂

ωI
cos ξ

)

∂v
(0)
iy

∂ξ
+ 1

4
cos ξv

(0)
iy − α1v

(0)
iy . (3.12)

Again, using the particular form of v
(0)
iy , imposing the same conditions as before regarding the

vanishing of resonant terms with the neglect of non-resonant terms (e.g. terms containing cos 3ξ/2
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and sin 3ξ/2), we arrive at the system of coupled equations

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dA0(η)

dη
= − ν̂i

2ωI
A0(η) + δ̂

4ωI
A0(η) +

(

α1 − 1

8

)

B0(η),

dB0(η)

dη
= − ν̂i

2ωI
B0(η) − δ̂

4ωI
B0(η) −

(

α1 + 1

8

)

A0(η).

(3.13)

The above homogeneous linear system with constant coefficients can be solved by assuming a

solution of the form A0(η) = A0 eλη and B0(η) = B0 eλη. The compatibility condition of the system

of equations requires that the determinant constructed from the coefficients of the unknown

amplitudes A0 and B0 vanishes, i.e.

∣

∣

∣

∣

∣

∣

∣

∣

∣

ν̂i

2ωI
− δ̂

4ωI
+ λ −α1 + 1

8

α1 + 1

8

ν̂i

2ωI
+ δ̂

4ωI
+ λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (3.14)

which means that

λ = − ν̂i

2ωI
±

√

√

√

√

1

64
− α2

1 + δ̂2

16ω2
I

. (3.15)

The transition between stable and unstable behaviour is determined by the condition λ = 0, so the

transition curves satisfy the condition

α1 = ±1

2

√

√

√

√

1

16
−

(

ν̂i

ωI

)2

+
(

δ̂

2ωI

)2

. (3.16)

With this value of α1, the expression of α becomes

α = 1

2
± ǫ

2

√

√

√

√

1

16
−

(

ν̂i

ωI

)2

+
(

δ̂

2ωI

)2

+O(ǫ2) = 1

2
± 1

2

√

ǫ2

16
−

(

ν̃i

ωI

)2

+
(

δ

2ωI

)2

+O(ǫ2). (3.17)

The above relation stipulates that the stable/unstable behaviour of the system is regulated by the

ratio of the collisional and pumping frequency, as well as by the ratio of the recombination rate

and pumping frequency. At resonance, the natural frequency of Alfvén waves (in dimensional

form) can be written as

ωn = ωI

2
± ωI

2

√

ǫ2

16
−

(

ν̃i

ωI

)2

+
(

δ

2ωI

)2

+O(ǫ2), (3.18)

and it is clear that Alfvén waves remain stable as long as

ν̃i <
1

2

√

ǫ2ω2
I

4
+ δ2.

Let us finally investigate the parametric domain where the system is stable or unstable. For

that we use equation (3.17) and introduce the notation

h =

√

(

ν̃i

ωI

)2

−
(

δ

2ωI

)2

.

This parameter contains information about the physical mechanisms that affect the propagation

of Alfvén waves, i.e. the collisions of ions with neutrals and the loss of ion momentum

owing to recombination effects. The stability of the system for a full range of parameters can

be investigated by constructing the first Floquet tongue of the system (figure 8). Equation

(3.18) predicts that for a given value of h, there is a minimum value of ǫ which is required

for instability to occur. In figure 8, the central region corresponds to an unstable behaviour,
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Figure 8. The Floquet tongue shows the stability and instability regions of the first-order approximation of Alfvén waves

parametrically coupled with the ionization-recombination waves.

while outside this region the system is stable. With the increase in the value of h the threshold

of ǫ where the system is unstable is modified (the tongue shifts up, the regions bounded by the

parabolas), and the action of the collisions and recombination of ions has a stabilizing effect on the

parametric instability, in line with the conclusions regarding the role collisions between particles

obtained for other types of instabilities [6,29,30]. The lines at ǫ = ±4h denote the instability

thresholds for various values of the parameter h, and it is clear that the region of instability shrinks

with the increase in the value of this parameter. The way the quantity h is defined suggests that

collisional and recombination effects can contribute to the development of instability.

(a) Application to the solar atmosphere

The partially ionized solar atmosphere serves as a perfect environment where the ionization-

recombination wave mechanism described above and the associated parametric coupling of these

waves to other MHD modes can occur. The theoretical model presented in our study involves

some requirements, however, these are realistic. For instance, the process of periodic ionization

and recombination processes require first that in a given plasma volume the temperature of

electrons is very high. There are numerous examples in the solar atmosphere of energetic (hot)

electrons in the forms of jets or spicules that could originate from, e.g. reconnection events [31–33].

The analysis of the possible solutions of the governing equation (2.5) translated to solar

atmospheric conditions (number densities, temperature) reveal that the solutions of the first

case (2/3 < x < 1) are, to a very large extent, mainly of mathematical interest, while realistic

conditions are satisfied for the situation presented as case 2, i.e. when the dimensionless variable

x is larger than 1. Here, depending on the number density of charged particles and temperature,

the frequency of the ionization-recombination waves can reach values that are comparable to

the collisional frequency between the massive particles of the problem relevant in the solar

chromosphere.

A separate discussion was presented for the case when the plasma parameters are very

close to the transition point x = 1 between the two regimes; here the ionization-recombination

waves become linear and an easier estimation of their characteristics is possible. Using typical
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values of the VAL III C model [22], and considering the temperature of the ionizing electrons

to be Ti = 6 × 104 K, the temperature of recombining electrons Tr = 6500 K with na0 = 1018 m−3,

ne0 = 6.5 × 1016 m−3, we obtain ωI ≈ 103 Hz, i.e. a period of the ionization-recombination wave of

≈ 6.2 × 10−3 s. This value of the frequency is smaller than the collisional frequency between ions

and neutrals corresponding to these plasma parameters (≈ 9 × 104 Hz). This value of frequency

currently cannot be measured with the current observational facilities (possibly visible in radio

wavelength, [34,35]); however to an observer, the presence of these waves would appear as

periodically glowing plasma regions, or striations. Striation formation owing to energetic electron

jets are frequently observed in plasma discharge tubes [36–38].

4. Conclusion
This study investigated the properties of ionization-recombination waves that can appear in the

weakly ionized solar atmospheric plasma in the presence of a hot population of electrons and the

parametric coupling of these waves to the Alfvén waves that can propagate in such plasmas.

Collisional ionization and recombination processes give rise to a temporal variation of electron

(and subsequently proton) number density that manifests itself in the form of a non-propagating

wave present in this plasma. Our results show that depending on the relative magnitude of the

ionization and recombination rates (through the value of the dimensionless parameter x) the

frequency of the ionization-recombination waves behave differently and their frequency is given

in terms of the complete elliptical integrals of the first kind.

The ionization-recombination waves, through the associated time-dependent number density,

can parametrically couple with the Alfvén waves that propagate along a unidirectional magnetic

field. For simplicity, we assumed a coordinate system attached to neutrals, which allowed us to

simplify the governing equation for Alfvén waves. The governing equations have been reduced

to a Mathieu-type equation (or the associated Hill’s equation) and the solution has been sought

by means of a multiple scale technique. As expected, the maximum efficiency of coupling occurs

when the frequency of the ionization-recombination waves is approximately twice the natural

frequency of Alfvén waves. Our results suggest that the unstable amplitude growth of Alfvén

waves is influenced by collisions and loss of momentum caused by recombination.

The work has several limitations. First, we restricted ourselves to ionization and recombination

processes that involve collisions. In the optically thick partially ionized solar plasma,

photoionization can play an equally important role; however, in here, this process was neglected.

In addition, we limited our analysis to the coupling involving Alfvén waves, given their simple

governing equation. As the ionization-recombination waves imply a time-dependent equilibrium

density, other waves will also be affected. We intend to expand in the future the present research to

the investigation of the development of parametric instability for slow and fast magnetoacoustic

waves.
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