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A B S T R A C T 

A key feature of active galactic nuclei (AGN) is their variability across all wavelengths. Typically, AGN vary by a few tenths 

of a magnitude or more o v er periods lasting from hours to years. By contrast, extreme variability of AGN – large luminosity 

changes that are a significant departure from the baseline variability – are known as AGN flares. These events are rare and their 

time-scales poorly constrained, with most of the literature focusing on individual events. It has been suggested that extreme 

AGN variability including flares can provide insights into the accretion processes in the disc. With surv e ys such as the Le gac y 

Surv e y of Space and Time promising millions of transient detections per night in the coming decade, there is a need for fast 

and efficient classification of AGN flares. The problem with the systematic detection of AGN flares is the requirement to detect 

them against a stochastically variable baseline; the ability to define a signal as a significant departure from the ever-present 

variability is a statistical challenge. Recently, Gaussian Processes ha ve rev olutionized the analysis of time-series data in many 

areas of astronomical research. They have, ho we ver, seen limited uptake within the field of transient detection and classification. 

Here, we investigate the efficacy of Gaussian Processes to detect AGN flares in both simulated and real optical light curves. We 

show that GP analysis can successfully detect AGN flares with a false-positive rate of less than seven per cent, and we present 

examples of AGN light curves that show extreme variability. 

K ey words: galaxies: acti ve – galaxies: nuclei – transients: tidal disruption events. 

1  I N T RO D U C T I O N  

Active galactic nuclei (AGN) refer to the accreting, supermassive 

black holes at the centres of galaxies. It is widely known that AGN 

vary at all wav elengths, e xhibiting significant changes in luminosity 

on time-scales of decades to minutes (e.g. Ulrich, Maraschi & Urry 

1997 ; Graham et al. 2017 ; Creque-Sarbino wski, Kamionko wski & 

Zhou 2021 ). Often modelled stochastically using a one-dimensional 

damped random walk (Kelly, Bechtold & Siemiginowska 2009 ; 

MacLeod et al. 2010 ), the origin of this observed variability is 

disputed. Sev eral models hav e been proposed for describing the 

optical variability of AGN, including accretion disc instabilities, 

supernovae, and microlensing. Despite this debate, because rever- 

beration mapping has shown that the broad emission lines respond 

to variations in the continuum emission after some time lag (e.g. 

Peterson 1993 ), current consensus is that continuum variations are 

dominated by processes intrinsic to the accretion disc, such as thermal 

fluctuations (Kelly et al. 2009 ). 

In addition to showing stochastic variability, there is evidence that 

AGN can e xhibit e xtreme v ariability that dif fers significantly from 

the variable baseline (e.g. Meusinger et al. 2010 ; Lawrence et al. 

2016 ; Graham et al. 2017 ). These events are known as AGN flares. 

Current flare detections indicate that they occur o v er time-scales 

of several hundreds of days (Graham et al. 2017 ), but their rarity 

brings up questions about how representative our existing samples 

⋆ E-mail: sajmclaughlin1@sheffield.ac.uk 

are. It is thought that AGN flares are a separate phenomenon from 

AGN variability, though the exact cause is unknown (Lawrence 

et al. 2016 ; Zabludoff et al. 2021 ), with different studies suggesting 

that they could be caused by extreme instabilities in the accretion 

disc (e.g. Ha wle y & Krolik 2001 ), microlensing (e.g. La wrence 

et al. 2016 ; Bruce et al. 2017 ), tidal disruption events (Chan et al. 

2019 ), superluminous supernovae (e.g. Drake et al. 2011 ), mergers 

of stellar mass black holes (e.g. Graham et al. 2017 ), or changes in 

accretion state (e.g. Lawrence et al. 2016 ; MacLeod et al. 2019 ). 

Further, magnetohydrodynamical (MHD) simulations suggest that 

AGN flares may be caused by energy dissipation following magnetic 

reconnection in the accretion disc caused by highly magnetic and 

turbulent processes (Nathanail et al. 2020 ). 

The detection of AGN flaring events provides a window to study 

the accretion physics of the disc. The time-scales and magnitude 

changes of AGN flares put constraints on MHD simulations of the 

accretion disc and act as important probes for AGN accretion rates 

o v er short time-scales (Lodato & Rossi 2010 ; Blagorodnova et al. 

2016 ; Graham et al. 2017 ). In addition, if follow-up spectra are 

acquired, reverberation mapping can enable a calculation of the size 

of the flaring region within the disc (Zhang et al. 2013 ; Payne et al. 

2022 ; Somal w ar et al. 2022 ). 

Given their importance in probing the accretion physics of AGN, 

it is somewhat frustrating that detecting and identifying AGN flares 

has pro v en to be a challenge. In the past, the y hav e been difficult 

to detect and characterize against an intrinsically variable AGN 

light curve (Zabludoff et al. 2021 ) but impro v ements in imaging 

and machine-learning techniques are now starting to enable their 

© 2024 The Author(s). 
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detection in significant numbers (Mattila et al. 2019 ). Distinguishing 

a valid flare detection from the background variability presents a 

statistical and observational challenge (Gezari 2021 ; Zabludoff et al. 

2021 ). Even once a detection is identified, then without e xtensiv e 

follo w-up observ ations, it is dif ficult to categorize these e vents with 

certainty (see re vie w by Zabludof f et al. 2021 regarding ho w to 

distinguish between types of transient). The ability to identify and 

distinguish between these events in real-time will be crucial to further 

understand not only the origins of these phenomena, but also better 

constrain the physics of supermassive black holes and their accretion 

discs, and the relationship between them. 

In the coming years, it is hoped that future high-cadence surv e ys 

will facilitate the detection and monitoring of flaring AGN in real- 

time (Creque-Sarbino wski, Kamionko wski & Zhou ). The Zwicky 

Transient Facility (ZTF; Bellm et al. 2019 ) and the Vera C. Rubin 

Observatory (Ivezi ́c et al. 2019 ) are examples of facilities that will 

undertake surv e ys to help mobilize this area of research in the 

coming decade with regular, high-cadence time-domain observations 

(Graham et al. 2019 ). These facilities will not only expand the current 

catalogue of AGN but will also provide insights into key unanswered 

questions in this field, facilitating a better understanding of AGN 

v ariability (Creque-Sarbino wski et al. ), the rates of different nuclear 

transient events, and what distinguishes them from each other. Real- 

time processing of nuclear transients detected by such surv e ys is 

critical to identifying shorter lived, rare events and allocating follow- 

up resources efficiently (Soraisam et al. 2020 ). 

In this era of time-domain astronomy, with facilities such as 

the Rubin Observatory planning to detect approximately 10 million 

transients per night (Ivezi ́c et al. 2019 ), there is a vital need to be able 

to detect and classify AGN flares in large amounts of data, ideally 

before they peak to enable rapid follow-up observations. One possible 

means of achieving this is by using Gaussian Processes (GPs; see 

Section 2 ). These have emerged as a solution for modelling stochastic 

signals in large astronomical data sets (Aigrain & F oreman-Macke y 

2022 ). The problem with searching for flares in AGN light curves is 

the need to detect a transient signal in data that is already intrinsically 

variable; there is the requirement to quantify what constitutes a 

significant departure from the baseline variability, and this method 

must be statistically robust and resistant to outliers. GPs have the 

potential to solve this problem, since they can be used as a means to 

parametrize the covariance of a data set in a statistically robust way. 

In this capacity, the combined use of GPs with Bayesian statistics 

can, in theory, determine whether a transient signal is statistically 

significant from a baseline model of the data. 

To date there have been limited searches for AGN flares in the 

literature, although one notable paper is that by Graham et al. ( 2017 ), 

in which 51 flare candidates were detected in a sample of o v er 900 000 

quasar light curves from the Catalina Real-time Transient Surv e y. 

Graham et al. ( 2017 ) sought to detect flares in optical quasar light 

curves by first de-trending each light curve using a Theil–Sen median 

and then selecting contiguous sets of points (flares) abo v e the new 

de-trended light curv e. The y subsequently used the median absolute 

deviation of these flares to define a baseline level of flare activity 

with which to identify significant flares. In that work, they impose 

a minimum flare time-scale by excluding flares with a duration of 

less than 300 d, which remo v es a potentially interesting region of 

parameter space. We propose the use of GPs to systematically detect 

AGN flares as a statistically robust alternative; by employing a GP 

to parametrize the covariance of a light curve, there is no need to a 

priori assume anything about the properties of the flare. 

With the abo v e in mind, the aim of this study is to assess the 

viability of using GPs to identify AGN flares. To do so, we first 

simulate the light curves of a population of variable AGN, including 

flaring events, then apply GP analysis to assess how successfully 

it identifies the latter. Next, we apply this analysis to real AGN 

light curves as a systematic search for flaring events. This data 

was obtained from the ZTF Public Data Release 6 and our sample 

comprises of optical, r -band light curves of Type 1 AGN (Masci et al. 

2018 ; Bellm et al. 2019 ). 

The outline of this paper is as follows: we describe the theory 

behind GPs (Section 2 ), the data used to investigate the efficacy of 

GPs (Section 3 ), the GP kernel hyper-parameter distributions (Sec- 

tion 4 ) and the methodology behind using GPs for the classification 

of AGN flares (Section 5 ) before presenting the retrie v al rates of 

the GP analysis when dealing with different types of simulated light 

curves, and, finally, the light curves of real AGN (Section 6 ). We 

discuss our findings and future directions of studies in Section 7 , and 

provide some brief concluding remarks in Section 8 . 

2  GAUSSI AN  PROCESSES  

Gaussian Processes are a form of supervised machine learning, 

primarily used in the context of regression. A GP is often defined 

as a prior o v er functions, which generates a probability distribution 

o v er all possible functions that fit a data set. Formally, a GP is a 

collection of random variables, any finite number of which have 

joint Gaussian distributions. The GP is fully specified by its mean 

function and covariance function, which is a generalization of the 

Gaussian distribution (Rasmussen & Williams 2006 ). 

Gaussian Processes are an ef fecti ve non-parametric, non-linear 

form of regression that is powerful at handling heteroskedastic (non- 

uniform) uncertainties. They are regularly used in the context of 

astronomy for a number of tasks such as regression, modelling, 

and classification in a variety of contexts including quasi-periodic 

oscillations, transient classification, AGN variability, and exoplanet 

transits (Aigrain & F oreman-Macke y 2022 ). F or e xample, GPs hav e 

been used to de-trend variable exoplanet light curves from transit 

surv e ys (Crossfield et al. 2016 ) and also to model quasi-periodic 

stellar activity (Aigrain, Pont & Zucker 2012 ; Angus et al. 2017 ; 

Nicholson & Aigrain 2022 ). With regards to AGN variability, GPs 

are commonly used to model light curves with a damped random walk 

kernel (Kozłowski et al. 2010 ; MacLeod et al. 2010 ) and indeed one 

of the first uses of GPs in astronomy was by Press & Rybicki ( 1998 ) 

to model the variability of gravitationally lensed quasar 0957 + 561 

(Aigrain & F oreman-Macke y 2022 ). 

GPs are a means of parametrizing the covariance of a data set, 

hence quantifying the similarity between data points. The covariance 

function in the context of GPs is called a kernel, and it encodes the 

assumptions (priors) about the underlying predictive function, for 

example whether it is periodic, highly variable, etc. (Rasmussen & 

Williams 2006 ). While the Gaussian Process optimizes the coef- 

ficients of the kernel, it is important to choose a kernel with a 

functional form that is appropriate for the data in hand. In this work, 

we utilize the Mat ́ern-3/2 kernel. 1 in which the covariance k is defined 

as follows: 

k( τ ) = σ 2 

( 

1 + 

√ 
3 τ

ρ

) 

exp 

( 

−
√ 

3 τ

ρ

) 

, (1) 

1 We note that it has recently been shown that the Mat ́ern-1/2 kernel may 

be more ef fecti v e at reproducing AGN light curv es (Griffiths et al. 2021 ), 

but when we repeated our analysis with this kernel there was no material 

difference in the results. 
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Figure 1. Three different function realizations that have been sampled from 

a Gaussian Process with a Mat ́ern 3/2 kernel, using values of 1 for both σ and 

ρ in equation ( 1 ). Because Gaussian Processes are probabilistic in nature, the 

same kernel can produce different functions. Similarly, different functions (in 

our case light curves) can have the same, or very similar, kernel coefficients. 

Figure 2. A Gaussian Process fit to a ZTF Type 1 AGN light curve. The red 

line shows the posterior mean of the Gaussian Process, given the observed data 

and kernel parameters. The red shaded region shows the 1-sigma uncertainty 

around this mean. Note how the uncertainties change depending on the density 

of data points in a certain region. The Gaussian Process ef fecti vely ‘learns’ 

ho w v ariable the data is, which allo ws it to make reasonable predictions for 

regions of sparse data. 

where τ is equal to the difference between all pairs of values of 

the independent ordinate (in this case time, i.e. τ = | t − t 
′ | , where 

we use bold lettering to represent a vector containing all values 

of time, thus ensuring that τ , and hence k ( τ ) is a square matrix), 

σ is the variability amplitude, and ρ is the variability time-scale 

(Rasmussen & Williams 2006 ; F oreman-Macke y et al. 2017 ). Fig. 1 

shows three different function realizations that have been sampled 

from a GP with a Mat ́ern 3/2 kernel, and Fig. 2 shows a GP fit to an 

AGN light curve with this same kernel. 

GPs are widely used in the context of transient classification, but 

primarily used as an interpolation tool for priming sparse or noisy 

time series data for machine learning algorithms (e.g. Villar et al. 

2020 ). Within the field of astronomy research, GPs have typically 

been used as a preprocessing step in machine learning methods and, 

to our knowledge, have not been used for flare detection directly 

(Aigrain & F oreman-Macke y 2022 ). We do, ho we ver, note that 

Graham et al. ( 2023 ) used GPs to confirm that suspected flares 

detected via other means do, indeed, represent significant departures 

from the underlying AGN variability. For flare classification directly, 

since the covariance function describes how all of the data points in 

a light curve are related to each other, it can be used as a summary 

statistic of the variability. This includes whether the light curve 

is periodic or a one-off outlier event. This therefore moti v ates an 

exploration into whether GPs can be used as a tool to classify transient 

astronomical events – and specifically AGN flares – directly. 

3  DATA  

Prior to using GPs to classify real AGN light curves, we wanted to 

determine whether they are even a feasible means to detect flaring 

events. The problem with using real data for such a feasibility study 

is that, with AGN flares being so rare, we would need to use a 

large sample of AGN light curves (i.e. numbering tens to hundreds 

of thousands) to ensure it contains even a small handful of true 

flaring ev ents. F or such a large sample, ho we ver, it is unfeasible for 

us to know which real light curves contain true flaring events, so 

we cannot e v aluate success rates. To o v ercome this, we turned to 

simulating light curves, which allows us to inject flares. Since we 

know which of the simulated light curves contain injected flares, 

we can determine true and false-positive and -ne gativ e rates. Once 

we have assessed the feasibility of using GPs to detect AGN flares 

in simulated data, we then apply it to real AGN light curves to 

determine whether it can, indeed, detect real AGN flaring events. We 

note, ho we ver, that this final step is simply an e xploratory e x ercise; 

we cannot easily assess success rates on large samples of real data 

for the reasons outlined abo v e. It is also important to note that while 

we use the simulated data sets to assess the feasibility of using 

GPs to identify flares, we do not use the simulated data sets to 

inform our priors for analysing the real ZTF light curves; instead 

we use the GP analysis to determine the range of typical variability 

parameters of each sample independently. In doing so, we ensure 

that any deviations from that range – which potentially highlights 

the presence of a flare – is specific to that sample. In this section we 

outline how we produced our sample of simulated AGN light curves, 

describe how we employed GPs to analyse these simulated data, 

and then explain how we applied Bayesian hypothesis testing to the 

output of the GP analysis to calculate the probability of a light curve 

containing a flare. 

3.1 Simulated light cur v es 

It has been known for o v er a decade that non-flaring AGN light curves 

are well-described by a one-dimensional damped random walk (e.g. 

Kelly et al. 2009 ; MacLeod et al. 2010 ). This involves adding a 

correctional term (i.e. a damping term) to a random walk to encourage 

extreme deviations back to the mean v alue. K elly et al. ( 2009 ) first 

showed that a damped random walk can statistically explain the 

observed light curves of AGN; they analysed 100 quasar light curves 

and, using a Bayesian approach, showed that this stochastic process 

is capable of modelling AGN light curves at an accuracy level of 

0.01–0.02 mag. 

MacLeod et al. ( 2010 ) modelled the time variability of 9000 

quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 as a 

damped random walk and confirmed previous results (e.g. Kelly 

et al. 2009 ; Kozłowski et al. 2010 ) that this model describes quasar 

light curves well. Therefore, we used this damped random walk 

model to simulate our own AGN light curves. We drew values of the 

variability parameters (SF 
∞ and τ ) from the distributions of best- 

fitting variability parameters presented in MacLeod et al. ( 2010 ). To 

achieve this, we randomly drew values of log (SF 
∞ ) from a normal 
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distribution with a mean of −0.8 mag and standard deviation of 0.2 

mag. Then, we calculated the values of log ( τ ) based on the best- 

fitting power law in MacLeod et al. ( 2010 ). By selecting the full 

range of these parameters, we intrinsically include the variability of 

the entire quasar population. It should also be noted that since we 

are assuming that AGN flares are extremely rare, we assume that the 

MacLeod et al. ( 2010 ) sample represents ‘normal’ AGN variability. 

In their work, MacLeod et al. ( 2010 ) make use of the structure 

function, S ( τ ), to express the long-term variability of an AGN light 

curve. The structure function is usually calculated as: 

S( τ ) = 

√ 
1 

N ( τ ) 

∑ 

i<j 

[ m ( t j ) − m ( t i )] 2 , (2) 

where τ is the characteristic time-scale of variability, m ( t i ) is the 

magnitude measured at epoch t i , and the sum runs o v er the N ( τ ) 

epochs (Hawkins 2007 ). 

The structure function is computed by collecting the differences in 

magnitude for all points in the light curve separated by a given time 

lag, � t (MacLeod et al. 2010 ). A typical AGN structure function is 

described by two parameters: SF 
∞ and τ . The former is the difference 

in magnitude calculated across the longest time-steps, while τ can be 

thought of as the damping time-scale in days, upon which the value of 

the light curve returns to its mean. The structure function asymptotes 

at very large time-steps (tending to SF 
∞ ), which corresponds to a 

power-law fit (MacLeod et al. 2010 ). 

A light curve is generated by selecting values for SF 
∞ , τ , and the 

mean value of the light curve, μ (in our case, the values from the full 

distributions presented in MacLeod et al. 2010 ). The magnitude X ( t ) 

at a given time-step δt from a previous value X ( t − δt ) is drawn from 

a normal distribution with a mean and v ariance gi ven by (Kelly et al. 

2009 ; MacLeod et al. 2010 ): 

E( X ( t) | X ( t − �t)) = exp 

(

−
�t 

τ

)

X( t − �t) 

+ μ

(

1 − exp 

(

−
�t 

τ

))

(3) 

and 

Var ( X ( t) | X ( t − �t)) = 0 . 5( SF 
∞ ) 2 

(

1 − exp 

(

−
2 �t 

τ

))

. (4) 

Using this approach, we simulated 10 000 AGN light curves with a 

cadence of 10 d and uniform uncertainties of 0.1 mag. An example of 

one such light curve is shown in Fig. 3 . These represent our ‘perfect’ 

simulated AGN light curves since they are regularly sampled and do 

not contain any anomalies (nor flares). 2 In the following subsections 

we discuss the steps undertaken to modify and filter these perfect 

simulated light curves to include flares and to make them more 

representativ e of real, irre gularly sampled AGN light curv es. To 

summarize, these are: 

(i) injecting flares and simulated with a constant 10-d cadence; 

(ii) injecting flares and subsampled to match the cadence of real 

ZTF light curves; 

(iii) as (ii), but with added outliers; 

(iv) real ZTF with injected flares; 

(v) real ZTF light curves. 

Our objective was to investigate the ability of GPs to classify 

flares and non-flares in each of these cases, with each step becoming 

progressively more representative of observed AGN light curves. 

2 Hereafter, we refrain from placing quotation marks around ‘perfect’. 

Figure 3. Top: a simulated AGN light curve using a 1D damped random 

walk. Bottom: the same simulated light curve with an injected 1 mag Gaussian 

flare at 800 d with a width of 200 d. The dotted red line shows this underlying 

Gaussian function. 

3.2 Light cur v es with injected flares 

To determine how GPs would handle perfect, uniformly sampled 

data without outliers, we simulated 10 000 AGN light curves with a 

cadence of ten days. This would act as a control sample. A copy of 

this sample was created, and a simulated flare was injected into each 

light curve in the copied sample. This resulted in a control sample 

and a flare sample of uniformly sampled AGN light curves, which 

totalled 20 000 light curves. 

The flares were simulated in two ways: (1) as Gaussian functions 

and (2) as gamma functions, to investigate the effect of the shape of 

the flare on the GP fit. Gaussian flares are symmetrical and gamma 

flares have a short rise-time and a longer decay. These flares were 

simulated with amplitudes ranging from 1–2.5 mag and durations of 

between 100 and 1000 d. The flares were injected at random locations 

within each simulated light curve such that their peak lies after the 

first 300 d but before the last 300 d. This is to ensure that in all cases 

the rise and fall of the flare was included. 

3.3 Subsampled light cur v es 

In reality, AGN light curves are not uniformly sampled. One way 

to achieve non-uniformity is by randomly subsampling each light 

curve, ho we ver this would not faithfully represent real, observed 

light curves due to weather ef fects, dif ferences between filters and 

large gaps in the data. For this reason, we instead interpolated the 

simulated light curves on to the time axis of real ZTF light curves 

to subsample them. This enabled us to investigate how GPs would 

handle sparsely sampled data and ensured the simulated light curves 

have realistic cadences. These ZTF light curves are described in 

Section 3.5 . 

3.4 Light cur v es with added outliers 

In real AGN light curves, it is not uncommon to see systematic 

outliers in the data due to uncorrected atmospheric effects, bad pixels, 
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etc. The GP must be robust against these effects if they are to be 

used as a classifying tool. Therefore, to further construct simulated 

light curves that were as representative of real data as possible, we 

added systematic outliers. To achieve this, once the light curves had 

been subsampled, we added to each light curve a contiguous pair of 

outliers that were five standard deviations abo v e the variability of 

the individual light curve; visual inspection shows that this level of 

outlier is typical of ZTF light curves. 

3.5 ZTF light cur v es 

As well as using simulated data, we also used real ZTF light curves 

in the r band; this data was downloaded in 2021 August from Public 

Data Release 6 which was the most current data release at the time 

(ZTF: Masci et al. 2018 ; Bellm et al. 2019 ). These ZTF light curves 

were acquired from spectroscopically selected AGN from SDSS Data 

Release 7 (DR7), forming the AGN Line Profile And Kinematics 

Archiv e (ALPAKA; Mullane y et al. 2013 ). Of this sample, 9035 

AGN are Type 1, and it is these AGN whose light curves we utilized 

in this paper. 3 For the sake of a proof of concept demonstration, 

only the r band was considered, though it would be possible to use 

Gaussian Processes to perform a multiband analysis (see Section 7 ). 

First, we made a copy of each AGN’s ZTF light curve, and a Gaussian 

flare was injected into each copy. This was repeated for the injection 

of gamma flares. These flares were simulated as in Section 3.2 . 

This created a control sample and two ‘flare’ samples (Gaussian and 

gamma) of real ZTF light curves. This represents as close a sample to 

real AGN flaring light curves as possible, without being true flaring 

events. 

Finally, the original sample of 9035 ZTF light curves were 

processed using the method outlined in the following section to 

determine if any of these AGN light curves would be classified as 

containing flares. 

4  G P  K E R N E L  PARAMETER  DISTRIBU TI ONS  

With our various simulated and real light curves in-hand, we next 

analysed them with a GP in order to calculate the optimized kernel 

coefficients (hereafter, hyper-parameters) of a Mat ́ern-3/2 kernel. 

For this, we made use of the open-source Python library CELERITE 

(F oreman-Macke y et al. 2017 ) which enables fast and scalable 

Gaussian Process modelling. Since CELERITE provides us with a pair 

of optimized hyper-parameters ( σ , ρ) for each of our light curves, 

we can plot distributions of these hyper-parameters. This enables us 

to assess whether the distributions for flaring and non-flaring light 

curves reside in different regions of parameter space. If they do, 

then this opens up the prospect of using GP analysis to classify 

a light curve. In what follows, we consider the hyper-parameter 

distributions for each of our five different classes of light curves (i.e. 

those described in Section 3 ). 

4.1 Perfect light cur v es 

The distribution of the optimized hyper-parameters for our sample of 

perfect light curves are shown in shown in Fig. 4 (for Gaussian flares) 

and Fig. 5 (for gamma flares). In these and all following plots in this 

3 W e excluded T ype 2 AGN from our analysis as, under the unified AGN 

model, we do not have a direct view of the nuclear region, meaning they are 

less variable and we should not – in theory –observe flaring events in such 

cases. 

Figure 4. Distributions of flare and non-flare hyper-parameters for perfect 

simulated light curves with injected Gaussian flares. It is clear that the kernel 

hyper-parameters of light curves containing flares and light curves without 

flares exist in distinct but partially o v erlapping re gions of parameter space. 

This demonstrates that the GP analysis finds that the covariances of these 

light curves are statistically different. The contours are representative of the 

density of the data points. The locations of the simulated light curves from 

Fig. 3 are shown, demonstrating that simply the injection of a flare can mo v e a 

light curve’s hyper-parameters from the non-flare distribution (blue points and 

contours) to the flare distribution (orange points and contours). The contours 

are representative of the density of the data points. 

Figure 5. Distributions of flare and non-flare hyper-parameters for perfect 

simulated light curves with injected gamma flares. Again, it is clear that the 

kernel hyper-parameters of light curves containing flares and light curves 

without flares exist in distinct but partially overlapping regions of parameter 

space. The contours are representative of the density of the data points. 

section, the variability amplitude σ increases as the variability of the 

light curve increases while the time-scale ρ increases with the time- 

scale across which the variability is occurring. The figures show that 

the hyper-parameters for flares and non-flares exist in different but 

partially o v erlapping re gions of parameter space. This is the case for 

both Gaussian and gamma flares. This shows that the GP analysis has 

revealed that the covariances of these well-sampled, flaring, and non- 

flaring light curves are statistically different. To further illustrate this, 
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Figure 6. Distributions of flare and non-flare hyper-parameters for simulated 

light curves with ZTF-like cadence with Gaussian flares. Compared to the 

hyper-parameters of the well-sampled light curves, the distributions of light 

curves containing flares and light curves without flares are significantly 

o v erlapping. Light curv es containing injected flares that hav e been signif- 

icantly impacted by the post-subsampling cadence are shown in maroon. The 

contours are representative of the density of the data points. 

Figure 7. Distributions of flare and non-flare hyper-parameters for simulated 

light curves with ZTF-like cadence with gamma flares. Again, compared to 

the hyper-parameters of the well-sampled light curves, the distributions of 

light curves containing flares and light curves without flares are significantly 

o v erlapping. Light curv es containing injected flares that hav e been signifi- 

cantly impacted by the post-subsampling cadence are shown in maroon. The 

contours are representative of the density of the data points. 

Fig. 4 shows the locations of the simulated light curves from Fig. 3 

in hyper-parameter space, demonstrating that simply the injection of 

a flare into a simulated light curve moves its hyper-parameters from 

the non-flare distribution to the flare distribution. 

4.2 Subsampled light cur v es 

For subsampled light curves, the distributions of hyper-parameters 

(see Figs 6 and 7 for Gaussian and gamma flares, respectively) 

o v erlap more than those of the perfect light curves. It should be 

noted, ho we ver, that this is partly due to some flares being removed 

Figure 8. Distributions of flare and non-flare hyper-parameters for simulated 

light curves with ZTF-like cadence with added outliers and Gaussian flares. 

These distributions are significantly o v erlapping as in Fig. 6 , and also the 

values of ρ have been reduced. This is likely due to the injection of outliers 

reducing the time-scale of variability calculated by the GP. The contours are 

representative of the density of the data points. Note that the y -axis scaling is 

different to the previous figures to include all of the data points. 

by the subsampling, and also due to the GP analysis finding it more 

difficult to fit light curves with irregular cadence and gaps in the 

data; this is a result of the sparsity of data causing the maximum 

likelihood estimate of the hyper-parameters to show more scatter 

around the true values. In cases where the flare is largely remo v ed 

by the subsampling, it is incorrect to regard them as false ne gativ es, 

since almost all evidence of a flare has been remo v ed from the light 

curve and it is important to consider it a non-flare. To determine the 

number of light curves in which this is the case, we summed the 

magnitude values of the flare points that remained post subsampling 

and ignored those light curves in which this sum was less than one. 

Though this choice of one is arbitrary, we investigated changing this 

cutoff to 0.5 and 1.5 and the results were not materially different. 

The use of this magnitude threshold is to ensure that light curves 

containing flares of which a significant proportion of the flare has 

been remo v ed by the subsampling are treated as ef fecti vely non- 

flaring light curves. These poorly sampled flares made up 11 per cent 

of the total number of flaring light curves, and are shown as maroon 

points in Fig. 6 . 

4.3 Light cur v es with added outliers 

The hyper-parameter distributions for the simulated, subsampled 

light curves with added outliers are shown in Figs 8 and 9 for the 

Gaussian and gamma flares, respectively. There is still significant 

o v erlap between the flare and non-flare distributions, and it is clear 

that the flaring light curves tend to show higher values of σ than non- 

flaring light curves. In both the non-flaring and flaring cases, there is 

a greater variance across the y -axis tending towards smaller values 

of ρ compared to the previously discussed classes of light curve. 

This larger spread is a result of the addition of the outliers reducing 

the time-scale of variability. In addition, there is greater variance 

across the x -axis compared to the previously discussed classes of 

light curves, in that the light curves with added outliers tend towards 

greater values of σ . Again, this is a result of the injected outliers 
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Figure 9. Distributions of flare and non-flare hyper-parameters for simulated 

light curves with ZTF-like cadence with added outliers and gamma flares. 

Again, these distributions are significantly o v erlapping as in Fig. 9 , and also 

the values of ρ have been reduced. This is likely due to the injection of outliers 

reducing the time-scale of variability calculated by the GP. The contours are 

representative of the density of the data points. 

Figure 10. Distributions of hyper-parameters for ZTF light curves with 

injected Gaussian flares. The contours are representative of the density of 

the data points. Compared with Figs 4 , 6 , and 8 , there is a much greater 

spread of ρ values although there is still significant o v erlap between the 

distributions of light curves containing flares and light curves without flares. 

increasing the amplitude of variability . Finally , there are no notable 

differences between the Gaussian and gamma flare distributions. 

4.4 ZTF light cur v es with injected flares 

The hyper-parameter distributions for the ZTF light curves, including 

those with injected Gaussian and gamma flares, are shown in Figs 10 

and 11 , respectively. In this case, we have assumed that the pre v alence 

of real flares within the ZTF sample is low enough that it is reasonable 

to label them all as non-flaring for this part of the study. As we shall 

see in Section 6.2 , it is likely that some ZTF light curves are flaring, 

but that their numbers are so low that (i.e. ≪1 per cent) that they do 

Figure 11. Distributions of hyper-parameters for ZTF light curves with 

injected gamma flares. The contours are representative of the density of the 

data points. Compared with Figs 5 , 7 , and 9 , there is a much greater spread of 

ρ values although there is still significant o v erlap between the distributions 

of light curves containing flares and light curves without flares. 

not affect how we use these distributions to identify potential flares 

(see Section 5 ). 

The distributions of (injected) flaring and (assumed) non-flaring 

ZTF light curves most closely resemble those of the light curves with 

added outliers, displaying a larger spread across the y -axis compared 

to the ‘perfect’ and subsampled light curves. Ho we ver, while some 

o v erlap between hyper-parameters for flaring and non-flaring light 

curves is clearly present, it is somewhat less than that seen in the 

case of the light curves with added outliers. It is difficult to know 

for certain why this is the case; it may be due to the fact that we 

have created our simulated light curves in a way that makes them 

more variable than the ZTF (the median σ value of our simulated 

light curves is a factor of 3 greater than that of the ZTF light curves, 

because the structure function values (SF 
∞ and τ ) used to simulate 

our light curves were taken from MacLeod et al. ( 2010 ) who modelled 

a sample of quasars rather than AGN). This means that – all else 

being equal – the injection of a flare into a simulated light curve has 

a smaller impact on its o v erall variability than the injection of the 

same flare into a ZTF light curve. 

5  USI NG  G P S  TO  IDENTIFY  F L A R I N G  L I G H T  

C U RV E S  

We have demonstrated that the kernel hyper-parameters of flaring and 

non-flaring light curves reside in different regions of parameter space 

which o v erlap to a greater or lesser extent, depending on the class 

of light curve (i.e. perfect, subsampled, etc.). This therefore opens 

up the prospect of using GP analysis to identify flaring light curves. 

Given that the hyper -parameter distrib utions o v erlap, ho we ver, the 

best we can do is to assign a probability that a light curve contains a 

flare (i.e. θ = 1) or not (i.e. θ = 0). To achieve this, once the kernel 

hyper-parameters had been optimized for each light curve, we used 

Bayesian hypothesis testing to determine the probability of a new 

light curve belonging to either the flare ( θ = 1) or non-flare ( θ = 

0) populations. In this method, the posterior probability of a light 

curve containing a flare or not can be described (according to Bayes’ 

theorem) as: 

P ( σ, ρ, θ | y) ∝ P ( y | σ, ρ) P ( σ, ρ| θ ) P ( θ ) , (5) 
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where σ and ρ are the kernel hyper-parameters, y is the data, and P ( θ ) 

is defined as a ‘hyper prior’. In principle, P ( θ = 1) could be regarded 

as representing our a priori belief of a given light curve containing 

a flare, and we are thus free to choose a a value we see fit. For 

example, P ( θ = 1) = 0.5 would imply a prior belief that a given light 

curve has a 50:50 chance of containing a flare. In practice, ho we ver, 

we used the results of the analysis of our simulated light curves to 

inform us of what value of P ( θ = 1) gives the best compromise 

between numbers of false and true positives. We found, for example, 

that adopting P ( θ = 1) = 0.001 (which may be considered to be a 

reasonable estimate of the frequency of flares in AGN light curves 

e.g. MacLeod et al. 2012 ; Lawrence et al. 2016 ) led to a large number 

of simulated flares to be missed. We also investigated using P ( θ = 

1) = 0 . 5 , 0 . 1 , 0 . 01, and found P ( θ = 1) = 0.5 resulted in a large 

false-positive rate, while P ( θ = 1) = 0.01 suffered from a low true- 

positive rate. Based on these results, we chose a value of P ( θ = 1) = 

0.1. 

We used Markov chain Monte Carlo (MCMC) sampling methods 

to sample the posterior probability distribution. We first perform an 

initial GP analysis of the light curve we wish to classify. This gives 

us the optimized values for σ c and ρc for this light curve (where the 

subscript c is used to denote the light curve we wish to classify). Next, 

we assign a value of 1 to θ c if P ( θ c = 1 | σ c , ρc ) > P ( θ c = 0 | σ c , ρc ) 

based on the distributions of σ and ρ obtained from our GP analysis, 

and 0 otherwise. Next, we calculate the posterior probability using: 

(i) the appropriate value for P ( θ c ) (i.e. 0.1 or 0.9, depending on 

the value of θ c ); 

(ii) the value of P ( σ c , ρc | θ c ) based on a 2D-Gaussian approxima- 

tion of the hyper -parameter distrib utions obtained from the Gaussian 

Process analysis of the corresponding non-flaring light curve class. 4 

It is important to note that we do not use the hyper-parameter 

distributions obtained for simulated flaring AGN as a prior for that 

class. Instead, we use a 2D Gaussian that encompasses a much larger 

region of parameter space than both the flaring and non-flaring light 

curves (i.e. it is a non-informative prior). This is done to ensure that 

we are making minimal assumptions regarding the properties of the 

flares since we do not know whether our simulated flares do, indeed, 

fully represent the true diversity of real flares; 5 

(iii) the likelihood P ( y | σ c , ρc ) which we obtain from the Gaussian 

Process fit of the light curve we are classifying. 

F or the ne xt step in the MCMC we randomly propose (with equal 

chance of choosing 0 or 1) a new value of θ c ( = θ ′ 
c ), and recalculate 

the posterior using θ ′ 
c . We accept this value of θ ′ 

c with probability: 

min 

(

1 , 
P ( σc , ρc , θ

′ 
c | y) 

P ( σc , ρc , θc | y) 

)

(6) 

[i.e. we al w ays accept if the proposed posterior probability is greater 

than the current posterior probability, but accept with a probability 

equal to the ratio of the two posterior probabilities if P ( σ c , ρc , θ
′ | y ) 

< P ( σ c , ρc , θ | y )]. Next, we simultaneously propose new values of 

ρc and σ c (i.e. ρ ′ 
c , σ

′ 
c ) and recalculate the posterior probability using 

4 By ‘corresponding’, we mean that if we are attempting to classify a ZTF 

light curve then we used the hyper-parameter distribution we obtained by 

analysing our sample of ZTF light curves (which we assume to be dominated 

by non-flaring light curves), approximated using multiple 2D Gaussians. 
5 In this regard, our analysis is agnostic to how we simulate the flares (see 

Section 3.2 ) since the analysis is only ascertaining whether the GP parameters 

of a given light curve deviate significantly from those of the non-flaring 

population and therefore likely to contain a flare, irrespective of its properties. 

Figure 12. Confusion matrices for simulated light curves with a sampling of 

10 d, in the case of injected Gaussian flares (left) and injected gamma flares 

(right). Note that zero and one refer to ‘non-flare’ and ‘flare’, respectively. 

The true-positive rate is similar shown in the bottom right panel (91 per cent 

and 92 per cent, respectively), but the false-positive rate shown in the top right 

panel is slightly higher for gamma flares (11 per cent compared to 7 per cent). 

these new parameters, which includes calculating P ( y | σ ′ 
c , ρ

′ 
c ) using 

a GP. Again, we accept these values of σ ′ 
c and ρ ′ 

c with probability: 

min 

(

1 , 
P ( σ ′ 

c , ρ
′ 
c , θc | y) 

P ( σc , ρc , θc | y) 

)

. (7) 

Using MCMC, we repeat the process of proposing (and, when 

appropriate, accepting) new θ and ( σ c , ρc ) values in order to sample 

the posterior parameter space. We chose 12 000 steps with a burn-in 

of 2000 as this was sufficient for the trace to converge. 

Each time we propose a new value of θ c , we add the accepted 

value (whether the newly proposed value, or the old one) into a 1D 

array; this results in a vector of length 10 000 (excluding the burn- 

in) of zeroes and ones corresponding to the accepted θ c value. The 

relative numbers of zeros and ones give the relative probabilities of 

the light curve being labelled as a flare or non-flare. As such, the 

final probability of the light curve containing a flare, P Flare , is thus 

given by the sum of this vector, divided by its length (i.e. the mean). 

Guided by the results from analysing our simulated data, we find 

that using a cutoff probability of 0.1 to define a flare gave the best 

compromise between true and false positives. While this may seem 

low, we find that most non-flaring light curves have extremely low 

flare probabilities. 

6  RESULTS  

In this section, we first present the retrie v al rates for classifying flares 

and non-flares in the case of each of our classes of simulated light 

curv es Section 6.1 . F or each class of light curv e, true-positiv e rates 

were calculated as the fraction of known flares with P Flare > 0.1. 

Similarly, the true-ne gativ e rate is the fraction of control light curv es 

with P Flare < 0.1. Afterwards, we analyse all of our unadulterated 

(i.e. without injected flares) ZTF light curves to see which, if any, 

are flagged as containing flares; the results of this ‘blind’ analysis 

are presented in Section 6.2 . 

6.1 Retrieval rates for simulated light curves 

The confusion matrices for our perfect simulated light curves with 

injected Gaussian and gamma flares are shown in Fig. 12 . The true- 

positive rates are similar for both types of flare (91 per cent and 

92 per cent, respectively), but the false-positive rate is slightly higher 

for gamma flares (11 per cent compared to 7 per cent). Though 
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Figure 13. Retrie v al rate (i.e. true-positi ve rate) of the GP analysis as a 

function of simulated flare amplitude for the perfect, simulated light curves. 

It is clear that the retrie v al rate of the GP analysis decreases as the simulated 

flare amplitude decreases, since the hyper-parameters of these light curves are 

more likely to reside in the o v erlapping re gion between flares and non-flares. 

Figure 14. Confusion matrices for subsampled simulated light curves, in the 

case of injected Gaussian flares (left) and injected gamma flares (right). Note 

that zero and one refer to ‘non-flare’ and ‘flare’, respectively. The bottom 

right panel shows the true-positive rate, which is 42 per cent and 46 per cent 

for Gaussian and gamma flares, respectively. The top right panel shows the 

false-positive rate which is 2.8 per cent for Gaussian flares and 2.9 per cent 

for gamma flares. 

the simulated flare parameters must be selected arbitrarily due to 

the rarity of AGN flares, we investigated the change in retrie v al 

rates of simulated flares with specific properties. We found that the 

retrie v al rates of the GP analysis decrease as the duration of the flare 

increases, and the amplitude of the flare decreases. For example, 

95 per cent of flares with magnitude greater than 1.5 per cent and 

99 per cent of flares with duration less than 500 d are successfully 

detected by the GP analysis. Fig. 13 demonstrates the retrie v al rate 

as a function of simulated flare amplitude, showing that the lowest 

amplitude flares are most difficult to detect by the GP analysis. 

The GP analysis is clearly struggling to distinguish simulated flares 

with an amplitude of one magnitude or less from the underlying 

variability. 

As shown in Fig. 14 , the retrieval rate reduces significantly when 

the light curves were subsampled to match ZTF cadence. There is 

little difference between the true-positive and false-positive rates of 

Gaussian and gamma flares, with the Gaussian flares having a true- 

Figure 15. Confusion matrices for simulated and subsampled light curves 

with added outliers, in the case of injected Gaussian flares (left) and injected 

gamma flares (right). Note that zero and one refer to ‘non-flare’ and ‘flare’, 

respectively. The bottom right panel shows the true-positive rate, which is 42 

per cent and 39 per cent for Gaussian and gamma flares, respectively. The top 

right panel shows the false-positive rate which is 5.8 per cent for Gaussian 

flares and 13 per cent for gamma flares. 

positive rate of 42 per cent and a false-positive rate of 2.8 per cent. 

The gamma flares have a true-positive rate of 46 per cent and a false- 

positive rate of 2.9 per cent. As such, while the purity of the retrieved 

sample is relatively high (i.e. low false positives), the completeness 

is low (i.e. less than 50 per cent). 

Fig. 15 shows the confusion matrices for simulated light curves 

with added outliers in the case of both Gaussian and gamma flares. 

This shows similar results as those found for subsampled light curves 

without outliers. In the case of Gaussian flares, the GP analysis is 

able to classify 94 per cent of non-flaring light curves correctly (a 

6 per cent false-positive rate), but only 42 per cent of flaring light 

curves were classified correctly. The true-positive rate of the gamma 

flares is slightly lower at 39 per cent with a higher false-positive rate 

of 13 per cent. 

Despite the GP analysis struggling to identify flares in subsampled 

light curves with or without systematic outliers, we see better results 

with the ZTF light curves with injected flares. For these light curves, 

the GP analysis was more ef fecti ve at classifying flares and non-flares 

than with the simulated subsampled light curves; remarkably, this is 

in spite of us using the ZTF cadence to subsample our simulated 

light curves. The confusion matrices for ZTF light curves with both 

Gaussian and gamma injected flares are shown in Fig. 16 . In the 

case of injected Gaussian flares, the GP analysis has an 80 per cent 

true-positive rate and a 6.5 per cent false-positive rate, compared 

with injected gamma flares with true- and false-positive rates of 

94 per cent and 7 per cent, respectively. 

6.2 ZTF flares 

The final step we took in testing the efficacy of GPs in detecting 

AGN flares was to perform the analysis on unadulterated AGN light 

curv es. F or this, 9035 ZTF light curves (Section 3.5 ) were analysed 

using a GP to determine if any would be flagged as containing flares 

or extreme variability. 

We initially invoked a probabilistic cutoff of 0.1 for a light curve to 

be classified as a flare by the Gaussian Process. This cutoff resulted 

in a total of 257 flare candidates. On inspection, we found that a 

considerable number of these candidates were poorly sampled or 

had large gaps in their light curv es. F or e xample, 117 light curv es 

contained fewer than 30 data points and 154 had gaps in their light 

curv es lasting o v er 150 d. It is therefore feasible that some of these 
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Figure 16. Confusion matrices for ZTF light curves with injected flares, in 

the case of injected Gaussian flares (left) and injected gamma flares (right). 

Note that zero and one refer to ‘non-flare’ and ‘flare’, respectively. The bottom 

right panel shows the true-positive rate, which is 80 per cent and 94 per cent 

for Gaussian and gamma flares, respectively. The top right panel shows the 

false-positive rate which is 6.5 per cent for Gaussian flares and 6.7 per cent 

for gamma flares. 

Figure 17. Distributions of hyper-parameters for real ZTF light curves of 

Type 1 AGN. Light curves with a posterior probability greater than 0.1, 

the number of data points greater than 30, the maximum spacing between 

consecutive data points less than 150 d, and a sigma value of greater than −2 

are shown in orange. These are the resulting flare candidates. 

light curves may, indeed, contain (unsampled) flares, but we do not 

select them for visualization purposes. 6 It should also be noted that 

there were a number of light curves (117) that were assigned a high 

probability of containing a flare but were located in the far-left-hand 

side of the hyper -parameter distrib ution and these were remo v ed from 

selection due to having low values of σ and hence low-amplitude 

values. Applying the abo v e selections simultaneously and ignoring 

light curves with poor GP fits by visual inspection resulted in a 

sample of 27 flare candidates, which are shown as orange points in 

Fig. 17 and whose light curves are shown in Figs 18 and A1 –A6 . 

The light curves of four examples chosen from the 27 identified 

flare candidates are shown in Fig. 18 . In each of these four plots, 

we also include the light curves of 100 randomly selected AGN that 

were not flagged as containing flares by the our analysis. These light 

6 These, together with all our labelled light curves, are available upon request. 

Figure 18. F our e xamples of ZTF light curv es of flare candidates identified 

by the GP analysis. The red line shows the light curve of the flare candidate 

and the grey curves are a randomly sampled selection of 100 light curves 

that were not flagged as flares by the GP analysis, demonstrating that they 

sho w extreme v ariability compared to the rest of the population. These light 

curv es hav e been normalized for ease of visualization (see Section 6.2 ). The 

full sample of light curves is shown in the appendix. 
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curves were normalized by calculating the ‘relative’ magnitude by 

subtracting the first magnitude value from each magnitude value in 

each light curve, and then adding this to the mean magnitude value of 

the flare light curve. Normalization of the light curves was performed 

for the purpose of comparison against a common baseline and for 

ease of visualization. By comparing the flare candidates to these 

non-flaring light curves, it is clear that the former show extreme 

variability . Most notably , they display longer-term, more systematic 

departures from their starting point relative to the comparison (non- 

flaring) light curves. The full sample of flare candidates is shown 

in the appendix. Note that our analysis is only able to detect 

extreme variability, and hence classifies ‘flares’ as objects that are 

becoming either brighter or fainter, rather than just brighter. This 

is not necessarily a drawback, since if the mechanism behind AGN 

flares is caused by changes in accretion state, then GPs may be able 

to detect changing-look AGN which can both rapidly brighten or dim 

as their broad emission lines appear or disappear (e.g. LaMassa et al. 

2015 ; Gezari et al. 2017 ; Yang et al. 2023 ). 

7  D ISC U SSION  

In Section 1 we described a specific problem associated with 

searching for flares in AGN light curves: namely, how does one detect 

the presence of a transient signal in data that is already intrinsically 

and stochastically variable? To solve this, it is necessary to quantify 

what constitutes a significant departure from this baseline variability 

in a statistical way. In this paper, we have undertaken a feasibility 

study to determine whether GPs are an ef fecti ve means to achieve 

this. 

We find that GPs have the potential to correctly classify flaring 

and non-flaring simulated light curves with a high success rate, with 

regularly sampled flare light curves being classified with a true- 

positive rate of around 90 per cent for both Gaussian and gamma 

flares (see Section 6.1 ). Ho we ver, in the case of simulated light curves 

that have been subsampled to mirror the cadence of real ZTF AGN 

light curves, this rate drops to around 40 to 45, depending on whether 

the injected flare is modelled as a Gaussian or gamma function 

(see Section 6.1 ). Similarly, the light curves with added outliers 

resulted in comparably low true-positive rates (around 40 per cent; 

see Section 6.1 ). Despite this, when real ZTF light curves were 

injected with flares, the GP analysis successfully classified between 

80 per cent and 94 per cent of the flaring light curves with false- 

positive rates as low as 6.5 per cent (see Section 6.2 ). This false- 

positive rate is extremely promising, as when dealing with large 

amounts of data it is arguably far more important to have a low false- 

positive rate than a high true-positive rate, to ensure a high purity of 

the sample. It would be insightful to be able to place these retrie v al 

and contamination rates in the context of other methods of finding 

nuclear flaring e vents. Ho we ver, with most studies focusing – quite 

reasonably – on the identification of new flares, rather than how many 

they may have missed, such success rates are difficult to quantify. 7 

Our results show that while GPs are not broadly robust against major 

outliers, they are still able to perform well when handling real data. 

It also suggests that our simulated outliers were ‘pessimistic’, in that 

the y gav e the GP analysis a more difficult job than the real ZTF data. 

Furthermore, the retrie v al rates for gamma and Gaussian flares are 

comparable, suggesting that the GP analysis is largely unaffected by 

the shape of the flare. 

7 The systematic comparison of different methods of finding flares is beyond 

the scope of this study. 

Figure 19. Distributions of hyper-parameters for subsampled simulated light 

curves that have been reduced so that the flare light curve contains only the 

flaring region. The separation between distributions is much greater than in 

Fig. 4 , highlighting that if one is able to localize sections of light curve it 

becomes more straightforward to distinguish between flares and non-flares. 

When we applied our GP analysis to 9035 real ZTF light curves of 

Type 1 AGN, 27 flare candidates were identified (see Section 6.2 and 

Appendix A ). These light curv es e xhibit e xtreme variability when 

compared to 100 randomly sampled light curves that had not been 

flagged by the GP as flaring. 

It is tempting to take the false-ne gativ e rates of the subsampled 

flares and the ZTF injected flares to estimate the number of real 

flares that we could be missing. Ho we ver, since those false-negative 

rates are based on simulated data, we cannot know what the actual 

false-ne gativ e rates are for real flares. 

We have shown that GPs are an ef fecti ve way to detect extreme 

variability in simulated and real AGN light curves, especially in high- 

cadence data sets. In this paper, whilst we have demonstrated this 

in the r band only, it would be possible to modify the GP analysis 

to account for multiple bands. The use of GP analysis in light curve 

classification is not without caveats, ho we ver, as there are a number 

of limitations. As we have shown, a GP is not robust against extreme 

outliers. In addition, GPs optimize the kernel hyper-parameters 

across the whole light curve which fa v ours the detection of longer- 

duration, larger-amplitude flares (and especially those that span a 

significant fraction of the light curv e). To inv estigate the impact 

of these ‘average’ hyper-parameters, we sliced the subsampled, 

simulated flare light curves so that they contained only the flaring 

region of the light curve and repeated our analysis. The results 

are shown in Fig. 19 . This shows that if a GP is somehow able 

to simultaneously ‘focus’ on subsections of a light curve it would 

have a much higher success rate in terms of distinguishing between 

flares and non-flares. This demonstrates that GPs could be even 

more ef fecti ve at flare classification if it were able to calculate a light 

curve’s hyper-parameters in a more localized way. 

Furthermore, whilst they can quantify the probability of a light 

curve containing a flare, the GP analysis performed here cannot 

specify the location of the flare within the light curve. This is not 

necessarily a pitfall when searching for flares or extreme variability 

in archi v al data, but in the era of time-domain astronomy where 

surv e ys such as the Le gac y Surv e y of Space and Time (LSST) will 

detect potentially millions of transient sources per night, it warrants 

the ability to detect an AGN flare in real-time, ideally before it peaks. 
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Such a requirement clearly demands an alteration of this method to 

enable the detection of flares as they happen. 

These limitations highlighted abo v e moti v ate the need to build 

on our techniques with the intention of localizing flares within light 

curves. Tw o possible w ays of achieving this are: tracking the posterior 

flare probability, P ( σ , ρ, θ | y ) as a function of time whilst feeding the 

GP new data, or calculating the posterior probability P ( y new | y data ) to 

determine whether new points in a light curve can be described by 

the current GP regime and flag them as a flare otherwise. Ho we ver, 

these methods are potentially computationally intensive and so it is 

important to be able to devise a means of flare localization in an 

efficient way. This may require more sophisticated techniques such 

as deep Gaussian Processes (Damianou & Lawrence 2013 ) where 

the choice of kernel function will depend on training data. Other 

possibilities include change-point detection (Graham et al. 2023 ) or 

regime-switching models (Hamilton 2010 ). Investigation into these 

more complex GP techniques is, ho we ver, beyond the scope of this 

study. 

8  SU M M A RY  

We have undertaken a feasibility study to investigate whether GPs 

are an ef fecti ve means of identifying and classifying AGN flares 

in optical light curves. Using a combination of simulated and real 

AGN light curves, we used GP analysis to investigate how the 

distributions of kernel hyper-parameters change after the injection 

of a simulated AGN flare into a light curve (Section 4 ). We then 

used these distributions as a basis to classify light curves in terms of 

whether they contain a flare or not, and calculate corresponding flare 

retrie v al rates (Section 5 ). Throughout, we e xploited fiv e different 

classes of light curve, each more representative of real light curves 

than the last: 

(i) injecting flares and simulated with a constant 10-d cadence; 

(ii) injecting flares and subsampled to match the cadence of real 

ZTF light curves; 

(iii) as (ii), but with added outliers; 

(iv) real ZTF with injected flares; 

(v) real ZTF light curves. 

In the case of (i), we find that the kernel hyper-parameter 

distributions for flares and non-flares exist in different but partially 

o v erlapping re gions of parameter space (Section 4 ). This means that 

whilst the distributions can never be separated completely, because 

GPs are statistically robust, GP analysis can be used to distinguish 

between the distributions in a probabilistic way. In the cases of light 

curve classes (ii)–(v), ho we ver, the hyper -parameter distrib utions for 

flares and non-flares o v erlap significantly more than in the case of 

(i). Despite this, we are able to demonstrate that GPs can be used as 

a classification tool for AGN flares, with varying degrees of success. 

Our results can be summarized as follows: 

(i) For simulated flares with a ten-day cadence and with injected 

flares, we find a true-positive rate of 91–92 per cent and a false- 

positive rate of 7–11 per cent for Gaussian and gamma flares, 

respectively. 

(ii) When the light curves in (i) are subsampled to match the 

cadence of our sample of ZTF light curves (Section 3.5 ), the true- 

positive rates reduce significantly to 42–46 per cent for Gaussian and 

gamma flares, respectively, though the false-positive rate is found to 

be approximately 3 per cent in each case. 

(iii) When outliers are added to these simulated light curves, the 

true-positive rates remain similar to those found in (ii), although the 

false-positive rates increase to 6 per cent and 13 per cent for Gaussian 

and gamma flares, respectively. 

(iv) When our sample of real AGN light curves is injected with 

simulated Gaussian and gamma flares, the results are more promising 

than in the cases of (ii–iii). We obtain true-positive rates of 80 per cent 

and 94 per cent for Gaussian and gamma flares, respectively, while 

the false-positive rates remain similar as to that found for class (iii) 

at approximately 7 per cent. 

(v) Finally, we applied our GP analysis to the unadulterated 

sample of ZTF light curves to determine whether any real AGN light 

curves would be flagged as containing flares by our GP analysis. 

As shown in Section 6.2 , the GP analysis classified 27 out of 

9035 AGN light curves as containing flares or extreme variability. 

When compared with a randomly selected sample of 100 light 

curves that were not flagged as flares, they indeed show greater 

levels of variability, particularly in the form of longer-term, systemic 

departures from their starting point. 

Ov erall, we hav e demonstrated that GP analysis can be used to 

calculate the probability that an incoming AGN light curve contains 

a flare. We find that this is a promising method to detect flares in 

otherwise variable optical light curves, although it can be ne gativ ely 

affected by extreme outliers and poorly sampled data. In order to 

keep up with the large amounts of data involved in future surv e ys 

such as the LSST (Ivezi ́c et al. 2019 ), there is a growing requirement 

to be able to detect AGN flares and transients alike before they peak 

to enable for rapid follow-up. Therefore, since our GP analysis in 

this work is able to calculate the probability of an incoming light 

curve containing a flare but not the exact location of the flare within 

the light curve, there is a need to build on this GP technique to be 

able to localize a flare as it happens. As mentioned in Section 7 , 

these techniques may be computationally intensive and so further 

feasibility studies are required to determine the most efficient way to 

achieve flare localization within a light curve. 
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APPENDI X  A :  ZTF  L I G H T  C U RV E S  SHOW ING  

EXTREME  VARI ABI LI TY  

In this section, we present the ZTF light curves of AGN that were 

classified as flares by the GP. Note that some objects are actually 

decreasing in brightness as the GP detects extreme variability in 

both directions. 
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Figure A1. ZTF light curves of flare candidates identified by the GP. The 

red line shows the light curve of the flare candidate and the grey curves are a 

randomly sampled selection of 100 light curves that were not flagged as flares 

by the GP, demonstrating that they show extreme variability compared to the 

rest of the population. These light curv es hav e been normalized for ease of 

visualization (see Section 6.2 ). 

Figure A2. ZTF light curves of flare candidates identified by the GP. The 

red line shows the light curve of the flare candidate and the grey curves are a 

randomly sampled selection of 100 light curves that were not flagged as flares 

by the GP, demonstrating that they show extreme variability compared to the 

rest of the population. These light curv es hav e been normalized for ease of 

visualization (see Section 6.2 ). 
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Figure A3. ZTF light curves of flare candidates identified by the GP. The 

red line shows the light curve of the flare candidate and the grey curves are a 

randomly sampled selection of 100 light curves that were not flagged as flares 

by the GP, demonstrating that they show extreme variability compared to the 

rest of the population. These light curv es hav e been normalized for ease of 

visualization (see Section 6.2 ). 

Figure A4. ZTF light curves of flare candidates identified by the GP. The 

red line shows the light curve of the flare candidate and the grey curves are a 

randomly sampled selection of 100 light curves that were not flagged as flares 

by the GP, demonstrating that they show extreme variability compared to the 

rest of the population. These light curv es hav e been normalized for ease of 

visualization (see Section 6.2 ). 
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Figure A5. ZTF light curves of flare candidates identified by the GP. The 

red line shows the light curve of the flare candidate and the grey curves are a 

randomly sampled selection of 100 light curves that were not flagged as flares 

by the GP, demonstrating that they show extreme variability compared to the 

rest of the population. These light curv es hav e been normalized for ease of 

visualization (see Section 6.2 ). 

Figure A6. ZTF light curves of flare candidates identified by the GP. The 

red line shows the light curve of the flare candidate and the grey curves are a 

randomly sampled selection of 100 light curves that were not flagged as flares 

by the GP, demonstrating that they show extreme variability compared to the 

rest of the population. These light curv es hav e been normalized for ease of 

visualization (see Section 6.2 ). 
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