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Abstract—Accurately monitoring sleep for extended periods
remains a challenge due to the cumbersome nature of con-
ventional gold-standard techniques. We propose a novel deep
learning method to estimate sleep status from an easily acquired
abdominal respiratory effort signal. Our end-to-end convolutional
neural network, developed on 476 hours of manually annotated
polysomnography recordings from 53 participants, achieves an
area under the curve of 0.90, and a more balanced performance
across sensitivity and specificity than previous studies: 0.85 and
0.82, respectively. This method eliminates the need for obtrusive
equipment and manual processing, paving the way for more
accessible sleep monitoring solutions.

I. INTRODUCTION

Sleep-disordered breathing (SDB) is a group of highly

prevalent and comorbid conditions caused by the collapse

of the upper airway during sleep, such as snoring and ob-

structive sleep apnoea (OSA). In recent years, there has been

a growing interest in methods for screening and monitoring

SDB progression in the home. These methods can accurately

predict breathing parameters and overcome the high cost and

obtrusiveness of polysomnography (PSG), the clinical standard

for SDB diagnosis. However, most at-home SDB monitoring

methods do not assess sleep quality, which is negatively

impacted by SDB. Poor sleep quality can lead to excessive

sleepiness, daytime dysfunction, increased risk of accidents,

and long-term cognitive impairment [1].

Overnight PSG involves manual annotation of sleep stages,

from which sleep status (i.e., sleep-wake classification) is de-

rived, using electroencephalography (EEG), electromyography

(EMG), and electrooculography (EOG). Four factors measured

from sleep status are then used to objectively evaluate sleep

quality: sleep latency, wakefulness after sleep onset, sleep

duration, and sleep efficiency [2]. Sleep latency is the time

it takes to fall asleep, and sleep efficiency is the percentage of

time spent asleep in bed. Using EEG, EMG and EOG for long-

term assessment of sleep quality is nevertheless impractical,

as it requires obtrusive equipment and manual processing. An

alternative may be to automatically estimate sleep status from

more easily recorded physiological signals.

Respiratory patterns differ between wakefulness and sleep.

During wakefulness, respiratory rate and depth are relatively

regular, and muscles are tonically active. In non-rapid eye

movement (NREM) sleep, respiratory rate and depth decrease,

and muscle tone diminishes slightly [3]. During rapid eye

movement (REM) sleep, respiration becomes faster and more

erratic in comparison to wakefulness, and skeletal muscles,

including the upper airway muscles and intercostals, become

atonic. This increases upper airway resistance and reduces

rib cage movement [4], leaving only the diaphragm and

extraocular muscles active [5].

Exploiting these physiological differences, some studies

have estimated sleep status from body and respiratory move-

ments. Scott et al. [6] developed a signal-processing-based

sleep tracking algorithm using the accelerometer signals from

an actigraphy device worn on the index finger. Their algorithm

was tested on data from 25 participants, and achieved a

sensitivity of 0.91, a specificity of 0.59 and an accuracy of

0.85 when compared to ground-truth measurements from PSG.

Chinoy et al. [7] compared the performance of consumer sleep-

tracking devices with PSG on data from 34 users. Similar to

the previous study, high sensitivity and low specificity were

reported. Fitbit Alta HR obtained 0.95 sensitivity, 0.54 speci-

ficity and 0.90 accuracy. A sensitivity of 0.99, a specificity

of 0.19 and an accuracy of 0.88 was attained by Garmin

Vivosmart 3. One study is notable for the use of deep learning

to track sleep at a short distance from the user. Dixon et al. [8]

trained a convolutional neural network (CNN) to classify

signals from the frequency-modulated continuous wave radar

of Google Nest Hub. Their approach achieved 0.96 sensitivity,

0.55 specificity and 0.87 accuracy in comparison to PSG when

tested on 33 subjects. All of the above studies demonstrated

high sensitivity (>0.90) but low specificity (<0.60), indicating

difficulty in distinguishing wakefulness from sleep. Balancing

these metrics remains a key challenge in this task.

Here, we apply deep learning techniques to estimate sleep

status from abdominal respiratory effort with the aim of

investigating the feasibility of using abdominal respiratory

movement as a proxy for assessing sleep quality. Unlike

EEG, EMG and EOG, which require specialised equipment,

abdominal respiratory movement – as a surrogate for ab-

dominal respiratory effort – can be measured using simple

and affordable sensors, such as an accelerometer placed on

the abdomen. This makes respiratory movement monitoring

suitable for home-based sleep studies potentially enabling

long-term assessment of sleep quality. Given the lack of a

respiratory movement dataset with sleep status annotations,

this proof-of-concept study employs respiratory effort, since

it is routinely recorded during PSG and, consequently, readily

available in open-access PSG databases.
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(a) Convolutional neural network (CNN)
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(b) Reprogramming an acoustic model
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TRANSFORMER-ENCODER

1
D

 c
o

n
v
o

lu
ti
o

n

+

g
lo

b
a
l 
a
v
e
ra

g
e
 p

o
o

lin
g

d
e
n
s
e

x4

1
D

 c
o

n
v
o

lu
ti
o

n

m
a
x
 p

o
o

lin
g

re
s
p

ir
a
to

ry
 e
ff

o
rt

(c) Transformer-encoder

Fig. 1: Deep neural network architectures for sleep status estimation from abdominal respiratory effort.

II. DATA

We used the Montreal Archive of Sleep Studies (MASS) [9],

an open-access database of PSG recordings from 200 par-

ticipants (97 men and 103 women, aged 18–76 years). We

specifically used the first subset of MASS, as it is the only one

that includes sleep stage annotations. It consists of 476 hours

of data from 53 subjects (34 men and 19 women, aged 55–76

years). The PSG recordings included 17- or 19-electrode EEG,

2-channel EOG, 5-channel bipolar EMG, 1-channel electro-

cardiography (ECG), 1-channel respiratory thermistance, 1-

channel airflow, 1-channel oximetry, and 1- or 2-channel

respiratory effort (abdominal and thoracic). Sleep stages were

manually scored according to the American Academy of Sleep

Medicine (AASM) guidelines [10], with wake, REM, N1, N2,

and N3 stages annotated in non-overlapping 30-second epochs.

Stages N1 to N3 are NREM sleep.

III. SYSTEM DESCRIPTION

This study investigates different deep learning architectures

and state-of-the-art approaches to estimate sleep status from

the abdominal respiratory effort signal by leveraging the phys-

iological differences in respiratory patterns between wake-

fulness and sleep. Three end-to-end methods are considered:

CNN, transformer, and reprogramming of acoustic models.

A. Convolutional neural network (CNN)

Since the abdominal respiratory effort signals in MASS are

sampled at either 128 or 256 Hz, they are first resampled to

128 Hz if needed. Following standard sleep staging practice,

the signals are divided into non-overlapping 30-second seg-

ments, and then normalised to zero mean and unit variance.

Every segment is labeled as either wake or sleep according

to the manual scoring of sleep stages. Stages REM, N1, N2

and N3 are collapsed into the sleep label. The 30-second

segments are provided as input to a CNN system similar to

one proposed in our previous study [11]. As shown in Fig.

1a, it consists of three 1-dimensional convolutional layers of

64, 128, and 256 filters with a kernel size of 1 × 8. A batch

normalisation layer, and a 1 × 8 max-pooling layer follow

each convolutional layer. A dropout rate of 0.5, and ReLU

activation are used by all convolutional layers. The output of

the convolutional layers is flattened and passed to a dense

layer of 256 ReLU activation units. Finally, a dense layer of

1 sigmoid unit carries out the classification. The network has

0.7 million parameters. As most of the segments are labeled as

sleep, class weights and bias initialisation are implemented to

deal with the unbalanced amount of data for each class during

training. Class weights adjust the loss function, prompting the

model to focus more on samples from the under-represented

class. Similarly, initialising the final layer’s bias to reflect the

data distribution mitigates bias towards the majority class. The

CNN converged within 50 epochs using the Adam optimiser,

binary cross-entropy as the loss function, and a learning rate

of 0.001.

B. Transformer

The transformer architecture is regarded as the state of the

art in sequence modelling [12]. It is based on an attention

mechanism, which allows the model to learn long-range de-

pendencies in sequential data [13], such as the abdominal

respiratory effort signal. Transformers are also more efficient

to train than recurrent neural networks (RNNs), since they can

be parallelised more easily [14].



An overview of the proposed transformer architecture for

sleep status estimation is provided in Fig. 1c. This is based

on a transformer model developed by Keras that has proven

successful for time series classification tasks [15]. It con-

sists of one 1-dimensional convolutional layer with 16 filters

and ReLU activation, a max-pooling layer, and 4 identical

transformer-encoder blocks. Each block has an attention layer

with 4 heads and a key dimension of 256. The output of the

multihead attention layer is then projected by a pair of 1-

dimensional convolutional layers with a kernel size of 1 ×
1. The first one has 4 filters with ReLU activation, and the

second one, 1 filter with linear activation. There are 2 residual

connections in each block. Lastly, the projection is passed

through a global average pooling layer, and 2 dense layers

perform the classification. The dense layers consist of 128

ReLU units and 1 sigmoid unit, respectively. This network

has 0.3 million parameters, and its input is the same as that

of the CNN system. The transformer converged within 100

epochs using a learning rate of 0.0001, the Adam optimiser,

and binary cross-entropy as the loss function.

C. Reprogramming acoustic models

Although publicly available foundation models exist for

audio (e.g., OpenAI Whisper [16]), text (e.g., Google PaLM

2 [17]), and images (e.g., Meta AI DINOv2 [18]), there are

none for physiological signals or, more generally, for time

series data. To overcome this issue, Yang et al. [19] propose

reprogramming acoustic models for time series classification.

Their approach is motivated by the observations that modern

acoustic models are a mature technology trained on very large

datasets, and audio is a univariate temporal signal. Therefore

it is likely that an acoustic model can be reprogrammed as

a robust feature extractor for time series tasks. Specifically,

model reprogramming consists of three components: (1) a

trainable universal input transformation function, (2) a large-

scale pre-trained acoustic model, and (3) an output mapping

function. Unlike transfer learning, the acoustic model is not

updated during training. In the study by Yang et al., this

approach outperformed or matched the performance of state-

of-the-art methods on 20 of 30 time series tasks, such as ECG

classification.

Here, we explore the potential of Google VGGish for

estimating sleep status using the framework developed by

Yang et al. [19]. VGGish is a 73.2 million-parameter acoustic

model for audio event recognition, trained on about 6,000

hours of manually annotated data [20]. As depicted in Fig. 1b,

the abdominal respiratory effort signal is provided to the input

transformation layer, which learns a universal function that

transforms the physiological signal into an acoustic-like signal

as expected by the pre-trained model. Then VGGish takes

as input the transformed effort signal, and outputs a 128-

dimensional vector that is mapped to two classes: wake and

sleep. 64 of the original ‘classes’ are assigned to the new wake

class, and the remaining 64, to the new sleep class. All systems

were developed using TensorFlow [21].

D. Viterbi decoding

To exploit information about the temporal sequence of sleep

and wake states, transition probabilities between wake and

sleep states were computed from the first subset of MASS.

They are detailed in Table I. For instance, the probability

of going from wake to sleep is 0.11. Transition probabilities

are applied to the sequence of predictions made by the

classifiers using the Viterbi algorithm [22] to find the most

likely sequence of states. In this way, the final output of

the sleep estimation systems is based on both local (i.e.,

the prediction for each 30-second segment) and global (i.e.,

transition probabilities) information.

TABLE I: Transition probabilities between wake/sleep states.

Next state

Wake Sleep

Current state
Wake 0.89 0.11
Sleep 0.05 0.95

IV. EVALUATION

Experiments were performed on the first subset of MASS

(see Section II). A 10-fold cross-validation approach was

used – 5 participants per fold with the exception of the final

fold, which had 8. In each round of cross-validation, 8 folds

were used for training; one fold, for validation; and the re-

maining fold, for testing. Epoch-to-epoch accuracy, sensitivity,

specificity, positive predictive value (PPV), negative predictive

value (NPV), and area under the curve (AUC) were calculated

from the pooled results for all the systems proposed, using the

labels from the PSG recordings as the ground truth.

V. RESULTS AND DISCUSSION

Table II compares the epoch-to-epoch accuracy, sensitivity,

specificity, PPV, NPV, and AUC of the developed sleep status

estimation systems to the performance reported by previous

studies. Our CNN and transformer systems performed very

similarly, with sensitivity and specificity above 0.82. This

demonstrates that sleep status can be estimated from the

abdominal respiratory effort signal even though it is not

routinely used for that purpose, and suggests that the actions

we took to deal with highly unbalanced data during training

were effective. Contrary to our expectations, the transformer

did not outperform the CNN. This is likely due to the fact

that transformers generally require more training data than

CNNs [23], [24]. However, it is also possible that capturing

local spatial patterns is more relevant for the task at hand

than capturing global dependencies. That is, for this task the

characteristics of individual breaths may be more distinctive

than the overall breathing pattern in a 30-second segment.

The CNN and transformer systems outperformed the repro-

grammed VGGish, which had a lower epoch-to-epoch accu-

racy (0.76) and specificity (0.71). Nonetheless, the VGGish-

based system highlights the potential of reprogramming pre-

trained acoustic models for time series tasks that lack a readily

available foundation model. This approach is likely to benefit
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to sleep. In the third panel, blue dots indicate the Hamming distance (in segments or epochs) between the estimate and the

reference, and orange dots, the expected random performance. Participants’ IDs are shown on the y-axis.

TABLE II: Performance of the proposed sleep status estima-

tion systems and related studies with respect to PSG.

Acc. Sen. Spe. PPV NPV AUC

CNN 0.84 0.85 0.82 0.91 0.72 0.90
Transformer 0.83 0.83 0.82 0.91 0.69 0.89
VGGish 0.76 0.82 0.71 0.75 0.78 0.70

Scott et al. [6] 0.85 0.91 0.59 – – –
Fitbit Alta [7] 0.90 0.95 0.54 0.94 0.58 –
G. Vivosmart [7] 0.88 0.99 0.19 0.89 0.74 –
Dixon et al. [8] 0.87 0.96 0.55 0.88 0.86 –

from more robust acoustic models such as OpenAI Whisper.

However, deploying our CNN or transformer system on mobile

devices is more feasible than deploying a reprogrammed foun-

dation model, given its size and the compute power required.

While our systems and those of related studies cannot be

directly compared due to differences in the data used, both

were evaluated against overnight PSG, the clinical standard

for sleep-disordered breathing diagnosis [25]. Related studies

have reported higher sensitivity (≥0.91), and lower specificity

(≤0.59), whereas our approach has a more balanced perfor-

mance across both metrics. One potential reason for this is

that their methods are mainly based on body movement rather

than respiratory effort. The latter displays more distinctive

physiological patterns between wakefulness and sleep, as

discussed in Section I. This suggests that sleep quality can

be accurately assessed with an approach based on respiratory

movement as a surrogate for respiratory effort.

Fig. 2 displays the reference sleep status, the estimate

derived from abdominal respiratory effort, and the Hamming

distance between the estimate and the reference for each

participant in the first subset of MASS. The reference was

derived from manual sleep staging using EEG, EOG and EMG

signals, whereas the estimate was obtained from the CNN

system described here. The Hamming distance between two

sequences of binary labels (i.e., sleep and wakefulness) is

the number of positions at which their corresponding labels

differ [26]. The proposed CNN system achieved better than

random performance – approximated as 50% of the sequence

length – across all nights in MASS. In most cases, the

Hamming distance was also much lower than what would be

expected by chance. This indicates that the network effectively

learned to differentiate between wakefulness and sleep from

the abdominal respiratory effort signal. For the nights with a



large Hamming distance – for example, participant 17’s data –

the CNN underestimated the number of sleep segments. That

is, the system produced many false negatives. An inspection

of the data revealed no notable differences from other nights.

By providing the CNN with more examples of wakefulness,

it can be trained to better recognise the subtle patterns that

differentiate wakefulness from sleep, potentially leading to a

reduction in misclassifications. For participant 8’s data, one of

the nights with the smallest Hamming distance, a few isolated

sleep and wakefulness epochs were missed or smoothed out

by our system. However, the overall pattern was correctly

predicted, including sleep onset and offset. This suggests that

our system performs well on nights with disrupted sleep, and

further supports the idea of using a respiratory movement-

based method to evaluate sleep quality.

VI. CONCLUSIONS

Objective long-term monitoring of sleep quality with gold-

standard equipment (i.e., EEG, EOG and EMG) is impractical

due to its high cost and obtrusiveness. This study introduced

a novel deep learning approach to estimate sleep status by

exploiting the physiological differences in respiratory effort

between wakefulness and sleep. Evaluated on data from over

50 participants against the clinical standard, our systems

showed a better balance among sensitivity and specificity than

previous studies. In the future, we will extend the technology

developed here to an approach based on respiratory movement

as a surrogate for respiratory effort. This has the advantage that

the former can be measured using low-cost hardware, such

as an accelerometer attached to the abdomen. We will also

investigate the feasibility of estimating specific sleep stages

(e.g., NREM and REM) from the respiratory effort signal.
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