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Abstract

The wide adoption of Web Services has led to the development of languages
to compose them, like the WS-BPEL standard. In order to check whether the
composition works as expected, one common approach is to analyze it and
infer functional properties describing its behavior. Traditional approaches
for inferring properties in WS-BPEL have been static: compositions are
transformed into specialized analysis models based on some formalization.
However, this formalization could be inexact due to theoretical limitations
or differing interpretations of the standard by implementers. Dynamic in-
variant generation solves these problems by extracting the properties from
actual executions and has been successfully used in popular languages, but
not to WS-BPEL yet. In this work, we apply dynamic invariant generation
to WS-BPEL, providing innovative solutions for several features that require
special consideration, like highly multidimensional values in variables, an
advanced type system or unstructured code. We have implemented these so-
lutions in Takuan and evaluated its performance with several compositions
of varying complexity. We present the results obtained and a comparative
analysis of the efficiency and effectiveness of our solutions. Results show
that the solutions are successful in reducing the cost of applying dynamic
invariant generation and the number of uninteresting invariants generated.

Keywords: Web service composition, WS-BPEL, dynamic invariant
generation, white-box testing
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1. Introduction

Web Services (WS) and Service Oriented Architectures (SOA) are one
of the keys to understand computing in the next years. As more WS are
deployed, languages to program in the large composing them, like the OA-
SIS WS-BPEL (Web Services Business Process Execution Language) stan-
dard (?), are also becoming more important (?). It is therefore necessary to
check that their composition behaves as expected (?).

Software quality has been an important issue in software development
since the so called Software Crisis. Many efforts have been made to en-
sure that software products meet the requirements of the stakeholders, but
none has proven definitive (?). One approach for checking the behavior of
a program is to extract properties (such as block pre-conditions and post-
conditions) from its code and compare them against its specifications. In
WS-BPEL, most of the approaches in literature are static: they translate
the composition into a formalism and use it to derive properties (?). How-
ever, using a formalism can introduce inaccuracies in the process due to
limitations in the model or differences in the way the WS-BPEL standard
is interpreted. The WS-BPEL language lacks an unambiguous and formal
specification and some important implementation details can vary between
vendors (?). A dynamic approach could overcome these inaccuracies: while
comparing static analysis with testing, Bertolino and Marchetti stated that
“the former yield generally valid results, but they may be weak in precision;
the latter are efficient and provide more precise results, but only holding for
the examined executions” (?).

For this reason, we propose using dynamic invariant generation to test
WS-BPEL compositions. Dynamic invariant generation generates functional
properties from real executions of compositions in a WS-BPEL engine invok-
ing actual WS (?). It has proved to be a successful technique for programs
written in traditional imperative languages, such as C, C++, or Java. Let
us note that, throughout this work, invariant and likely invariant are un-
derstood, as in most related works (??), in their broadest sense: properties
which a program holds always or under certain test cases, respectively. Dy-
namic invariant generation can also be seen as a testing technique, as the
inferred properties may highlight errors in the program. This matches the
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definition of testing by ? as “the execution of a program with the goal to
find errors”.

Myers divides testing into two approaches: black-box testing, which is
only concerned about program inputs and outputs, and white-box testing,
which takes into account the internal logic of the program. This requires
access to the source code, but produces more refined results. While compos-
ing WS in a WS-BPEL composition, the tester has access to its code and
white-box testing is feasible. On the other hand, since the partner services
can be changed at any moment and their code is not usually available, these
are usually considered as black boxes. Dynamic invariant generation is usu-
ally applied in a white-box manner, extracting properties about the internal
logic of the program. In our case, these properties will describe the logic of
the composition itself.

The main aim of this paper is to answer the research question of whether
dynamic invariant generation can be applied to WS-BPEL compositions of
the same complexity as those used in the industry. In other words, we are
concerned about the applicability of the technique. We address this ques-
tion from three perspectives: feasibility of the technique, resources needed
to run it and the size (manageability) of its output. The feasibility of the
technique is shown with the architecture proposed to generate the invari-
ants for WS-BPEL compositions. As for the resources (time and memory)
needed to produce the invariants and the number of invariants generated
(which may or may not be manageable for a human), they both depend on
the settings used to configure our dynamic invariant generation processes
(especially the optimizations to handle the particularities in WS-BPEL), so
we provide guidelines on how to select them according to our experiments
conducted with different compositions.

We have identified the features of the WS-BPEL language that require
special consideration when generating invariants, and provided solutions for
them. We have provided various mappings to handle the highly dimensional
structures in WS-BPEL variables in complementary ways. The advanced
XML Schema type system provides more information than traditional type
systems, which should be used to suppress redundant invariants. The com-
binatorial explosion produced by the large number of variables available at
certain contexts should be controlled by only comparing related variables and
removing empty variables or unused optional content.

While some of these solutions are mere adaptations of formerly imple-
mented techniques, some others imply research contributions in theory: we
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introduce a new mapping scheme based on XPath principles in subsection 3.3,
we restrict the number of invariants produced from variables defined using a
rich type system (subsection 3.4) and we also applied the dynamically col-
lected information of variable comparability to discard variables in parts of
the program where they are not used (subsection 3.5.2).

We have implemented these solutions in Takuan (?), the only dynamic
invariant generator for WS-BPEL. Its automatic workflow takes a WS-BPEL
process definition and a test suite specification and outputs a collection of in-
variants that the program holds. WS-BPEL compositions will usually invoke
one or more external partner WS. However, the behavior of these services
can vary depending on many factors and may not be under the control of the
testers. In order to obtain repeatable results, Takuan allows for replacing
the real external WS with mockups. In the context of this work, a mockup
is a dummy WS that replies to requests with the predefined messages that
have been included in the definition of the test case.

Our research method starts by proposing a WS-BPEL specific dynamic
invariant generator based on the Daikon system. We show how invariants
can be generated for a simple composition and along with two illustrative
examples of invariants being useful for testing. Then, we conduct an empiri-
cal evaluation of the results obtained when applying Takuan to four different
compositions. They are comparable or larger than those found in the avail-
able literature, as listed in (?). We measure system performance (time and
memory) needed to produce the invariants as well as the number of invariants
generated. We made experiments using random test suites with different sizes
(ranging from very small ones to large ones) and all possible combinations of
settings for the processes. The main strength of the research method is that
it is based on empirical experiments using a commercial WS-BPEL engine
and WS-BPEL code. The different random test suites and the combination
of the settings help to improve the validity of the results. On the negative
side it is just a quantitative approach with a limited amount of synthetic
compositions. Results obtained using a wider range of real-world composi-
tion would be desired. Unfortunately, unlike other languages, there is no
public repository of large WS-BPEL compositions to draw from (even less
compositions annotated with invariants to conduct a qualitative approach).
WS-BPEL compositions are normally only for the internal use of the compa-
nies creating them, as they usually include sensitive details about the business
practices of the organization.

We have performed a comparative study evaluating how our solutions
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perform when combined in multiple ways. The study shows how the so-
lutions are useful to various degrees: while some considerably reduce the
cost of generating invariants, others are specialized in removing redundant
invariants.

In our previous conference publications, we presented some of these so-
lutions. This paper unifies and improves their descriptions. In addition,
Takuan can now remove variables that have been empty in all the test cases
and can preserve more information while flattening highly-dimensional struc-
tures. We have also revised Takuan to accept a wider range of WS-BPEL
compositions with more advanced message formats: this paper applies it to
two new compositions. Using this new version of Takuan, we perform a more
extensive and systematic comparative study on the combined effectiveness of
the optimizations on larger compositions.

The rest of this paper is organized as follows. Section 2 introduces WS-
BPEL and the existing static and dynamic approaches for generating in-
variants and for testing compositions in this language. Section 3 argues
why dynamic invariant generation is suitable for WS-BPEL, discusses the
challenges its application presents and proposes solutions for each of them.
Section 4 describes Takuan, our framework for dynamic invariant generation
for WS-BPEL compositions. Section 5 presents a series of experiments on
Takuan to investigate how it scales to larger compositions and measure the
impact of the previously proposed solutions in practice. Finally, Section 6
offers some conclusions, along with an outline of our future work.

2. WS-BPEL validation and verification

In this section, we will introduce WS-BPEL and some of the concepts be-
hind dynamic invariant generation. We will then discuss the existing static
and dynamic approaches for validation and verification of WS-BPEL com-
positions.

2.1. Invariant generation

In this section, we will introduce the concepts behind invariant genera-
tion and present some of the available static and dynamic approaches for
generating these invariants.

An invariant is a property which always holds at a certain program point.
We consider that every statement s in the program defines two program
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points: the program point before s denotes the invariants that are true be-
fore every execution of s, and the program point after s holds those true
after executing s. Note that if s is a block statement, there can be other
program points nested between the two program points that it defines. WS-
BPEL provides two structured activities that can be treated as block state-
ments: <sequence> contains activities that are executed one after another,
and <flow> contains activities that are run concurrently.

Classical examples are block pre-conditions and post-conditions, that is,
invariants which hold right before and after a sequence of statements. There
are also loop invariants, which are properties that hold before every iteration
and after the last one.

Manually generated invariants have been successfully used to prove the
correctness of many popular algorithms to this day. Nonetheless, their gen-
eration can be automated, up to a certain degree. These invariants have
a wide array of applications for improving the quality of new and existing
programs (?):

Debugging An unexpected invariant can highlight a bug in the code which
otherwise might have been missed altogether. This includes, for in-
stance, the results of function calls with invalid or unexpected parame-
ter values. This way, it can help alleviate the oracle problem (?). When
the number of test cases increases and no automated oracle is available,
manually checking many outputs is a time-consuming and error-prone
process (?).

Program upgrade support Invariants can help developers while upgrad-
ing a program. After checking which invariants should hold in the next
version of a program and which should not, they could write it and
compare the new invariants with those of the original version. Unex-
pected differences would indicate that a new bug had been introduced,
in a similar way to regression testing.

Documentation Important invariants can be added to the documentation
of a program, so any developer will be able to read them while working
on it.

Verification We can compare the specification of a program with the actual
invariants obtained to check if it has been satisfied.
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Unfortunately, manually generating invariants is a long and time-consuming
task. For this reason, their generation is usually automated using static or
dynamic techniques.

Static invariant generators (??) are most common: as their name states,
invariants are deduced statically, that is, without running the program. To
deduce invariants, the program source code is analyzed (making the generator
language-dependent). Invariants generated this way are always correct, but
their number and level of detail is too constrained due to the inner limitations
of the formal machinery which analyzes the code, specially with unusual
languages like WS-BPEL. WS-BPEL has several uncommon features due to
its focus on composing WS. For instance, developers may interleave pieces
of block-oriented code (using common control structures such as sequences,
conditionals and while loops) and flow-oriented code (using links and join
conditions to define control dependencies), unlike most languages that only
allow for using one style. Other examples include the fact that variables may
contain entire XML documents instead of scalar, vector or matrix data, and
that compositions may invoke external services whose behavior could change
during the invariant generation process.

Conversely, a dynamic invariant generator (?) is a system that reports
likely program invariants based on several execution logs. It analyzes the
information in the log files about the variable values at different locations in
the program. So, the generator is not language-dependent: it only needs the
log files to be in the proper format.

As shown in Figure 1, the dynamic invariant generation process is usually
divided into three steps: instrumentation, execution and analysis. In the first
step, the original program is instrumented with new logging instructions that
do not modify the values of the variables. When executed, these instructions
will produce the information needed for the analysis step, listing the names
and values of the variables at the selected program points. Then, in the
execution step, the instrumented program is executed under a test suite
producing the information needed for the invariant generation. Finally, the
resulting execution logs are passed to the analysis step to get the invariants.

As a result, dynamic invariant generation is not based on analyzing the
source program, but a collection of data flow samples. That is the reason
why they are usually called likely invariants. False dynamically generated
invariants do not necessarily originate from bugs in the tested program, but
rather they may come from an incomplete test suite. For example, if the
program input x is a signed integer and we only use positive values as test
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Figure 1: UML activity diagram with the dynamic invariant generation process,
adapted from (?)

inputs, we will probably obtain the false likely invariant x > 0. Upon exam-
ination, we would notice it and fix our test suite including cases with x ⩽ 0,
so the false likely invariant is not inferred anymore.

If we use a good test suite (?), all of the complex internal logic of the
program (loops, function calls, etc.) will be reflected in the collected execu-
tion logs, and will help the generator infer true (not just likely) invariants.
Generally, due to the incremental nature of the process, the more logs we
provide the generator with, the better results it will produce (but the longer
it will take to get them).

Figure 2 on the following page outlines how to use a dynamic invariant
generator: first, the user runs it providing an initial test suite and a program.
If unexpected likely invariants are found, the user must check if they are
caused by a bug in the code. In that case, the fixed program will be rerun
against the same test suite, ensuring that those invariants are not inferred
anymore.

But if the user considers the program to be correct, then the user should
check if there is a deficiency in the test suite that causes the dynamic invariant
generator infer those false invariants. In that case the test suite can be refined
adding new test cases that produce execution logs disproving them. This way,
they would disappear from its output in next run. This feedback loop can be
run as many times as needed, fixing bugs in the program code and improving
the test suite until the expected likely invariants are obtained.

We can see that this feedback loop defines a new use case for dynamic
invariant generation: help improving a test suite. A false dynamically gener-
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Figure 2: UML activity diagram describing a feedback loop using dynamic invariant
generation

ated likely invariant can point out a deficiency in the test suite used to infer
it. This way we can add new specific test cases which improve the test suite
and expose the false invariant.

Note that from this point on, in this paper we will only refer to likely
invariants, so we will simply call them invariants.

2.2. Related work

In the previous sections, we introduced WS-BPEL and the basic con-
cepts behind dynamic invariant generation. For the rest of this section, we
will present other static and dynamic approaches for invariant generation and
several alternative techniques for testing and monitoring WS-BPEL compo-
sitions.

As stated by other authors, notably ?, static analysis techniques and
testing are complementary techniques. They cannot be compared on the
same grounds: “On the other side, static analysis techniques rely on math-
ematical models of program behavior and infer properties from them, thus
complementing testing”.

Invariants are recognized in the literature as artifacts belonging to a dif-
ferent realm that test cases. Comparing techniques for creating test oracles
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and for generating invariants is tantamount to comparing testing and formal
verification. Both approaches have their own merits and suffer from well-
known limitations. The only connection, in the case of dynamic invariants,
is that they are generated from an initial test-suite. In this respect, dynamic
invariants are at least as strong as the initial test-suite since they must hold
during all the test cases in it; however, they may be invalidated by a new
test, unlike the true invariants inferred by static analysis.

Comparing static (true) invariants and dynamic (likely) invariants is dif-
ficult, as static invariants are remarkably hard to obtain, particularly in the
presence of concurrency, as it is the case with WS-BPEL compositions. To
the best of our knowledge, there are no tools that can generate those static
invariants for a real concurrent and distributed language such as WS-BPEL.

2.2.1. Invariant generation

There are many approaches for statically extracting properties out of the
source code of a WS-BPEL composition. However, most of them are not
backed by an automatic tool, according to ?. Although valid from a formal
perspective, they do not scale for actual usage. So we will only focus on two
proposals that can be used automatically.

Model-checking is a technique that translates a program into a formal
language to check certain properties on it. Using the VIATRA open-source
framework, a WS-BPEL composition can be translate into a formal model
defined by state transition system, that is later processed using the SAL
(Symbolic Analysis Laboratory) tool and verify properties expressed in Lin-
ear Temporal Logic (?).

WS-BPEL compositions can be easily represented as graphs. This has
lead to many works that use Petri nets to check properties. One of the
few supported by a tool is (?). It uses GNU BPEL2oWFN (part of the
Tools4BPEL project1) to produce different output files. Using this tool,
certain properties of a WS-BPEL execution flow can be checked, such as
controllability, generation of the operating guideline, deadlocks or any other
temporal logic formula.

As shown above, most static analysis techniques create models of the
systems under test (?), translating the WS-BPEL code into a formalism.
Modeling a WS-BPEL engine and all its underlying infrastructure (operat-

1http://www2.informatik.hu-berlin.de/top/tools4bpel/

10



ing system, application server, etc.) is very complex, as there is a wide array
of non-trivial aspects to be represented. If any of these were not properly
translated, compositions would not be accurately analyzed. So we can con-
clude that this is an error-prone process, as it is not based on the actual
execution of the WS-BPEL code in a real WS-BPEL engine while invoking
actual services. However, to the best of our knowledge, there are no other
dynamic invariant generators for WS-BPEL. For this reason, we will describe
the existing approaches for other languages.

Daikon (?) is one of the earliest dedicated tools for dynamic invariant
generation. It has received considerable attention from the research com-
munity, as it is open-source and has support for multiple popular languages
through different front-ends, such as Java (using Chicory) or C++ (using
Kvasir).

InvGen is an automatic linear arithmetic invariant generator for C pro-
grams (?). Users provide templates of the invariants that they want to gener-
ate, and InvGen returns an invariant proving that the error location cannot
be reached. InvGen obtains better performance than static linear arithmetic
invariant generator thanks to its usage of dynamic analysis.

Purify is a tool that automatically detects memory leaks and access errors
in executable programs by instrumenting their execution (?). It predates
Daikon by a large margin, but it focuses on these two kinds of program
properties, rather than on describing the functional behavior of the program.

DIDUCE is a tool that performs dynamic invariant generation and check-
ing during the execution of an instrumented Java program (?). Using DIDUCE
consists of two steps. First, invariants are generated from a predefined set
of “good” executions. Next, the program is run as usual while checking the
inferred invariants and reporting any violations. The authors show several
cases in which DIDUCE helped debug the root cause for several obscure bugs.

Instead of dynamically checking the generated invariants, as with DIDUCE,
another approach is to statically verify them with a third-party tool. Nim-
mer combined Daikon with ESC/Java in this manner (?). Daikon produced
a set of likely invariants, which were used to generate ESC/Java annotations
in the Java code that could be verified automatically. ESC/Java would then
report which of those invariants could not be statically verified.

There is the question of whether the invariants produced by a dynamic
approach can be comparable in soundness and exhaustiveness to those pro-
duced by a static approach. Nimmer found that Daikon was able to obtain
precision and recall values over 90% when compared with manual ESC/-
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Java annotations that checked that several Java programs had no runtime
errors (?).

In summary, we can conclude that most of the existing work is focused
on traditional programming languages such as Java or C. In addition, most
of the tools are closed-source, except for Daikon and DIDUCE. Finally, there
are few tools that maintain a clean separation between the invariant inference
process and the logic required to support a specific language, such as Daikon.

2.2.2. Testing

Many testing tools exist for web services. However, most of them only
focus on the external service interface and ignore the code that implements
the web service. For instance, soapUI (?) can generate message fragments
from service interfaces and allows for mocking partner services and defining
functional test cases as sequences of invocations that depend on each other.
All these features are useful for testing WS-BPEL compositions. However,
these message sequences and mockups need to be manually specified by the
developer, as soapUI does not analyze the WS-BPEL code of the composition.

Testing tools specifically designed for WS-BPEL are much harder to find,
as reported by ?: a more up to date survey is available in (?). As an ex-
ample, the leading WS-BPEL solution from Oracle only implements regular
partner service mocking and checking assertions on its outputs (?), provid-
ing a black-box testing approach. In addition to these, BPELUnit provides
parametric testing facilities and generation of coverage reports, being one
of the most feature-complete tools to this date (?). BPELTester is another
tool that combines test path exploration, trace analysis and regression test
selection (?). These tools allow developers to automate their tests and study
their results, but they do not automatically extract likely invariants from the
executions of the compositions.

? present a tool that automatically generates test cases for a WS-BPEL
composition that meet the state, transition and all-du-path coverage criteria.
It is an Eclipse IDE plug-in run as a step-by-step wizard. Similarly, ? present
an add-on for the Oracle tools that generates basis path test suite testing.

As for mutation testing, the only effort up to date is the GAmera mutant
generator (?). It also provides an evolutionary algorithm for quickly finding
strong mutants. An automatic WS-BPEL test case generator based on it
is being currently developed. Its operators implement not only the usual
mistakes made when programming in traditional imperative languages, but
also mistakes that are specific to WS-BPEL.

12



Finally, the most interesting proposal we have found for regression testing
proposes checking the differences between the old and the new versions of the
composition and creating specific test cases to test the changed activities (?).
Nevertheless, it is not backed by an automated tool.

From the above works, we can conclude that only the first steps of an
exhaustive WS-BPEL testing process are covered. There are approaches
using many techniques, but some of them lack tools to automate them or
only support a very limited subset of the WS-BPEL standard. Additionally,
beyond automation, the next step should be making the tools interoperable.
For example, the test cases obtained from a test suite generation tool should
be in a normalized format so they can be accepted as inputs by the available
unit testing tools.

3. Dynamic invariant generation for WS-BPEL

In the previous section we introduced the basic concepts behind WS-
BPEL and invariant generation and discussed the available approaches for
validation and verification of WS-BPEL compositions. In this section, we will
present dynamic invariant generation as a suitable technique for generating
properties from WS-BPEL compositions, list the challenges presented by
WS-BPEL for dynamic invariant generation and propose solutions for them.
These solutions will be later evaluated in Section 5.

3.1. Motivation

The inherent dynamic nature of SOA and the uncommon mix of fea-
tures of WS-BPEL pose new challenges for white-box testing (?). Most
traditional white-box testing techniques cannot be directly applied to this
language because of its uncommon mixture of features, such as concurrency
or compensation support, and need to be adapted accordingly (??).

As for WS-BPEL, we consider the dynamic generation of invariants to be
a suitable technique to support its white-box testing due to:

Use of WS-BPEL code The generator directly uses WS-BPEL code, avoid-
ing errors that could arise in its translation to other testing-specific
languages.

Execution in a real WS-BPEL engine All the information in the logs is
collected from executions of the WS-BPEL code in an engine. Formally
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modeling a WS-BPEL engine and all its underlying infrastructure (op-
erating system, application server, etc.) is very complex, as there is a
wide array of non-trivial aspects to be represented. In case any of these
was not properly translated, compositions would not be accurately an-
alyzed.

Even more, WS-BPEL is not specified formally, but in (inherently am-
biguous) natural language (??). For this reason, the formalism used
may interpret the WS-BPEL specification differently from a real engine.

Usage of real partner WS Dynamic invariant generation can use the in-
formation from the invocations of the actual partner WS. This way, the
invariants obtained will reflect the behavior of the composition under
real-world circumstances: a partner WS could take too long to answer,
could be unavailable, or could even change its implementation (and
behavior) while the composition is running.

Nevertheless, this technique can also replace some of the external ser-
vices with mockups. As mentioned in the introduction, mockups are
dummy services which will reply to the composition’s requests with pre-
defined messages. Using mockups is only recommended when not all
external services are available for testing (due to cost, resource block-
ing restrictions, etc.), if we want to obtain repeatable results, or when
we simply want to define what-if scenarios under certain predefined
external WS behavior. In any of these cases, the answer provided by
each mockup in each test case will be part of the test suite specifica-
tion given by the user as input. It is up to the user to provide suitable
values for them and interpret results consequently.

3.2. Challenges

The first challenge when generating invariants from WS-BPEL compo-
sitions is the high dimensionality of most of the variables involved. Most
of the existing dynamic invariant generation approaches only deal directly
with scalar or one-dimensional data. However, most variables in WS-BPEL
compositions contain XML documents, which are arbitrarily complex trees
of XML elements. Thus, they cannot be directly mapped, needing pre-
processing. We show in Section 3.3 how to deal with this problem by propos-
ing several mapping schemes.
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The next challenge is related to the advanced XML Schema type system
used in WS-BPEL. This type system may explicitly encode some of the infor-
mation which would be traditionally only available in invariants generated by
the process. For this reason, invariants should only be produced if they are
stronger than what is defined by the XML Schema declarations. We further
analyze this problem in Section 3.4 and propose a method for suppressing
invariants using the XML Schema declarations.

Finally, since WS-BPEL does not implement subroutines, collaboration
between activities is done through shared variables. Within this work, a
variable is said to be shared between two or more activities if it is available
in a context defined by some common ancestor: this may be the entire process
itself (making the variable global), or a nested scope (making the variable
local). In some cases, all variables may be global, making them available
in activities that do not actually use them. This presents two problems.
First, a dynamic invariant generator may end up producing many invariants
for variables which are not useful in a certain program point. Secondly, the
dynamic invariant generator will also take much longer to run, as it will try
to extract invariants from each of the many combinations of variables that
appear in each program point. We discuss how to solve these problems in
Section 3.5.

3.3. Variables with highly dimensional structures

As a WS composition language, variables in WS-BPEL can contain in-
put or output messages from the partner WS. These messages are normally
XML documents, which are represented in memory as trees of elements and
text nodes. Each element may also contain several attributes. If the tree
is sufficiently deep and complex, the elements and their attributes may be
nested at many different levels. However, most existing dynamic invariant
generation approaches can only generate invariants from scalar values or one-
dimensional arrays.

For this reason, it is necessary to map each of these variables containing
trees to a set of scalar and one-dimensional array variables. In the process
we can preserve some of the original shape of the tree, but some information
will be inevitably lost. We will now define and compare two such mapping
schemes: matrix slicing and matrix flattening.

Matrix Slicing maps N -dimensional array variables (where N > 1 is a
constant in the program) iteratively to several (N − 1)-dimensional
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Figure 3: Mapping the input (left) using matrix slicing (middle) or matrix flattening
(right)

array variables, until only one-dimensional array variables remain. This
approach is based on Kvasir (?), the C++ front-end for Daikon.

Figure 3 (left and center columns) shows how it operates on a variable
that includes several sales consisting of one or more orders with pairs
of articles and their prices. As a result, we obtain two variables for
each order in each sale: one for the articles, and another for the prices.

Matrix Flattening reduces the dimensionality of an XML tree by mapping
it to a single one-dimensional array for every kind of leaf element. Each
of these arrays contains all the children elements of that kind in docu-
ment order. It keeps the original XML document predefined traversal
order, so the last indexes will vary more quickly: in our example Or-
der[1]/Article[2] comes before Order[2]/Article[1]. Figure 3 shows how
this mapping is applied to the running example. We obtain only two
variables: one for all the articles in every sale, and another for their
prices.
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As the most space and time efficient of the two approaches, Takuan
uses this method by default. Users can switch manually to the more
expensive method based on matrix slicing if desired.

This method is based on the W3C XPath (?) standard for querying
XML documents. WS-BPEL uses XPath as its default language for
describing assignments (both the value and the destination variable),
Boolean conditions for loops, and so on. In fact, matrix flattening is
the result of applying an expression of the form of //fieldX for every
field of the variable. This expression returns all the elements of type
fieldX in document order. Using other XPath queries could provide
different mapping results: studying this possibility is part of our future
work.

3.4. Advanced type system

A dynamic invariant generator normally requires a specification file declar-
ing the variables to be studied, among other inputs. Normally, the spec-
ification assigns types to these variables. The existing approaches usually
implement limited type systems: for instance, all integers have the same
minimum and maximum values. This is suitable for traditional structured
programming languages. However, the XML Schema type declarations used
by WS-BPEL can be much more specific. For instance, existing types can
be specialized into new types with additional restrictions: minimum and
maximum values or lengths, enumerations of valid values, and so on.

XML Schema declarations are additional sources of information for sup-
pressing redundant invariants. On the other hand, an XML Schema decla-
ration can have many optional elements that may not be used in practice.
These unused optional elements may not be interesting for the user, and will
still increase the time required by the dynamic invariant generator. We will
dedicate the rest of this section to these two issues.

3.4.1. Suppressing invariants with type system information

The additional information provided by a richer type system should be
used to suppress invariants as early as possible in the invariant generation
process, in order to obtain the maximum performance gains. For this reason,
it should be used in the dynamic invariant generator itself.

In addition to their type, variables need to be annotated with additional
restrictions, such as valid ranges of values or lengths, or an exhaustive list
of valid values. For instance, if XML Schema tells us that the value of a
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certain variable must be greater than 100, an invariant confirming it would
only add noise to the resulting list of invariants. These restrictions can be
extracted from the variable definitions in different programming languages:
XML Schema declarations for WS-BPEL, statically sized arrays and matrices
in C/C++, fixed length strings in FORTRAN, or VARCHAR(N) fields in SQL,
for instance. Even more, if that information relates to a multidimensional
variable that is later mapped into n unidimensional variables, we will have
avoided generating not one, but n redundant invariants.

3.4.2. Dealing with unused optional elements

WS-BPEL variables can have many optional elements and attributes.
However, these optional elements and attributes can make even small inputs
unmanageable, since they may contain many elements, each with their own
optional subtrees and attributes. The dynamic invariant generator will spend
a considerable amount of time checking invariants that relate the empty
subtrees. So, it may be useful in some cases to know whether these are being
actually used in a certain composition or not.

To solve this, before invoking the dynamic invariant generator we can
remove all the subtrees that stay empty at a program point throughout all
tests from the execution traces and the variable specifications. This is not
a regular optimization, as we are not simply removing redundant invariants.
We are intentionally discarding potentially useful invariants that we are not
interested in. Users should be warned about this when using this optimiza-
tion.

3.5. Collaboration through shared variables

WS-BPEL does not support the concept of a subroutine. Activities in a
WS-BPEL composition collaborate with each other by using variables defined
in a common context (i.e. “sharing” them, as mentioned in Section 3.2). In
fact, other activities may also be able to access those variables even if they
do not use them. This will increase the number of uninteresting invariants
that the dynamic invariant generator can produce.

WS-BPEL variables can contain large amounts of information. It may
not make sense to check for invariants every pair of subtrees of the same type.
For instance, relating article quantities with durations would normally not
make much sense, even if they are both stores in fields defined as integers.
In addition, an activity will typically only use specific subtrees of certain
variables: checking invariants for only those subtrees could further reduce
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the cost of the process. In the rest of this subsection, we will describe how
to implement these optimizations.

3.5.1. Detecting related variables

We are interested in finding the variables (or parts of them) that have the
same abstract type. For example, an integer could represent a monetary sum
or the age of a person, among other things. We are only interested in checking
invariants that relate monetary sums among them, and ages independently.
Variables that have the same abstract type are usually inferred by seeing
which of them are used together in the program: an expression like a + b

usually means that a and b are of the same abstract type.
There are static and dynamic approaches to finding these relationships.

Static approaches, such as Lackwit (?) for C, may not be powerful enough
for WS-BPEL, as its conditional and assignment expressions can traverse the
trees stored in the variables in complex ways. A dynamic approach, like the
one in DynComp (?) for Java, is more suitable for WS-BPEL. DynComp
represents abstract types using comparability indexes. The dynamic invariant
generator will only try to relate variables with the same index.

To compute these indexes, it is necessary to register which variables are
used together in the expressions within the executions of the WS-BPEL
composition. First, we need to divide expressions into nested comparabil-
ity scopes : only the paths visited in the same scope will be considered to be
related. For example, the following expression checks if the ages of a client
that asks for a loan and her guarantor are below a certain threshold, and if
a credit card is solvent.

(max(client[i].age, guarantor.age) < threshold) ∧ solvent(passport, visaCard)

When processed, it will be parsed into the abstract syntax tree in Figure 4,
while creating new comparability scopes at:

• each argument of every function call (such as solvent), except for some
functions known to take arguments of the same abstract type (e.g.
max ),

• logical operators such as and (∧ in the figure), or or not, and

• filtering predicates, such as the scope for the variable i in the figure.
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∧

solvent()

visaCardpassport

<

thresholdmax()

guarantor.age[]

iclient[?].age

Figure 4: Abstract syntax tree of an XPath expression annotated with comparability
scopes (rounded rectangles). Variables are in italics. The three related variables are
linked with a dashed line, remaining the rest of them in separate comparability scopes.

The execution environment can keep track of which parts of each variable
are used within each comparability scope. After running the composition
with the above expression, we would find that only three of its six variables,
client.age, guarantor.age and threshold were evaluated within the same scope
and are actually related. Therefore, there would be four different abstract
types in this expression: one for ages, one for the i index of the clients list
and two for the passport and visaCard arguments of solvent.

This way, we can calculate related variables in each expression in the
program. But variables are related transitively along all the expressions in the
program flow. In order to aggregate all the information from the expressions
that have been evaluated throughout the composition, we will create a graph
using the variables in the specification as nodes. Every time two variables
are evaluated within the same comparability scope, we add a link between
them. After processing all the execution traces, the abstract types in the
composition can be retrieved by listing the connected components of the
graph.

3.5.2. Removing unused variables

Normally, each activity in a WS-BPEL composition only uses some of the
subtrees of certain variables. It may be useful to only generate invariants for
these subtrees and ignore the rest.

If a variable is used in an activity, the dynamic invariant generator may
also consider that it is used in its ancestors. This will increase the number of
variables to be considered in the ancestors, but will also produce invariants
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Figure 5: Loan Approval composition represented as a UML activity diagram, adapted
from the ActiveVOS InfoCenter.

that consider the combined effects of several more specific activities.
To implement this optimization, we can reuse the results produced when

detecting related variables. These results list the variables that were used in
each expression in the WS-BPEL composition. In addition to these logs, we
will also need to register the variables used to send and receive messages and
invoke services within each program point, among other activities. In fact,
this optimization can be applied to other languages that allow using shared
variables.

4. WS-BPEL dynamic invariant generation framework

This section introduces Takuan, the dynamic invariant generator for WS-
BPEL developed in this work. We describe its architecture and each step of
the process in the next subsections. We illustrate the process using the ver-
sion of the loan approval WS-BPEL composition from (?) shown in Figure 5
as a UML activity diagram, since WS-BPEL does not have a standard graph-
ical notation.

The composition receives loan requests from customers. Each request in-
cludes an amount and certain personal information. The WS-BPEL composi-
tion simply notifies the costumer whether the loan request has been approved
or rejected. The approval of the loan is based on the requested amount and
the risk assessed by an external WS from the personal information of the
customer. If the amount is below $10,000 and the risk is low the loan is
directly approved.
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In case the amount is below the threshold but risk is high, the composition
invokes an external loan approval WS, and its answer is passed on to the
customer. Finally, if the requested amount is over the threshold no risk
checking is done, and the composition simply forwards to the client the reply
of the external loan approval service.

4.1. Takuan architecture

Takuan integrates our own code with several well-tested open-source sys-
tems that have been modified to create a WS-BPEL dynamic invariant gen-
eration workflow (see figure 6 on the following page for a simplified diagram):
the ActiveBPEL WS-BPEL standards compliant open-source engine (?), the
BPELUnit unit test library (?) that includes built-in support for WS re-
placement with mockups when desired and the Daikon dynamic invariant
generator (?).

Takuan basically takes a WS-BPEL process definition and a test suite
specification and automatically outputs a collection of invariants which hold
at certain program points in every test case. This process is an adaptation of
the generic one described in section 2.2.1, that consists of three main steps:
instrumentation, execution and analysis.

We must take into account that Daikon was originally designed with tradi-
tional structured and object-oriented languages in mind: normally, invariants
are generated before and after class methods, functions or procedures, but
there are no such concepts in WS-BPEL. Instead, Takuan selects by default
all <sequence> and <flow> activities: these represent sequences of activities
and sets of concurrent execution branches, respectively. This way, Takuan
checks for invariants even inside conditionals, loops, and around external ser-
vice invocations. By default, all sequence and flow activities and all variables
are studied, but users can manually limit them.

4.2. Instrumentation step

In order to extract invariants from actual executions, we need to collect
logs with information about which activities are executed and the values of
the variables before and after every execution of each activity of interest.

For that reason, we have to take the original WS-BPEL process definition
and build a new version that adds this information to the logs. We call the
resulting WS-BPEL process the instrumented version of the process, and
it is functionally equivalent to the original composition. The instrumented
version invokes a new set of XPath logging functions that we have extended
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Figure 6: Simplified architecture of Takuan
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Listing 1: Simplified excerpt of an ActiveBPEL execution log

INSPECTION($processOutput.accept) = false

Executing [(...)/ sequence/assign]
Completed normally [(...)/sequence/assign]

INSPECTION($processOutput.accept) = true

ActiveBPEL with. These functions only log the values of the variables, while
preserving the control flow of the original process.

4.3. Execution step

We have obtained the instrumented WS-BPEL process definition with
the required logging logic and the engine-specific files in the previous step.
We will now run the instrumented process against the externally provided
test suite. Logs generated during its execution will be handed over to the
next step.

First, we need to deploy the instrumented WS-BPEL process definition.
If the user has requested it, the WS will be replaced with mockups. For
instance, in a certain test case for a loan approval composition, a mockup
of the risk assessment WS may reply saying that the risk is high in 50% of
the cases, and low in the other 50%, in order to test the behavior of the
composition in that situation.

Then the test suite will be run, invoking the composition and generating
an execution log for each test case therein. Finally, the process will be
undeployed. BPELUnit takes care of all these tasks, except for executing
the WS-BPEL composition itself, which is up to ActiveBPEL.

A simplified excerpt of an execution log is shown in listing 1. First, the
original value for accept is inspected, reporting a false value. The second
assignment in the WS-BPEL sequence, part of the original process definition,
sets the variable processOutput.accept to true, indicating that the loan has
been accepted. And finally, the last inspection confirms the change in the
inspected variable.

4.4. Analysis step

In the previous step, each test case in the test suite generated its own
execution log. The final analysis step will pass the logs through our custom
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Listing 2: Some simplified invariants generated by Takuan

1 approverInput.amount = processInput.amount
2 approverOutput.accept = processOutput.accept
3 approverInput.amount = 150000
4 approverOutput.accept one of { 0, 1 }

preprocessor and hand the results to our own modified version of Daikon, so
that it generates the desired invariants.

Our strategies for removing unused optional elements (Section 3.4.2), de-
tecting related variables (Section 3.5.1) and discarding unused variables (Sec-
tion 3.5.2) are coded in the Variable usage analyzer. It applies them to the
test case execution logs processing before invoking Daikon, saving CPU time
this way. Additionally, the Type definition analyzer creates a file with the in-
variants enforced by type system information that do not have to be checked
(Section 3.4.1). Unfortunately this information cannot be incorporated in
Daikon input files. So we had to code a Invariant suppressor module and
plug it to Daikon.

We can see in listing 2 some of the invariants produced by Takuan using
an intentionally limited test suite. These invariants follow the textual output
format defined by Daikon. They were obtained at the end of the branch that
handles large loans (over $10, 000). At that program point, it successfully
deduced (see line 1) that the originally requested amount was correctly sent
to the approver external service. It also demonstrates (line 4, where true
and false values are represented by 0 and 1, respectively) that the approver
external service does not approve every loan, and that its answer is used for
the final output of the composition (line 2).

However, the results of the generator could be further improved. For
example, it tells us in line 3 that the amount requested is always $150, 000,
which we know to be false. To understand why this false invariant was pro-
duced, we must consider that the invariants for a program point are inferred
only from the subset of the test cases which reach it. In our composition,
only the test cases with amounts over $10, 000 reach this point. And, in the
test suite we used, every test case in this subset asked exactly for $150, 000,
so Daikon inferred that false invariant. In general, we can ignore a false in-
variant if we can prove, as we just did, that it originates from an incomplete
test suite and not from a defective WS-BPEL process definition. A more
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Listing 3: Simplified fragment of a WS-BPEL process definition containing a bug

1 <if name=”IfLowAmount”>
2 <condition>( string(assessorOutput.risk) != ’high’ )</condition>
3 ...
4 <else>
5 ...
6 </if>

Listing 4: Simplified invariants that highlight the bug

1 LoanApproval.SmallAmountHighRisk:::ENTER
2 assessorOutput.risk = ”low”
3

4 LoanApproval.SmallAmountLowRisk:::ENTER
5 assessorOutput.risk = ”high”

robust approach is to add more test cases asking for different amounts over
$10, 000 so the false invariant is not generated.

This is an example of how Takuan can help identify deficiencies in a test
case as well as provide informative invariants. Next, we briefly comment an
example of how the invariants obtained in Takuan can highlight a bug in the
code. Let us suppose that, by mistake, we change the condition that decides
whether the approver has to be invoked or not in a small loan. The relational
operator changed from equal to non-equal, implementing a if the risk is not
high condition instead of a if the risk is high (as shown in listing 3).

In listing 4 we can see the invariants that highlight the bug when enter-
ing the two possible branches of that conditional activity. The first one is
for small loans with high risk (i.e., the LoanApproval.SmallAmountHighRisk
program point), and we can observe that in every execution the risk is set to
be low. And the other invariant shows the opposite: the sequence that han-
dles low risk loans (the LoanApproval.SmallAmountLowRisk program point)
is being executed only when the risk is high.

4.5. Getting Takuan

Takuan is freely available under the terms of the GPL 2.0 license. A self-
contained command-line distribution with all required components is avail-
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able from its website at (?). There are other variants, such as an Ant task
and a graphical NetBeans plug-in, but the command-line distribution is the
most powerful and easiest to install and use.

The main command-line utility reads a YAML-based (?) configuration
file with all the required information for running the tests and performing
the analysis. YAML is a data serialization language that is easier to read
and write by humans than XML. Configuration files can range from simple
cases that only run a single analysis, to complex configurations that repeat
the execution and analysis steps with several combinations of flags. Takuan
is smart enough to reuse intermediate results and save disk space as much as
possible, by analyzing the dependencies between all the requested executions
and analysis.

5. Evaluation

We have so far shown that Takuan can successfully generate meaningful
invariants from WS-BPEL compositions. This leaves us with the question
of how Takuan would scale to larger test suites and more advanced compo-
sitions, with many more program points and more complex content in its
variables.

For this reason, we have conducted a series of studies using the setup
described in the next subsection. We have compared the time required by
each of the steps of Takuan as the number of test cases increases or as the
mapping scheme and instrumentation options change. We then perform a
comparative analysis between all the possible combinations of optimizations,
summarize our findings and present a set of guidelines on how to select them.

5.1. Experiment setup

To study the impact of a larger test suite, we ran Takuan on the following
compositions2:

• LoanApproval (LA), the previously commented loan approval compo-
sition. The composition is 68 XML tags long.

2Technical details and additional figures available at http://neptuno.uca.es/files/
takuan2-perf-exp/.
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• LoanApprovalExtended (LAE), a considerably extended version of the
previous composition taking into account much more information. It
is 1, 478 XML tags long.

• MetaSearch (MS), a composition that implements a meta-search en-
gine, aggregating results from the Google and MSN search engines. It
is 508 XML tags long.

• SquaresSum (SS), a composition computing
∑

n

i=1 i
2 for some n. It is

47 XML tags long.

These compositions are comparable or larger than those found in the
available literature, as listed in (?). Unfortunately, unlike other languages,
there is no public repository of large WS-BPEL compositions to draw from.

Since we need to emulate a wide range of what-if scenarios for the partner
services, we have replaced the partner services in these compositions with
mockups. This has allowed us to automatically generate a large number
of test cases in which the mockups behave in different ways, by assigning
uniformly distributed random values to the inputs of the composition and the
variables that controlled the behavior of the mockups. These helped ensure
that the different parts of the composition would be exercised, making the
invariants more representative. For LA, the risk assessment and approver
partner WS reply back with predefined risks and decisions. For LAE, the
mockups for the Social Security WS, debtor status WS and other personal
information WS provide predefined results about the requested person. For
MS, the mockups of the Google and MSN search engines return predefined
sets of results that are expected to be combined in certain ways. SS is the
only composition that does not invoke external WS, and therefore does not
need any mockups.

5.2. Performance by step

We measured the wall times (the sum of CPU time and I/O waits) taken
by each step in the process implemented by Takuan. The test suites ranged
from 5 to 1, 000 randomly generated test cases. Table 1 collects the times for
the worst case with 1, 000 tests.

The instrumentation times did not depend on the number of tests, and
took less than 5 seconds on all compositions. We can conclude that it scales
well to larger compositions without posing any important CPU time or mem-
ory size problems.
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Composition I EO EI A

LA 1.19 300.98 633.76 15.31
LAE 4.90 1,652.70 4,867.52 505.39
MS 1.60 320.77 1,259.75 838.37
SS 0.58 310.23 644.09 314.25

Table 1: Time required by each processing step in Takuan for the worst case and 1, 000
tests (in seconds). I is instrumentation, EO is execution without instrumentation
(the original version), EI is execution with instrumentation and A is the analysis step
(preprocessor and Daikon).

While inspecting every variable in every activity, running the instru-
mented versions of LA and SS (the simplest compositions) took about twice
as long. Instrumentation has a larger impact in LAE and MS (increasing the
execution times by a factor of 3 and 4, respectively), but it is still within the
same order of magnitude. In practice, this impact will probably be largely
reduced, as users will only be interested in some specific variables at certain
activities.

Finally, we can see that the relation between the time required by the
execution and analysis steps varies from composition to composition. The
analysis step requires much less time than the execution step for LA and
LAE, and takes up a reasonable amount of time for SS. For MS, the cost
of the analysis step is much higher than running the original version of the
composition. This indicates that the data used in MS is harder to analyze
with Daikon than those used in LA, LAE and SS.

5.3. Performance by mapping

Previously, we studied the impact of each processing step in the total
running time of Takuan. We will now study the impact of using a specific
mapping scheme and selecting only some activities for instrumentation.

We measured the time needed to run Takuan against each composition,
using randomly generated test suites with enough tests to produce a stable
set of invariants. Results are shown in Table 2. LA required 50 test cases,
LAE required 5, 000, MS required 8, 000 and SS required 500 test cases. We
ran every test twice, disabling all optimizations Takuan implements. On the
first run, we instrumented all activities. On the second run, we instrumented
only the top 3 levels of the activity tree of the WS-BPEL process definition.
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Composition Tests
All levels Top 3

Flat Slice Flat Slice

LA 50 48.47 44.86 47.48 44.84
LAE 5,000 26,664.20 17,755.88 26,669.78 17,755.84
MS 8,000 10,513.90 5,208.89 15,484.32 8,225.88
SS 500 399.49 401.22 397.12 398.32

Table 2: Execution times for Takuan in seconds, by mapping scheme (F for matrix
flattening and S for matrix slicing) and number of levels analyzed in the activity tree

Each composition shows slightly different results:

• LA and LAE take slightly less time when limiting the number of instru-
mented activities, but changing the mapping scheme does not have a
noticeable effect. The structure of the composition is complex enough
to merit limiting the number of activities to analyze, but the complex-
ity of the data used does not require the more efficient matrix slicing
mapping scheme.

• SS is too simple for these optimizations: neither the mapping scheme
nor selecting only some activities to analyze seems to make a difference.

• MS is the only composition for which both optimizations have a notice-
able effect. The total wall time is reduced from 15, 484s with matrix
slicing and all activities to only 5, 208s with matrix flattening and 3
levels of activities.

From the above results, we can conclude that selecting certain activities
or a specific mapping scheme for performance reasons is only worth it if the
composition has sufficiently complex control flow or data structures.

5.4. Performance by optimization

In this section we will study the impact that each of the optimizations
proposed in Section 3 have in the analysis of the four compositions described
in Section 5.1. We will use each of them separately and in combination,
noting that removing unused variables depends on detecting related variables.

We measured the number of variables checked by Daikon, how many
invariants were produced and time and memory consumption. Due to space
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constraints, we have kept the individual values as supplementary material
for the present paper. The box plots in Figure 7 summarize the impact of
these optimizations on each of the measured metrics.

As a general comment we can highlight that in case none of our optimiza-
tions were applied, Takuan results would hardly be useful for a human. For
example, in the MS composition an execution without optimizations pro-
vided almost 100, 000 invariants across all program points when using the
matrix slicing mapping scheme. The same mapping with all our optimiza-
tions activated only produced 1, 270 invariants for all program points.

In the following subsections, we will study the impact of each optimization
across all compositions as it is activated, and then analyze the impact of their
combinations.

5.4.1. Usage of XML Schema constraints

Memory requirements are normally reduced (by up to nearly 50%) or
do not change (as shown by the first three quartiles of its box plot in Fig-
ure 7). However, there is the case of the MetaSearch composition when using
matrix slicing and evaluating all activities, in which memory requirements
were increased nearly by 150%. This is probably due to the high number
of invariants which had to be suppressed by Daikon using the XML Schema
information. Time requirements do not change much, ranging from a 20%
reduction to a 20% increase.

What is striking, however, is the considerable reduction in the number of
invariants produced. Looking at the box plots, we can see that the reductions
range from slightly over 20% to more than 80% of the original invariants.
With matrix slicing, by only applying this technique, we have been able to
suppress in some cases more than 9, 000 invariants. Most of these were array
lengths, which were already encoded in the XML Schema declarations. In
contrast, this technique happens to be much less effective when using matrix
flattening, as it requires weakening or removing most XML Schema maximum
array length constraints.

5.4.2. Removing empty variables

The box plots in Figure 7 indicate that this optimization usually removes
20.4% of the variables. However, this does not change the memory used
by Daikon or the number of invariants very much: there is not much to say
about variables which are always empty in every test. This optimization does
reduce execution times, however: processing time is considerably reduced
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Figure 7: Aggregated changes (as positive percentages of increases or negative per-
centages of reductions over the original amount) made by each combination of Takuan
optimizations on number of variables, space and time performance and number of in-
variants generated on the four compositions used in the experiments. In this graph,
R is “detect related variables”, E is “remove empty elements”, U is “remove unused
variables” and X is “suppress invariants known from XML Schema declarations”.
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most of the time (up to 55.2%) and so does the time required by Daikon (up
to 49.5%).

5.4.3. Detecting related variables and removing unused variables

We must take into account that when this feature is enabled, Takuan
ignores activities which do not use any variables. This is done under the
assumption that these activities do not introduce any interesting behavior
on their own. This explains the reduction in the number of variables in
Figure 7. It is normally negligible, but in LAE with 3 levels of activities
variables are reduced by up to 38.2%.

From the box plots, we can see that its impact on performance highly
varies depending on the composition and the mapping scheme used. The
optimization is much more effective in the largest compositions, LAE and
MS, with reductions on memory usage of 83.9% (for LAE with matrix slicing
and 3 levels of activities), 68.5% and 67.5% and only 2 increases of 20.9%
(for LAE with matrix slicing and all activities) and 1.5%. The rest of the
time, it usually imposes up to a 20% overhead in memory usage.

Most of the time, this optimization increases the time required by the
preprocessing stage of the analysis step in about 20%. Daikon usually takes
slightly less time after activating this optimization, but it can have a large
impact in some cases: MS with matrix slicing went from 1 hour and 7 minutes
to only 9 minutes.

The number of invariants is always noticeably decreased: from 18.3% to
84.7%, with a median of 41.4%. The change is more noticeable on the most
complex compositions.

Finally, let us compare R with RU (R removing unused variables). With
RU, variables are usually reduced by 41.2% instead of the negligible change
with R. Reductions in memory and time are much more common (as shown by
the enlarged boxes), even though there are still cases in which they increase
noticeably. Finally, the number of invariants is drastically reduced: the
median is now at 61.7% instead of 41.4%.

5.5. Combining optimizations

Finally, let us compare the combinations of the above optimizations.
Comparing the R and RX (R with XML Schema constraint information)
entries from Figure 7, they have about the same performance, but RX gen-
erates far fewer invariants. It appears that RX should be always used instead
of R.
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Likewise, RU and RUX (RU with XML Schema constraint information)
have about the same cost, but RUX tends to produce fewer invariants. The
difference is smaller in this case.

Finally, RUX and REUX (RUX with empty variable removal) also share
the same levels of performance, but REUX can generate slightly fewer in-
variants. This is only noticeable in MS, in which the minimum reduction
goes from 86.8% to 95.5% and the maximum reduction goes from 97.4% to
98.8%.

Clearly, this is a case of diminishing returns as more and more optimiza-
tions are combined. The largest jump in performance seems to come from
detecting related variables (R), and then from removing unused variables
(RU ): after those, additional optimizations will only reduce the number of
invariants produced, without any large changes in the obtained performance.

5.6. Lessons learned and practical implications

From the results of the above experiments, we can extract a set of guide-
lines on how to best prepare the composition and configure Takuan:

• According to Table 1, running the tests against the WS-BPEL composi-
tion can take up longer time than the actual analysis if we instrument
every variable in every activity. If execution time is an issue, users
should tell Takuan the subset of variables and activities that should be
considered to generate invariants.

• If the variables contain multiple levels of nested elements, the user
will need to decide whether to generate invariants for specific positions
(using matrix slicing) or for the entire sequence at the same time (using
matrix flattening). Table 2 shows that matrix slicing can be more
expensive: when in doubt, matrix flattening should be used.

• Finally, the user needs to select the optimizations to be used to improve
performance and reduce the number of redundant invariants. These
optimizations were presented in Section 3.2 and analyzed in the first
subsections of Section 5.4.

By default, Takuan detects related variables, removes unused variables
and uses the XML Schema declarations to suppress invariants. These
three optimizations can be considered to be safe. However, removing
empty variables is not enabled by default, as it may discard potentially
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useful invariants. Therefore, it should only be enabled if this sort of
invariant is not desired, or if the composition requires it due to perfor-
mance concerns. This can happen when highly complex XML Schema
types with many optional elements and many levels of nesting are used.

In short, users should focus on picking the most suitable mapping scheme
first and run Takuan with the default options. If the process takes too
long or too many invariants are produced, users should then select the most
interesting activities and/or variables. If we do not want invariants about
empty variables or if it still takes too long, users will need to tell Takuan to
remove empty variables, in addition to the default set of optimizations.

This way, the feedback loop proposed in Figure 2 on page 9 (subsec-
tion 2.1) can be implemented for WS-BPEL compositions. WS-BPEL com-
positions are “usually developed using agile and iterative implementation
methodologies to quickly adjust to the business process improvements and
changes” according to ?. Most agile methodologies include early testing
phases, usually concurrently with development. In this situation, a WS-
BPEL programmer could start testing a simple initial version of the com-
position by asking Takuan to generate invariants concerning all variables in
every activity. Using a large random test suite and the above “safe” opti-
mizations would be recommended. This resulting invariants will provide a
general overview of the composition. Then, in each development iteration, a
regression test could be performed by simply choosing the activities that have
been modified. If unexpected likely invariants are found, the user would have
to check if they were caused by a bug in the code and fix it. Then, running
Takuan once more against the same test suite should provide the expected
invariants. In the case the developer believed the composition to be cor-
rect, additional and more specific test cases should be added to disprove the
unexpected invariants.

In latter modifications of the composition, only the specific activities and
variable fields that were affected could be selected to minimize the impact
of a more detailed mapping scheme (matrix slicing). For larger changes that
affected many activities, more aggressive optimizations could be used at first
to quickly check the overall behavior of the composition, and then intensive
inspections could be performed on specific activities that were suspect of
having bugs.

Finally, in case the tester thought that the external WS changed their
implementation, the composition could be run once more against the same
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test suite, only inferring invariants in the program points located right after
the interaction with the WS. A detailed look into invariants obtained would
confirm or deny it.

6. Conclusions and future work

WS-BPEL language allows for programming Web Services in the large,
introducing additional logic on top of the existing ones. As a result, WS-
BPEL developers have to carefully check not only the partner services, but
also the internal logic of the composition. To do this, one possible approach is
to analyze the composition and extract properties about its behavior. Among
the available static and dynamic approaches, we have selected dynamic likely
invariant generation as it is based on actual executions of the WS-BPEL code
in a real engine.

In this work, we have answered the research question of whether dynamic
invariant generation can be applied to WS-BPEL compositions of the same
complexity as those used in industry from three perspectives: the feasibil-
ity of the technique, the resources needed to run the process and the size
(manageability) of its output.

The feasibility of the technique has been shown in the architecture of
Takuan, the only dynamic invariant generator for WS-BPEL. A sample com-
position was used to show simple invariant usage for detecting bugs in a
composition and improving a test suite. The need to handle tree-structured
variables has resulted in a new contribution to the theory in dynamic in-
variant generation. The simple mapping scheme for handling matrices was
insufficient for variables with tree structure: a new mapping scheme based on
XPath was introduced that could preserve the original order of the elements
in the tree and relate them together.

Another three contributions to the theory relate to improving resource
usage and output size. We have reduced the number of invariants produced
from variables defined using information in their XML Schema definitions.
In fact, the theoretical foundations of our proposal can be also applied to
other programming languages with detailed restrictions on data types, such
as FORTRAN or SQL. Additionally, we have proposed using the information
concerning variable comparability that was dynamically collected during ex-
ecutions. This is not just for discarding invariants relating nonsensical com-
binations of variables, but also for discarding shared variables in activities
where they were not actually used.
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We have conducted an empirical evaluation of the results obtained when
applying Takuan to four different compositions. By examining the collected
data, we can confirm that the resources (time and memory) needed to pro-
duce the invariants and the number of invariants generated highly depend
on the settings used to configure our dynamic invariant generation processes
(especially the optimizations to handle the particularities in WS-BPEL). In
fact, in some cases an execution without optimizations can provide thousands
of invariants, that would hardly be useful for a human. Several guidelines
have been provided on how to select optimizations.

Results show that the optimizations produce a noticeable effect in the
most complex compositions, but sometimes they hardly have any impact in
the smallest ones. In general, all the optimizations reduce the number of in-
variants produced, though they do not always improve performance. The use
of XML Schema restrictions generally reduce memory requirements by over
50%, being highly dependent on the mapping scheme. For matrix slicing,
it suppresses in some cases around 9, 000 invariants, while matrix flattening
produces fewer invariants which were harder to suppress. As for removing
empty variables, it reduces significantly execution costs but does not notice-
ably change the number of invariants generated. Detecting related variables
become more effective with larger compositions, reducing invariants by be-
tween 18.3% and 84.7% and decreasing running times, in exchange for more
memory. As for removing unused variables, it reduces the number of invari-
ants drastically: nevertheless, it must be noted that there are disadvantages
to this approach, because some invariants concerning the global behavior of
the composition might be discarded.

Finally, we propose using Takuan in a feedback loop so that WS-BPEL
compositions developed using agile methodologies can meet Q&A criteria.
Starting with a simple initial version of the composition and a large random
test suite the developer can use the invariants to implement regression testing
in consequent development iterations. Then, depending on the modifications
in each iteration different settings are recommended for invariant generation.

Regarding future work, we have three lines of work ahead. Firstly, the
matrix flattening mapping scheme could be generalized. As commented in
subsection 3.3, matrix flattening is based on applying a certain generic XPath
query to a multidimensional matrix to obtain n unidimensional variables.
Takuan could be extended to accept an specific XPath-like query for each
multidimensional variable. This way, testers could use customized XPath
expressions to obtain invariants concerning specific fields of their interest for
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each WS-BPEL variable.
Secondly, we will analyze the relation between the test suite and the

quality of the generated invariants. We could use as test subjects several
WS-BPEL compositions and manually calculate formal specifications. This
way, we could use several test suites meeting different coverage criteria to
see how many of the assertions in the original specifications are inferred by
Takuan. This information could be used to create a knowledge base for an
expert system that provides advice to improve a test suite.

Finally, we could study the applicability of genetic programming and
mutation testing to help generate better invariants, as proposed by ?. The
technique produced promising results in Java, but it has not been applied
to WS-BPEL. In fact, it proposes an algorithm that ranks invariants ac-
cording to their ability to tell apart the original program from a changed
version (a mutant). This approach could be used as the base of an expert
recommendation system.

All the information needed to replicate our work (compositions, test
suites, configuration files and Takuan, version 2.0) is publicly available in
the following address3.
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