
This is a repository copy of Trends in prioritization of test cases:2017-2019.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/212145/

Version: Accepted Version

Proceedings Paper:
De Castro-Cabrera, M. Del Carmen, García-Dominguez, Antonio orcid.org/0000-0002-
4744-9150 and Medina-Bulo, Inmaculada (2020) Trends in prioritization of test
cases:2017-2019. In: 35th Annual ACM Symposium on Applied Computing, SAC 2020.
35th Annual ACM Symposium on Applied Computing, SAC 2020, 30 Mar - 03 Apr 2020
Proceedings of the ACM Symposium on Applied Computing . Association for Computing
Machinery, Inc , CZE , pp. 2005-2011.

https://doi.org/10.1145/3341105.3374036

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Trends in prioritization of test cases: 2017-2019

M. del Carmen de
Castro-Cabrera

Department of Computer Science,
University of Cádiz

Cádiz, Spain
maricarmen.decastro@uca.es

Antonio García-Dominguez
SEA research group,
EAS, Aston University

Birmingham, United Kingdom
a.garcia-dominguez@aston.ac.uk

Inmaculada Medina-Bulo
Department of Computer Science,

University of Cádiz
Cádiz, Spain

inmaculada.medina@uca.es

ABSTRACT

A core task in software testing is the design of test suites. Large test
suites may take too long to run frequently, and test case prioritiza-
tion (TCP) techniques have been proposed to speed up the detection
of faults. These techniques have become increasingly popular and
the number of publications has grown in recent years. Surveys have
covered most of the techniques, but the latest included only publica-
tions until 2016: interest is growing, and new proposals have been
developed in the last three years. This paper aims to complete that
survey by providing the latest developments in TCP to respond to
this growing interest. Specifically, we use the taxonomy proposed
by Khatibsyarbin et al. on the most important publications from
2017 to the present day (2019). All in all, we found 320 papers in
this period about test case prioritization. The results show that the
main techniques used are search-, coverage- and similarity-based.

KEYWORDS

Test case prioritization, regression testing, systematic literature
review, TCP, software testing.

ACM Reference Format:

M. del Carmen de Castro-Cabrera, Antonio García-Dominguez, and Inmacu-
lada Medina-Bulo. 2020. Trends in prioritization of test cases: 2017-2019. In
The 35th ACM/SIGAPP Symposium on Applied Computing (SAC ’20), March

30-April 3, 2020, Brno, Czech Republic. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3341105.3374036

1 INTRODUCTION AND MOTIVATION

Software testing is a time-consuming phase in the software devel-
opment process. In fact, it can be the most expensive phase in all
this process [30]. Therefore, much effort has been put into trying
to reduce that time.

A significant aspect in software testing is the selection of a test
suite, as it impacts the quality of the results and the time required for
execution. This is even more important for large suites. Therefore,
it is a question of choosing a set that guarantees reliable software
testing. Once the test suite has been defined, test case prioritization
techniques are applied to make the process more efficient.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/10.1145/3341105.3374036

In the literature, we can find numerous test case prioritization
(TCP) approaches, as the survey by Khatibsyarbini [18] shows. In
particular, this survey is cited by many other papers:

• In Scopus it is cited by 6 papers [3, 10ś12, 15, 17] in 2018.
• In Google Scholar it is cited by 17 recent papers [3, 6, 7, 10ś
12, 12, 13, 15ś17, 21, 28, 29, 31, 44, 46] (14 in 2018 and 3 in
2019).

However, the survey by Khatibsyarbini is from 2017, and there
has been much work since then in TCP. This paper aims to complete
this survey with the papers published since then on TCP, respond-
ing to the growing interest in the last years [19]. The systematic
literature review (SLR) methodology proposed by Kitchenham will
be used [20].

This paper is structured as follows. Section 3 presents the re-
search method used in this work including five subsections: Sub-
section 3.1 selects the research questions to take into account in
this work; Subsection 3.2 enumerates the repositories used; Sub-
section 3.3 chooses the publication search strategy; Subsection 3.4
establishes the inclusion and exclusion criteria; and, Subsection 3.5
presents the data synthesis and extraction. Then, Section 4 high-
lights the main results obtained, and Section 5 outlines their threats
to validity. Finally, Section 6 presents the conclusions and future
lines of research.

2 BACKGROUND

There are several approaches that can be followed when the time
available to run regression test cases is limited: the three most
common ones are test case minimisation, test case selection and
test case prioritisation. Elbaum et al. provided clear definitions of
test case selection (TCS, also known as regression test selection
or RTS) and test case prioritization (TCP) [8]. Let P be a program,
let P ′ be a modified version of P , and let T be a test suite for P .
Regression testing is concerned with validating P ′. Regression test
selection (RTS) techniques select from test suite T a subset T ′ that
contains test cases that are important to re-run. In contrast, test
case prioritization (TCP) techniques reorder the test cases in T so
testing objectives can be met sooner. Because TCP techniques do
not themselves discard test cases, they can avoid the drawbacks
that can occur when regression test selection cannot achieve safety.
On the other hand, test case minimization techniques (TCM) seek
to reduce the size of a test suite by eliminating redundant test
cases from the test suite. Minimization is sometimes also called
test suite reduction, meaning that the elimination is permanent [45].
Therefore, in this review, we will refer only to TCP techniques,
discarding selection and minimization techniques.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic MC de Castro et al.

Before we begin our review, let us recall the main lines of Khati-
bsyarbini’s review [18]. The objective of this work was to examine
and classify the current proposals on prioritization of test cases.
Several repositories were searched for certain keywords and in-
clusion and exclusion criteria were defined for the results found.
The papers were classified into journal articles, conference papers,
symposiums and workshops.

Subsequently, a more in-depth study was carried out in which
five criteria were applied to evaluate the quality of the work: pre-
cision of the objectives, clarity in the description of the approach,
adequacy of the design of the strategy of the experiments, whether
it has been applied to a case study or a controlled experiment has
been carried out, and whether it represents an improvement in the
academic environment.

The selected works were grouped into seven categories (dimen-
sions in the original paper): six main ones, and one that grouped the
rest of the approaches with fewer publications. These categories
are briefly described below:

• Coverage-based: in these works, the code is inspected directly.
Mainly, function, branch and sentence coverage is used.

• Requirement-based: these approaches take into account in-
formation on requirements, either through prioritization of
requirements for testing, or considering algorithms based
on traceability, completeness, the impact of a failure on re-
quirements, changes in requirements, configurable priority
and vision of developers.

• Risk-based: they consider information on the risks of the
program. It also refers to the priority requirements on risk
values.

• Search-based: they compute priorities through search-based
algorithms such as genetic algorithms, greedy search, or ant
colonies.

• Fault-based: they produce sequences of test cases to detect
targeted faults. The aim is to prioritise the test cases most
likely to detect errors and, at the same time, those whose
execution takes less time.

• History-based: these approaches use historical data such as
execution history or change information from past test exe-
cutions to prioritise them.

• Other-based: this catch-all category includes a number of
techniques. For instance, approaches based on Bayesian net-
works (which foresee the possibility that each test case will
find an error), or cost-aware approaches (estimating the error
ratio in unit tests with genetic algorithms).

With respect to publications, it has been observed that the num-
ber of publications has increased since 1999, that new proposals
have emerged each year, and that proposals based on artificial in-
telligence techniques have grown in the last few years since 2016.
However, there were other approaches, which also have their ad-
vantages. For example, a multi-objective technique has shown a
good number of supporters in several of the recent publications of
the reference report [27, 32], as it has the capacity to address two
or more different types of objectives in a single prioritization.

Each approach has potential values, advantages and limitations.
The inputs and the type of data play an important role in determin-
ing their advantages and limitations. For example, the requirement-
based approach uses customer information during obtaining re-
quirements such as entries, to prioritize and generate test cases.
The risk-based approach may also use the risk requirement as one
of the inputs for executing the prioritization process. This indicates
that both may have their own advantages over other approaches
in terms of the starting point of TCP execution, as both may start
before execution starts and the code is available.

In conclusion, TCP is recognized as an important element in the
regression tests, in the current investigations, since it has the ability
to increase the effectiveness of testing in terms of failure detection,
cost and time.

3 RESEARCH METHOD

The latest in-depth review found [18] contains information on work
on prioritisation techniques for test cases until December 2016. The
growing importance of software testing requires, among other
tasks, prioritizing test cases to make the process more effective
and efficient. This has led to a greater interest and research in
techniques that achieve this objective, as can be seen in Figure
5 of the aforementioned report. This increase in the number of
publications on this subject has served as a motivation for the
authors to carry out a study in the three years following this review.

This review attempts to perform a systematic literature review
(SLR) on the TCP approaches published in the last three years (2017ś
2019), according to the methodology defined by Kitchenham [20].
Each step is described in a separate section below.

3.1 Selection of research questions

We have chosen the following research questions:

RQ1 Is the taxonomy defined by Khatibsyarbini et al. still valid
for the state of the art in Test Case Prioritisation? New cate-
gories may have appeared since then, or the definitions of
the categories may need further refinement.

RQ2 Have there been changes in the popularity of the various
types of TCP techniques since the original survey? The rise
of artificial intelligence in software engineering may have
changed the trends in the last few years.

RQ3 How did the new approaches impact the TCP results?
RQ4 How were these new approaches validated?
RQ5 How are the new approaches distributed across applica-

tion domains?

RQ1 and RQ2 consider changes from the original survey. RQ3
and RQ4 are reused from the original survey. Finally, RQ5 is an
original question from this work, given the specialisation of testing
techniques across application domains.

3.2 Selection of repositories

We have chosen the following sources to identify primary studies:

• IEEE Xplore
• Scopus
• Google Scholar

Trends in prioritization of test cases: 2017-2019 SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

The search has been restricted to these three repositories because
they include most of the publications of the best known publishers
as they are: Springer [36], Elsevier, ACM and Wiley Online Library.

3.3 Search strategy

In the three repositories we have searched the strings test case
prioritization, Test Case Prioritization or test prioritization and from
2017 to 2019. In addition, in Scopus, we have included the English
language.

3.4 Selection of inclusion and exclusion criteria

The table 1 describes the inclusion and exclusion criteria that were
applied to the primary studies. These were based on those from the
original survey.

3.5 Data synthesis and extraction

The three repositories mentioned in Section 3.2 were analyzed:

• IEEE Xplore: 117 papers (41 from 2017, 50 from 2018 and 26
from 2019).

• Scopus: 238 papers (85 from 2017, 95 from 2018 and 58 from
2019).

• Google Scholar: 126 papers (43 from 2017, 54 from 2018 and
29 from 2019).

The results were then gathered, removing duplicates and filtering
out those that were outside the scope of the topic, as well as those
that were not accessible.

Once this has been done, the results have been classified accord-
ing to the categories of the referenced review, in order to obtain the
trends in these three years, as you can see in the following section.

4 RESULTS AND DISCUSSION

All in all, 320 papers were found in this period about test case
prioritization. Across years, 129 correspond to the year 2017, 124 to
the year 2018, and finally, 67 were found to be from 2019. Since 2019
is still underway, it follows that there will be fewer publications
on the subject. In addition, the original survey goes over 17 years,
whereas in the current review, only three years are studied. In any
case, the trend in the number of publications on the subject is clearly
increasing, since at the end of 2016 there were no more than 20 of
them, while in 2017 more than 100 have been found.

4.1 RQ1: Is the taxonomy defined by
Khatibsyarbini et al. still valid for the state
of the art in Test Case Prioritisation?

In terms of the categories considered, publications have been found
for the fourteen categories in table A3 of the reference report. These
are based on search algorithms, coverage, faults, requirements,
execution history, risks, Bayesian networks, cost effectiveness, topic
models, workflows, lexicographical ordering, similarity measures,
scope and models.

The new papers motivated the creation of several new categories:

• Location-based: Locations and points of interest are corre-
lated by their location proximity via the services. Moreover,
many location-based applications use estimated locations
and treat similar locations homogeneously. They provide

domain-specific heuristics to guide testing techniques to
prioritize test case. [42]

• Machine learning-based: This technique uses learning, data
history, execution times, descriptions in natural language,
etc., to prioritize test cases among those most prone to errors.
It is used in Continuous Integration environments and in
system-level application testing, where the source code is
not accessible. [21]

• Neural network-based: In order to increase the detection of
faults in an application, an important function is defined and
algorithms based on neural networks are used. [37]

• Empirical: From empirical studies on TCP in a certain domain
or with a certain software guidelines are established for the
application of TCP techniques. [24]

For some of the new categories there are more than 2 references,
as for example in the case of learning machines [21, 22, 39, 43] and
neural networks [35, 37, 38]. In addition, the number of proposals
that apply more than one technique and take into account various
criteria when prioritising test cases are highlighted on Figure 3.

4.2 RQ2: Have there been changes in the
popularity of the various types of TCP
techniques since the original survey?

In addition, we show the average number of TCP papers per year,
by type found (1996ś2016, 2017ś2019) in Figure 1. The łSearch-
based" category is still the most prominent, and in these three years
the number of publications has increased considerably. łCoverage-
basedž, łFault-basedž and łHistoryž are also highlighted as in the
reference report. However, in the period 2017ś2019, łSimilarityž
stands out in third place, which barely stood out in previous years.
Nonetheless, łRisk-basedž and łRequirementž, which were in an
intermediate position in the previous period, are now very rare.
A detailed table of the last three years and by categories can be
appreciated in figure 2.

Furthermore, there has been an enormous increase in contribu-
tions that use more than one criterion to prioritise test cases. This
may indicate that better results are obtained by taking into account
a number of factors that can lead to software failures [33]. It can be
observed that of the number of publications found in recent years
belonging to the multi-criteria category, more than 40% of them
improve or optimise an initially proposed technique. As a result,
optimization algorithms are applied in [26, 41], or an improvement
is made in [25, 33] that reduces the cost of prioritizing test cases.

Likewise, work on prioritisation based on similarity has in-
creased significantly. This may be due to the fact that they allow the
use of algorithms and classification techniques that are highly devel-
oped and proven, giving good results in real cases. The calculation
of the distance between test cases is related to their dissimilarity
which allows the detection of test cases with the highest probability
of detecting faults [1, 9, 12, 34] .

4.3 RQ3: How did the new approaches impact
the TCP results?

The results show that the main TCP approaches used are łsearch-
basedž, łcoverage-basedž, łsimilarity-basedž and łfault-basedž. As

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic MC de Castro et al.

Table 1: The inclusion/exclusion criteria.

Inclusion criteria Exclusion criteria How applied

English Other language Filtering search
Test case prioritization Other topic Using these terms

2017ś2019 Other dates Advanced searches
Papers that cite [18] Cites included in [18] Searches

Figure 1: Average number of papers per year, by type (1996ś

2016, 2017ś2019)

Types\Year 2017 2018 2019 Total

Bayesian-Network 1 0 0 1

Cost 5 7 3 15

Coverage 16 14 4 34

Empirical 0 1 1 2

Fault 10 12 4 26

History 11 8 3 22

Lexicographical 1 0 1 2

Location 0 0 1 1

Machine learning 3 5 1 9

Model 4 4 3 11

Multi-criteria 10 10 9 29

Neural network 1 1 2 4

Requirement 4 4 1 9

Risk-based 0 2 0 2

Search 24 20 12 56

Similarity 12 14 4 30

Topic-Model 2 0 0 2

Workflow 2 2 2 6

Figure 2: Number of papers per year, by type (2017ś2019)

commented before, similarity-based approaches which hardly stood
out in the previous report now have a prominent position in terms
of the number of publications on the subject.

The focus on cost and multi-criteria has also increased notably.
This may be due to the concern to reduce costs in the software,
avoiding loss of time, money, etc. In terms of multi-criteria, as
mentioned above, it is more efficient to apply techniques that take
into account different factors that can cause errors in the software.
This combination reduces costs and makes it possible to cover a
large part of the code.

Figure 3 shows the number of articles that use one, two or more
of the categories listed above to develop their proposal (excluding
reviews). In the original survey, some publications are classified
into a single type, but in its Table A3 some are put into more than
one category.

4.4 RQ4: How were these new approaches
validated?

In most cases, they have been validated through their use in real
applications with adequate and similar metrics. The following de-
scribes the validation results for most of the articles in the new
categories.

Wang et al. presented in [42] an empirical evaluation by using
one industrial project. Moreover, the experimental results show
that the median APFD (Average Percentage Faults Detected) value
of Location TCP is 78.57, which is higher than the values of the
baseline methods.

In [22], the authors tested the technique on two systems to
evaluate the ability of early detection of errors using the APFD

Figure 3: Number of approach types per paper

Trends in prioritization of test cases: 2017-2019 SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

metric. The results show remarkable improvements over manual
and random prioritization by experts.

Wen et al. present in [43] an improvement of the RETECS (REin-
forced TEst Case Selection) method using the FP-Growth algorithm
1. They have compared the results with three other prioritisation
techniques and the experimental results show that the method is
able to incorporate improvements over RETECS by increasing the
fault detection ratio. NAPFD (Normalized Average Percentage of
Faults Detected) has been used as a metric.

Toure and Badri published a paper [39] on prioritization in
unit testing, where the test cases are classes of an object-oriented
software. They use two evaluation techniques: CSV (cross-system
validation), and LOSOV (leave-one-system-out validation), which
merges training sets from different systems. The results indicate all
obtained classifiers could help to support unit tests prioritization
with more than 70% of accurate predictions.

The LET(learning-to-test) system in [5] uses a learning-to-test
approach to accelerate C compiler testing, demonstrating that it
reduces the C compiler testing time significantly: between 25% and
50% in more than 36% of the cases.

In the category of neural networks, in [37], the parameters used
to measure the results were the error detection ratio and the execu-
tion time. A MATLAB simulation was used.

Chaudhury et al. in [4] considered several factors for prioriti-
sation: event type, event interaction, and event coverage. These
factors were divided into low, medium, and high ranges. The results
achieved a higher APFD rate with a huge number of test cases
created to cover the possible events.

4.5 RQ5: How are the new approaches
distributed across application domains?

The new approaches are related to service-oriented software, inter-
net of things (IoT), and mobile devices. They generally use artificial
intelligence-based techniques. The new categories are described be-
low in relation to the domains in which they are applied. The recent
work found on the new category of location-based approaches [42]
is described in the domain of mobile devices, taking advantage of
the parameters that this type of technology provides.

With regard to machine learning, the domains are: robotics (par-
ticularly, a paint robot control system [43]), the automotive sec-
tor [22], and unit testing object-oriented software [39]. Lachmann
et al. in [22] incorporate TCP as a novelty at the system-level with-
out code access (i.e. industrial software). For black box testing, high
level artefacts (i.e. test cases, requirements and faults described in
natural language) are used.

Chen et al. apply learning to prioritise test cases for testing
compilers [5], whose complexity makes them expensive to test. In
the experimental study, they use three mainstream open-source C
compilers, namely GCC, LLVM, and Open64 for the x86 64-Linux
platform.

In regard to neural networks, Thakur [37] considers 10 projects
with 4 software changes in an experimental study carried out on a

1The FP-Growth Algorithm, proposed by Han in [14], is an efficient and scalable
method for mining the complete set of frequent patterns by pattern fragment growth,
using an extended prefix-tree structure for storing compressed and crucial information
about frequent patterns named frequent-pattern tree (FP-tree)

Figure 4: Percentage of approach academic and industrial

per year

MATLAB simulation. However, in [4], event driven software testing
is the objective domain.

Liang et al. provide an interesting approach in [23], although it is
not among the new categories. This work is an original proposal for
continuous integration (CI) environments. It is based on prioritising
commits rather than the actual test cases of the software. They have
designed an algorithm called CCBP (Continuous Commits-Based
Prioritization). It applies to two use cases: Google or Travis-CI.

The table 2 depicts some of the most outstanding domains in the
papers. It is worth mentioning the object-oriented programming,
software products lines and web applications. As well as indus-
trial projects and industrial automation software. Most software
developed today obeys the object-oriented paradigm, and therefore,
it is reasonable to test it on its own. In the same way that indus-
trial processes have been modernised and more and more tasks are
performed automatically requiring software to support them. In
addition, the work on product lines and on web applications stand
out, given the high number of activities and transactions that are
carried out today through the Internet.

In addition, the papers found have been classified according to
whether they are academic or industrial. As can be seen in the
figure 4 that shows the percentage of works per year in each of
these areas, the percentage of articles in the industrial area grows
each year. This could indicate, on the one hand, that in the industrial
field, evidence is given increasing importance, and on the other,
that it is necessary for industry to collaborate with the academic
field, providing real cases to test the proposed techniques.

5 THREATS TO VALIDITY

Similar to previous reviews, the potential threats of this system-
atic literature review are associated with an incomplete collection
of primary studies and no precise data synthesis and derivation.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic MC de Castro et al.

Table 2: Highlighted domains

Highlighted Domains number of papers

Automotive 5
Avionics 2

C and Java application 2
Compilers 4

Continuous integration environments 4
Cyber-Physical Systems 4

Defects4J data set 5
Generic 95

Google Dataset 3
GUI software 3

Industrial Projects 7
Industrial Automation Software 8

Java projects 4
Mathematical problems 4

Mobile Software 3
Object-oriented programming 26

Product line 11
Software as a service 4
Web applications 9

In addition to the works classified according to the categories de-
scribed in the previous section, some reviews have been found.
However, many are for specific applications and others include
TCP techniques as part of a larger report. For example, the paper
by Tzoref [40] deals with advances in combinatorial testing, so that,
in addition to the techniques for prioritizing test cases, it examines
recent developments in other areas such as fault localization and
the evolution of the combinatorial model. Likewise, in the case of
work by Ahmad [2], it is specific to the area of event sequences.

6 CONCLUSIONS AND FUTUREWORK

This paper completes the survey from Khatibsyarbini [18] by pro-
viding the latest developments in TCP, responding to a growing
interest in the literature in this subject. Specifically, we use the
taxonomy proposed in that survey including the most important
publications from 2017 to the present day (2019).

The results show that TCP is currently of a great deal of inter-
est in the literature. All in all, we found 320 papers in this short
period dealing with many different TCP approaches, but the main
categories are three: search-based approaches, coverage-based ap-
proaches, and similarity-based approaches. A large proportion of
the papers combine multiple techniques to optimise the TCP pro-
cess.

As future work, we would like to determine what the descrip-
tions, strength, and weakness of present prioritization approaches
are, how these approaches were applied and affect TCP results,
and what processes are involved in TCP. In addition, we would
like to use the following criteria to assess the quality of primary
studies: the number of cites, the clarity and formality. Finally, it
would be useful to classify the papers according to the quality of
their evaluation.

ACKNOWLEDGMENTS

Paper partially funded by The Ministry of Economy and Competi-
tiveness (Spain) and the FEDER Fund, under the National Program
for Research, Development and Innovation, Societal Challenges Ori-
ented, Project DArDOS TIN2015-65845-C3-3-R, and Project FAME
RTI2018-093608-B-C33.

REFERENCES
[1] M. Abu Hasan, M. Abdur Rahman, and M. Saeed Siddik. 2017. Test case prior-

itization based on dissimilarity clustering using historical data analysis. Com-
munications in Computer and Information Science 750 (2017), 269ś281. https:
//doi.org/10.1007/978-981-10-6544-6_25 cited By 2.

[2] J. Ahmad and S. Baharom. 2017. A systematic literature review of
the test case prioritization technique for sequence of events. In-
ternational Journal of Applied Engineering Research 12, 7 (2017), 1389ś
1395. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018687950&
partnerID=40&md5=1ffe00aa61668353f3b13663197f6c27 cited By 3.

[3] M. Azizi and H. Do. 2018. Graphite: A Greedy Graph-Based Technique for Regres-
sion Test Case Prioritization. Proceedings - 29th IEEE International Symposium
on Software Reliability Engineering Workshops, ISSREW 2018 (2018), 245ś251.
https://doi.org/10.1109/ISSREW.2018.00014

[4] S. Chaudhury, A. Singhal, and O. P. Sangwan. 2016. Neuro-fuzzy based approach
to event driven software testing: A new opportunity. In 2016 1st India International
Conference on Information Processing (IICIP). 1ś5. https://doi.org/10.1109/IICIP.
2016.7975349

[5] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 700ś711.

[6] Omdev Dahiya and Kamna Solanki. 2018. A systematic literature study of regres-
sion test case prioritization approaches. International Journal of Engineering &
Technology 7, 4 (2018), 2184ś2191.

[7] Sai Priyatham Dongoor. 2019. Selecting an appropriate Requirements Based Test
Case Prioritization Technique.

[8] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
Improving Regression Testing in Continuous Integration Development Envi-
ronments. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
235ś245. https://doi.org/10.1145/2635868.2635910

[9] D. Flemström, P. Potena, D. Sundmark, W. Afzal, and M. Bohlin. 2018. Similarity-
based prioritization of test case automation. Software Quality Journal 26, 4 (2018),
1421ś1449. https://doi.org/10.1007/s11219-017-9401-7 cited By 3.

[10] V. Garousi, R. Özkan, and A. Betin-Can. 2018. Multi-objective regression test
selection in practice: An empirical study in the defense software industry. In-
formation and Software Technology 103 (2018), 40ś54. https://doi.org/10.1016/j.
infsof.2018.06.007

[11] N. Gupta, V. Yadav, andM. Singh. 2018. Automated regression test case generation
for web application: A survey. Comput. Surveys 51, 4 (2018). https://doi.org/10.
1145/3232520 cited By 0.

[12] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja. 2018. Test case prioritiza-
tion using test similarities. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11271
LNCS (2018), 243ś259. https://doi.org/10.1007/978-3-030-03673-7_18 cited By 0.

[13] Ines Hajri, Arda Goknil, Fabrizio Pastore, and Lionel C Briand. 2019. Automating
Test Case Classification and Prioritization for Use Case-Driven Testing in Product
Lines. arXiv preprint arXiv:1905.11699 (2019).

[14] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. In ACM sigmod record, Vol. 29. ACM, 1ś12.

[15] R. Huang, Q. Zhang, T.Y. Chen, J. Hamlyn-Harris, D. Towey, and J. Chen. 2018.
An Empirical Comparison of Fixed-Strength and Mixed-Strength for Interaction
Coverage Based Prioritization. IEEE Access 6 (2018), 68350ś68372. https://doi.
org/10.1109/ACCESS.2018.2879638 cited By 0.

[16] Rubing Huang, Weiwen Zong, Tsong Yueh Chen, Dave Towey, Yunan Zhou, and
Jinfu Chen. 2018. Prioritising abstract test cases: an empirical study. IET Software
(2018).

[17] J. Jia and X. Liu. 2018. Improving Systematic Literature Review Based on Text
Similarity Analysis. Journal of Physics: Conference Series 1069, 1 (2018). https:
//doi.org/10.1088/1742-6596/1069/1/012059

[18] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N.A. Jawawi, and Rooster
Tumeng. 2018. Test case prioritization approaches in regression testing: A sys-
tematic literature review. Information and Software Technology 93 (2018), 74 ś 93.
https://doi.org/10.1016/j.infsof.2017.08.014

[19] Barbara Kitchenham. 2004. Procedures for performing systematic reviews. Keele,
UK, Keele University 33, 2004 (2004), 1ś26.

[20] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John Bai-
ley, and Stephen Linkman. 2009. Systematic literature reviews in software
engineeringśa systematic literature review. Information and software technology
51, 1 (2009), 7ś15.

[21] Vinit Kudva. 2018. Fault Driven Supervised Tie Breaking for Test Case Prioritization.
Ph.D. Dissertation. University of Waterloo.

[22] R. Lachmann, M. Nieke, C. Seidl, I. Schaefer, and S. Schulze. 2017. System-level
test case prioritization using machine learning. Proceedings - 2016 15th IEEE
International Conference on Machine Learning and Applications, ICMLA 2016
(2017), 361ś368. https://doi.org/10.1109/ICMLA.2016.163 cited By 3.

Trends in prioritization of test cases: 2017-2019 SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

[23] J. Liang, S. Elbaum, and G. Rothermel. 2018. Redefining Prioritization: Continuous
Prioritization for Continuous Integration. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). 688ś698. https://doi.org/10.1145/
3180155.3180213

[24] Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. 2018. How
do static and dynamic test case prioritization techniques perform on mod-
ern software systems? An extensive study on GitHub projects. arXiv preprint
arXiv:1806.09774 (2018).

[25] M.H. Mahmood and M.S. Hosain. 2018. Improving test case prioritization based
on practical priority factors. Proceedings of the IEEE International Conference on
Software Engineering and Service Sciences, ICSESS 2017-November (2018), 899ś902.
https://doi.org/10.1109/ICSESS.2017.8343055 cited By 1.

[26] B. Manaswini and A. Rama Mohan Reddy. 2019. A shuffled frog leap al-
gorithm based test case prioritization technique to perform regression test-
ing. International Journal of Engineering and Advanced Technology 8, 5 (2019),
671ś674. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069924907&
partnerID=40&md5=1a63e2ab19533064658633f048ff66f2 cited By 0.

[27] A. Marchetto, M. M. Islam, W. Asghar, A. Susi, and G. Scanniello. 2016. A
Multi-Objective Technique to Prioritize Test Cases. IEEE Transactions on Software
Engineering 42, 10 (Oct 2016), 918ś940. https://doi.org/10.1109/TSE.2015.2510633

[28] Nasir Mehmood Minhas, Kai Petersen, Jürgen Börstler, and Krzysztof Wnuk. 2018.
Regression testing for large-scale embedded software developmentśExploring
the state of practice. (2018).

[29] Deepti Bala Mishra, Namita Panda, RajashreeMishra, and Arup Abhinna Acharya.
2018. Total fault exposing potential based test case prioritization using genetic
algorithm. International Journal of Information Technology (2018), 1ś5.

[30] Myers, G.J., Sandler, C., Badgett, T., and Thomas, T. M. 2004. The Art of Software
Testing, 2nd ed. Wiley - Interscience.

[31] Gayatri Nayak andMitrabinda Ray. 2018. A Guided Approach to Prioritize Object-
Oriented Test Suites Using MC/DC Testing. In 2018 2nd International Conference
on Data Science and Business Analytics (ICDSBA). IEEE, 186ś191.

[32] José A. Parejo, Ana B. Sánchez, Sergio Segura, Antonio Ruiz-Cortés, Roberto E.
Lopez-Herrejon, and Alexander Egyed. 2016. Multi-objective test case priori-
tization in highly configurable systems: A case study. Journal of Systems and
Software 122 (2016), 287 ś 310. https://doi.org/10.1016/j.jss.2016.09.045

[33] A.B. Sánchez and S. Segura. 2017. SmarTest: A test case prioritization tool for
drupal. ACM International Conference Proceeding Series 2 (2017), 9ś12. https:
//doi.org/10.1145/3109729.3109757 cited By 0.

[34] A.B. Sánchez, S. Segura, J.A. Parejo, and A. Ruiz-Cortés. 2017. Variability testing
in the wild: the Drupal case study. Software and Systems Modeling 16, 1 (2017),
173ś194. https://doi.org/10.1007/s10270-015-0459-z cited By 18.

[35] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige. 2017. Reinforcement learning
for automatic test case prioritization and selection in continuous integration.
ISSTA 2017 - Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (2017), 12ś22. https://doi.org/10.1145/3092703.
3092709 cited By 12.

[36] SpringerLNCS 2019. Information on Abstracting and Indexing. Re-
trieved July 29, 2019 from https://www.springer.com/gp/computer-science/lncs/
information-on-abstracting-and-indexing/799288

[37] Akshit Thakur and Gitika Sharma. 2018. Neural Network Based Test Case
Prioritization in Software Engineering. In International Conference on Advanced
Informatics for Computing Research. Springer, 334ś345.

[38] A. Thakur and G. Sharma. 2019. Neural Network Based Test Case Prioritization
in Software Engineering. Communications in Computer and Information Science
956 (2019), 334ś345. https://doi.org/10.1007/978-981-13-3143-5_28 cited By 0.

[39] F. Toure and M. Badri. 2018. Prioritizing unit testing effort using software metrics
and machine learning classifiers. Proceedings of the International Conference on
Software Engineering and Knowledge Engineering, SEKE 2018-July (2018), 653ś658.
https://doi.org/10.18293/SEKE2018-146 cited By 0.

[40] R. Tzoref-Brill. 2019. Advances in Combinatorial Testing. Advances in Computers
112 (2019), 79ś134. https://doi.org/10.1016/bs.adcom.2017.12.002 cited By 0.

[41] R. Uma Maheswari and D. Jeya Mala. 2017. Heuristic-based time-aware multi-
criteria test case prioritisation technique. International Journal of Information
Systems and Change Management 9, 4 (2017), 315ś333. https://doi.org/10.1504/
IJISCM.2017.091275 cited By 0.

[42] X. Wang, H. Zeng, H. Gao, H. Miao, and W. Lin. 2019. Location-Based Test
Case Prioritization for Software Embedded in Mobile Devices Using the Law of
Gravitation. Mobile Information Systems 2019 (2019). https://doi.org/10.1155/
2019/9083956 cited By 0.

[43] WenWen, Zhongju Yuan, and Yuyu Yuan. 2018. Improving RETECSmethod using
FP-Growth in continuous integration. In 2018 5th IEEE International Conference
on Cloud Computing and Intelligence Systems (CCIS). IEEE, 636ś639.

[44] Uğur Yılmaz. 2019. A METHOD FOR SELECTING REGRESSION TEST CASES
BASED ON SOFTWARE CHANGES AND SOFTWARE FAULTS. Master’s thesis.
Fen Bilimleri Enstitüsü.

[45] S. Yoo and M. Harman. 2012. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability 22, 2 (2012),
67 ś 120. http://search.ebscohost.com.bibezproxy.uca.es:2048/login.aspx?direct=

true&db=egs&AN=71933963&site=ehost-live
[46] Chuan Yue. 2018. A projection-based approach to software quality evaluation

from the usersâĂŹ perspectives. International Journal of Machine Learning and
Cybernetics (2018), 1ś13.

	Abstract
	1 Introduction and motivation
	2 Background
	3 Research method
	3.1 Selection of research questions
	3.2 Selection of repositories
	3.3 Search strategy
	3.4 Selection of inclusion and exclusion criteria
	3.5 Data synthesis and extraction

	4 Results and discussion
	4.1 RQ1: Is the taxonomy defined by Khatibsyarbini et al. still valid for the state of the art in Test Case Prioritisation?
	4.2 RQ2: Have there been changes in the popularity of the various types of TCP techniques since the original survey?
	4.3 RQ3: How did the new approaches impact the TCP results?
	4.4 RQ4: How were these new approaches validated?
	4.5 RQ5: How are the new approaches distributed across application domains?

	5 Threats to validity
	6 Conclusions and future work
	Acknowledgments
	References

