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Abstract

Technological change is a central concern for evolutionary economics,

which combines detailed empirical studies and conceptual frameworks

with mathematical modeling, among them the NK model from evo-

lutionary biology. Technological change is also a central concern for

classical and Marxian economics, where it is studied under the rubric

of “cost share-induced technological change.” Among the contribu-

tions from classical economists is a classical-evolutionary model first

introduced by Duménil and Lévy. This paper strengthens the classical-

evolutionary model’s microeconomic foundations by deriving it from

an underlying NK model. The result is an aggregate model suitable

for macroeconomic analysis that is grounded in evolutionary microeco-

nomic theory. This explicit micro-to-macro link opens avenues for further

research. The paper presents new results for the classical-evolutionary

model, including a “generating function” method for creating can-

didate functional forms, and provides three illustrative applications.
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1 Introduction

The nature of innovation and technological change is a fundamental concern
of evolutionary economics (Winter, 2014; Nelson, 2018). Most contributions
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have focused on the complexities of overlapping processes of technological
discovery, innovation, and diffusion as an explanation for the unavoidably
evolutionary nature of economic activity (Dosi and Nelson, 2013, 2018). Inven-
tors, entrepreneurs, workers, and R&D departments continually gain tacit and
explicit knowledge of the technologies and processes they are using and devel-
oping. Whether learning-by-doing on the shop floor or experimenting at the lab
bench, they have some knowledge of what might work, but their knowledge is
very imperfect, so only a few innovations persist and spread. Within the broad
program of evolutionary economics, one strand of work has theorized techno-
logical change using the NK model from evolutionary biology (Kauffman and
Levin, 1987; Altenberg, 1997), so-named because it features N “genes” and
K interactions between genes. The NK model has been applied extensively
within evolutionary economics (Dosi and Nelson, 2018, p. 75ff.).

Classical and Marxian theorists have also long been interested in techno-
logical change (Kurz, 2010), which they endogenize through cost share-induced
mechanisms (Dutt, 2013). Among the classically-inspired models is one that
explicitly acknowledges evolutionary concepts, the “classical-Marxian evolu-
tionary” model of Duménil and Lévy (1992, 2010). It starts at a micro level,
with the presumed behavior of firms, and analytically traces the implications
to the level of a sector or of the whole economy. In this sense, the model
may be said to be “microfounded”, but the term “micro-to-macro” is used
in this paper. In practice, “microfounded” now means a model that assumes
economic actors behave as though they have solved an intertemporal optimiza-
tion problem, a counterfactual behavioral assumption that is rejected by both
evolutionary and classical economists. What is more, as discussed later, a com-
plete model must include macro-to-micro processes, so it does not sit entirely
on microfoundations (King, 2012). Adopting Cantner’s terminology (Cantner,
2017), the micro unit in this paper is a firm acting in the role of homo agens,
rather than homo œconomicus.

This paper takes Duménil and Lévy’s model as a starting point, while
acknowledging the substantial work on cost-induced technological change that
preceded it. Some of the earlier literature is referenced below, while other
sources can be found in Kemp-Benedict (2019). Duménil and Lévy’s model is
evolutionary in the sense that firms search uncertainly within the neighborhood
of their current technology in an attempt to increase their profitability at
prevailing prices and wages (a condition introduced by Okishio, 1961, in the
proof of his celebrated theorem) in order to gain temporary monopoly rents.
Duménil and Lévy used this profitability criterion to derive what they termed
a “selection frontier”. While the strategy of comparing the profitability of
alternative techniques dates back to the early classical authors, the specific
expression for the selection frontier was apparently new with Duménil and
Lévy, and will feature prominently in the theoretical development in this paper.

As first presented, the Duménil and Lévy model was somewhat limited.
The link to evolutionary theory was informal. Moreover, the selection frontier



Springer Nature 2021 LATEX template

Classical-Evolutionary Technological Change 3

depended only on capital and labor inputs, while making restrictive assump-
tions about the search space for new technologies. The latter two limitations
were addressed by Kemp-Benedict (2019), who expanded the selection fron-
tier to an arbitrary number of inputs and dropped any explicit reference to
the search space. Kemp-Benedict (2019) showed that the functional form of
the aggregate model is meaningfully constrained by the underlying microeco-
nomic theory, independent of the details of the search space. The result is a
very general macroeconomic family of models that is ultimately grounded in
an evolutionary microeconomic behavioral assumption.

Starting with an NK model, the paper shows how Duménil and Lévy’s
selection frontier can be combined with other fitness measures to determine the
selection of potential innovations. The result can be seen as a generalization to
multiple inputs of the labor productivity criterion assumed in Auerswald et al.
(2000) and Kauffman et al. (2000). Moreover, the selection frontier is expressed
in terms of a quantity – cost share-weighted average productivity growth – that
has been shown to equal the growth rate of total factory productivity (TFP)
from a growth accounting exercise (Rada and Taylor, 2006). This relationship
allows the classical-evolutionary model to be compared to models based on
TFP growth.

It is perhaps worth stating explicitly the approach to economic theory and
modeling that this paper adopts. That approach is broadly in line with Shaikh’s
(2016, p. 102) “methodology for economic analysis.” It starts with a theory of
relevant factors at the micro level, while allowing for the possibility that only
a few of the factors may remain relevant at the macro level. It keeps in mind
that equilibration is a hypothesis that requires investigation. It accepts that
the functional form applicable at the macro level may diverge from the one that
applies at the micro level and embraces the idea that different microeconomic
models can generate the same, empirically indistinguishable, macroeconomic
model. A further influence is Lee (1994), who argued that the accounting,
costing, and pricing procedures of firms should be included among the relevant
micro-level factors for macroeconomic theory.

This paper explicitly aggregates a microeconomic NK model to obtain a
model that can be applied at the level of a sector or the whole economy.
One result from the aggregation procedure is a demonstration that candidate
functional forms for cost share-induced technological change can be derived
from a “generating function.” The generating function is a scalar function
of cost shares, and its partial derivatives provide a vector-valued function
of productivity growth rates. The generating function is the link between
the microeconomic and macroeconomic analysis, so it provides an explicit
route for bridging evolutionary microeconomic theory to aggregate analytical
macroeconomic models.

After firms innovate, they engage in competitive price and wage setting.
The resulting economy-wide prices and wages, when combined with firm-level
productivities, then determine firms’ cost shares and therefore influence their
next-period innovation. This sort of innovative treadmill is the basis for Marx’s
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theory of the declining rate of profit. It is also in line with evolutionary eco-
nomics, in which prices form part of the environment within which innovation
and selection take place. As Nelson and Winter (1982, p. 160) note, “The envi-
ronment (price vector) in turn depends...on the genotypes (routines) of all the
individual organisms (firms) existing at a time – a dependency discussed in
the subdiscipline called ecology (market theory).” The price- and wage-setting
aspects of competition create a macro-to-micro link from prices to firm-level
cost shares that complements the micro-to-macro link from cost share-induced
firm-level innovation to aggregate productivity change.

Specific price and wage-setting strategies, when combined with cost share-
induced technological change, can result in different trajectories for growth
and distribution. One strategy is of particular interest; as shown by Julius
(2005) and Kemp-Benedict (2019), and also in this paper, target-return pric-
ing, in which firms set their markups to secure competitive profit rates, tends
toward an equilibrium characterized by constant cost shares and constant capi-
tal productivity. Thus, unlike in Kauffman et al. (2000, p. 144), Harrod-neutral
technological change is a result rather than an assumption, and it only emerges
with a specific price-setting strategy.1

Section 2 places the model developed in this paper in the context of the
existing literature. Section 3 presents the core model. Section 4 proposes a gen-
eral candidate functional form for cost share-induced technological change that
is suitable for practical macroeconomic modeling. Section 5 offers applications
of the model. The final two sections discuss the results and conclude.

2 Relation to existing literature

Duménil and Lévy’s (1992; 2010) model features cost share-induced techno-
logical change. Models of cost share-induced technological change employ a
“distributive closure”, in the classification of Tavani and Zamparelli (2017,
p. 1282). They have been well-explored in Marxian theory (Dutt, 2013), as well
as by Hicks (1932). More recently, Foley (2003) developed a one-sector cost
share-induced technological change model and argued that it can represent
Duménil and Lévy’s model in its aggregate form.

Tavani and Zamparelli (2017) claim that models with a distributive closure
are necessarily tied to theories of abundant labor, and therefore to a specific
wage-setting regime. Because there is no pressure on wages in such models,
distribution is exogenous, leading those authors to conclude that “endogenous
technical change adds very little to the analysis.” To address this and other
perceived limitations of prevailing theories of technological change, in a sepa-
rate paper, Tavani and Zamparelli (2021) propose a model in which firms trade
off two costly options: investing in capital or, through R&D expenditure, in
labor-augmenting technological change. Their model assumes the direction of

1Weitzman (1996, 1998) also finds Harrod-neutral change emerging endogenously in a model
of innovation. However, the mechanism is quite different: rather than being driven by cost and
profitability considerations, diminishing returns are overcome by the combinatorially expanding
possibilities opened through successive rounds of innovation.
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technological change, but makes the pace of change subject to an optimizing
decision. However, there is no reason to limit models with distributive clo-
sures to the abundant labor case. In a dynamic process in which technological
change is succeeded by price and wage setting, cost shares and technologies
co-evolve, creating what Shiozawa et al. (2019, p. 87) term “a loop of causal
change between the price system and technical change.” The model presented
in this paper, when combined with a price and wage setting mechanism, gener-
ates such loops of causal change. Kemp-Benedict (2020) provides an example;
further examples can be found in Section 5 of this paper.

In addition to having a distributive closure, the model of Duménil and Lévy
is evolutionary in that it assumes all firms incrementally modify or extend
their current technology. This is in line with the model introduced by Nelson
and Winter (1982, chap. 9), in which the search for innovations is a stochas-
tic process. An alternative and widely accepted assumption is that firms can
choose from an existing set of available techniques.2 The counter-claim from
evolutionary economics is that the range of options open to a firm depends on
its dynamic and evolving capabilities (Helfat, 2018).

To make this idea concrete: In real economies, many techniques and
technologies coexist. Electricity can be generated from natural gas turbines
or coal-fired power plants; web applications can be developed in a PHP
or Python environment; passengers can be transported in narrow-bodied or
jumbo airplanes. Switching from one to the other of these options is costly
and time-consuming. It may require entirely new staff with different skills and
entail substantial learning. These are strategic shifts that require high-level
decisions. More accessible changes include upgrading a gas turbine, refactor-
ing a web application to use a different Python library, or changing the seat
spacing in an aircraft. Such changes are not routine and their potential cost
may mean that multiple parties have to sign off on the change. However, they
make use of existing skills and knowledge. Even more accessible options include
modifying staffing levels and schedules at the power plant, modifying a sin-
gle Python class to improve website responsiveness, or switching hand soap in
airplane lavatories from installed dispensers to pumped bottles. Such changes
are minor, almost routine.

While these different types of modification are extremely different, they are
all examples of innovations. They also illustrate that capital investment and
productivity growth can be complements, rather than substitutes as Tavani
and Zamparelli (2021) assumed. Other innovation can occur through purpose-
ful R&D, for example at a lab bench. Companies that rely on such innovations
nearly always have their own permanent research staff, whose work may span
the range from routine modifications of established products to exploratory
research for entirely new ones.

This paper assumes that most innovations are unspectacular and compar-
atively easily implemented, in what Murmann and Frenken (2006) call the

2Evolutionary economics admits the possibility of exploratory but highly uncertain “long-
jumps” on rugged fitness landscapes (Levinthal, 1997), but that is a quite different process from
taking a large step towards a well-defined technological frontier.
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“periphery” of a technology, rather than its “core”. In contrast, a number of
different technological change models assume that while discovery may be diffi-
cult, firms can readily access any existing innovation. This is true, for example,
of those models that assume an innovation possibility frontier as introduced
by Kennedy (1964). (Duménil and Lévy’s “selection frontier” is an entirely dif-
ferent concept.) Technological change in innovation frontier models is reflected
in the expansion of the frontier, but the choice of technique is a matter of rel-
ative cost of operation, rather than cost of adoption. A prominent example in
this category includes the well-known model of Samuelson (1965). A less clear-
cut example is the recent one-sector representative-firm model of Zamparelli
(2015). He followed Kennedy by assuming that firms are constrained by an
innovation possibility frontier, but incorporated adoption costs by assuming
that any given firm’s frontier depends on its R&D expenditure. An alternative
to the innovation possibility frontier that still assumes a fixed set of available
techniques is offered by Shiozawa et al. (2019). Those authors build a theory
around what they term the “minimal price theorem,” which explains how the
microeconomic process in which firms choose from among a set of alternative
existing techniques generates price stability as a macroeconomic outcome.

The present paper continues the work begun in Kemp-Benedict (2019) by
deepening the microeconomic foundation for the classical-evolutionary model.
In contrast to Zamparelli, the model in this paper, like that of Duménil
and Lévy, follows evolutionary economics by assuming that discovery has a
stochastic element (Nelson and Winter, 1982). However, unlike Duménil and
Lévy (1992, 2010), the path from microeconomic behavior to macroeconomic
outcomes is made explicit. This feature – explicitly aggregating across hetero-
geneous firms rather than assuming a representative firm – distinguishes the
present work from nearly all of the above-cited papers. The exceptions are
Okishio (1961) and Shiozawa et al. (2019), who started with a disaggregated
input-output model to derive macroeconomic results, but unlike this paper,
those papers assumed a fixed set of available techniques. Finally, this paper
allows for any number of inputs to production, whereas nearly all of the papers
reviewed here treat labor and capital as inputs. The exceptions, again, are
Okishio (1961) and Shiozawa et al. (2019).

In summary, the model presented in this paper is unique because it explic-
itly aggregates a microeconomic evolutionary model, in which firms make use
of an arbitrary number of inputs, to derive macroeconomic results. Moreover,
contra Tavani and Zamparelli (2017), when combined with a pricing mech-
anism, the result is a distributive-closure model in which distribution and
productivity growth are determined endogenously.

3 Development of the model

This section derives the core classical-evolutionary model. After introduc-
ing some essential concepts, the first step in the derivation is to construct a
classical-evolutionary model for a single firm (or, in this paper, a single “unit”,
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which might be a division within a firm).3 To be clear, this is for expository
purposes only; the model makes sense only in the context of inter-firm com-
petition, and the single unit does not constitute an independent “Robinson
Crusoe” economy. This is made explicit in the following step, in which the
model is aggregated across multiple units.

3.1 Production systems, fitness, and profitability

In the “production recipes” approach of Auerswald et al. (2000), a recipe is
a set of engineering instructions for producing outputs given inputs. As the
evolutionary economics literature makes clear, this is a strong simplification;
technologies are not “blueprints” or “recipes” executed in the same way by
every firm (Dosi and Nelson, 2013, p. 28ff.). However, it is a useful heuristic
device for thinking through the nature of technological change. The present
paper follows this line of reasoning by assuming that production systems, incor-
porating both technologies and procedures, can be reasonably represented by
a (possibly very large) set of production elements, each with (possibly very
many) variants, with an arbitrary number of interactions between elements,
yielding an NK model (Altenberg, 1997). This paper follows the bulk of the
literature by assuming a discrete set of variants for each elements, but could
be adapted to continuum of variants as proposed by Valente (2014).

A specific choice of variant for each production element can be represented
by a “string” s, which represents the production system (Frenken, 2001). In
the evolutionary analogy, s is the genotype for the production system. The
production system then exhibits certain features – its phenotype – as a result
of its genotype. The phenotype, in turn, determines how “fit” the system is
for its purpose, which can be represented by a fitness function ϕ(s), which has
that property that if a system s′ is more fit then the incumbent system s, then
ϕ(s′) > ϕ(s). The NK model represents complexity through interactions, so
that changing one element in the string alters the fitness response to changes
in other elements.

While some authors identify fitness with profitability (e.g., Kauffman et al.,
2000; Nelson and Winter, 1982, p. 160), in this paper they are kept separate.
Profitability certainly matters, and is indeed central to the decision-making
process proposed in this paper. However, fitness is influenced also by how
well a process works with existing procedures, the skills of the people who
will implement it, desirability of product features, and so on. Some aspects of
fitness are elusive, but some may be captured analytically, as in the study of
the German compact car market by Cantner et al. (2012).

Among the features that make up a production system’s phenotype are
factor productivities. Certain of these are likely to feature in a fitness evalua-
tion, and not always for reasons of cost. For example, Dosi and Nelson (2018,
p. 49) noted that an important motivation for mechanization in the 19th cen-
tury was to reduce the risk of strikes. Otherwise, broad cost considerations,

3An alternative would be to use products, rather than firms or divisions, as the unit of analysis
(as in Cantner et al., 2012).
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such as persistently high labor costs, can drive innovation in particular direc-
tions. To take a 20th century example, during the oil crises of the 1970s and
1980s, considerable effort was directed to saving on products from crude oil
and natural gas. In this way, a general apprehension of costliness can drive
innovation in some directions more than others.

Costs enter more directly in a step after R&D has been carried out –
capital budgeting (Graham and Harvey, 2001). A capital budgeting assessment
looks at costs and potential revenues as an input to a decision whether to
invest. For novel technologies being developed within protected niches, current
profitability may be ignored in hopes that future development will make an
invention profitable (Geels and Schot, 2007; Perez, 2010). However, for the
bulk of investment decisions, a case must be made that the investment can
be profitable, whether in a business plan submitted to a bank or investor, or
in an analysis carried out by a firm’s accountants. Following Okishio (1961),
this assessment is presumed to be carried out at constant prices and wages,
and following Duménil and Lévy (1992, 2010), the criterion is the average
profit rate. As discussed in the next subsection, imposing this criterion leads
to Duménil and Lévy’s “selection frontier.”

3.1.1 The selection frontier

In Duménil and Lévy’s (1992; 2010) model, as well as the model presented in
this paper, innovating units search in the vicinity of their existing production
system. Search may be directed, but has an irreducible random element. The
fruits of the search are candidate innovations characterized by factor produc-
tivities. As in Zamparelli (2015, p. 246), the potential profits from candidate
innovations are initially private to the unit, or the firm in which it is located,
but if adopted, competing units will rapidly close the gap. Seeking short-term
monopoly rents, firms assess profitability at fixed prices and wages, and reject
any candidate innovations that will not raise the profit rate. Imposing this cri-
terion results in an expression for the selection frontier, which depends on cost
shares and productivity growth rates.

The selection frontier is derived by comparing a unit’s prevailing technol-
ogy to alternatives. This is a technique familiar from early classical authors,
and it underpins the well-known construction of the wage-profit frontier in
capital theory (e.g., see Scazzieri, 1990). However, unlike the wage-profit fron-
tier, which is an upper bound on production possibilities based on prevailing
(and presumably known) techniques, the selection frontier is calculated with
reference to the firm’s extant technology, which will normally be far from a
global optimum. Rather than an external limit set by the state of technolog-
ical development, the selection frontier is an internal limit set by the firm’s
capital budgeting criteria. As noted below, the most profitable technologies
are located off of the frontier, rather than on it.

Productivities of non-capital inputs, such as labor, fuels and other inter-
mediate goods, and raw materials, are denoted by νi, where i ∈ {1, . . . , n} is
the list of inputs. The corresponding prices (for labor, the wage), are denoted
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by pi. Output of the decision-making unit – for example, a firm, or a division
within a firm – is denoted Y , which is sold at a price P . Following the advice
of Lee (1994), the value of the unit’s capital stock, K, is that determined by
its accounting department. The unit’s profit rate, net of indirect costs per unit
of the capital stock c, is then

r =
Y

K

(

P −
n∑

i=1

pi
νi

)

− c =
ν0
P

(

P −
n∑

i=1

pi
νi

)

− c. (1)

For the final expression, the ratio PY/K, which is the capital productivity, has
been introduced into the vector of productivities as the zeroth element, ν0.

This paper makes several simplifying assumptions. First, the contribution
of total indirect cost per unit of capital, c, which appears in Eq. (1), is assumed
not to change over time. The composition of that term can differ from one
firm to the next (Lee, 1994). It may include depreciation, capitalized up-front
expenditure, including that incurred during R&D, or administrative costs. Fur-
ther, while the profit rate is evaluated with respect to the value of the total
capital stock in the equation above, that need not be the case. Shaikh (2016,
p. 66ff.) has shown that competitive processes tend towards equal marginal

profit rates rather than average profit rates. Moreover, while the procedure
below assumes that firms compare an estimated post-innovation profit rate
for the entire firm to the prevailing profit rate, firms apply capital budgeting
procedures on a project-by-project basis. An alternative approach would be
to require that the incremental profit rate pass a hurdle rate (one of the dom-
inant procedures found by Graham and Harvey, 2001, p. 197). As discussed
briefly below, incorporating these changes would make the model slightly more
complex, but it would not essentially change.

In the NK model approach to production systems, productivities are pheno-
typic expressions of the genotype s, so that νi = νi(s), where now i ∈ {0, . . . , n}
to include capital productivity. Note that the mapping from s to ν will typically
be many-to-one; several designs can yield essentially identical productivities.
Thus, catching up with a competitor need not entail copying that unit’s
exact techniques. It is possible to close the gap opened by a unit’s innovation
without reducing the heterogeneity that characterizes evolutionary innovation
(Cantner, 2017).

Different designs may be further distinguished through the fitness function,
so that ν(s′) ≃ ν(s), while ϕ(s′) ̸= ϕ(s), but it is possible that the fitness
mapping is also many-to-one, allowing for a great deal of variety. Reduction of
variety emerges from standardization, a process that provides external benefits
to a group of interrelated firms (e.g., those sharing a dominant design: see
Murmann and Frenken, 2006).

The model assumes that, through a capital budgeting exercise, the unit’s
management evaluates whether, while holding prices fixed, a candidate pro-
duction system s′ would be more profitable than the incumbent, s. If it is,
then the firm can enjoy at least temporary monopoly rents. Introducing the



Springer Nature 2021 LATEX template

10 Classical-Evolutionary Technological Change

notation ∆νi = νi(s
′) − νi(s) as the change in productivity of the ith input,

∆r as the change in the profit rate, and suppressing the dependence on s to
keep the notation compact, the condition that the estimated post-innovation
profit rate must be greater than the prevailing profit rate while holding wages
and prices fixed reads

∆r =
∆ν0
P

(

P −
n∑

i=1

pi
νi +∆νi

)

+
ν0
P

n∑

i=1

pi
νi +∆νi

ν̂i > 0. (2)

In the final term, the ratio ν̂i = ∆νi/νi is the productivity growth rate. This
“hat” notation for growth rates is used throughout the paper.

To put Eq. (2) into a more convenient form, note that the cost shares of
different inputs, σi, evaluated using the productivities of the proposed new
process and prevailing prices, are

σi =
pi
P

1

νi +∆νi
, i ∈ {1, . . . , n}. (3)

The profit share σ0 is equal to one minus the sum of the cost shares of non-
capital inputs. Dividing Eq. (2) by ν0 and using this expression for the cost
shares then gives

∆r = σ0ν̂0 +

n∑

i=1

σiν̂i =

n∑

i=0

σiν̂i > 0. (4)

This result, also derived in Kemp-Benedict (2019) is a generalized form of
Duménil and Lévy’s (1992; 2010) selection frontier, covering an arbitrary
number of inputs. In vector notation, it can be written compactly as

σ · ν̂ > 0. (5)

The expression on the left-hand side of this inequality will be called, in this
paper, the “selection index”. The selection frontier consists of production sys-
tems for which the selection index is zero, while the index is positive for
profitable innovations.

To return to the simplifying assumptions, if indirect costs per unit capital,
c, were to change, or if the capital budgeting rule included a hurdle rate, the
right-hand-side of inequality (5) would be nonzero. As noted above, the result-
ing model would be more complicated, but not essentially different. It could,
however, be interesting. It would introduce possible dependence on changing
cost of capital, level of R&D expenditure, or capital budgeting policy. The
avenues opened by this observation are left to future work.



Springer Nature 2021 LATEX template

Classical-Evolutionary Technological Change 11

3.1.2 The selection frontier and “total factor productivity”

There is a direct link between the selection frontier and the growth rate of
total factor productivity (TFP).4 TFP growth, denoted by Â, is calculated
empirically as the difference between real output growth and growth in inputs,
weighted by cost shares:

Â = Ŷ −
n∑

i=0

σiQ̂i. (6)

Here, Qi = Y/νi is the quantity of input i. As Rada and Taylor (2006) showed,
because Q̂i = Ŷ − ν̂i, this is equal to

Â = Ŷ −
n∑

i=0

σi

(

Ŷ − ν̂i

)

= Ŷ

(

1−
n∑

i=0

σi

)

+

n∑

i=1

σiν̂i

=

n∑

i=0

σiν̂i = σ · ν̂. (7)

This result demonstrates that Â is equal to the expression for the selection
index.

Candidate innovations are selected if the selection index σ ·ν̂ is positive. On
its face, this rule suggests that total factor productivity must always be seen
to grow. However, empirically that is not the case; measured TFP growth can
both rise and fall. The reason this is not a contradiction is that the selection
frontier is calculated at fixed prices and wages. After a period of innovation,
prices and wages will change, e.g., through price competition and wage bar-
gaining, altering the values of the cost shares. Observed values of σ · ν̂ will
reflect both innovation and the subsequent price and wage adjustment, and
can be either positive or negative.

3.1.3 Improved and profitable production systems

The model presented in this paper follows Kauffman et al. (2000) in treating
the “distance” d between production recipes as the number of changes in pro-
duction elements required to move from one to the other. In Shaikh’s (2016,
p. 102) methodology, this is a micro-level factor that will not appear in the
macro model, but it provides an explicit link to existing work using the NK
model.

The set of production systems that can be reached through altering d dif-
ferent production elements with respect to the incumbent system s is denoted
Nd(s). Of those systems, only some will be an improvement on the incumbent

4This section treats TFP growth strictly as a measured quantity, with no theoretical com-
mitment to growth accounting. For a critique of growth accounting and the production function
approach, see Felipe and McCombie (2013); Felipe and Fisher (2003).
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system. In terms of the fitness function ϕ(s), the set of improved production
systems N impr

d (s) is given by

N impr
d (s) ≡ {s′ ∈ Nd(s) | ϕ(s

′) > ϕ(s)} . (8)

Of the improved systems, only some will be profitable; that is, only some will
have a positive selection index.

Expressing the selection frontier in terms of the NK model, cost shares are
evaluated using prevailing prices but (as shown previously) for the proposed
substitute production system s′, rather than the prevailing system s,

σi(s
′) =

pi
Pνi(s′)

for i ∈ {1, . . . , n}, σ0(s
′) = 1−

n∑

i=1

σi(s
′). (9)

The productivity growth rate is given by the difference between the produc-
tivity of the new system and the prevailing system, divided by the prevailing
system productivity,

ν̂i(s
′|s) =

νi(s
′)− νi(s)

νi(s)
. (10)

The set of profitable production systems within a distance d of the incumbent
system s, N prof

d (s) then consists of those alternative systems s′ in Nd(s) with
a positive selection index,

N prof
d (s) ≡ {s′ ∈ Nd(s) | σ(s

′) · ν̂(s′|s) > 0} . (11)

Combining the criteria of fitness and profitability, the set of profitable produc-
tion systems within distance d of the incumbent system s with improved fit
are located within the intersection N impr

d (s) ∩N prof
d (s).

3.2 The classical-evolutionary model for a single unit

This subsection treats the case of a single unit, with index k, as one of a set of
numerous such units, all working along similar lines and more or less clearly
observing what the others are doing. Each unit k is presumed to choose a dis-
tance d within which to search. (However, to avoid cascading subscripts, the
k subscript on d is suppressed.) Depending on its R&D strategy, a unit may
execute no search at all (d = 0), or look within a distance d = 1, 2, . . . , D,
where D is a maximum distance determined by time, capacity, and cost con-
straints on search. Each unit looks in what it believes to be a promising
direction, searching within a subset of possibilities N k

d (sk) ⊂ Nd(sk) near its
incumbent technology. The sets of improved and profitable production systems
N k,impr

d (sk) and N k,prof
d (sk) are determined as in Eqs. (8) and (11).

To connect the NK model with the classical-evolutionary model of Duménil
and Lévy (2010) and Kemp-Benedict (2019), it will prove useful to introduce
a function Φk

d(sk) that is equal to the expected value of the selection index for
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profitable process that improve upon the incumbent process, relative to the
size of the search space.

Mathematically, Φk
d(sk) can be calculated by first summing σ(s′) · ν̂(s′|sk)

across all alternative production systems s′ that are both improved and prof-
itable – that is, they lie within the intersection N k,impr

d (sk)∩N k,prof
d (sk) – and

then dividing by the cardinality of firm k’s search space |N k
d (sk)|. However, it

turns out to be more useful to sum over all of the improved production sys-
tems N k,impr

d (sk) and multiply each term in the sum by a factor that is equal
to one when the selection index is positive, and equal to zero otherwise. Being
equal to one when its argument is positive and zero otherwise is the defining
property of the Heaviside (or step) function, h(·),5 so the terms in the sum
can be written σ(s′) · ν̂(s′|sk)h(σ(s

′) · ν̂(s′|sk)).
6

The normalizing factor is the cardinality of the firm’s search space,
|N k

d (sk)|. However, here again it is useful to express this factor indirectly,
through an “efficiency of search” ϵkd(sk) that is equal to the quantity of
improved production systems as a fraction of the size of the search space,

ϵkd(sk) ≡
|N k,impr

d (sk)|

|N k
d (sk)|

. (12)

In terms of the above definitions and expressions, Φk
d(sk) can be written

Φk
d(sk) =

ϵkd(sk)

|N k,impr
d (sk)|

∑

s′∈Nk,impr

d
(sk)

σ(s′) · ν̂(s′|sk)h(σ(s
′) · ν̂(s′|sk)). (13)

3.2.1 Moving to a continuum model

The development so far has remained faithful to the discrete nature of pro-
duction systems and decision-making units. However, at this point it is useful
to transition to a continuum representation, on two assumptions: that there is
an extremely large search space;7 and search is focused mainly on incremen-
tal changes. The second assumption is consistent with a comparatively mature
sector. For example, in the model of Kauffman et al. (2000), the optimal search
distance tends to decline with rising labor productivity, while in the model of
Saviotti and Pyka (2004), sectors become saturated, with gradually slowing

5See https://mathworld.wolfram.com/HeavisideStepFunction.html for more on the Heaviside
function.

6It is here that changes in the term c in Eq. (1) would appear if, contrary to the assumption
in this paper, that term were not constant. The sum would then be over σ(s′) · ν̂(s′|sk)h(σ(s′) ·
ν̂(s′|sk) − ∆ck).

7The underlying NK model has N elements, each with multiple variants. Denoting the number
of variants per element by V , there are V N possible combinations. Even for modest numbers
that can yield a large value; 10 elements with 5 variants each yields nearly 10 million possible
combinations. Yet, even that understates the size of the search space, since those numbers are
typical of what Murmann and Frenken (2006) term the “first-order subsystem technology cycle”
(e.g., for early glider design as shown in their Table 3 on page 940). Below that level are second-
order subsystems and components, each of which has its own potentially large search space.
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opportunities for growth. The assumption of incremental change is also con-
sistent with a production technology characterized by a dominant design, in
which most innovation takes place in the “periphery” rather than the “core”
(Murmann and Frenken, 2006).

The assumption of incremental change means that terms on the order of
ν̂iν̂j can be neglected. It is possible to show that with this assumption

σ(s′) · ν̂(s′|sk) ≃ σ(sk) · ν̂(s
′|sk). (14)

Thus, σ(s′) can be replaced by σ(sk). Moreover, the continuum approxima-
tion allows for the introduction of a probability measure dν̂fk

d (ν̂) that gives
the density of the discoverable and improved production systems within a
neighborhood of distance d of a particular productivity growth rate vector ν̂.8

In the continuum approximation, Φk
d(sk) is a function of the cost shares

σk = σ(sk), and can be written

Φk
d(σk) =

∫

dν̂fk
d (ν̂) (σk · ν̂)h (σk · ν̂) . (15)

This function will do a great deal of work in subsequent expressions.

3.2.2 The generating function

Taking the first derivative of Eq. (15) with respect to σk,i gives

∂Φk
d

∂σk,i

=

∫

dν̂fk
d (ν̂) ν̂ih (σk · ν̂) +

∫

dν̂fk
d (ν̂) ν̂i (σk · ν̂) δ (σk · ν̂) . (16)

The second term appears because the derivative of the Heaviside function is
the Dirac delta function. But, because xδ(x) = 0 for any x, the second term
vanishes.

The first term in Eq. (16) is the important one. It is the expected value
of ν̂i given that the alternative production system lies beyond the selection
frontier. Because firms are assumed to adopt candidate production systems
only if they satisfy this criterion, the first term is the expected value of the
productivity growth rate. Indicating the expected value with angle brackets,

⟨ν̂i⟩
k
d =

∂Φk
d

∂σk,i

=

∫

dν̂fk
d (ν̂) ν̂ih (σk · ν̂) . (17)

Comparing to Eq. (15), it can be seen that Φk
d(σk) = σk · ⟨ν̂⟩kd.

8The density function can be defined formally as

f
k

d
(ν̂) = lim

ε→0

1
∏

n

i=0
εi

ϵk
d
(sk)

|Nk,impr

d
(sk)|

∣

∣

∣

∣

{

s
′ ∈ Nk,impr

d
(sk)

∣

∣

∣

∣

ν̂ −
ε

2
≤ ν̂(s

′|sk) < ν̂ +
ε

2

}∣

∣

∣

∣

.

Due to the granularity of actual innovation processes, the elements of the vector ε cannot in fact
be taken arbitrarily close to zero. The assumption is that they can be brought close enough to
zero to justify a continuum model for aggregate analysis.
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From this point forward, the scalar function Φk
d(σk) will be referred to

as the “generating function”, because its derivatives generate expressions for
productivity growth rates.

It might be objected that it is not legitimate to take a derivative with
respect to a single cost share in isolation, because cost shares must add up to
one. Varying one cost share implies variation in at least one other cost share.
However, while that condition must be imposed eventually, it is not formally
necessary at this stage in the derivation. It turns out to be more convenient to
introduce it at a later stage because the second derivatives of Φk

d(σk) exhibit
some nice properties that can be used to restrict the possible functional forms
for a cost share-induced technological change model. Imposing the condition
that cost shares sum to one at this point would hide the underlying properties,
creating unnecessary analytical difficulties.

3.2.3 Conditions a generating function must satisfy

As written, Eq. (17) is not operational, because the probability density fk
d (ν̂)

is not known. One could be specified – that is the procedure followed by
Duménil and Lévy (2010), who proposed a uniform probability density on a
disc. However, as shown by Kemp-Benedict (2019), it is not necessary to specify
the probability density, because Eq. (17) places analytically useful conditions
on the possible forms for the generating function.

To derive the conditions, take the derivative of ⟨ν̂i⟩ with respect to σj ,

∂⟨ν̂i⟩
k
d

σk,j

=
∂2Φk

d

∂σk,i∂σk,j

=

∫

dν̂fk
d (ν̂) ν̂iν̂jδ (σk · ν̂) ≡ Mij . (18)

Even without knowing the probability density f(ν̂), it is possible to say a
great deal about the matrix M = [Mij ]. This is the Jacobian matrix of the
productivity growth rates with respect to the cost shares, and will sometimes
be referred to as the Jacobian in this paper. It has the following features:
M1. Because ν̂iν̂j = ν̂j ν̂i, M is symmetric;9

M2. Because (
∑

i xiν̂i)(
∑

i xj ν̂j) = (x · ν̂)2 for an arbitrary vector x, and the
probability density is non-negative and strictly positive within part of its
domain, M is non-negative;

M3. From M2 and because (
∑

i σk,iν̂i)δ(σk · ν̂) = (σk · ν̂)δ(σk · ν̂) = 0, M is
positive semi-definite, with a null vector equal to the cost shares σk;

M4. Because ν̂iν̂jδ(σk ·ν̂) = 0 when σk,i = 1 (and therefore all other σk,j = 0),
Mi· = M·i = 0 when σk,i = 1.

Furthermore, condition M3 implies that

n∑

j=0

σk,j

∂⟨ν̂i⟩
k
d

σk,j

= 0, (19)

9This is also true by construction, since the matrix of second derivatives of a smooth scalar
function is symmetric.
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so ⟨ν̂i⟩
k
d is homogeneous of order zero in the cost shares. Because ⟨ν̂i⟩

k
d is itself

a derivative of Φk
d(σk) from Eq. (17), condition M3 implies that the generating

function Φk
d(σk) is homogeneous of order one in the cost shares.

Importantly, the conditions M1-M4 hold regardless of the details of the
specific search distance d undertaken by unit k or the probability density
functions fk

d (ν̂). Instead, they follow from the selection frontier and the fact
that probability densities are non-negative. These results provide guidelines
for suggesting candidate aggregate models for cost share-induced technological
change, which is the procedure followed in this paper.

This approach – proposing candidate aggregate functional forms that meet
criteria derived from a microeconomic analysis – can be distinguished from
the more conventional approach to NK models, in which aggregate results
are derived from candidate firm-level functional forms. The motivation for
following this approach is twofold. First, either choice entails model-specific
assumptions. Second, as Shaikh (2016, p. 101ff.) notes, there are good reasons
to specify functions at the aggregate level for macroeconomic analysis, because
a variety of microeconomic specifications can give rise to the same aggregate
model.

The strategy pursued in this paper, of constraining an aggregate model
through the construction of a microeconomic model of which some features
remain unspecified (e.g., search efficiency or the density function), opens
the possibility for analytical or simulation exercises to further constrain the
aggregate functional form. Conditions M1-M4 can be seen as a minimal set.

3.3 Aggregating across multiple units

To aggregate across multiple units, the model assumes that the different units
produce a comparable output and, for the output and all inputs, there are
well-defined anchor prices. Different units might pay prices somewhat higher
or lower than the anchor – for example, a large firm might buy at a discount
due to high volume and a stable customer relationship, and one firm might sell
into a high-end market while another sells into a mid-level market – but the set
of prices is assumed to move together with the anchor, with price differentials
absorbed in productivities.10 Every unit therefore sells into a market with
anchor price P and input prices pi, i ∈ {1, . . . , n}, and produces an output Yk

that is comparable to the output of other units.
Aggregate output from all units is

Y =
∑

k

Yk, (20)

10This assumption is compatible with using national accounts data for empirical macroe-
conomic modeling. No matter how disaggregated the input-output table may be, the sectors
that enter into it include a very large number of firms with different characteristics. Neverthe-
less, the sectoral price indices and sector-by-sector technical coefficients are taken to be broadly
representative.
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while the share of output is αk = Yk/Y . Total demand Qi for the ith input
across all units is

Qi =
∑

k

Yk

νk,i
, (21)

where νk,i = νi(sk). The share of demand across units is denoted βk,i =
(Yk/νk,i)/Qi.

The growth rate of total output can be calculated from the above. Using
standard results for growth rates, and working to first order in the growth
rate, the result is

Ŷ =
∑

k

αkŶk. (22)

The growth rate of the quantity of input is similarly given by

Q̂i =
∑

k

βk,i

(

Ŷk + ν̂k,i

)

. (23)

The growth rate of the average productivity of input i, νi, across all units can
be calculated to first order from these expressions,

ν̂i = Ŷ − Q̂i =
∑

k

(αk − βk,i) Ŷk

︸ ︷︷ ︸

composition

+
∑

k

βk,iν̂k,i

︸ ︷︷ ︸

productivity change

. (24)

The result is a sum of two terms. As indicated, the first term captures compo-
sitional changes with no technological change within units. The second term
is the average productivity change across units, weighted by the unit’s share
of total demand for the input.

3.3.1 The aggregate generating function

The cost share of input i for unit k can be written in terms of the average cost
share σi = piQi/PY as

σk,i =
piQi,k

PYk

=
pi

PYk

Yk

νi,k
=

βk,i

αk

piQi

PY
=

βk,i

αk

σi. (25)

The aggregate function Φ(σ) can then be defined as the production-weighted
share of the unit-level Φk

d(σk),

Φ(σ) ≡
∑

k

αkΦ
k
d(σk) =

∑

k

αkΦ
k
d

({
βk,i

αk

σi

})

. (26)
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Taking the partial derivative of this expression with respect to σi and applying
Eq. (17) gives the result

∂Φ(σ)

∂σi

=
∑

k

αk

βk,i

αk

⟨ν̂i⟩
k
d =

∑

k

βk,i⟨ν̂i⟩
k
d. (27)

The final expression is the second term in Eq. (24): average productivity growth
across units. Thus, the key feature of the unit-level Φk

d(σk) – that their first
partial derivatives are productivity growth rates – carries over to the aggregate
expression. The difference between the unit-level and aggregate expressions is
an additional term in Eq. (24) arising from compositional changes.

3.3.2 Conditions for the aggregate generating function

Multiplying Eq. (27) by σi and summing gives

n∑

i=0

σi

∂Φ(σ)

∂σi

=
∑

k

n∑

i=0

σiβk,i⟨ν̂i⟩
k
d. (28)

From Eq. (25), the product σiβk,i is equal to αkσk,i, so this is

n∑

i=0

σi

∂Φ(σ)

∂σi

=
∑

k

αk

n∑

i=0

σk,i⟨ν̂i⟩
k
d =

n∑

i=0

αkΦ
k
d(σk) = Φ(σ). (29)

This result shows that Φ(σ), like the unit-level Φk
d(σk), is homogeneous of

order one, so its partial derivatives are homogeneous of order zero; this is
equivalent to condition M3 from above. What is more, the matrix of second
partial derivatives of any smooth continuous function is symmetric, including
those of Φ(σ), so condition M1 is also satisfied. Because shares must always
be less than or equal to one, if the average σi = 1 for any input i, then it must
be true for every unit, so that condition M4 is satisfied as well.

For condition M2 it is necessary to take the second partial derivative of
Eq. (27) with respect to σj , which is

∂2Φ(σ)

∂σi∂σj

=
∑

k

βk,iβk,j

αk

∂⟨ν̂i⟩
k
d

∂σj

. (30)

Multiplying on the left and right by an arbitrary vector x, the result is

n∑

i=0

n∑

j=0

xi

∂2Φ(σ)

∂σi∂σj

xj =
∑

k

1

αk

(
n∑

i=0

n∑

j=0

xiβk,i

∂⟨ν̂i⟩
k
d

∂σj

xjβk,j

)

. (31)

But the quantity in parenthesis is the product on the left and right by a vector
with elements xiβk,i of the unit-level matrix elements Mij . These are all non-
negative from condition M2, as are the αk, so the sum is non-negative as well.
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This means that the left-hand side is non-negative, so the aggregate Φ(σk)
satisfies condition M2.

3.4 Applying the model in practice

The conclusion from the derivation above is that the aggregate generating
function Φ(σ) satisfies all of the conditions M1-M4 that are satisfied by the
unit-level functions. Moreover, the first partial derivatives of the function with
respect to cost shares gives the contribution to aggregate productivity growth
rates arising from unit-level productivity changes in Eq. (24). This gives a
way to construct candidate functional forms for a cost share-induced model of
productivity change:
1. Propose a scalar function Φ(σ) that is homogeneous of order one in the

cost shares, to ensure that condition M3 is satisfied;
2. Take partial derivatives with respect to cost shares to find productivity

growth rates, thereby ensuring condition M1;
3. Constrain parameters such that the Jacobian matrix ∂Φ/∂σi∂σj satisfies

conditions M2 and M4.

4 A candidate functional form

This section presents a reasonably flexible candidate functional form for Φ that
can generate a model of cost share-induced technological change satisfying the
conditions M1-M4. As shown below, the probability density can be a linear
combination of probability densities, so a functional form can be a linear com-
bination of any viable functional form. Thus, the ones considered below can
be combined with suitable weights. This is done in the final subsection in this
section.

4.1 Linear generating function

The simplest candidate function of order one in the cost shares is the linear
function

Φ = a(t) · σ. (32)

Taking first partial derivatives, productivity growth is found to be

⟨ν̂i⟩ =
∂Φ

∂σi

= ai(t). (33)

This is the standard form in post-Keynesian models, with ⟨κ̂⟩ = 0 and ⟨λ̂⟩
taking the Kaldor-Verdoorn form. As shown in Kemp-Benedict (2019), an
expanded version of the Kaldor-Verdoorn law is consistent with the classical-
evolutionary model.
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4.2 CES-type generating function

For an arbitrary number of inputs, a CES-type function provides a candidate
generating function:

Φ = A

(
n∑

i=0

biσ
k
i

) 1
k

,

n∑

i=0

bi = 1. (34)

However, it is important to recognize that while this is a model of technolog-
ical change and the functional form resembles that of a CES function, this
expression does not have the same interpretation of a constant elasticity of
substitution. Rather, it is a convenient functional form of order one in the cost
shares.

The requirement that the bi sum to one in Eq. (34) is a convention, so
that A is the dimensioned quantity (with dimensions of 1/time). Assuming the
generating function given in Eq. (34), the expected productivity growth rates
are given by

⟨ν̂i⟩ =
∂Φ

∂σi

= Abiσ
k−1
i

(
n∑

i=0

biσ
k
i

) 1
k
−1

. (35)

Taking a further derivative with respect to the same cost share,

∂⟨ν̂i⟩

∂σi

= (k − 1)Abiσ
k−2
i

(
n∑

i=0

biσ
k
i

) 1
k
−1(

1−
biσ

k
i

∑n

i=0 biσ
k
i

)

. (36)

If A and the bi are all positive, then this expression is non-negative – and
therefore satisfies condition M2 – only if k ≥ 1. Taking the derivative with
respect to a different cost share σj , where j ̸= i, gives

∂⟨ν̂i⟩

∂σj

= (1− k)Abibjσ
k−1
i σk−1

j

(
n∑

i=0

biσ
k
i

) 1
k
−2

, j ̸= i. (37)

If k > 1, then this expression is negative. This means that unless k = 0, all
inputs act as substitutes, at least to first order: a rise in the cost share of
one input leads to both a rise in the productivity of that input and a fall (or
no change) in the productivity of all other inputs, other things remaining the
same. If that is not the case, then another functional form might be more
suitable. However, it may often be the case, even when casual observation
suggests otherwise. For example, rising labor productivity is often accompanied
by falling capital and energy intensity in the first instance, suggesting that
perhaps energy and capital must always rise and fall together. But a rise in
the energy cost share would most likely be addressed by investment in energy-
saving capital goods. The relevant question is, what is the first-order impact of
a rise in the cost share of an input? For many inputs, the answer will be, “No
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change,” while others will be increased in order to compensate for reduced use
of the costly input. Complementarity is a second-order phenomenon arising
from the imposition of the selection frontier and the requirement that cost
shares sum to one.

The CES-type functional form satisfies the criterion that the Jacobian
matrix elements should go to zero when the corresponding cost share goes to
one, as long as k ≥ 1. If σi = 1 while all others are zero, then

biσ
k
i

∑n

i=0 biσ
k
i

= 1 (38)

and Eq. (36) is equal to zero. For the off-diagonal elements, the fact that σj = 0
for j ̸= i means that Eq. (37) is equal to zero, as long as k ≥ 1.

These results imply that a CES-type function satisfies all of the conditions
M1-M4 for the Jacobian matrix as long as k ≥ 1. The interesting case is when
k is strictly greater than one; while k = 1 is acceptable, it reduces to the
constant productivity growth function.

4.3 Linear combinations of probabilities and R&D

expenditure

In some cases, the probability distribution might be best expressed as a linear
combination of probability distributions,

f(ν̂) =
∑

k

wkfk(ν̂),
∑

k

wk = 1. (39)

In that case, the expected values of the productivity growth rates can be
written as a weighted sum, using the same weights,

⟨ν̂⟩ =
∑

k

wk⟨ν̂⟩k, (40)

where ⟨·⟩k is the expectation with respect to density fk.
This rule is particularly useful for the functional form assumed by Dosi

et al. (2010) and Caiani et al. (2019).11 In those models,

f(ν̂) = θfA(ν̂) + (1− θ) δ(ν̂), (41)

where θ is the probability of acquiring a candidate innovation, and fA is the
probability density of achieving a particular set of productivity growth rates

11Those papers embed technological change within larger agent-based models in order to
explore the interaction between Keynesian and Schumpterian dynamics (Dosi et al., 2010) and
between inequality and innovation (Caiani et al., 2019). This paper takes inspiration from the way
in which they introduced R&D expenditure into their technological change sub-models, but does
not explore them further.
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given that an innovation has been acquired. Because ⟨ν̂⟩ = 0 if the probability
density is δ(ν̂), the corresponding expectation is

⟨ν̂⟩ = θ⟨ν̂⟩A. (42)

Dosi et al. (2010) and Caiani et al. (2019) assume that the probability
of acquiring a candidate innovation is zero if R&D expenditure D is zero
and increases to 100% probability asymptotically as D rises. Specifically, they
assume

θ = 1− e−ζD. (43)

While this assumption is prima facie plausible, some incidental expenditure of
time and financial resources occurs continually in most settings. That expen-
diture will not be reflected in reported R&D costs. An alternative assumption
might be

θ = 1− (1− θmin) e
−ζD, 0 < θmin < 1. (44)

4.4 Changing variables

Suppose that the probability density function can be written in the following
form,

f(ν̂) = g(S−1 · ν̂), (45)

where S is a rotational and scaling matrix. A rotation might be called for if
it is more likely to find technologies with combinations of productivity growth
rates; for example, if there are ample opportunities for reducing labor input
by increasing capital expenditure, but very few where both labor and capital
productivities rise simultaneously. A scaling is called for if the possibilities
for productivity improvement in one particular input shrink over time. This
second possibility is true for physically constrained processes, in which the
conversion efficiencies from raw material to processed goods cannot be raised
above a certain level – waste can be reduced, but 1 kg of flour will always
require at least 1 kg of wheat.

In such cases, a change of variables from ν̂ to x = S
−1 · ν̂ leads to the

following changes. First, because the probability distribution is a density,

dν̂f(ν̂) = dν̂g(S−1 · ν̂) = dxg(x). (46)

Second, because the rest of the integrand consists of ordinary functions,

σ · ν̂h(σ · ν̂) = σ · S · xh(σ · S · x). (47)

A generating function for the distribution g can be defined with respect to a
set of “pseudo-shares” τ , which need not sum to one,

Φg(τ ) ≡

∫

dxτ · xh(τ · x)g(x). (48)
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The generating function in terms of the proper shares, which do sum to one,
is then

Φ(σ) = Φg(σ · S). (49)

In this way, a generating function that takes certain types of constraints into
account can be expressed in terms of a possibly simpler functional form.

To take the example from above of physically restricted productivities, a
scaling matrix might have the form

S =






1− ν0

νmax
0

· · · 0

...
. . .

...
0 · · · 1− νn

νmax
n




 . (50)

With such a scaling matrix, as productivities approach their maximum levels
νmax
i , productivity growth slows asymptotically.

4.5 A flexible functional form

In this section different elements are combined to create a unified model. First,
construct a linear combination of the constant productivity growth and CES-
type functions,

Φ1(x) = a(t) · x+A

(
n∑

i=0

bix
k
i

) 1
k

,

n∑

i=0

bi = 1. (51)

Second, introduce R&D expenditure using the parameter θ from Eq. (44),

Φ2(x) = Φ1(θx). (52)

Finally, place physical limits on selected productivities using the (diago-
nal) scaling matrix S from Eq. (50). This gives the final expression for the
generating function,

Φ(σ) = Φ2(σ · S) = Φ1(θσ · S). (53)

The model of cost share-induced technological change is found by taking
partial derivatives of the generating function with respect to cost shares,

⟨ν̂i⟩ = θSiiai(t) +AθkSk
iibiσ

k−1
i

(
n∑

i=0

biθ
kSk

iiσ
k
i

) 1
k
−1

. (54)

As a further step, embodied technological change and increasing returns to
scale can be captured by making the ai depend on the sectoral growth rate g
(Metcalfe and Foster, 2010). Indeed, as shown in Kemp-Benedict (2019, pp. 10-
12), the coefficient on growth can be a fully independent cost share-dependent
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function. Maintaining the simpler assumption that there are no cross-terms
between cost shares and sector growth rates,

ai = ai0 + ai1g. (55)

The result is a flexible functional form for an aggregate model of cost share-
induced technological change that satisfies conditions (the conditions M1-M4)
derived from an evolutionary microeconomic model.

5 Applications

Cost share-induced technological change is only part of the technological
change dynamic. Following the introduction of an innovation, the innovating
firms enjoy temporary monopoly rents. However, as other firms emulate them,
competition through innovation gives way to price competition, while workers
bargain, more or less successfully, for a share of the increased revenues.

The combination of new factor productivities, through innovation, and fac-
tor costs, through competitive price and wage setting, results in new cost
shares. The outcome depends on how prices and wages are set. For example,
Okishio (1961) assumed that the wage was fixed, while competition for cap-
itals drove profit rates to a common level. The Okishio theorem states that
under these conditions the profit rate must rise, contradicting Marx, but as
Okishio (2001) later noted, the result is ambiguous if the wage can adjust.

While a fixed wage rate was a standard assumption of the classical
economists of the 18th and 19th centuries, contemporary classical economists
often impose a fixed wage share (Foley et al., 2019). If capital and labor are the
only two inputs to production, this is equivalent to a common post-Keynesian
assumption of a fixed markup. However, numerous variants are observed within
firms (Lee, 1994), some of which have been incorporated into post-Keynesian
models (Lavoie, 2014, p. 165ff.). Among the variants is target-return pricing,
in which firms set their markups in order to achieve a particular profit rate.

In this section, three different applications are presented. The first combines
cost share-induced technological change with target-return pricing in a two-
factor, one-sector model in order to show how this particular combination
generates Harrod-neutral technological change as a long-run tendency. The
second shows how cost share-induced technological change stabilizes prices in
a two-sector model. The third is an empirical analysis that applies the flexible
functional form of the previous section to the US economy from 1970-2019. In
each example, the focus is on the contribution to average productivity change
from unit-level productivity changes – the second term in Eq. (24) – and
ignores productivity growth due to compositional changes.

5.1 Labor and capital inputs with target-return pricing

The first example takes the simplest case for the cost share-induced technologi-
cal change model, in which capital and labor are the only inputs to production,
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and combines it with target-return pricing. The example illustrates several
points: that the theory can substantially reduce the number of free param-
eters in macroeconomic models; that the price-productivity cycle survives
aggregation; and that this particular pricing strategy produces Harrod-neutral
technological change as a long-run tendency.

5.1.1 Applying the conditions

The demonstration starts with the expected values of the productivity growth
rates rather than the generating function. Notation for cost shares is conven-
tional: π, for the profit share, and ω, for the wage share. The corresponding
productivities are κ and λ.

Condition M1, that the Jacobian of productivity growth rates with respect
to cost shares is symmetric, implies

∂⟨κ̂⟩

∂ω
=

∂⟨λ̂⟩

∂π
. (56)

Condition M3, that the cost shares are a null vector of the Jacobian, implies
both

π
∂⟨κ̂⟩

∂π
+ ω

∂⟨κ̂⟩

∂ω
= 0 (57)

and

ω
∂⟨λ̂⟩

∂ω
+ π

∂⟨λ̂⟩

∂π
= 0. (58)

This is three equations for four entries in the Jacobian matrix, which means
that there is a single independent entry, say M = ∂⟨κ̂⟩/∂π. Because the Jaco-
bian matrix is positive semi-definite (condition M3), the independent entry
must be non-negative: M ≥ 0. Moreover, from condition M4, it must be zero,
M = 0, when π = 1 and ω = 0. Together, these conditions imply that M is
either identically zero, or is nonzero at some cost shares but is zero at at least
one point, showing that M cannot be a nonzero constant.

The full Jacobian matrix can now be found by substituting M for ∂⟨κ̂⟩/∂π
in Eq. (57) and using Eqs. (56) and (58). The result is

M =

[
∂⟨κ̂⟩
∂π

∂⟨κ̂⟩
∂ω

∂⟨λ̂⟩
∂π

∂⟨λ̂⟩
∂ω

]

=

[
M −π

ω
M

−π
ω
M
(
π
ω

)2
M

]

. (59)

5.1.2 Total change in productivity growth rate

The Jacobian matrix gives the partial derivatives of the productivity growth
rates with respect to cost shares. The total change in one of the productivity
growth rates is given by summing over all of the partial derivatives multiplied
by the changes in individual cost shares.

It is at this point that the condition that cost shares sum to one becomes
useful. Prior to this point, it would have obscured the properties of the Jaco-
bian matrix summarized in conditions M1-M4, but now it ensures that if the
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profit share were to change by ∆π, then the wage share must, of necessity,
change by −∆π.

The total first-order change in the productivity growth rate under such a
change would be

∆⟨κ̂⟩ = ∆π
(

1 +
π

ω

)

M =
∆π

1− π
M. (60)

5.1.3 Introducing target-return pricing at the unit level

Eq. (60) is as far as the conditions M1-M4 take us, but that is pretty far:
the number of potentially independent functions in the Jacobian matrix is
reduced from four to one, and the remaining function must satisfy additional
criteria. However, as an economic model it is not complete, because prices
will subsequently change in light of changing productivities and possibly other
conditions, leading to a new set of cost shares.

This recursive dynamic is an essential feature of cost share-induced tech-
nological change models. In some of those models the pricing formula is very
simple: a constant wage or wage share. However, others are possible. This is
a positive feature of such models, because the separation between innovation
and pricing allows for a variety of different assumptions about how prices and
wages are set.

To take a concrete and important example, suppose that each unit k
applies target-return pricing, in which it adjusts prices to reach a (possibly
unit-specific) target profit rate rk. Then,

∆rk = ∆(πkκk) ≃ πk∆κk + κk∆πk = 0. (61)

Rearranging this equation shows that prices are adjusted such that

∆πk = −πk

∆κk

κk

= −πkκ̂k. (62)

5.1.4 Finding an aggregate expression

Eq. (62) is a unit-level expression, including for the productivity growth rate.
What is more, the unit-level productivity growth rate is the realized value
rather than the expectation. However, because κ̂k does not appear on the
left-hand side Eq. (62), and the right-hand side is linear in κ̂k, taking the
expectation with Eq. (17) is straightforward:

∆πk = −πk⟨κ̂⟩
k
d. (63)

The aggregate expression is found by averaging both sides of this equation
across units, weighted by production shares αk,

∑

k

αk∆πk = −
∑

k

αkπk⟨κ̂⟩
k
d. (64)
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Because αkπk = βk,ππ from Eq. (25), and
∑

k βk,π = 1, this becomes

∆π = −π
∑

k

βk⟨κ̂⟩
k
d = −π⟨κ̂⟩. (65)

Substituting this expression into Eq. (60) gives

∆⟨κ̂⟩ = −
π

1− π
M⟨κ̂⟩. (66)

This is a macroeconomic expression, derived through explicit aggregation from
a micro level model.

5.1.5 Harrod-neutral technological change

It is possible that M is identically zero. In that case, Eq. (66) says simply that
the capital productivity growth rate is a constant. The more interesting case
is one in which M is nonzero away from π = 1. Because M is positive, Eq. (66)
exhibits a stable dynamic, tending towards ⟨κ̂⟩ = 0. That is, it tends towards
Kaldor’s stylized fact of constant capital productivity.

What is more, from Eq. (65), when ⟨κ̂⟩ = 0, the profit share is not changing,
which is another of Kaldor’s stylized facts. Thus, for a generic two-factor model,
target-return pricing produces an equilibrium position that features Kaldor’s
stylized facts of constant capital productivity and profit share.

Labor productivity growth is unconstrained. At the equilibrium, cost shares
are not changing, so the labor productivity growth rate is a constant as well.
This model therefore yields Harrod-neutral technological change as a long-run
tendency, a result that was noted in Kemp-Benedict (2019).

Other pricing and wage-setting strategies would give different results. For
example, a classical assumption of constant (conventional) wage share would
imply ∆π = 0 and thus ∆⟨κ̂⟩ = 0 from Eq. (60). If ⟨κ̂⟩ is negative at the
outset, then it will remain negative, and the pursuit of profitability will result
in the Marxian result of a continually declining profit rate.

As this example makes clear, in theories of cost share-induced techno-
logical change, price and wage-setting decisions are separate from innovation
decisions. Just as in post-Keynesian theory the analytical separation of sav-
ing decisions from investment decisions leads to such surprising results as the
paradox of thrift, the separation of innovation from pricing in classical the-
ory results in unintended macroeconomic outcomes, which are reflected in a
perpetually renewed, and perpetually frustrated, pursuit of profit.

5.2 Price stability in a two-sector model

Shiozawa et al. (2019), through their minimal price theorem, demonstrated
that in an interlinked economy with many products and sectors, prices will fall
more or less rapidly to a stable minimal level if all producers seek to minimize
their costs. The theorem assumes an existing and stable set of techniques.
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Noting that technological change will alter the set of techniques, Shiozawa
et al. (2019, pp. 86-87) argued that one cause of price change is technological
change.

This example will show that cost share-induced technological change can
in fact stabilize prices in a multi-sector setting. The reason for this is that
the technical coefficients in an input-output matrix are both (inverse) produc-
tivities and, when adjusted for price, cost shares. While all cost shares can
be represented as a price ratio divided by a productivity, the relevant prices
for the intermediate cost shares are determined within a price system that is
itself determined by the technical coefficients. Cost share-induced technolog-
ical change tends to yield steady cost shares and productivity growth rates
as long-run tendencies, so models with intermediate demand tend to generate
stable relative prices and trendless technical coefficients.12

This claim will be illustrated with a concrete example – a “toy model” that
captures some key features of a multi-sector economy. It has two sectors: an
“extractive sector” that takes a natural resource and provides only interme-
diate goods; and a “final goods sector” that provides all final goods but also
intermediate goods.

5.2.1 The price system

The price equations for the economy are

pf = µf

(
wf

λf

+ pfaff + peaef

)

, (67a)

pe = µe

(
we

λe

+ peaee + pfafe +
pR
ν

)

. (67b)

In these equations, a subscript f refers to the final goods sector and an e to
the extractive sector. The price pR is the resource price, and ν is the resource
productivity in the extractive sector. Sector wages are given by wf , we and
labor productivities by λf , λe. The technical coefficients are denoted aij so
that, for example, aff is purchases of final goods by the final goods sector and
aef purchases of extractive sector goods by the final goods sector.

The µi in Eq. (67) are profit margins, which are related to the profit shares
via πi = 1 − 1/µi. Wage shares are given by ωi = wi/piλi, and the resource
cost share in the extractive sector by ρ = pR/peν. The intermediate cost shares
αij are equal to

αij =
pi
pj

aij . (68)

12There are conditions under which prices or productivities will not stabilize. Hence the claim
is that cost share-induced technological change can, but not necessarily will, stabilize prices in a
multi-sector economy.
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5.2.2 Dynamics

The cost share-induced technological change sub-model is specified through
sector-specific generating functions,

Φf = Φf (πf , ωf , αff , αef ), (69a)

Φe = Φe(πe, ωe, αee, αfe, ρ). (69b)

From Eqs. (67), prices are set by fixed markups µf and µe, with full and
immediate pass-through of costs. As a result, the profit shares do not change.
A further assumption is that nominal wages track productivity, so the ratios
wi/λi do not change.

5.2.3 Specifying parameters and initial values

The model above was run with a specific set of parameter values.13 They are
not meant to represent any particular economy, so while a dollar sign $ is used
to represent a currency unit, it does not represent the US dollar.

Sector prices are initialized to pf = pe = $1/unit output. The resource
price is $30/resource unit. Markups are (µf , µe) = (1.32, 1.29). Labor produc-
tivities are initialized to (λf , λe) = (1000, 1500) units/worker-day, which, when
combined with labor productivities and the initial price levels, gives initial
wage rates of $360 and $338/worker-day. Capital productivities in both sec-
tors are initialized to κ = 0.4/year, and resource productivity to 100 extractive
sector units/resource unit. Technical coefficients are initialized to

[
aff afe
aef aee

]

=

[
0.30 0.05
0.10 0.20

]

. (70)

Taken together, these initial values determine the initial cost shares.
The generating functions were assumed to be as in Eq. (54), with θ = 1, no

transformation (Sii = 1), and constant coefficients. The k parameter was set
to 1.5 for both sectors and A to 1/year. In the final goods sector, the weights
b were set to (0.2, 0.6, 0.1, 0.1) for the cost shares (πf , ωf , αff , αef ). In the
extractive sector, they were set to (0.2, 0.5, 0.1, 0.1, 0.1) for the cost shares
(πe, ωe, αee, αfe, ρ). The constant a terms were determined by initializing labor

productivity growth rates λ̂f,e to 1.5%/year and all other productivity growth
rates to zero.

5.2.4 Running the simulation

The model simulation was run for 100 years. At year 20, there is a one-time and
permanent shock to the resource price, which rises by 10%, from $30/resource
unit to $33/resource unit. As can be seen in Fig. 67, after an initial period in
which the rising resource cost is immediately passed through by the extractive

13The Scilab script is available from the author upon request.
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sector to the final goods sector, and then passed along by the final goods
sector, prices begin to return to their original values. This occurs because of
technological change driven by rising cost shares.
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Fig. 1: Prices in the final and extractive goods sectors

The impact of the changing cost shares on technological change can be
seen in Fig. 2. The 10% rise in resource price is permanent, and it translates
into a corresponding 10% rise in resource productivity that is approached
asymptotically over time. As the extractive sector price rises, it initially drives
the final goods sector to save on the output of the extractive sector. However,
as extractive sector prices return to their prior levels, the final goods sector
makes greater use of the extractive sector’s output, returning the technical
coefficient to its original level. Note that this does not mean that it returns
to the same technique. For example, the resource might be used to produce
both fuel (e.g., woodfuel or petroleum) and materials (e.g., wood beams or
plastics). The initial price rise might drive greater efficiency in fuel use, but
subsequent resource productivity improvements lower costs, inviting expanded
use of materials.

The long-run impact of the jump in resource price is more efficient use of
resources in the economy as a whole through an increase in resource produc-
tivity ν. Otherwise, the economy returns to its original state. The nominal
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Fig. 2: Indexes for the technical coefficient aef and resource productivity ν

resource price remains at its new, higher, level (an exogenous assumption), but
other prices return to their original levels.

The responsiveness of the productivity-price system to a shock depends on
the availability of productivity-enhancing technology and the speed with which
it can be brought into production. That can only be understood through addi-
tional analysis, such as technical assessments or empirical testing. To illustrate
how such a question might be answered, the next example looks at capital,
labor, and energy inputs into the US economy.

5.3 Energy costs and technological change in the US

The final example is an application of the functional form given in Eq. (54)
to an actual economy: the US from 1970 to 2019. For this purpose, a one-
sector model is constructed with capital, labor, and fossil energy inputs (where
“fossil” includes oil and natural gas, but excludes coal). The model is meant to
be illustrative, rather than diagnostic, in keeping with the goals of this paper.
Nevertheless, some of the results are interesting and will be discussed below.

5.3.1 Data

The data needed to fit the model are shares of GDP and productivities for
capital, labor, and fossil energy. Time series for the capital stock and GDP
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are given by the corresponding “national accounts” variables in Penn World
Tables 10.0 (PWT10: see Feenstra et al., 2015): real GDP (rgdpna) and capital
stock (rnna) at constant 2017 prices. Employment is given by the the PWT10
variable “empl” and the labor share by the variable “labsh”. Energy rents
for crude oil and natural gas are given by World Bank World Development
Indicators (WDI).14

Consumption of petroleum and natural gas for industrial purposes is taken
from data collected by the US Energy Information Adminstration (EIA) April
2022 Monthly Energy Review. The heat content of petroleum consumption for
the commercial sectors is taken from Table 3.8a, for industry from Table 3.8b,
and for electricity generation from table 3.8c. Natural gas consumption in
volumetric terms for the commercial, industrial, power generation, and pipeline
transport sectors is taken from Table 4.3 and converted using EIA factors for
the heat content of natural gas.15

Labor productivity is computed as GDP divided by employment, capital
productivity as GDP divided by the capital stock, and energy productivity
as GDP divided by the total heat content of petroleum and natural gas by
economically productive sectors. The labor cost share is given by the PWT10
value, fossil energy by the sum of the WDI crude oil and natural gas rent
shares, and the profit share as the balance. The profit rate is estimated as the
profit share multiplied by the capital productivity.

5.3.2 Historical trends

Some trends are of interest. The first, which has been widely observed, is a
general downward trend in the wage share (Fig. 3). The trend paused in the
mid-1980s, and reversed during the 1990s boom, but then resumed after 2001.

The second notable trend is that energy productivity began rising after
the 1972 oil crisis, and accelerated after the 1979 oil crisis, as shown in Fig. 4.
After that it grew more slowly, and recently it has appeared to stabilize at
around 0.7 2017$/PJ. That apparent stabilization could be due to physical
constraints, which could be reflected in a maximum energy productivity, as
in Eq. (50). Alternatively, it could be due to a falling energy cost share (see
Fig. 5), and therefore little pressure to raise energy productivity.

The third and final trend is that the profit rate has been rising since the
early 1980s, as shown in Fig. 6. It could be rising for technical reasons or
because of an upwardly-rising target rate. In either case, because the profit
rate is changing, then from the first example the expectation is that there will
be departures from Kaldor’s stylized facts. Such departures have, in fact, been
seen: capital productivity and the profit share have generally been rising, while
labor productivity growth has slowed.

14According to the World Bank’s methodology (World Bank, 2011), fossil resource rents are
effectively the profits of fossil extractive sectors as a share of GDP.

15Data from the Monthly Energy Review can be downloaded from https://www.eia.gov/
totalenergy/data/browser/. The heat content of natural gas is available from https://www.eia.
gov/dnav/ng/ng cons heat dcu nus a.htm. The time series for heat content begin in 2003; the
2003 values were used for earlier years.
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Fig. 6: Estimated profit rate

5.3.3 Fitting the model

The data are fit to a model of cost share-induced technological change along
the lines of Eq. (54). R&D expenditure is not considered, so θ = 1. Also,
the Kaldor-Verdoorn term is not included, so the ai are constants. Capital
productivity is denoted by κ, labor productivity by λ, and energy productivity
by ν. Angle brackets ⟨·⟩ are suppressed. The corresponding shares are π, ω,
and ε.

Given the possible saturation of energy productivity in Fig. 4, a maximum
energy productivity νmax is proposed. The scaling matrix is therefore

S =





1 0 0
0 1 0
0 0 1− ν

νmax



 . (71)

With these assumptions, the sum that appears in parentheses in Eq. (54)
is given by

Θ ≡
n∑

i=0

biS
k
iiσ

k
i = bκπ

k + bλω
k +

(

1−
ν

νmax

)

bνε
k. (72)

In terms of this factor, the expressions for the productivity growth rates are

κ̂ = aκ +Abκπ
k−1Θ

1
k
−1, (73a)

λ̂ = aλ +Abλω
k−1Θ

1
k
−1, (73b)

ν̂ =
(

1−
ν

νmax

)

aν +A
(

1−
ν

νmax

)k

bνε
k−1Θ

1
k
−1. (73c)

The model defined by Eqs. (72) and (73) was first fitted using R’s built-in
optim function using data from 1970-2000 and then compared to the entire
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dataset, which covers the time period 1970-2019. The sample size was therefore
90 (that is, annual observations of 3 parameters over 30 years), while there
are 8 independent parameters (the bi’s sum to one, removing one degree of
freedom), so there are 11 observations for each parameter. Historical and fitted
values are plotted in Fig. 7 and the fitted parameters in Table 1.
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Fig. 7: Productivity growth rates, historical and simulated: shaded area shows
period used for fitting the model
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parameter estimate units
A 1.467 1/year
k 1.267
aκ -0.212 1/year
aλ -0.980 1/year
aν -0.072 1/year
bκ 0.158
bλ 0.751
bν 0.091
νmax 1.028 2017$/PJ

Table 1: Fitted parameter values

Regarding the comparison between simulated and historical data shown in
Fig. 7, one immediate observation is that the simulated values, particularly for
capital and labor productivity growth rates, are much less volatile than the
historical values. This is because, as implemented, the model simulates poten-
tial rather than realized output. While capacity utilization could have been
endogenized in an expanded model (e.g., as in Kemp-Benedict, 2020), for this
example it is assumed to be steady, so sharp drops in utilization during reces-
sions or abrupt rises during booms are not reflected in the model estimates.
Once this difference is acknowledged, a further observation is that the model
performs reasonably well out of sample; that is, over the period 2000-2019.
Energy productivity growth is reproduced particularly well, but so are the rel-
atively elevated capital productivity growth rate in the 2000s, together with
lower labor productivity growth. The trends are explained by historically low
wage and energy cost shares and high profit share.

Regarding the parameter estimates, the maximum energy productivity,
νmax, is of particular interest. Historically, energy productivity roughly dou-
bled in 15 years, from around 0.2 2017$/PJ in 1970 to around 0.4 2017$/PJ
in 1985, as shown in Fig. 4. It then underwent a second, slower rise, to 0.7
2017$/PJ, over the 20-year period from 1985 to 2005. The estimated maxi-
mum is around 1.0 2017$/PJ, suggesting that further attempts to raise fossil
energy productivity will face diminishing returns.

5.3.4 Reflections on the model results

While the cost share-induced technological change model presented in Eqs. (72)
and (73) may appear complex, it is in fact structurally simple, with cost shares
as explanatory variables and productivity growth rates as dependent variables.
Still, the model is rich enough to offer some interesting results. First, historical
productivity growth trends are broadly explained by the model, including the
recent productivity slowdown. Some argue that the persistent slowdown is
evidence of “secular stagnation” (e.g., see Teulings and Baldwin, 2014). In this
paper, slow labor productivity growth is the result of a declining wage share, a
feature of the US economy that is indeed likely to persist (Taylor and Omer,
2020). The causal chain in the model is from the supply side – a low wage
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share means less pressure to raise labor productivity. It complements demand-
side arguments linking distribution to slower GDP growth (e.g., Cynamon
and Fazzari, 2015). Taylor and Omer (2020) combine both supply-side and
demand-side drivers in a unified analysis, albeit with a different microeconomic
behavioral assumption than the one adopted in this paper.

Also of interest is the estimated upper bound on fossil energy productivity.
If it reflects a real constraint, then it is one more reason to curtail fossil energy
use. But no further reasons are needed, as climate change requires immedi-
ate action (IPCC, 2022). Severe impacts and risks are unavoidable, but to
avoid yet worse impacts, fossil fuels must be kept in the ground (SEI et al.,
2021). This model could be used to assess the impact of fossil fuel prices on
resource use efficiency and decarbonization, but prices cannot stand alone. As
argued in Kemp-Benedict (2018, p. 212), a paper that applied the model of
cost share-induced technological change as presented in Kemp-Benedict (2019)
to a renewables transition, a strategy of raising fossil fuel prices should be
accompanied by constraints on exploration and extraction, as well as policies
to stimulate investment in renewables.

6 Discussion

This paper has explicitly constructed an aggregate classical cost share-induced
technological change model starting from an evolutionary NK microeconomic
model. In this way it has deepened the microeconomic foundations of the
classical-Marxian evolutionary model first proposed by Duménil and Lévy
(1992), elaborated by the same authors (Duménil and Lévy, 2010), and
extended by Kemp-Benedict (2019). As part of the construction, the paper
introduced Duménil and Lévy’s “selection frontier” analysis to an evolu-
tionary NK model. The paper further established some new results for the
classical-evolutionary model, including the concept of a “generating function”
for creating cost share-induced technological change models, the introduction
of physical limits on factor productivities, and the effect of R&D expenditure.

The classical-evolutionary model can explain some stylized facts. First,
total factor productivity (TFP) as calculated from national accounts tends to
exhibit positive growth, although it can sometimes decline. The paper showed
that the selection frontier is equivalent to the requirement that measured TFP
growth, calculated at prevailing prices and wages, must be positive if profit-
seeking firms are to implement a potential innovation. Subsequently, prices and
wages change, which then changes the value. Thus, the selection frontier is com-
patible with negative TFP growth but imparts a bias towards positive growth.
This result arises from an evolutionary process of random but purposeful dis-
covery of incremental innovations. Second, as demonstrated in this paper but
also shown by Julius (2005) and Kemp-Benedict (2019), target-return pricing
combined with cost share-induced technological change gives a dynamic with
an equilibrium solution characterized by Harrod-neutral technological change.
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Thus, unlike in Kauffman et al. (2000), Harrod-neutral technological change
can be derived rather than imposed on an NK model.

The aggregation procedure used in this paper assumed that incremental
productivity growth is sufficiently modest, and the search space sufficiently
dense, that a continuum approximation can hold. Those assumptions might
be reasonable for mature sectors. However, much interesting work within evo-
lutionary microeconomics has focused on firm behavior with the emergence of
new technologies (Kauffman et al., 2000; Auerswald et al., 2000; Saviotti and
Pyka, 2004). Indeed, that is central to the Schumpeterian origins of the field.
The present paper suggests possible extensions to microeconomic simulation
models based on the NK model. First, by imposing the selection frontier or, for
protected niches, gradually imposing that criterion as a technology matures.
Second, by using the discrete version of the generating function provided in
Eq. (13); the gradient of that function with respect to cost shares gives the
direction of cost share-induced technological change. Microeconomic models
can also shed light on the possible time evolution of the parameters within
aggregate cost share-induced technological change models. In particular, the
exhaustion of the search space opened by a major innovation should lead to
gradually shrinking opportunities for further productivity growth.

The classical-evolutionary model is best seen as a component within larger
models. In particular, it does not explain the composition term in the expres-
sion for aggregate productivity growth in Eq. (24), nor the way in which prices
and wages are set. Evolutionary economics has something to say about the first
of these. The dynamics of sectors, in which firms enter, exit, grow, and wane are
the subject of studies on firm behavior and capabilities (Helfat, 2018), which
may be mediated by interactions across value chains (Cantner et al., 2019).
The aggregation process applied in this paper, which led to Eq. (24), provides
a link between studies on firm dynamics to those of technological change.

The second topic, price and wage setting, has been extensively stud-
ied within Sraffian (Aspromourgos, 2004) and post-Keynesian (Lee, 1999;
Lavoie, 2001; Coutts and Norman, 2013) economics, supplemented by classical-
Marxian inspired theories of conflict wage setting (e.g., Goodwin, 1967;
Rowthorn, 1977; Bhaduri and Marglin, 1990). This suggests the potential for
fruitful combinations of evolutionary, classical, Sraffian, and post-Keynesian
theory. To illustrate some of the possibilities, the paper presented two exam-
ples: a two-input, one-sector model with target-return pricing and a two-sector,
three-input model with fixed markups. A third example, an empirical investi-
gation of the US economy, reproduced historical trends both within and out
of sample, and suggested a possible upper bound on fossil fuel productivity.

7 Conclusion

Both evolutionary and classical economics pay particular attention to pro-
cesses of technological change. Evolutionary theory focuses on the uncertain,
groping, but purposeful process of discovery, while classical economics treats
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the role of costs in driving innovation in one direction or another. Duménil and
Lévy (1992, 2010) linked the two traditions in a classical-Marxian evolutionary
model of cost share-induced technological change, and Kemp-Benedict (2019)
elaborated on their model. This paper deepens the evolutionary microeco-
nomic foundations of the model by systematic derivation from an evolutionary
NK model. As part of the derivation, it was shown that Duménil and Lévy’s
“selection frontier” is directly related to empirical measures of total factor
productivity growth.

The paper presents a general approach to generating candidate functional
forms for cost share-induced technological change. It then uses that approach
to propose a specific functional form that takes into account both physi-
cal limits on factor productivities and the impact of R&D expenditure and
applies it to three examples, including an empirical model for the US econ-
omy between 1970 and 2019. The classical-evolutionary model thus provides a
microeconomically grounded foundation for macroeconomic analysis.
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