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Background: Chronic pulmonary embolism (PE) may result in pulmonary

hypertension (CTEPH). Automated CT pulmonary angiography (CTPA)

interpretation using artificial intelligence (AI) tools has the potential for improving

diagnostic accuracy, reducing delays to diagnosis and yielding novel information of

clinical value in CTEPH. This systematic review aimed to identify and appraise

existing studies presenting AI tools for CTPA in the context of chronic PE andCTEPH.

Methods: MEDLINE and EMBASE databases were searched on 11 September

2023. Journal publications presenting AI tools for CTPA in patients with chronic

PE or CTEPH were eligible for inclusion. Information about model design,

training and testing was extracted. Study quality was assessed using compliance

with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM).

Results: Five studies were eligible for inclusion, all of which presented deep

learning AI models to evaluate PE. First study evaluated the lung parenchymal

changes in chronic PE and two studies used an AI model to classify PE, with

none directly assessing the pulmonary arteries. In addition, a separate study

developed a CNN tool to distinguish chronic PE using 2D maximum intensity

projection reconstructions. While another study assessed a novel automated

approach to quantify hypoperfusion to help in the severity assessment of

CTEPH. While descriptions of model design and training were reliable,

descriptions of the datasets used in training and testing were more inconsistent.

Conclusion: In contrast to AI tools for evaluation of acute PE, there has been

limited investigation of AI-based approaches to characterising chronic PE and

CTEPH on CTPA. Existing studies are limited by inconsistent reporting of the

data used to train and test their models. This systematic review highlights an

area of potential expansion for the field of AI in medical image interpretation.
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There is limited knowledge of A systematic review of artificial intelligence tools

for chronic pulmonary embolism in CT. This systematic review provides an

assessment on research that examined deep learning algorithms in detecting

CTEPH on CTPA images, the number of studies assessing the utility of deep

learning on CTPA in CTEPH was unclear and should be highlighted.

KEYWORDS

artificial intelligence, deep learning, computed tomography pulmonary angiography (CTPA),

chronic pulmonary embolism (CPE), chronic thromboembolic pulmonary hypertension (CTEPH)

Introduction

Pulmonary hypertension is defined by elevated mean pulmonary

artery pressure (mPAP) and results in right ventricular failure, with

significant associated morbidity and mortality. Chronic

thromboembolic pulmonary hypertension (CTEPH) is a subgroup

of pulmonary hypertension in which the rise in mPAP is driven

by repeated and/or large volume pulmonary embolism (PE) (1).

Surgical pulmonary endarterectomy remains the gold standard

treatment for CTEPH and is potentially curative. In patients for

whom endarterectomy is unsuitable, alternative treatment options

include endovascular pulmonary angioplasty and medical

management with anticoagulation and pulmonary vasodilators.

Early initiation of treatment is important for preventing disease

progression and improving patient outcomes in CTEPH, but

requires prompt diagnosis (2, 3).

Diagnostic delays are common for CTEPH, with an average of

14 months to diagnosis from the onset of symptoms (4). This can

be attributable to the variability of clinical presentations and

overlap of symptoms such as dyspnoea with a range of other

potential causes (5). Right heart catheterisation remains the gold

standard for diagnosis of pulmonary hypertension and CTEPH,

but is invasive and not readily accessible in most centres. CT

pulmonary angiography (CTPA) is well established as a non-

invasive tool for the assessment of CTEPH. The modality is

widely available, frequently performed for patients with

cardiorespiratory symptoms and can provide information that

assists with risk stratification, treatment decisions and

prognostication (6). CTPA not only enables localisation and

quantification of thromboembolic disease but can also yield

biomarkers of disease severity (such as changes in pulmonary

artery calibre and right ventricular morphology) and identify

associated parenchymal lung changes (7, 8).

Automation of image identification tasks through AI offers

potential improvements in diagnostic accuracy and efficiency.

Various machine-learning methods have been applied to aid the

detection and characterisation of acute pulmonary embolism on

CTPA, with some tools licensed and in use as clinical decision

aids (9–12). These include deep learning (DL) algorithms utilising

neural networks—these comprise layers of interconnected artificial

neurons, enabling algorithms to learn patterns and relationships

from data and generate models that can be used to make

decisions, such as image interpretation. Convolutional neural

networks (CNNs) are frequently used in DL and are capable of

performing imaging classification, segmentation, and detection of

objects (13). Existing AI-based strategies for the evaluation of PE

on CTPA have included image analysis to aid classification of

disease and vessel segmentation. These techniques are still being

developed and their incorporation into clinical practice will need

more study, refining, and validation studies to assure their efficacy

and accuracy (Figure 1). While there has been considerable

interest in AI for the evaluation of acute PE, it is unclear to what

extent AI has been used to evaluate CTEPH on CTPA. This

systematic review aimed to identify and appraise the quality of

studies presenting AI tools for the evaluation of chronic PE or

CTEPH on CTPA.

Methods

The study was conducted in compliance with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) criteria (14). The study flow is presented in Figure 2.

Eligibility criteria

Studies published in peer-reviewed journals from 2012 onwards

were eligible for inclusion if they (1) presented or assessed any type

of AI tool (2) for CTPA images (3) from participants with either

confirmed chronic PE or CTEPH. Exclusion criteria included non-

English-language publications, non-original research (such as

reviews or letters) and animal or phantom studies.

Search strategy

MEDLINE and EMBASE databases were searched on 11

September 2023. The search strategy is provided in the

Supplementary Materials.

Study selection and data extraction

Search results were screened for eligibility by two authors (LA

and AS) independently by reviewing titles and abstracts using

Rayyan Systematic Review Screening Software (15). Data were

extracted from included studies using a standardised spreadsheet

by two authors (LA and TA). Extracted data included study

information (such as location, year and journal type), study
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design, data selection (such as number of participants, number of

CTEPH cases and inclusion criteria), and the AI model being

presented (such as validation and performance results). The

quality of each included study was appraised by checking

compliance with the individual criteria of the Checklist for

Artificial Intelligence in Medical Imaging (CLAIM) (16), which

were divided into four domains (17, 18).

Results

Five studies were eligible for inclusion (Figure 2) and are

summarised in Table 1 (19–23). Agreement of the studies with

the criteria of CLAIM are presented in Table 2.

Study 1—Vainio et al.

Vainio et al. (19) investigated the application of a 3D

convolutional neural network (CNN) to identify hypoperfusion

areas affected only by CTEPH from CTPA images. The overall

compliance of the study with CLAIM was 85%. Compliance

with the model description domain of CLAIM was 83%. The

model comprised a U-net CNN (24) of twelve layers and three

max-pooling/upsampling phases with skip connections and one

output neuron with sigmoid activation in their 3D CNN layers.

The Hounsfield Unit (HU) range was linearly shifted and scaled

in order to resample and normalise the CTPA volumes. The

patches totally outside the lung area were eliminated after the

training data were partitioned into 32 × 32 × 32 voxel patches.

Both learning rate adjustment and Dice loss optimisation were

employed on manually labelled data to fine-tune the model and

improve its accuracy during the validation process. The

compliance with the dataset description criteria of CLAIM was

90%. The study used a dataset of 50 patients of which 25 (50%)

had CTEPH. A positive ventilation–perfusion (V/Q) scan for

chronic PE and a CTPA with evidence of chronic PE within 3

months without signs of acute PE were the inclusion criteria for

the positive patients and confirmed with a right heart

catheterisation. In all cases, radiological appearances of a

parenchymal disease unrelated to CTEPH that involved more

than two-thirds of the lungs were eliminated. The median age of

all participants was 67 years and 62% were female. These were

distributed into training, validation, and testing sets containing

48%, 12% and 40% of the data respectively. The study also

showed complete compliance with the ground truth description

criteria of CLAIM. Manual segmentation of affected regions on

CTPA by one radiologist using ventilation-perfusion scan images

was used as the ground truth. The compliance with the

performance description criteria of CLAIM was 62%. The 3D

CNN model performed segmentation of hypoperfused lungs with

a reported area under the receiver curve (AUC) of 0.87. Failure

analysis identified 63 independent false positive labels frequently

attributed to beam hardening artefact.

Study 2—Khan et al.

Khan et al. (20) presented a CNN model based on

DenseNet201 (25) to classify a mixed cohort including acute and

chronic PE on CTPA. The overall compliance of the study with

CLAIM was 76%, including complete compliance with the model

description criteria. The proposed model architecture for PE

detection comprised an input module, a feature extractor module

FIGURE 1

Example of radiological features and artificial intelligence approaches in chronic thromboembolic disease detection (images are from Sheffield

institution on illustrating the diagnostic features of chronic pulmonary hypertension).
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and a decision-making module. The feature extractor model, based

on DenseNet201 (25), used densely connected convolutional blocks

to extract rich hierarchical features from CT images, each

comprising multiple convolutional layers, batch normalisation,

and rectified linear activation functions (ReLU). The decision-

making module took the extracted features and performed the

final classification or decision-making process. This module

consisted of intermediate dense and classification layers to

produce the final prediction or decision regarding the presence

or absence of PE. The compliance with the dataset description

criteria of CLAIM was 66%. The study included 9,446 CTPA

scans that were gathered from the RSNA-Kaggle public database

(26) (available at: https://www.kaggle.com/c/rsna-str-pulmonary-

embolism-detection). This dataset is classified into nine groups

including undetermined PE, negative PE, right-side PE, Left-side

PE, central PE, acute PE, chronic PE, and RV/LV ratio greater or

less than 1. The dataset was annotated collaboratively by

members of the RSNA and the Society of Thoracic Radiology

and is a compilation of three previous datasets provided by the

RSNA, with contributions from institutes in five countries

TABLE 1 An overview of the literature review papers that used CTPA to identify chronic pulmonary emboli using deep learning algorithms (NA = not
applicable).

Study No.
Patients

Chronic
PE

PE type Setting for
CTPA scan

Public
(source)

AI type Network Outcomes

Vainio et al. (19) 50 25 Chronic Multicentre No Segmentation U-net-type, CNN AUC 0.87

Khan et al. (20) 9,446 NA Acute and chronic Public RSNA (Kaggle) Classification DenseNet201 AUC 0.90

Ma et al. (21) 7,279 NA Acute and chronic Public RSNA (Kaggle) Classification 3D CNN and 3D

ResNet-18 model

Full cohort AUC 0.93/

Chronic PE AUC 0.68

Vainio et al. (19) Public 976

Local 78

Public 244

Local 26

Chronic Local and public RSPECT Classification CNN and

DenseNet201

AUC 0.94 on local

Bird et al. (22) 161 51 CTEPH Local No Segmentation CNN AUC 0.84

FIGURE 2

Process flow diagram for the inclusion and search steps.
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(Canada, Brazil, Australia, Turkey and the USA). The 9,446 exams

that make up the dataset made accessible on Kaggle have been

divided in this study into two sets: a training set of 7,279 exams

and a test set of 2,167 exams. While the dataset included acute

and chronic PE cases, the proportion of patients in each group

was not reported and there were no confirmed CTEPH cases.

Compliance with the performance description criteria of CLAIM

was 87%. The model achieved an overall accuracy of 88%,

sensitivity of 88%, specificity of 89%, and AUC of 0.90 for all

participants in the dataset. Although chronic PE subgroup was

reported to have a 95% accuracy rate, with an AUC value of 0.

95. The mean ROC curve—which averages the various ROC

curves for each subgroup—had an AUC of 0.90.

Study 3—Ma et al.

Ma et al. (21) also presented a model to identify PE on CTPA

including acute and chronic PE in their dataset. The overall

compliance of the study with CLAIM was 76% and the study also

TABLE 2 Compliance with CLAIM checklist. Studies and the division of criteria into study description, dataset description, model description and model
performance domains are shown below in (Blue/✓ = Yes) to indicate compliance, (Red/x = No) for non-compliance and (Gray/ ─ =Not applicable).

CLAIM checklist Vainio et al.
(19)

Khan et al.
(20)

Ma et al.
(21)

Vainio et al.
(23)

Bird et al.
(22)

Study description Identification as a study of AI ✓ ✓ ✓ ✓ ✓

Structured summary of study design, methods, results,

and conclusions

✓ ✓ ✓ ✓ ✓

Scientific and clinical background ✓ ✓ ✓ ✓ ✓

Study objectives and hypotheses ✓ ✓ ✓ ✓ ✓

Prospective or retrospective study ✓ ✓ ✓ ✓ ✓

Study goal ✓ ✓ ✓ ✓ ✓

Where the full study protocol can be accessed x ✓ ✓ ✓ x

Dataset description Data sources ✓ ✓ ✓ ✓ x

Eligibility criteria, symptoms, results from previous

tests, inclusion in registry

✓ x x ✓ ✓

Data pre-processing steps ✓ ✓ ✓ ✓ x

Selection of data subsets ✓ ✓ ✓ ✓ ✓

Definitions of data elements ✓ x x ✓ ✓

De-identification methods ✓ ✓ ✓ ✓ x

How missing data were handled x x x x x

Flow of participants ✓ ✓ ✓ ✓ ✓

Sample size calculation ✓ ✓ x ✓ x

How data were assigned to partitions ✓ ✓ ✓ ✓ ✓

Level at which partitions are disjoint ✓ ✓ ✓ ✓ ✓

Demographic and clinical characteristics ✓ x x ✓ ✓

Ground truth reference

standard

Definition of ground truth reference standard ✓ x x x x

Rationale for choosing the reference standard x x x x x

Source of ground truth annotations ✓ x x ✓ x

Annotation tools ✓ ✓ ✓ ✓ x

Inter- and intrarater variability ✓ x x ✓ x

Model description Detailed description of model ✓ ✓ ✓ ✓ x

Software libraries, frameworks, and packages ✓ ✓ ✓ ✓ x

Initialization of model parameters ✓ ✓ ✓ ✓ x

Details of training approach ✓ ✓ ✓ ✓ x

Method of selecting the final model ✓ ✓ ✓ ✓ x

Ensembling techniques, if applicable x ✓ ✓ ✓ x

Model performance Metrics of model performance ✓ ✓ ✓ ✓ ✓

Statistical measures of significance and uncertainty ✓ ✓ ✓ x ✓

Robustness or sensitivity analysis ✓ ✓ ✓ ✓ ✓

Methods for explainability or interpretability x ✓ ✓ ✓ ✓

Validation or testing on external data x x x ✓ x

Performance metrics for optimal model on all data

partitions

✓ ✓ ✓ ✓ x

Estimates of diagnostic accuracy ✓ ✓ ✓ ✓ ✓

Failure analysis of incorrectly classified cases ✓ ✓ ✓ ✓ x

Other information Study limitations ✓ x ✓ ✓ ✓

Implications for practice ✓ ✓ ✓ x x

Registration number and name of registry ─ ─ ─ ─ ─

Sources of funding ✓ ✓ ✓ ✓ ✓

Overall % Compliance with CLAIM 85% 76% 76% 88% 50%

Abdulaal et al. 10.3389/fradi.2024.1335349
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showed complete compliance with the model description criteria. The

proposed approach entails a two-step pipeline: a 3D CNN model

extracts a relevant feature sequence based on the surrounding area

of slices, and a sequenced framework is used to produce study-level

label predictions. The compliance with the dataset and ground

truth description criteria were 58% and 20% respectively. The

dataset used in this study was collected from the Kaggle

competition RSNA STR Pulmonary Embolism Detection, which

included 7,279 studies in total (26) (available at: https://www.kaggle.

com/competitions/rsna-str-pulmonary-embolism-detection/data).

The dataset includes labels at both the study and slice levels, with each

slice including a label indicating if it contains any type of PE.

However, the ground truth annotations used in their investigation

were not defined. Compliance with the performance description

criteria of CLAIM was 87%. The model performance in terms of

PE identification had a reported sensitivity of 86% and specificity of

85%. For chronic PE cases, reported accuracy was 68%, sensitivity

was 62% and specificity was 63%; however, the number of chronic

PE cases was not reported in the paper, but it is available in the

original public source.

Study 4—Vainio et al.

Vainio et al. (23) developed a CNN tool with the aim of

identifying and differentiating chronic PE from 2D maximum

intensity projection (MIP) reconstructions of CTPA. The overall

compliance with CLAIM was 88%, with complete compliance with

the model description criteria. Deep learning-based lung

segmentation was used to prepare the CTPA images for MIP

reconstructions by removing high-intensity features. A base model

trained on ImageNet was used as the foundation for their

architecture (27). 11 MIP images were used as input data, with each

image representing a different view of the same scan. Images were

processed individually before being averaged and passed through a

three-layer multilayer perceptron (MLP) using ReLU activations.

During training, alpha dropout and batch normalisation techniques

were applied to the MLP layers. Transfer learning was also used,

allowing the model to leverage pre-trained neural network

architectures. Compliance for both the dataset and ground truth

description domains of CLAIM was 82%. The publicly available

RSNA-STR Pulmonary Embolism CT (RSPECT) dataset was used

for training. This was divided into two experiments (28). The first

included 755 CTPA studies, focusing on discriminating between

patients with chronic PE (RV/LV ratio ≥1) and a control group

composed of patients with acute PE (RV/LV <1) and those with

negative PE examinations. Experiment 2 used the same groups as

Experiment 1 but did not apply the RV/LV criterion, resulting in

976 CTPA scans. Additionally, a local dataset was utilised for

validation and testing, consisting of 78 cases in total (26 for each of

chronic PE, acute PE, and no PE).

The MIP images were modified by a radiologist manually

selecting optimal colour and opacity transfer functions. Following

the appearance adjustments, the researchers conducted visual

inspections of the images to ensure that they accurately represented

the required features and characteristics. Compliance with the

performance description domain of CLAIM was 75%. In

Experiment 1, DenseNet-121 with random 3-degree 2D rotations

yielded the best performance, achieving an AUC of 0.70.

Experiment 2, which used larger CTPA volumes for training and

omitted RV/LV-based exclusion, resulted in slightly lower

performance. An ensemble model was introduced, leading to a

modest increase in balanced accuracy. The local dataset

outperformed the public dataset significantly, with an AUC of 0.87

compared to 0.79. In the third stage, using a local dataset of

78 cases for model selection and testing led to an AUC of 0.94 and

an overall accuracy of 0.89.

Study 5—Bird et al.

This study aimed to evaluate a new automated method for

quantifying hypoperfusion on dual energy CTPA to help in

assessing the severity of CTEPH (22). An established DL CNN

model for lung segmentation was utilised to automatically

segment hypoperfused lung volume, effectively removing

extraneous thoracic anatomy and delineating lobar boundaries.

This involved processing CT images alongside iodine-water

images to compute and measure the proportion of hypoperfused

pixels within each lobe (29). The overall compliance with

CLAIM was 50%. The study referenced but did not provide any

description of the CNN model (29). Similarly, there was limited

description of the datasets used, with 66% compliance with the

dataset description criteria. The data study used a locally

obtained data from, 51 CTEPH patients and 110 normal CTPA

scans were retrospectively analysed. The model automatically

isolated parenchymal iodine values to delineate hypoperfusion

areas and calculate hypoperfused lung volume. Compliance with

the performance description criteria was 62%. The model showed

that global hypoperfused lung volume distinguished CTEPH

patients from controls with 0.84 AUC and 90% sensitivity

cutoffs, and correlated positively with hemodynamic severity and

changes after surgical treatment. The study concluded that

automated quantification of hypoperfused areas in CTEPH

patients from dual energy CTPA may assist in clinical evaluation,

especially in cases involving segmental-level disease.

Discussion

The application of AI to CTPA interpretation in the context of

chronic PE and CTEPH is appealing. AI tools have the potential to

aid the detection of cardiovascular and lung parenchymal changes

that are important for diagnosis, risk stratification, prognostication

and treatment decisions in chronic PE. Previous studies suggested

that a lack of sensitivity for PE detection may affect radiologists’

interpretation, which ranged from 66% to 87% (30, 31). AI tools

for the identification of chronic PE could assist the accuracy and

efficiency of CTPA interpretation by radiologists, such as by

highlighting areas of potential concern for closer scrutiny. This is

particularly relevant given that the changes in chronic PE may be

incidental or subtle on imaging.
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This systematic review aimed to identify and appraise existing

studies presenting AI tools for CTPA in chronic PE patients. Five

studies were eligible for inclusion, identifying a significant gap in the

field. Study quality was evaluated using compliance with the criteria of

CLAIM, an established structured checklist designed to aid the

presentation and interpretation of studies presenting AI approaches.

All five studies share a common focus on the application of deep

learning techniques, particularly CNN algorithm for the detection and

diagnosis of PE, using texture segmentation of the lung parenchyma

without direct assessment of the pulmonary arteries. One study

divided their analysis into several phases and made use of both public

RSPECT and local datasets. Vainio et al. (19) demonstrated that

segmentation of the hypoperfused lungs was carried out using the

CNN model resulting in an AUC of 0.87 for detecting chronic PE.

Khan et al. (20) reported that the model achieved an overall AUC of

0.90, for all participants in the dataset. Ma et al. (21) showed

promising PE detection ability whether acute or chronic, with a

window-level AUC of 0.93. Vainio et al. (23), showed that a relatively

limited local dataset for model selection and testing resulted in an

AUC of 0.94, indicating efficacy in diagnosing chronic PE. However,

there is a potential risk of overfitting, increased variability, and

uncertainty associated with using a small dataset, as it may not fully

capture the variability and complexity of the underlying population.

Models

The included studies provided reliable descriptions of their

respective deep learning CNN models. Khan et al. (20) explored the

use of DL CNN algorithms in computer-aided diagnosis of PE. The

models were trained on a large dataset of CT scans and employed

advanced techniques for feature extraction and classification to

improve the accuracy of PE diagnosis. DenseNet201 is a type of

neural network that employs densely connected convolutional

blocks; each layer receives direct inputs from all preceding layers,

resulting in enhanced feature propagation and reuse throughout the

network (25). This connectivity pattern allows for better

information flow and gradient propagation, potentially improving

the model’s ability to learn complex patterns and features relevant

to PE detection. The dense connections can lead to increased

memory requirements, as the outputs of all preceding layers need to

be stored for gradient computation during backpropagation.

DenseNet201 is a highly expressive model with a large number of

parameters. In some cases, this can increase the risk of overfitting,

especially if the dataset is small or not diverse enough.

In the study by Vainio et al. (23), the model to detect chronic PE

used transfer learning from a previously trained ImageNet model

(27), analysed eleven MIP images, combined the image

characteristics and processed them using an MLP with ReLU

activations. The use of 2D MIP reconstructions for training an AI

tool on CTPA images as opposed to using other approaches has

benefits in terms of standardisation, computational efficiency and

ease of use. However, it comes with the risk of missing essential 3D

information and location-based context, which can have an

influence on the tool’s diagnostic accuracy. In their earlier study,

Vainio et al. (19) focused on the evaluation of a 3D CNN for the

detection of hypoperfusion in patients with CTEPH. They

investigated the feasibility and effectiveness of using a 3D CNN

architecture to analyse CTPA images and identify regions of

hypoperfusion in the lung. Ma et al. (21) presented a multitask DL

approach for the detection and identification of PE, with a CNN

architecture capable of simultaneously performing multiple tasks

related to PE diagnosis, such as segmenting affected lung regions,

classifying the severity, and providing a score for diagnosis. The

multi-task deep learning model was trained on a diverse dataset

and is expected to improve the efficiency and accuracy of PE

detection and identification, as the multitask learning strategy

enabled the model to train and execute both PE detection and

identification tasks simultaneously. This could lead to more efficient

and streamlined predictions by leveraging shared information

between the tasks. The model may be able to identify frequent

patterns and features for both identifying and detecting PE,

improving the predictions made by the model’s overall resilience

and accuracy. However, multitask learning can be challenging if the

tasks have conflicting or unrelated objectives. If the tasks have

different characteristics or require distinct feature representations,

jointly training them may hinder the performance on individual

tasks. Every task needs a substantial amount of labelled data. If one

task has a considerably smaller dataset or lacks labelled data, the

performance of both tasks might be affected. This can result in a

more complex model architecture, which may increase the risk of

overfitting and require more computational resources for training

and inference. While Bird et al. (22) study focused less on

developing and more on validating or assessing the algorithm. This

approach can save space and reduce redundancy in the paper,

authors must ensure that they follow ethical and academic

standards by accurately crediting the original developers of the

CNN model and providing readers with enough information to

understand its implementation and performance in their study.

Overall, these papers share a common objective of leveraging DL

techniques to improve the detection and diagnosis of PE from CTPA

images. Some studies failed to assess the performance of their model

on external datasets, potentially limiting their validity. However, only

one study, conducted by Vainio et al. in 2023, addressed this

limitation by testing their model on external datasets. Vainio et al.

(23) is the only study that reports a validation step during the

development of their model. Assessing performance on validation

data enables model fine-tuning (such as through hyperparameter

optimisation) and the identification of potential issues (such as

overfitting) prior to final model selection and testing. A lack of

validation may limit the overall performance of these models. This

raises concerns about the model’s ability to function effectively and

consistently in clinical practice settings. Positively, all of the research

examined the causes of model underperformance and offered failure

analyses of cases that were misclassified—an important step in

ensuring validity.

Datasets

Descriptions of the datasets were less consistent, potentially

limiting the interpretation of model performance. Each study did
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report their data sources, apart from Bird et al. (22). Public datasets

from the RSNA were used in three of the studies (20, 21, 23). The

use of public datasets offers ease of access to data, improves study

transparency, and helps comparison between models. Using diverse

datasets results in a bigger annotated dataset with a broad range of

samples from around the world. However, model performance may

be restricted by the availability of data elements or variables in

public datasets, which were not mentioned in two publications

(20, 21). These two studies used publicly available Kaggle

datasets for the detection of acute and chronic PE. Although the

proportions of acute and chronic PE cases are available from the

original data source, these were not stated by the studies

themselves, limiting their transparency—it is best practice for

publications to provide all relevant clinical characteristics

regardless of whether they can be accessed elsewhere (17, 18).

Public datasets utilised in the studies may not have had all the

elements or features required for an accurate PE diagnosis, which

may limit the model’s ability to identify the spectrum of

abnormalities related to PE. Variations in data quality may also

affect model performance by affecting generalisability across

datasets with distinct characteristics. While age and sex are

important demographic factors, they should be complemented

with additional information—such as the severity of disease or

presence of comorbidities—to provide a more comprehensive

understanding of generalisability in clinical populations. We

observed that two out of five studies (20, 21) lacked information

on the demographics of these patients as well as the percentages

of patients with various diseases. Studies should not assume that

their audience is already acquainted with public datasets, and

study methodology must be explained in sufficient detail to allow

correct reproduction of the results.

Image annotations in public datasets may also be limited and

restrict how the data can be used. For example, Ma et al. (21)

demonstrated that certain labels are directly taken by others and

cannot be modified or changed. As a result, they do not account

for the possibility of an inconsistent relationship between the labels

and the predicted study-level labels in their model. To increase the

generalisability of AI models being trained, different data sets, such

as retrospective and prospective data sets, might be combined. We

found that one of the studies in this review was created by

combining three other datasets that RSNA had previously provided

with contributions from five more countries and institutions (20).

The three public dataset studies did not include the description of

the ground truth reference standard and the rationale for choosing

the reference standard in their paper, although this information is

accessible from the public source. Vainio et al. (23) trained their

model using the publicly available RSPECT dataset, but validated

and tested the model using an external local dataset. Testing model

performance on external data is important for ensuring

generalisability and is an important consideration for clinical

translation of AI tools. However, it is worth noting that only 78

cases—including only 26 cases of chronic PE—were included in

this external dataset, which limits interpretation of the model’s

performance. It is important to carefully analyse the context and

objectives of the AI model when deciding to use public data for

training and local data for testing and model selection. While

combining different datasets can have benefits like increased variety

and generalisation, it also has drawbacks including inconsistent

data, bias, and small local sample sizes. Improvements are needed

in public datasets to address the lack of flexibility and adaptability

in the labelling process, providing detailed information about

datasets characteristics, and data augmentation applied. Some of

these limitations may be addressed, and the robustness and

dependability of the model can be improved, by making an effort

to collect more comprehensive and diverse local data or by

working with several healthcare facilities.

Performance

The Vainio et al. (19) and Bird et al. (22) studies were the only

papers that evaluated hypoperfusion areas affected by CTEPH

specifically on CTPA images using a DL model. Vainio et al. (19)

did not specifically look into the pulmonary vessels, rather evaluated

the secondary effects on lung parenchyma. The AUC curve was

solely used in this study to assess the model’s performance. The

performance of the 3D CNN model could be evaluated using

various metrics such as sensitivity, specificity, accuracy, and area

under the receiver operating characteristic curve (AUC-ROC). These

metrics provide insights into the model’s ability to correctly identify

positive and negative cases of hypoperfusion. There are several

metrics available for evaluating DL models. Using merely a subset

may offer a misleading overview of a model’s real performance,

resulting in unexpected findings when applied in a clinical setting.

Therefore, it’s crucial to combine several measures and analyse

performance comprehensively (32). However, the study might have

compared the performance of the 3D CNN model with existing

methods used for detecting hypoperfusion in CT pulmonary

angiography. This could involve comparing the AUC to determine if

the 3D CNN outperforms or is comparable to other approaches.

The study demonstrated the feasibility of using a 3D CNN for the

automated detection of hypoperfusion on CTPA images in patients

with CTEPH. Furthermore, the results indicated that CNNs were

able to automatically support radiologists in diagnosing and treating

patients with chronic PE. Vainio et al. (23) assessed the CNN model

in several phases. The model performed inconsistently across the

public and local datasets, with the local dataset producing noticeably

better outcomes. The model’s ability to identify chronic PE was

greatly enhanced by the application of a locally optimised ensemble

model, challenging model selection techniques, and the local test

dataset. The model improved in cross-validation model selection,

sensitivity to data augmentation, and performance on the local

dataset. However, there were differences in performance, as well as

the effect of different training methods. The use of a limited local

dataset for early stopping presents issues regarding overfitting.

However, the other two studies by Khan et al. (20) and Ma et al.

(21) evaluated PE in general (acute and chronic) and RV/LV ratio

using CNN on CTPA for classification. Nonetheless, they omitted

to present the number of acute and chronic cases, which limits

interpretation. Khan et al. (20) trained an AI model without

applying a validation set, which can have a number of

consequences for the model’s performance and reliability. Assessing
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performance using a validation set prior to formal testing is important

for confirming that a model operates properly on unseen data and

enables further refinement prior to finalisation. The lack of a

validation step may limit understanding of model generalisability,

increase the risk of overfitting, restrict hyperparameter optimisation

and impede model selection. Finally, this study analyses the possible

advantages of IoMT-enabled computer-aided diagnostics for PE

classification. Gradient-weighted class activation mapping (Grad-

CAM) was used by Ma et al. (21) to improve the interpretability of

the AI model, although this only applied to the first phase of

training rather than going over the sequential model’s parameters

in the second training phase. The exclusion of Grad-CAM during

the second phase of training may limit the interpretability of the

model’s updated parameters. The overall results demonstrate that

their model was accurate in detecting and classifying PE and has

the potential to enhance acute PE diagnosis. While in chronic PE,

the model does not perform effectively although they omitted to

give the number of chronic PE cases.

Our systematic review has limitations. The eligibility criteria

focused on chronic PE detection using AI on CTPA images;

studies may have been missed if they had not clearly identified

the presence of chronic PE in their datasets. Unpublished

research and non-English language studies were not included.

Despite the inclusion of conference abstracts within the eligibility

criteria, the number of included studies was low, preventing

formal meta-analysis of model performance.

Conclusion

This systematic review identified five existing studies presenting AI

tools for CTPA interpretation in patients with chronic PE or CTEPH.

All studies presented DL CNN approaches to the assessment of lung

parenchyma, with variable performance. Assessment of studies using

CLAIM identified overall reasonable reporting of AI model design

and training, but inconsistent reporting of the datasets used, limiting

their transparency. This study highlights an area of potential

expansion for the field of AI in medical imaging.
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