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Abstract. We present a new deep learning paradigm for the genera-
tion of sparse approximate inverse (SPAI) preconditioners for matrix
systems arising from the mesh-based discretization of elliptic differential
operators. Our approach is based upon the observation that matrices
generated in this manner are not arbitrary, but inherit properties from
differential operators that they discretize. Consequently, we seek to rep-
resent a learnable distribution of high-performance preconditioners from
a low-dimensional subspace through a carefully-designed autoencoder,
which is able to generate SPAI preconditioners for these systems. The
concept has been implemented on a variety of őnite element discretiza-
tions of second- and fourth-order elliptic partial differential equations
with highly promising results.

Keywords: Deep learning · Sparse matrices · Preconditioning · Elliptic
partial differential equations · Finite element methods.

1 Introduction

Finding the solution of systems of linear algebraic equations,

Ax = b , (1)

has been a core topic in the field of scientific computation for many decades. Such
systems arise naturally in a wide range of algorithms and applications, including
from the discretization of systems of partial differential equations (PDEs). Not
only are the equations (1) the main product of the discretization process for
linear PDEs but such systems must be solved during every nonlinear iteration
when solving nonlinear PDE systems [4]. Furthermore, this step is often the most
computationally expensive in any given numerical simulation.

Direct methods, based on the factorisation of the matrix A into easily invert-
ible triangular matrices are designed to be highly robust. However they generally
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scale as O(n3) as the system size, n, increases. Hence as n approaches values in
the millions the computational cost and memory requirements quickly become
unacceptable. Fortunately, when the matrix A is sparse, it is possible to optimize
the factorization process to minimize the fill-in and avoid storing (or computing
with) the zero entries in A [21]. Such sparse direct methods significantly reduce
the computational complexity but can still suffer from unacceptable memory
and CPU requirements when n becomes sufficiently large. Consequently itera-
tive solution methods are a popular choice for large sparse systems (1).

Many iterative methods have been developed as an alternative approach to
direct methods, offering a flexible level of accuracy as the trade-off for memory
storage and computational cost. The Conjugate Gradient (CG) algorithm is
arguably the most well-developed and efficient iterative method for solving large,
sparse, symmetric positive definite (SPD) systems, whilst other Krylov-subspace
algorithms are widely-used for indefinite or non-symmetric systems [11]. In the
SPD case, the convergence of the CG method is dependent on the distribution
of the eigenvalues of the stiffness matrix A [33]. Assuming that these eigenvalues
are widely spread along the real line, the CG algorithm will suffer from slow
convergence when the problem is ill-conditioned. That is, the condition number
κ(A) ≫ 1, which is the ratio of the maximum, λmax(A), over the minimum,
λmin(A), eigenvalues of A. Consequently, a longstanding topic of research has
been the development of preconditioning techniques to reduce κ(A) (strictly
κ(AP )) via a transformation of the stiffness matrix A through multiplication
with a carefully selected non-singular matrix P on both sides of the equation:
APx = bP .

Selection of a “good” preconditioner, P should take account of the following
two requirements:

1. It should be easy to construct and cheap to implement (i.e. to solve Px = y

for a given vector y).
2. It should significantly reduce the condition number of the modified problem,

κ(AP ).

In general these requirements are in conflict with each other, so frequently we
seek to use prior knowledge about the linear system in order to manage the
trade-off between point one and two. If little is known about A then one of
the simplest choices for P is the diagonal of A (frequently referred to as Ja-
cobi preconditioning [11]), which clearly satisfies the first requirement above
but typically satisfies the second requirement less well. More complex precondi-
tioners, which aim to do better on the second requirement, include incomplete
factorization approaches such as incomplete Cholesky (ICC) and incomplete LU
(ILU) decompositions [7, 11], multigrid (MG) and algebraic multigrid (AMG)
approaches [5, 15], domain decomposition (DD) methods [27], and sparse ap-
proximate inverse (SPAI) methods [2] which are the main topic of this paper. In
recent developments there are also some attempts to utilise data-driven methods
to generate preconditioners [31, 23, 17, 3, 20, 24].

If the exact inverse of A were known then setting P = A−1 would perfectly
satisfy condition 2 above. However, the cost of constructing and implementing
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this P would mean that condition 1 would fail to be satisfied. Sparse approxi-
mate inverse (SPAI) methods seek to balance these requirements more evenly by
constructing a cheaper approximation to A−1 (P ≈ A−1), where P is a sparse
matrix so as to ensure that its application, y = Px, has a cost of O(n) rather
than O(n2). Designing a high performance preconditioner by the conventional
numerical approaches mentioned above requires prior knowledge and past ex-
perience of specific families of PDE systems. The final product also varies with
chosen parameters, this suggests that there is a distribution of high-performance
preconditioners for A, which naturally justifies using generative models. In this
paper, we propose a deep learning based generative model for constructing a
SPAI preconditioner, P , for a given SPD matrix A arising from the finite ele-
ment discretization of a self-adjoint PDE or system. Our method uses a condi-
tioned variational auto-encoder to map the conditioned distribution of p(A−1|A)
into a lower dimensional latent space. After training, it is able to generate high-
performance preconditioners for SPD matrices arising from the discretization of
unseen self-adjoint problems under the same mesh density.

Whilst this is not the first research to propose the use of machine learning
(ML) techniques to generate SPAI preconditioners (see [31] for example), we
believe that this is the first to consider the use of a graph representation of the
sparse matrix A and the first to consider modeling the distribution of A and
A−1 for such a task. This permits the representation of A in a smaller latent
space through our use of a variational auto-encoder. Consequently, since our
model only cares about the latent data distribution of the inverse of the stiffness
matrix A, it is easily generalisable to other self-adjoint problems. Furthermore,
we propose a controllable sparsity pattern for the preconditioner to allow a
trade-off between the performance and the computational cost.

2 Related Work

In this section we provide a brief overview of the most common approaches to
preconditioning that are in widespread use in numerical codes today. This is
then followed by a short subsection on existing research into the use of data-
driven methods for generating preconditioners. As part of that section we also
highlight some of the proposed techniques for using ML to solve PDE systems
since these could also be used to motivate new preconditioners (i.e. by applying
as a preconditioner rather than a solver).

2.1 Numerical preconditioning

Researchers have studied different methods for generating effective precondi-
tioners over many decades, leading to a vast body of work on this topic [34].
For the purposes of this paper we restrict our attention to sparse SPD matri-
ces, A, arising from mesh-based discretizatons of self-adjoint PDEs. As already
noted, the simplest approach that is in widespread use is Jacobi precondition-
ing, where P = diag(A)−1. This is easy to construct and cheap to implement,
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but not sufficiently effective for many important problems [23]. Consequently
more sophisticated techniques are frequently required, such as those based upon
incomplete factorizations of A. Incomplete Cholesky (IC) factorization is most
appropriate for SPD matrices, where A ≈ LLT . The sparsity pattern of the lower
triangular matrix L can be chosen to be identical to that of the lower triangle of
A or can be slightly more generous based upon a drop tolerance that is used to
decide whether to allow any "fill-in" during the factorization process [34]. Note
that this technique requires a forward and a backward substitution in order to
apply the preconditioner, which is not generally well-suited to efficient parallel
implementation. Furthermore, this approach requires careful design to balance
the computational cost and accuracy associated with different levels of fill-in
(complete fill-in leads to perfect factorization, which means that κ(AP ) = 1 but
at prohibitive cost, whereas insufficient fill-in can lead to a sub-optimal condition
number).

The other class of preconditioners that we discuss in detail here are sparse
approximate inverse (SPAI) methods, which are the main topic of this paper.
This variant evaluates the preconditioner P to be a sparse approximation to the
inverse of the stiffness matrix A. Frobenius norm minimisation and incomplete
bi-conjugation are the two most widely implemented frameworks to compute
the SPAI preconditioners [34, 4]. One major difficulty of SPAI preconditioning
is the choice of the sparsity pattern. Since the inverse of an irreducible sparse
matrix is proven to be a structurally dense matrix [9], when the sparsity pat-
tern is predefined, such preconditioners may not work well if there exist entries
with large magnitude outside the defined pattern. Attempts to address this by
automatically capturing a pseudo-optimal sparsity pattern include the use of a
drop tolerance [8] or of a “profitability factor” via a residual reduction process
[13, 16]. In this work we consider only predefined sparsity patterns based around
the sparsity of the family of matrices, A, being considered.

2.2 Data driven preconditioning

In recent years a number of approaches have been proposed for the direct so-
lution of systems of PDEs using both supervised and unsupervised ML meth-
ods. Noteworthy, and highly influential, early examples include the deep Ritz
method [10], the deep Galerkin method [32] and physics-informed neural net-
works (PINNs) [29, 30, 28]. The latter approach has led to a substantial, and
rapidly increasing, body of research into the unsupervised learning of PDE solu-
tions and related inverse problems. However, as forward solvers, PINNs are not
generally competitive with classical numerical approaches based upon efficient
preconditioning. It is for this reason, and inspired by the successes of PINNs, that
we seek to utilise the power of machine learning to generate high-performance
preconditioners (as opposed to complete solvers).

There is relatively little prior work on the use of machine learning to develop
preconditioners for use within conventional numerical algorithms. The first at-
tempt to generate a SPAI preconditioner appears in [31], where a convolutional
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neural network (CNN) is used to derive an approximate triangular factoriza-
tion of the inverse matrix. More recent research, such as [23, 17] has focused
on incomplete LU and Cholesky preconditioners, with the former targeting the
non-self-adjoint Navier-Stokes equations and the latter two considering SPD sys-
tems: the work of [23] being most similar to that considered in this paper due
to their use of a GNN. Other approaches that have been taken to develop novel
preconditioners include [3], which mimics a multigrid approach through a combi-
nation of a CNN-based smoother and coarse-grid solvers, and [20], which builds
a preconditioner directly upon a DeepONet approximation of the operator that
represents the solution of the underlying PDE [24].

3 Methodology

In this initial investigation we focus on distributions of sparse matrices, A, aris-
ing from the finite element discretization of elliptic PDEs: the precise sparsity
pattern depending upon the differential operator, the finite element spaces used,
and the mesh on which the discretization occurs. Even though the inverse matri-
ces, A−1 ∈ ℜn×n are generally dense in structure, other preconditioning methods
are able to approximate cheaper versions of A−1, which led us to assume that
there exists a learnable distribution of high performance preconditioners within
a lower dimensional subspace of ℜn×n with a prescribed sparsity pattern. We
then propose a graph-conditioned variational autoencoder (GCVAE) architec-
ture which is able to generate such SPAI preconditioners for these SPD linear
systems.

3.1 Problem setup

Inspired by the traditional Frobenius norm minimization approach of SPAI pre-
conditioning, our starting point is the following assumption:

∀A ∈ SA ∃R ∈ SM :
∥

∥I −RTAR
∥

∥

F
≈ 0 , (2)

where SA is our set of possible sparse SPD matrices and SM ⊂ ℜn×n with
a prescribed sparsity pattern defined by a selected mask, M . Let us consider
the dataset A = {A(i)}Ni=1 having N independently and identically distributed
samples and drawn from an unknown distribution p(A), generated from a given
family of linear PDE problems. Let A−1 = g(A) where g(·) is the inverse ma-
trix transformation function. We assume that the conditional distribution of
p(A−1|A) lies within a parametric family of distributions, such as Gaussian, on
a lower-dimensional latent space such that pθ(z|A,A−1) = N (µ, σ2), where θ

represents the learnable parameters of the neural networks. We also assume that
for every given A(i) there exists a set of high-performance preconditioners R(i)

which satisfies eq. 2 with a given sparsity pattern M and R ∼ pθ(z|A,A−1).
Then the SPAI preconditioners R can be generated from the generative distri-
bution pθ(R|z,A) conditioned on input A, the prescribed sparsity pattern of R,
and latent variable z ∼ N (µ, σ2).
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The application of variational auto-encoders (VAEs) has shown a great po-
tential in learning the probability distribution of a given dataset [18] and, when
coupled with a condition, can ensure the robustness of the generative model [26].
VAEs have also shown great potential in modeling the distribution of the utility
matrix for a recommender system [1] and for a gene expression matrix [25], both
based upon large and sparse matrices. Therefore, we propose a conditional VAE
generative model to approximate SPAI preconditioners.

3.2 Architecture design

As noted above, the type of architecture we now consider is a conditioned vari-
ational auto-encoder (cVAE) [14]. The encoder part consists of two different
encoders, which we now discuss in turn.

Fig. 1. Schematic diagram of the proposed graph-conditioned variational autoencoder

As shown in Figure 1, the first is a conditional part (a graph encoder) that
consists of several layers of a graph neural network (GNN). The input data A

is a sparse matrix which is represented as a graph, where the diagonal entries
and off-diagonal entries are the nodes and edges of the graph respectively. GNNs
have two clear advantages over CNNs under our setting: 1) a GNN can perform
the feature mapping with a full “view” of the input data through its message
passing mechanism, 2) a GNN is only interested in the entries that are non-zero
therefore it is a sparse implementation, which significantly reduces the memory
requirement and the training cost. The graph VAE is first proposed by [19],
where it is used to learn latent representations of unweighted undirected graphs
with multidimensional node features for link prediction in citation networks. In
our case, the system matrix A can be treated as a weighted and directed graph
with single dimensional node features. Therefore we replace the GCN layer with
the Graph attention layer (GATv2) [6]. This graph encoder takes A∗ and X∗ as
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the input, where A∗ is the self-looped adjacency matrix of A and X∗ is the node
feature matrix (where X∗ ∈ R

n×1 and n is the number of nodes).

The second encoder is chosen to be a CNN encoder since it takes A−1, the ex-
act inverse of the system matrix A, as the input. CNNs are known to be powerful
and efficient feature extractors for image data [12], where grey-scale images are
fundamentally dense matrices. During training, we assume the latent distribu-
tion is a Gaussian, i.e. z ∼ N (µ, σ2), both encoders’ outputs are concatenated
and then passed through a multilayer perceptron (MLP) to approximate the
mean(µ) and the log variance(ϕ) of the latent distribution. The latent variable z

is then reconstructed deterministically through the reparameterization trick [18]

i.e. z = µ + σϵ, where σ = e
1

2
φ, ϵ is an auxiliary noise variable sampled from

standard Gaussian such that ϵ ∼ N (0, 1). This technique makes the stochas-
tic estimation of the latent variable z differentiable. The decoder reconstructs
R ∼ A−1 from z such that

∥

∥I −RTAR
∥

∥

F
≈ 0. We implemented the same op-

timisation function as the traditional SPAI algorithms, because the eigenvalue
decomposition operation is not differentiable and this least-square optimisation
implicitly reduces the condition number of AR which is what we are interested
in, as the condition number of an identity matrix and its multiplications with
an arbitrary scalar is 1. The sparsity pattern of R is constrained by a mask M

which has a similar sparsity pattern of A at the output layer. Without the prior
knowledge of A−1, this is the simplest method of predefining the sparsity pattern
as stated in [34]. Furthermore, we allow a small percentage of extra non-zeros
in addition to the existing non-zero entries, which we have found to significantly
improve the model performance in our experiments.

For inference, as shown in Figure 2 we pass the adjacency matrix A∗ and
the node feature X∗ of an unseen stiffness matrix A from the same family of
linear PDE problems through the graph encoder to generate the conditional
information G, then concatenate with z sampled from z ∼ N (µ, σ2) and pass it
through the decoder to generate the preconditioner R. Due to the nature of our
model, multiple different R can be generated for a single A.

Fig. 2. Schematic diagram of the inference process
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3.3 Loss function

In general, the family of VAE networks optimise the well-known evidence lower
bound (ELBO) [18]:

L = E[log p(R|Z)]− αDKL[q(Z|X)||p(Z)], (3)

where the prior Z ∼ N (0, I) s.t. p(Z) =
∏

p(zi) =
∏

N (zi|0, I). This type
of loss function contains a reconstruction term, which is the first term that
calculates the expected negative reconstruction error. The second term is the
KL-divergence term, and it can be regarded as a regulariser which encourages
the posterior distribution to be close to the prior, in this case the prior is assumed
as the standard Gaussian. In our case, we replace the reconstruction term with
∥

∥I −RTAR
∥

∥

F
and minimise the following loss function:

L = E[
∥

∥I −RTAR
∥

∥

2

F
]− αDKL[q(Z|X)||p(Z)]

for X = GNNθ(A
∗, X∗)⊕ CNNθ(A

−1) ,
(4)

where α is the regularising parameter, which is chosen to be 0.1. GNNθ(· ) and
CNNθ(· ) represent the GNN encoder and CNN encoder as shown in Figure 1,
and ⊕ is the aggregation operator.

4 Experiments

In the first set of computational experiments that we consider (subsections 4.1
and 4.2) the dataset, A, is drawn from piecewise linear finite element discretiza-
tions of a family of second order elliptic PDEs in two dimensions. The second
set of experiments considers a more challenging dataset, A, that is drawn from
discontinuous (piecewise quadratic) Galerkin discretizations of a family of two-
dimensional biharmonic problems (subsections 4.3 and 4.4). Such problems are
known to lead to highly ill-conditioned matrix systems upon discretization (as
illustrated below). Both experiments are trained on a single NVDIA RTX 3090
GPU with 24 Gigabyte of VRAM. The dataset preparation of both problems
takes less than 30 mins for the largest problem size. For the largest problem size
of 2D Poisson’s problem 1873× 1873, the training converges at 200 epochs and
around 6 mins per epoch. Similarly, for the largest biharmonic problem, of size
1089× 1089, the training converges at 260 epochs and around 2 mins per epoch.
The training cost is expected to grow linearly with the total number of hyper-
parameters, which depends on many different factors, such as the discretized
mesh density, parallelisation, depth of the model, number of the channels of the
CNN layers, etc. For practical implementation of the model, fine tuning of the
hyperparameters is required to find the optimal balance between the training
cost and model performance, though this is not the focus of this paper.
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4.1 2D Poisson’s Problem

We generate sets of N = 2000 matrices based upon the piecewise linear finite
element discretization of PDEs of the form

∇ · (f(x)∇u) = g(x), (5)

in two dimensions. For simplicity we consider a unit square domain and impose
Dirichlet conditions on the entire boundary. The dimension, n, of the result-
ing stiffness matrices, A, is equal to the number of interior node points in the
unstructured triangular mesh, whilst the entries of A depend upon the node
locations and the choice of f(x), which is drawn from a family of polynomial
functions that are positive on the unit square. Each set of 2000 matrices is gen-
erated on the same mesh and is randomly split into 1600 training samples and
400 for testing.

4.2 Results and discussion - Poisson family

This section demonstrates the performance of the preconditioners generated by
our GCVAE model when applied with a CG solver using a relative convergence
criterion of 1.0e-5. Included within our results is a comparison with two baseline
methods: Jacobi preconditioning and Super Nodal incomplete LU factorisation
(SPILU) [21] (using its symmetric mode to obtain IC preconditioning). Note
that the performance of the latter comparator depends critically on the value
of a “drop tolerance” parameter, which controls the amount of fill-in that is
permitted during the incomplete factorization of A. When this is very small the
IC preconditioner is highly effective but at the expense of significant additional
computational cost (reducing the overall efficiency of the solver); when the drop-
tolerance is larger the cost of computing and applying the preconditioner goes
down but at the expense of a much larger number of CG iterations.

Figure 3 (left) shows the average estimated condition numbers for precondi-
tioned systems with each choice of preconditioner. For the SPILU case we have
artificially selected the drop-tolerance for each problem size so as to match the
number of iterations taken using the GCVAE preconditioner. Consequently, by
design, the equivalent curve in Figure 3 (right), which shows average CG itera-
tions, completely overlays the GCVAE curve. Also in this graph are the average
iteration counts for SPILU applied in its more conventional form, with a constant
drop-tolerance (in this case 0.12). It is clear from these examples that both the
condition number and the CG iteration counts with Jacobi preconditioning grow
at a much faster rate than for the GCVAE approach, demonstrating that our
model will out-perform the Jacobi method on total execution time for sufficiently
large problems.

Comparison against SPILU is less straightforward due to the trade-offs in the
choice of drop-tolerance described above. The SPILU algorithm uses (AT + A)
based column permutation [22] which causes the condition number to increase
rapidly with the problem size as shown in Figure 3 (left). This illustrates the
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Fig. 3. Comparison of the condition number and CG algorithm iteration count for
Jacobi preconditioning, SPILU preconditioning and our proposed method (GCVAE)
when applied to discretizations of a family of second order operators

limitation of using the condition number as the measure of quality, which is why
we prefer to use iteration count. Nevertheless, even with this measure, Figure 3
(right) shows that the parameters of the SPILU method need to be carefully
tuned to achieve optimal performance. By carefully reducing drop-tolerance as n
increases we are able to match the iteration counts of the GCVAE preconditioner,
though the latter has significantly lower condition numbers. In Figure 5 (left)
we also compare the density of non-zero entries in these two preconditioners for
different choices of n, in order to give an indication of their computational costs.
It can be seen that for sufficiently large systems the GCVAE preconditioner
will be expected to have fewer non-zeros. Furthermore, to apply the SPILU
preconditioner requires backward and forward substitution to be applied which
cannot naturally be done in parallel, whereas the SPAI preconditioning is ideally
suited to parallel implementation (since it just requires a sparse matrix-vector
multiplication). The execution time benchmark test has not been carried out
as our model is currently implemented in a non-optimised manner in a Python
environment, whereas the state-of-art numerical software SPILU is implemented
in a highly optimised C-language environment. Nevertheless, the advantage of
the data driven approach is that, once it is tuned and trained, it can be used as
a black box tool with execution time complexity close to O(n).

4.3 Biharmonic Problem

We again generate sets of N = 2000 matrices, this time based upon the piecewise
quadratic discontinuous Galerkin discretization of fourth order PDEs of the form

∇2(f(x)∇2u) = g(x) (6)

in two dimensions. We consider a unit square domain and impose Dirichlet con-
ditions on both u and ∇2u on the entire boundary. For a given triangular mesh,
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the dimension, n, of the resulting stiffness matrices, A, is much greater than
for the piecewise linear approximations previously considered and the condition
number of the matrix A is much larger (hence this is a considerably more chal-
lenging test problem). The individual non-zero entries of A depend upon the
mesh node locations and the choice of f(x), which is again drawn from a family
of polynomial functions that are positive on the unit square. As previously, each
set of 2000 matrices is generated on the same mesh and is split into 1600 train-
ing samples and 400 for testing. For this problem, we allow 20% extra number
of non-zeros upon the existing non-zero entries during training and designed 4
CNN layers for its encoder and decoder to guarantee the convergence and model
performance. In contrast, we only used 3 CNN layers with less channels per layer
for 2D Poisson’s problem.

4.4 Results and discussion - Biharmonic family

Similarly, in this subsection, we compare our method against two baseline meth-
ods: Jacobi and SPILU. As shown in Figure 4, for this ill-conditioned problem, as
the problem size increases our method significantly outperforms Jacobi precondi-
tioning in terms of both the condition number reduction and the CG convergence
rate.

Comparison against SPILU shows similar features as for the previous test
case. For the reasons described previously we do not find condition number to
be a useful metric in this case and therefore focus on iteration counts. Fig-
ure 4 (right) shows that it is possible to tune the value of drop-tolerance for
each problem size in order to match the number of CG iterations obtained with
the GCVAE preconditioner, as well as showing the growth in iterations when a
constant drop-tolerance is used (in this case 1.2 × 10−4). Equally significantly
however, we see from Figure 5 (right) that the number of non-zeros required for
the GCVAE preconditioner is significantly fewer than for the SPILU precondi-
tioner, even when drop-tolerance is tuned to match the number of iterations.
Combined with the fact that application of SPILU requires backward and for-
ward substitution, we observe that this preconditioner is much more expensive
to apply than our proposed approach.

5 Conclusions and Future Work

5.1 Conclusions

This paper proposes a novel generative modelling framework to generate sparse
approximate inverse preconditioners for matrix systems arising from the mesh-
based discretization of families of self-adjoint elliptic partial differential equa-
tions. The approach has shown excellent potential in terms of its ability to reduce
the condition number of the systems considered and to increase the convergence
rate of the conjugate gradient solver. This performance has been demonstrated
for two different families of partial differential equations: of second and fourth



12 M. Li et al.

Fig. 4. Comparison of the condition number and CG algorithm iteration count for
Jacobi preconditioning, SPILU preconditioning and our proposed method (GCVAE)
when applied to discretizations of a family of fourth order operators

Fig. 5. Comparison of the proportion of non-zero entries in the preconditioners gener-
ated via the SPILU and GCVAE methods for the second order (left) and fourth order
(right) problems
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order respectively. Furthermore, comparing against a state-of-art factorisation-
based preconditioning technique we observe that, for sufficiently large systems,
our proposed approach should require fewer floating point operations to apply
and that it is better suited to future parallel implementation.

5.2 Limitation and Future Work

Based upon the evidence presented here we believe that the proposed GCVAE
approach has significant potential. However, there still exists several limitations
which will need to be considered for future development. The most significant
of these is that our training phase currently requires the inverse matrices A−1

to be known for our training set, even though the dataset preparation cost is
negligible compared with the training time for the experimented problem size,
this cost will quickly grow to an unaccepted level when generalising to solve real
world problems. Consequently, we propose to investigate ways to relax this re-
striction (e.g. through the use of training data from coarser finite element grids
or the application of techniques from algebraic multigrid to obtain coarser rep-
resentations of training matrices and inverting these). Furthermore, despite our
current masking scheme allowing flexible mask selection that can be tuned to deal
with more complex PDE problems, the sparsity pattern does need to be decided
prior to training which may restrict the generalisation capability of the model.
A learning-based masking approach could be more flexible and efficient, so will
be attempted in further development. Finally, the work in this paper is limited
to self-adjoint elliptic problem, which result in symmetric positive-definite stiff-
ness matrices. We also intend to generalise our model to other families of PDE
problems, which lead to non-symmetric and/or indefinite linear systems.
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