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Abstract. Physics-informed neural networks (PINNs) provide a means
of obtaining approximate solutions of partial differential equations and
systems through the minimisation of an objective function which includes
the evaluation of a residual function at a set of collocation points within
the domain. The quality of a PINNs solution depends upon numerous
parameters, including the number and distribution of these collocation
points. In this paper we consider a number of strategies for selecting
these points and investigate their impact on the overall accuracy of the
method. In particular, we suggest that no single approach is likely to
be łoptimalž but we show how a number of important metrics can have
an impact in improving the quality of the results obtained when using
a őxed number of residual evaluations. We illustrate these approaches
through the use of two benchmark test problems: Burgers’ equation and
the Allen-Cahn equation.

Keywords: Partial differential equations · Deep learning · Physics-informed
neural networks · Adaptivity.

1 Introduction

1.1 Context

This paper is concerned with the mechanism by which Physics-informed neural
networks (PINNs) [1, 2], allow us to introduce our prior knowledge of physics
into a machine learning (ML) algorithm. PINNs are an ML approach to the so-
lution of systems of partial differential equations (PDEs), where there is limited
or noisy ground truth data. In this context, the PDEs provide a mathematical
model of the physics, which is captured in the method through the inclusion of
loss terms that are evaluated by calculating PDE residuals at collocation points
throughout the domain. This point-based, meshless approach offers greater flex-
ibility compared to meshed methods in traditional numerical models - but also
poses an interesting problem regarding the number and distribution of said col-
location points.
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The original implementation of PINNs uniformly distributes a fixed number
of collocation points randomly throughout the domain. However, in certain prob-
lems some areas are intrinsically harder to learn than others - and this purely
random approach can lead to slow or inefficient training. Different collocation
points contain different amounts of information for learning, which indicates
there is an underlying distribution of locations for collocation points that can
maximise the learning - which is mostly likely non-uniform and problem depen-
dent. Such a proposition suggests that adjusting the distribution of points, by
biasing towards features of interest, may be beneficial in terms of efficiency. It
may also be necessary for practical reasons to minimise the risk of the network
getting trapped in local minima during training [3]. However, manually choosing
this distribution of collocation points can be an arduous task and requires a

priori knowledge of the solution, or at least of which areas of the domain will be
“most important”. The alternative is to increase the number of points used glob-
ally which, whilst potentially effective, adds significantly to the computational
cost.

To find the optimal or a good distribution of the collocation points, there are
two common approaches to explicitly or implicitly approximate this distribution.
The first approach is to have fixed collocation points but weight them differently,
i.e. adaptive weighting. Examples of this are [4], [5]’s Self-Adaptive PINNs, a
concept extended by [6]’s DASA point weighing, and more recently [7]’s Loss-
Attentional PINNs. The residual-based attention scheme in [8] works similarly
to the above, weighting the influence of specific collocation points in the domain
to ensure key collocation points aren’t overlooked.

The other approach is to refine the locations of collocation points, i.e. adap-

tive resampling. [9] first presents this type of adaptive refinement based on resid-
ual information. Other sampling approaches include [10–12]. [13]’s formulation
for resampling is a more general version of some of the previous approaches,
and systematically compares adaptive collocation resampling methods to fixed
approaches. Also noteworthy is [14]’s implementation of a cosine-annealing strat-
egy for restarting training from a uniform distribution when optimisation stalls.
Whilst the above focus on the collocation points where the PDEs are evaluated,
[15] also considers optimising the selection of experimental points (where the
data is available for supervised learning problems) at the same time.

From the sampling point of view, existing methods essentially seek the ideal
distribution of collocation points, via either explicit parameterisation [9], or im-
plicit approximation [10]. The information exploited up to date is mostly focused
on the loss function [10, 12, 13], e.g. information such as local PDE residual at
collocation points, or gradients of the loss term. Deviating from existing liter-
ature, we investigate into a different category of information that proves to be
useful in parametrising the ideal collocation points. This information is the ge-
ometric information of the estimated solution, e.g. their spatial and temporal
derivatives. The intuition behind is the solution geometry reveals intrinsic in-
formation about the PDE. For instance, stiffness regions are harder to learn [7].
By introducing the solution geometry, our aim is to shed a deeper light into
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the complexity behind seeking an “ideal” distribution, and into the interplay be-
tween the effectiveness of different point sampling methods, the complexity of
the problem and the computational cost.

1.2 PINNs

The process of training a PINN is similar to that for a regular NN: once a
topology and a set of weights is defined we seek to find values of these weights
that minimise a prescribed loss function. As discussed below, we will consider
a fully unsupervised learning task for which the loss function is obtained from
the sum of all of the residuals of the PDEs at all of the selected collocation
points. The significance of the number and location of the collocation points
is substantial therefore, since they directly impact on the loss function which
is to be minimised. The crux of adaptive resampling is that a fixed number of
points are moved based upon some criteria (that we investigate), with a view to
this modified loss function being a better objective for the overall minimisation .
Previous investigations of this approach have redistributed the collocation points
based upon a probability density function (PDF) that was formed using the
values of the residuals at the current points or the derivatives of the loss function
with respect to the location of the collocation points. In this work, we consider
alternative criteria based upon mixed derivatives of the estimated solution and
of the residual.

The loss function L(θ) of a PINN can be typically characterised as the sum
of the individual losses due to data fitting (Ldata), enforcing the governing PDE
(LPDE), and weakly enforcing boundary conditions (LBCs) as follows:

L(θ) = wdataL(θ)data + wPDEL(θ)PDE + wBCL(θ)BCs

Here, the relative impact of each loss term can be controlled through the weight,
w, whilst θ represents the trainable network parameters. For the one-dimensionsal
time-dependent problems that we look at, we will consider a spatial dimension
x, a temporal dimension t and solve for the dependent variable u(x, t). The
PDE loss term is obtained by evaluating the PDE residual (f , say) for every
collocation point in the set of selected collocation points x ∈ T :

LPDE =
1

|T |

∑

x∈T

|f(x;u;ux, ut, uxx; θ)|
2

It is important to distribute these points throughout the domain however ev-
idence suggests that it may also be beneficial to identify and place a greater
proportion of points in particular regions of importance, so that the loss term
especially includes these areas. This can ensure that optimising the cost func-
tion improves how well the PDE is satisfied around these locations, and therefore
hopefully improves the solution in those areas.

For forward problems, PINNs can be trained without the need for data, and
boundary conditions can be enforced in a ‘hard’ manner. This is the approach
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that we take here in order to focus exclusively on the PDE residual contribution
to the loss. We strongly impose the boundary conditions by applying an output
transformation to the results of the neural network and we treat the PINN as
an unsupervised problem with no input data. As a result, LPDE becomes the
only term to optimise in our loss function.

Throughout this paper, for consistency with other studies in the litera-
ture [13], a simple feedforward NN is used consisting of 3 intermediate layers
of 64 nodes each, with a tanh activation function after each layer. The training
consists of 15,000 initial steps using the ADAM optimiser (with learning rate
of 0.001), followed by 1000 steps using L-BFGS [13] before beginning the re-
sampling process for adaptive methods. For these methods, the points are then
redistributed at this stage and then the training continues with 1000 steps of
ADAM and 1000 steps of L-BFGS, repeating until the number of resamples
specified are completed.

2 Adaptive resampling

2.1 Probability density functions

As mentioned in the introduction, for many problems PINNs will give more
accurate results when the collocation points are distributed following an appro-
priate, problem-dependent distribution. The process of rearranging the colloca-
tion points can be automated by using information gathered during the training
process. This approach has been shown to work well in the literature using the
local residual as a guiding metric [9, 13]; but this paper also proposes alterna-
tives based on the spatial and temporal derivatives of both the residuals and
estimates of the solution. These proposed alternatives are assessed against both
uniform, fixed distributions and existing adaptive redistribution methods, and
shown to be beneficial in many cases.

The method that we use to resample the points is consistent with [13] for
comparison, which chooses the next set of collocation points T from a fine grid
of random points X . All points in X are assigned a probability (P (X )), and the
prescribed number of collocation points are chosen according to the normalised
PDF P̂ (X ). These are obtained from equations 1 and 2:

P (X ) =
Y (X )

k

Y (X )k
+ c (1)

P̂ (X ) =
P (X )

∥P (X )∥1
(2)

Here Y (X ) is the vector containing the magnitude of the information source
chosen (e.g. the current residual or its derivatives, or some derivatives of the

current estimate of the solution), Y (X )k is the mean value across all points in
X and k, c are constant hyper-parameters that affect the resampling behaviour.
A visualisation of the distribution of points obtained using the PDE residual as
Y (X ) for solving the Burgers’ Equation is shown in figure 1
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Fig. 1. Y (X ) = PDE Residual shown at every point in X (left); and the corresponding
points selected for T (right).

As a baseline, we also compare the performance of the adaptive methods that
we consider against two fixed distributions: a uniform random distribution and
an alternative uniform, pseudo-random, distribution made with a Hammersley
sampling algorithm [16]. For these fixed distributions, instead of resampling after
a given number of steps, the training is continued until an equivalent amount of
training steps are carried out.

We consider two cases for the adaptive method for which Y is based upon
the current local residuals: one where the initial distribution of points before
any resamples is randomly generated (PDE,R), and the other where the initial
distribution follows Hammersley sampling (PDE,H). We also consider the use
of the current solution estimates as an information source, defining Y based upon
the mixed (spatial and temporal) second derivative of the current solution. We
will refer to this as the local geometric curvature of u, and denote this case as
“Uxt” in the subsequent text. We also consider a version of Y that is based upon
the mixed second derivative of the local residual values, which will subsequently
be denoted as “PDExt”.

2.2 Problem Definition

The main benchmark that we initially use in order to assess the different sam-
pling strategies that we consider is the 1D Burgers’ Equation, given by:

uux + ut = ν uxx, x ∈ [−1, 1], t ∈ [0, 1], (3)

where the magnitude of ν determines the relative effect of diffusion. Dirichlet
boundary conditions are assigned:

u(−1, t) = u(1, t) = 0,

as is the following initial condition:

u(x, 0) = − sin(πx).
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Note that, since we solve this problem on a space-time domain (see figure 2)
the initial condition and the boundary conditions are treated identically by the
PINN. To illustrate the main features of the analytical solution to this problem a
colour map of u is plotted in figure 2. Note that the smooth initial solution (the
left boundary of the domain shown) steepens to a very sharp front by t = 0.25
and this remains an important feature of the solution for all subsequent times.
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Fig. 2. Burgers’ Equation contour plot of example solution with ν = π

100

As discussed in the previous section the boundary and initial conditions may
be imposed either weakly or strongly when using PINNs. Here we opt for the
latter by applying an output transformation to the u that is output by the
network:

output = − sin(π ∗ x) + (1− x2)ut

For this case; the PDE residual when used as an information source is there-
fore given by:

PDE = uux + ut − ν uxx (4)

Similarly,

Uxt =
∂2

∂x∂t
u(x, t) (5)

and

PDExt =
∂2

∂x∂t
(uux + ut − ν uxx) (6)

To measure and compare the accuracy of the different methods considered
an L2 relative error metric is used at the end of training. This compares the
prediction u to ground truth ugt as follows:

L2 =

√
∑

(u(i)− ugt(i))2
√

∑

ugt(i)2
.
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Note that the sums in this last expression are over every point i in a very fine
background grid which contains many more points than the number of collo-
cation points used to evaluate u. Furthermore, due to the stochastic nature of
ML training, a minimum of 20 repeats with different seeds were carried out for
each case investigated throughout this paper; with the quoted L2 errors always
representing the average of these.

2.3 Results: default case

For this first test problem we have applied six different solution strategies using
N = 2000 collocation points. In each case we follow the training regime of
[13], described in section 1.2 (15,000 initial steps of ADAM followed by 1000
steps of L-BFGS and then resampling every 2000 steps (1000 ADAM/1000 L-
BFGS). Figure 3 plots the error against the number of resamples taken for each
of the approaches considered, including the two constant point sets based upon
a uniform random distribution and a distribution based upon the Hammersley
sampling algorithm.
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1E+0
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L
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 E
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r
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Fixed, R Fixed, H PDE, R PDE, H Uxt PDExt

Fig. 3. Error against number of resamples solving Burgers’ Equation with described
default parameters v = π

100
;N = 2000

The initial distribution is seen to have an effect in both the fixed and residual-
based methods, with the use of the Hammersley sampling algorithm resulting
in consistently lower error. The local residual method with random initialisa-
tion (PDE,R) exhibited the least robustness and greatest variability, which can
be seen from the fact increasing the number of resamples did not consistently
lower the average error between runs. Generally, more resamples does result in
improving accuracy, with error descending below 0.1% for above 30 resamples
for the most of the adaptive resampling methods.

For the same case we also look at the error achieved using different numbers of
collocation points. This was obtained for 100 rounds of resampling and is plotted
in figure 4. This figure suggests that the threshold for the number of points
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required to obtain results of a given accuracy varies from method to method.
Even for the most accurate method (PDExt), the error seems to plateau however
between 0.01% and 0.1%, which the other adaptive methods eventually reach
at the default 2000 points. Nevertheless, this clearly suggests that the PDExt

approach could allow similar accuracy to other techniques but at a significantly
lower cost.
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Fig. 4. Error against number of collocation points for different resampling methods
solving Burgers’ Equation with described default parameters v = π

100
; 100 resamples

In conclusion, based on this single test case, we observe that the achieved
error of a PINN is heavily influenced by the chosen collocation point distribu-
tion, echoing what has been seen previously (see Introduction). Furthermore,
the adaptive resampling methods easily outperform the fixed distributions, with
both of the derivative-based redistribution methods performing quite well (espe-
cially when considering the mixed second derivative of the residual). In the next
section we explore the extent to which this behaviour generalises by changing
multiple aspects of the problem under consideration, including the initial con-
ditions and the magnitude of the diffusion term, and by considering a second
benchmark PDE: the Allen-Cahn Equation.

3 Results: other cases

3.1 Alternate Initial Conditions

In this example we contrast the same methods as in the previous section to once
again solve Burgers’ Equation, but this time we vary the initial conditions, and
therefore the entire evolution of the solution of the PDE. For each of the four
cases considered we compute a high resolution numerical solution to represent
the ground truth and use this to assess the error against an increasing number
of adaptive resamples of the collocation points. The corresponding results are
plotted in figure 5.
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Fig. 5. Error versus number of resamples. Initial conditions 2 and 3 are combinations
of randomly weighted sin curves of different frequency; with 2 being made up of three
low frequency curves and 3 being a higher frequency combination of four curves. Initial
conditions 4 and 5 are sin(2π) and 1.5sin(π) respectively.

Inspection of figure 5 suggests that for three of the four initial conditions
(2, 4 and 5), PDExt clearly outperforms the other methods (as it did for initial
condition 1 in the previous section). Not only does it deliver a smaller error
after the last resample (the maximum amount of training investigated) but the
error curve lies beneath the others at each stage in the adaptive process. This
gap is most noticeable in the 5th case, which corresponds to an initial condition
with a larger amplitude, thus leading to a faster shock formation and a sharper
shock. In this case it far outperforms the next best method. Furthermore, in each
case other than initial condition 3, the adaptive collocation point algorithms all
performed significantly better than using fixed collocation points. Unsurprisingly,
of the two fixed point approaches Hammersley always outperforms the uniform
random distribution.

The obvious outlier in figure 5 is initial condition 3. Here all of the methods
to quite poorly in terms of reducing the error and least worst result is obtained
using fixed collocation points based upon a Hammersley sampling. Further in-
vestigation is required to better understand this result, which shows that the
PINN performance (or, at least, the ease with which the PINN can be trained)
is highly dependent upon the problem being solved.

3.2 Adjusting PDE parameters

For the following example, we investigate adjusting the value of the ν parameter
in the PDE; which affects the magnitude of the diffusion term ν uxx. Lower values
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increase the shock sharpness, increasing the complexity of the problem without
fundamentally changing the shape of the solution. Increasing ν sees the opposite
effect. We use values of ν of 0.01 and 0.001, approximately multiplying and
dividing by 3 from the default ν = π

100 used in the previous section. The ground
truth is again computed using high-resolution numerical simulations and the
error when using different information sources to control the adaptive resampling
is again compared against the fixed uniform methods: see figures 6 and 7.
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Fig. 6. Error against number of resamples, for Burgers’ Equation with ν = 0.01
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Fig. 7. Error against number of resamples, for Burgers’ Equation with ν = 0.001

For the simpler case, ν = 0.01 (figure 6), all adaptive methods behave sim-
ilarly, delivering a small error after relatively few resamples. Comparing the
fixed methods, the Hammerlsey distribution is again consistently better than a
random fixed distribution. Furthermore, in this specific example, it again out-
performs the adaptive sampling methods. Unlike case 3 of figure 5 however, the
accuracy of all of these PINNs solutions is high. One possible explanation for the
Hammersley approach being the best in this case is that, unlike the resampling
methods, it uses the L-BFGS optimisation algorithm for the majority of training
steps (as opposed to an equal split between ADAM and L-BFGS for the adap-
tive methods). Overall, It is clear that by making the solution of the problem
smoother (through increasing ν) all of the methods do well and therefore use of
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the simplest approach, based upon a fixed distribution of collocation points, can
be appropriate.

For the more challenging case of ν = 0.001 (figure 7), all methods struggle
to converge to an accurate solution using N = 2000 collocation points. The
least worst approach, with an L2 error of 14%, is again the adaptive method
based upon PDExt. Based upon this set of results we can make the opposite
proposition: that for complex problems, the choice of adaptive sampling method
may not be the limiting factor to accuracy, and an increase to either the num-
ber of collocation points or the network complexity may be needed to increase
accuracy.

We test this proposition by undertaking a study to look at the impact that
changing the number of collocation points has on the solutions obtained in the
ν = 0.01 and ν = 0.001 cases. In table 1 we consider the simpler ν = 0.01 case,
observing the change in performance when the number of collocation points is
halved to 1000. Conversely, in table 2, the more complex case with the sharper
shock (ν = 0.001), we double the number of collocation points to N = 4000 and
observe whether there are any significant increases in accuracy.

Table 1. Effect of changing N ; L2 Error at 100 resamples for ν = 0.01

N Fixed, R Fixed, H PDE,R PDE,H Uxt PDExt

2000 2.019E-04 8.95E-05 1.024E-04 1.152E-04 1.089E-04 1.055E-04

1000 3.089E-03 3.925E-04 1.503E-04 1.867E-04 1.458E-04 1.258E-04

Error Change 1429.9% 338.4% 46.8% 62.1% 33.9% 19.3%

In table 1, decreasing the number of collocation points from 2000 to 1000
increases the error as expected. However, there is a big discrepancy in how much
the different methods are affected. A positive % signifying increase in error, the
fixed methods are substantially less effective with fewer points. The opposite is
true for adaptive methods, especially for PDExt which only sees an increase in
error of 19.3% compared to the 3-fold increase of the fixed Hammersley distri-
bution of points.

Table 2. Effect of changing N ; L2 Error at 100 resamples for ν = 0.001

N Fixed, R Fixed, H PDE,R PDE,H Uxt PDExt

2000 4.209E-01 5.093E-01 3.925E-01 4.780E-01 3.797E-01 1.425E-01

4000 4.049E-01 3.836E-01 1.858E-01 1.996E-01 2.591E-01 3.660E-02

Error Change -3.9% -32.8% -111.2% -139.5% -46.6% -289.3%

In table 2, we are this time looking at the decrease in error as a result of
doubling the number of collocation points in the case of ν = 0.001. As antici-
pated, the error does decrease in each column (signified by a negative increase)
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however this improvement is relatively small in most cases, meaning that the
overall errors are still not competitive, even with this increase in resources. The
biggest decreases are seen for the PDE,H and especially PDExt, which is the
only method to achieve an error under 10%.

3.3 An alternative PDE: Allen-Cahn

Having presented several variations of the Burgers’ Equation problem, our next
step is to consider a different PDE entirely and observe the results. The Allen-
Cahn equation is chosen for this due to its complex transient behaviours which
are known to be challenging to capture computationally. The problem is defined
as follows:

∂u

∂t
= D

∂2u

∂x2
+ 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1] (7)

We take D = 0.001 and use the initial condition

u(x, 0) = x2 cos(πx) ,

and boundary conditions

u(−1, t) = u(1, t) = −1 .

For this problem we again compute a high-resolution numerical solution for
the ground truth and consider the L2 error as the number of resamples is in-
creased. Based on the observations of the previous subsections, we undertake
these tests for three distinct numbers of collocation points: N = 500, 1000, 2000.
The same resampling methods as in section 2 are used, using a minimum of 20
repeats per case. The results for N = 500 are shown below in figure 3.3. For this
case, the adaptive methods are again consistently superior to using fixed collo-
cation points. Similar to the Burger’s equation solutions with a large ν = 0.01,
there are no clear advantages between PDExt, and the approaches based upon
the local residual (though using Uxt is not so good).
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Fig. 8. Error against number of resamples solving the Allen-Cahn Equation with N =
500
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For N ≥ 1000, a similar pattern is observed to that shown in figure 6, where
there is little difference between resampling and fixed methods. In this case, the
increased number of points again makes the problem simple enough to solve
with fixed collocation strategies, so that the benefits previously observed from
using adaptive resampling methods disappear. In fact a fixed pseudo-random
Hammersley distribution performs better than the other curves: perhaps again
benefiting from more L-BFGS optimiser steps.

For the Allen-Cahn Equation case, the behaviour and importance of sampling
in these methods varies significantly depending on the number of points used.
The less sharp shocks in this solution could also be influencing the effectiveness
of using derivatives of the solution as redistribution criteria. Nevertheless, the
adaptive methods clearly outperform the fixed distribution of collocation points
for the case N = 500, again suggesting that results of a prescribed accuracy can
be obtained with fewer collocation points when adaptive sampling is permitted.

4 Discussion and Conclusion

In this paper, to better explore the problem of collocation point sampling in
PINNs we have examined the two benchmark problems of Burgers’ Equation
and the Allen-Cahn Equation. We have used novel information sources based on
derivatives of the local residual and the solution estimate to guide the resampling
process, which has been kept consistent with other approaches in literature, and
compared the results to other resampling methods and fixed random and pseudo-
random distributions.

Overall, we have observed that using adaptive point distribution typically
allows more accurate PINNs solutions to be obtained than using fixed point dis-
tributions for small numbers of collocation points. Using fewer collocation points
is potentially important since the training cost of a PINN grows in proportion to
this number (all other factors being equal). Furthermore, we have observed that
defining the probability distribution for the collocation point locations based
upon the mixed second derivative of the residual with respect to the indepen-
dent variables typically outperforms, often significantly, using the residual alone,
as in [13].

For Burgers’ equation with a smooth initial condition that leads to the for-
mation of a single “shock”, and a diffusion parameter such that this features is
sufficiently sharp, we obtained the smallest errors using this approach (Fig. 3).
Equally importantly, we observed that we could reach such errors with signif-
icantly fewer collocation points than for any of the other techniques that we
compared against (Fig. 4). When considering other initial conditions and other
diffusion parameters the relative performance of the adaptive approaches was
seen to depend upon the complexity of the specific solution in each case. Typi-
cally, there appears to be a value of N above which the use of a uniform (Ham-
mersley) distribution of points is preferred - however this value can be relatively
large for the more complex problems (and is relatively small when the solution
is smoothly varying everywhere). When considering numbers of points below
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this critical value of N we invariably find that using the mixed derivative of the
residual is the best strategy for defining the PDF for drawing the collocation
point locations.

Consideration of a different PDE, the Allen-Cahn equation in this case,
demonstrates similar behaviour. Specifically, for a given problem there is a value
of N below which the adaptive sampling approach is preferable (and above which
a uniform Hammersley distribution suffices). In the particular examples consid-
ered here, defining the PDF based upon the mixed derivative of the residual is
still reliable and robust, however its improvement relative to using the residual
alone is less clear. Future work will extend the exploration of these resampling
methods to other PDEs beyond Allen-Cahn, helping assess the generalizability
of our findings. As our approach does not explicitly constrain the type of domain
we can study, we should also be able to consider domains with higher spatial
dimensions and more complex shapes.

In terms of computational cost, the PINNs network we have considered is not
competitive with standard discretization methods for solving individual forward
problems. This is primarily due to the high computational cost of training with
full gradient descent methods like L_BFGS. As for the cost of the resampling
strategies we have discussed, these only contribute to a small overhead (estimated
at 3% in [13]) to the overall computational cost of PINNs training.

Considering other common problems in ML, the biggest challenge is deter-
mining what constitutes an appropriate training regime. We did not observe
overfitting to occur, even with fixed sampling methods. However, the choice
of optimisation algorithm and training regime was still impactful. The use of
faster stochastic gradient descent methods like ADAM helped initialise training
but had a limited ceiling to accuracy, hence the need for the more expensive
L_BFGS. Whilst we were not able to fully explore the impact of different train-
ing regimes within the scope of this paper, efficiency could feasibly be improved
by further optimising this via methods such as cosine annealing [14]; or by op-
timising the architecture employed for solving problems of varying complexity.

In summary, we have shown that a number of different strategies are viable
for selecting the location of PINNs collocation points with resampling methods.
In particular, we have shown that resampling can be guided not only by the local
residuals, but also by the spatial and temporal derivatives of the residuals and
even of the solution estimates themselves. Furthermore, we have observed that
a number of different factors impact the accuracy of the PINN method, making
it difficult to analyse any single aspect (such as collocation point selection) in
isolation. Whilst we believe that our contribution begins to shed some light on
the interplay between the location of the collocation points and the ability of a
PINN to learn the PDE solution it is clear that further research is desirable in
order to be able to propose robust implementations that support reliable training
or provide accuracy guarantees.
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