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Industry 4.0 has birthed a new era for the chemical manufacturing sector, transforming reactor design and

integrating digital twin into process control. To bridge the gap between autonomous chemistry

development, on-demand manufacturing and real-time optimization, we developed a cloud-based

platform driven by model-based design of experiment (MBDoE) algorithms integrated in a simulation

software for model identification (SimBot) to remotely coordinate a smart flow reactor, also known as the

LabBot, sited in a different location. With real-time data and setpoints synchronization, MBDoE was able

to identify kinetic models using a limited number of experimental runs. Within this platform, two

pharmaceutically relevant syntheses were investigated as case studies: amide formation and nucleophilic

aromatic substitution. A new kinetic model providing statistically adequate data description within the

whole investigated experimental design space was identified for the amide formation reaction. The model

for the nucleophilic aromatic substitution with a well-known but complex mechanism was accurately

identified ensuring a statistically precise estimation of kinetic parameters.

1 Introduction

Recent advances in automated chemistry development,1

chemical manufacturing on-demand2 and real time
optimization3,4 indicate that data-driven modelling approaches
can be used to autonomously explore chemistry development in
a closed loop. With the goal of automation to chemical
synthesis, closed-loop reaction systems have become more
commonplace, providing advantages like control and self-
optimisation of reactions in automated platforms. The
development of automated platforms can help the automation
of different tasks through a computer network that schedules
them. Self-optimising reactors have proven to be effective5,6 and
have shown the possibility to conduct experimental campaigns
in a reactor with minimum human interaction. However, these
automated platforms do not necessarily aim to develop physics-
based models. The use of physics-based models would increase
process understanding, enhance platform robustness, and

explore different conditions, in comparison to self-optimization
platforms where optimised reaction conditions are identified
through a black-box approach. The development of such models
aligns with the increasing interest in the greener synthesis of
active pharmaceutical ingredients (APIs) using continuous flow
chemistry to reduce the drug development timeline.2

Continuous-flow chemical reactors have attracted a significant
attention in the pharmaceutical industry for reaction
development and scale-up.7 Flow reactors are efficient in
acquiring the reaction information from minimal amount of
resources alongside with the ability for feedback control into
the continuous system.1 Online analysis of flow reactor systems
has shown a great potential for full automation. In this work,
we take a further step on this development where the closed-
loop integration and online analysis is automated through a
cloud-based platform, a cloud service enabling communication
to remotely control the reactor system which allows flexibility
on the location of platforms and the hosts of the software,
enabling the use of proprietary algorithms and computationally
data-efficient approaches.

To achieve physics-based models for use in the cloud-based
platform, analyses of relevant experimental designs, that
typically require extensive amounts of time and resources, need
to be performed. Examples of experimental designs include
factorial experiments,8 randomised experiments,9 and model-
based design of experiments (MBDoE).10 Factorial experiments
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consider all possible combinations of various additive levels in
different factors (e.g. reactor temperature and reactant
concentration) affecting the chemical system. Although such
designs are easy to generate and execute, the experimental cost
is prohibitive especially in the case of multiple experimental
factors. Even where fractional factorial experiments11 are
selected to reduce the cost, the design may result in scarcely
informative experiments. Randomized experiments involve
fewer combinations of levels of factors generated by statistical
methods. As the number of experiments is predefined, random
experiments can achieve lower experimental costs than factorial
experiments, while rapidly exploring the experimental design
space for informative experiments. The application of MBDoE
requires one or more candidate physics-based models and to
design optimal experimental conditions resulting in the most
informative data to perform 1) parameter identification or/and
2) model discrimination. With physics-based models, the
MBDoE techniques can design optimum experiments that
match available resources and provide feedback to improve the
model performance.

Algorithms for parameter estimation and optimal MBDoE
have been employed online to drive experimental campaigns
with the aim of selecting the best model among a set of
given model structures (i.e. model discrimination)12,13 and/
or improving the statistical quality of the parameter
estimates for a given model structure.14,15 In conventional
MBDoE frameworks, the model identification process is
performed in a purely sequential manner involving: 1)
design of experiments at the available parameter estimates,
2) execution of experiments and 3) parameter estimation
and evaluation of a posteriori statistics using the available
measurements. This process is repeated until parameters
are estimated with minimum uncertainty or until the
maximum experimental budget (number of experiments) is
achieved. It is evident that such a procedure is sub-optimal
as the initial parameter estimates are affected by parametric
uncertainty. This drawback has been resolved by online
redesign of experiments,16 where a new design of
experiment can be computed every time as soon as a new
measurement becomes available. The online MBDoE
techniques will therefore be used in this work to drive the
cloud-based platform when scheduling a sequence of
experiments to be executed remotely in steady-state in a
smart flow reactor (LabBot).

While MBDoE techniques have been applied in a number
of fields, a recent review17 alluded to paucity of applications
in the pharmaceutical industry. In anticipation, McMullen
and Jensen13 demonstrated with an organic chemistry
synthesis the use of MBDoE for model discrimination and
parameter estimation, delivering a scalable kinetic expression
using Bayesian statistical selection studying a homogeneous
single-step Diels–Alder transformation discriminating 3
alternative kinetic models.

In this paper we propose the use of a cloud-based platform
based on a MBDoE-driven software for model identification
(“SimBot”), to optimally design experiments executed remotely

in an automated flow reaction system (“LabBot”). In this work,
while the LabBot site for generating understanding of the case
studied is located at the University of Leeds, the MBDoE site for
set-point generation is located at the University College London.
We validate the effectiveness of our MBDoE-driven platform
using two case studies: the pharmaceutically relevant synthesis
of N-alkyl amides18 as well as a multistep reaction, a
nucleophilic aromatic substitution.5 A key feature of this
research is the integrated multisite approach, where all partners
contribute to the evolution of the series of experiments. The
research centres interacted via a cloud-based experimental
design and analysis system (EDAS) that facilitated the exchange
of processing conditions and experimental results. Advanced
automated flow chemistry was integrated with MBDoE to
update information in the Bayesian sense. Although in this
work we have used a single LabBot, our vision is for the use of
multiple computational services that exchange information with
multiple automated laboratory robots, integrating experimental
set-point generation, experimental execution, analysis of
experiments and optimisation, so that eventually the FAIR
(findability, accessibility, interoperability and reusability)
guiding principles for scientific data across distributed
laboratories are satisfied.19

The structure of this paper is as follows. Section 2 presents
in details materials and method employed in this work from
the two main aspects of the work: experimental and
computational, as well as their cloud-based communication
protocol. Section 3 describes the two case studies and discusses
the results on application of the cloud-based platform and
Section 4 concludes the paper.

2 Materials and methods

In this section, we discuss in detail the LabBot – the
experimental setup, the SimBot – the modelling and simulation
software, and the communication protocol between the two
systems via the cloud. The LabBot comprises compartments for
reaction, control, analysis, and flow while the SimBot comprises
modules for simulation, sampling, parameter estimation,
MBDoE applications and validation. These two systems
exchange information as shown in Fig. 1: the LabBot receives
experimental setpoints to produce experimental data while the
SimBot computes new experimental setpoints from past
experimental data.

2.1 LabBot reactor system

Fig. 2 shows a sketch of the LabBot, a smart flow reactor
system comprising a tubular reactor, a series of control
instruments and an automation network. The reactor is a 4″
circular aluminium block with the tubing wrapped around
it, and the heating provided by a Eurotherm 3200
temperature controller.20 Three pumps (HPLC dual piston
reciprocating pumps – JASCO PU2800) supply feed A, feed B
and neat solvent into the reactor, and the supply flows are
connected through 2 tee-pieces (Upchurch Scientific P-207)
as shown. The reactor pressure is controlled with a back-
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pressure regulator (BPR, 100 psi, Upchurch Scientific P-505).
The reactor system is connected to an online LC, using an
in-line 4 port sampling valve (VICI Valco EUDA-CI4W.06)
equipped with 0.06 μL sample loop and connected to the
HPLC (Agilent 1260 equipped with Sigma Ascentis Express
C18 reverse phase column, 5 cm, 4.6 mm ID and 2.7 μm
particle size).

The LabBot is an automated system controlled by Matlab
algorithms. The system, requiring expertise in reactor
initialisation, mechanism analysis and experimentation
campaign, operates based on four timer objects to schedule the
execution of commands. The four timer objects are: 1) the
request, 2) the temperature, 3) the steady state and 4) the sample
analysis. The communication between the external client and the

Fig. 1 An illustration of exchange of experimental data and setpoints required between LabBot and SimBot with the enabling compartments and
modules of the two systems also shown numbered according to the sequence of activities in each system.

Fig. 2 Automated continuous reactor system equipped with software for controlled flow ramps. The sequence of actions with timer objects in
the PC control is also displayed.
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LabBot is achieved via a cloud service. When the LabBot needs to
be used by an external user, a new campaign is generated with a
directory in the cloud. In this directory the external user will
submit requests and the LabBot its output files related to the
process monitoring and the sample analysis results. The request
and the output files are in the comma separated value (csv)
format. The request and output files need to have a unique
identification number to be distinguished one from each other.
This is achieved by adding a sequential number to the name of
request and output files which we call “epoch”. Further
information about the operation of the LabBot using the four
timer objects can be found in Section S1 in the ESI.†

Data from distributed laboratories is required to satisfy four
objectives, which are contained in the FAIR guiding principles
agreed globally for scientific data management.19 These four
objectives are findability, accessibility, interoperability and
reusability, as depicted in the acronym ‘FAIR’. The data
management procedure used this work satisfies three of these
objectives: 1) findability, because each data is correctly labelled,
2) accessibility, because the csv file format used can be accessed
using a computer input program, and 3) re-usability, because
the data is secured in the cloud managed by Dropbox. The data,
however, does not satisfy interoperability, which is necessary if
the data originates from multiple laboratories. A single LabBot
location has been used in this work.

2.2 SimBot software system

The SimBot software system generates experimental designs
that can be employed to control the operation of the LabBot
reactor. To generate experimental designs, the software system
uses mathematical modelling, computer programming and
statistical analysis.21 Mathematical modelling describes the
reaction system by developing models, which could be physics-
based, machine learning or a combination of both (hybrid
models).22 The SimBot encodes the mathematical models in
Python, a popular programming language with a library of
packages for fast and reliable solution of complex differential
and algebraic equations for reactor simulation and/or robust
optimization algorithms as well as packages for statistical
analysis.23,24 Key Python packages imported include CasAdi for
model implementation;25 Scipy, Ipopt and Pylab for model
simulation and optimisation;26–28 pyDOE and Stats for
preliminary design of experiment and statistical analysis.29,30

Within this programming environment, the SimBot performs
computations that are arranged into modules for reactor system
simulation, preliminary design of experiment, parameter
estimation, MBDoE, and model validation. A systematic
framework leveraged by MBDoE techniques is applied to
maximize information gain from experiments while minimising
time and resource costs.

2.2.1 Reaction system model. The flow reactor used in this
work is modelled as:

∂ci
∂t ¼ ∂ci

∂τ þ
XNr

j¼1

νijrj (1)

where ci is the ith species concentration, rj is the reaction rate
(mol s−1 L−1) of the jth reaction with the vij the stoichiometric
coefficient, t is the dynamic time and τ is the residence time
expressed as the ratio of the reactor volume V and the
volumetric flowrate vo. In this work, only steady-state

measurements are acquired and the term
∂ci
∂t →0.

Rate of reactions expressions are derived from the
mechanism proposed in a preliminary study or literature. A
preliminary study, which is usually conducted on a newly
introduced chemical synthesis, helps with setting up the LabBot
system and acquiring information about experimental design
space and preliminary rate expressions for the chemical
synthesis. Stable noisy optimization by Branch and Fit (Snobfit),
an optimizer developed for optimization problems with noisy
and expensive to compute objective functions,31,32 is used in
this preliminary study. For a discussion on the application of
Snobfit for a LabBot preliminary study, we refer the reader to
Section S2 of the ESI.†

Reaction rates in reparametrized form are expressed as:33

−rj
� � ¼ kre fe

− Ea
RT

1
T − 1

Tre f

� � Y
ciβi (2)

kref is the rate constant at a reference temperature Tref, T the
reactor temperature, Ea the activation energy, R universal gas
constant equal to 8.31 kJ mol−1 K−1, and βi the reaction order
for component i.

Eqn (1) together with the expressions for the reaction rates
in eqn (2) can be written as a system of differential and
algebraic equations (DAEs):

f
dc
dτ

τð Þ; c τð Þ;u τð Þ; θ ; τ
� �

¼ 0; with c 0ð Þ ¼ c0 (3)

with c ∈ Nnc being the vector of the state variables
(concentrations), u ∈ Nnu being the vector of manipulated
variables (reactants' inlet concentrations, and reactor
temperature), θ ∈ Nnθ being the vector of the kinetic
parameters to be identified. Where c0 and θ are specified, the
DAEs system is integrated numerically in Python using the
Adams method (for non-stiff problems) and the method
based on backward differentiation formulas (BDF) (for stiff
problems) reported34 and available in the Scipy Library.
However, the set of kinetic parameter θ is not known and will
be determined using a dedicated parameter estimation
module (Section 2.2.3).

2.2.2 Preliminary DoE module. Once the experimental
design space is defined by specifying upper and lower
bounds on experimental decision variables, the SimBot
software commences operations using a preliminary Design
of Experiment module. The module is used to generate a first
set of experimental data for prior parameter estimation in
each proposed kinetic model. Parameter estimation of the
Arrhenius pre-exponential factor and activation energy in a
kinetic model describing a single-step synthesis requires a
minimum of two independent measurements. For modelling
multiple-step synthesis, minimum data requirements for
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parameter estimation increase linearly with the number of
parameters.35 The preliminary DoE aims at sampling the
design space for a minimum number of points that are
distant enough to capture the maximum variations in the
system behaviour. The two case studies in this contribution
employed Latin hypercube sampling, a near-random
technique for generating a specified number of points while
ensuring maximum distance among the points in the design
space.36

2.2.3 Parameter estimation module. Using the measured
data, the model parameters can be estimated via nonlinear
optimisation. To account for the uncertainty in experimental
data, the objective function for parameter estimation is
defined using the negative log-likelihood function and
optimized by minimizing the variable term as:35

obj ¼ min
θ∈Θ

1
2

XNexp

i¼1

log 2πð ÞNy þ log detVy þ yi − byi θð Þ� 	T
Vy

−1 yi − byi θð Þ� 	n o
(4)

subject to the model equations:

f(ẋ(τ), x(τ),u(τ), θ, τ) = 0 (5)

ŷ(τ) = g(x(τ)) (6)

x(0) = x0 (7)

φ = [uT, τ, x0
T]T (8)

x(τ) ∈ χ (9)

where x ∈ Nx is the vector of state variables, ẋ is the first
derivative of the state variables, u ∈ Nu is the vector of
inputs or control variables that define the condition of an
experiment, θ ∈ Nθ is the vector of model parameters, y ∈
Nŷ is the vector of model predictions for measurements y, Vy

is the measurement error covariance matrix, and Nexp is the
total number of samples. Eqn (5) is the vector of differential
equations resulting from the material balance on the
components while eqn (6) are the algebraic equations
relating measurements to the state variables. Eqn (7)–(9)
define the initial conditions, experimental design, and state
space, respectively.

With the estimated values , statistical analysis can be
performed on the model to assess model-data adequacy,
parameter precision and hence potential in MBDoE
applications.

The model adequacy is assessed for a candidate kinetic
model by employing a χ2 (chi-square) lack-of-fit test.37 The
chi-square value is defined as:

bχ2 ¼ XNexp

s¼1

XNy

k¼1

ysk −bysk� �2
σ2kk

(10)

where ysk, ŷsk is the k-th entry of y at the s-th experiment of
the measured and predicted response, respectively.
Additionally, σ2kk is the variance of the k-th measured
response and the k-th diagonal entry of the measurement's
variance–covariance. The 2 is compared with a reference
value χ2ref, which is the inverse of the cumulative distribution
function of χ2 distribution at 1 − α confidence level (usually
α = 0.05% or 0.01%) with NexpNy − Nθ degrees of freedom.
The value of the 2 needs to be as small as possible and
ideally lower than χ2ref.

The precision in the estimation of kinetic parameters 
after the execution of the designed experiments is evaluated
employing a t-test.10 The ith kinetic parameter is considered
to be statistically precise if its ti > tref, where

ti ¼ θi

t 1 − α
2 ;NexpNy −Nθ

� � ffiffiffiffiffiffi
Vii

p ; ∀i ¼ 1;…;Nθ (11)

ti is the inverse of cumulative distribution function of

Student's-t distribution at 1 − α

2
confidence level with NexpNy

− Nθ degrees of freedom, and its corresponding tref is t(1 − α,
NexpNy − Nθ). Vii is the ith diagonal entry of the parameter
variance-covariance matrix V computed using the estimated
parameter and expressed as:

V(,φ) = [H(,φ) + V−1
0 ]−1 (12)

with

Hij bθ ; ϕ� �
¼

XNexp

s

XNy

k

XNy

k′

skk′
∂bysk
∂θi

∂byTsk′
∂θj

; ∀i;∀j ¼ 1;…;Nθ (13)

V0 is the preliminary approximation of the variance–
covariance matrix of the parameters, which contains the
initial information on parametric uncertainty, ŝkk′ is the kk′
element of the Ny × Ny inverse of the variance–covariance

matrix of the measurement errors,
∂bysk
∂θi

is the parameter

sensitivity of ŷsk the kth entry of ŷ at the sth experiment with
respect to θi. It should be noted the inverse of the variance–
covariance matrix corresponds to the Fisher information
matrix H.

With only diagonal entries, the t-test considers each
parameter in isolation and would be insufficient to confirm
parameter precision with highly correlated parameters
indicated by the off-diagonal elements in the parameter
covariance matrix. Highly correlated sets of model
parameters can make the objective function in the MBDoE
application ill-conditioned.38 A reliable model precision test
would therefore combine the t-test with a parameter
correlation test to confirm model precision. To test for
parameter correlation, we analyse the correlation matrix R(,
φ), which is the normalised parameter covariance matrix
where the ij-element is computed as:

Rij bθ ; ϕ� �
¼ Vijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ViiV jj
� �q ∀i;∀j ¼ 1;…;Nθ (14)
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with Rij values in the interval [0, ±1]. Rij values approaching
zero indicates parameters θi and θj as completely
uncorrelated while values approaching +1 indicates the
parameters as perfectly correlated (or perfectly anti-correlated
for values approaching −1).

2.2.4 Model-based design of experiments module.
Activities required for robust MBDoE application can be
classified into three stages: model identification, model
calibration and model validation.10 Model identification
involves identifying the right model structure with a fully
determined set of parameters corresponding to that
structure.35 Parameter estimation, and model testing,
discussed in the previous section, are therefore
fundamental in successfully identifying the right model.39

Model calibration, also involving parameter (re)estimation
and statistical analysis, seeks to determine the parameter
space that minimises prediction uncertainty of the right
model even as further uncertainty may emerge with new
experimental conditions.40 Model validation using statistical
analysis evaluates the appropriateness of the model in
describing the chemical system. While model calibration
employs optimal experimental points generated using
MBDoE, model validation requires testing the model at
conditions not exploited in model calibration by employing
experimental points generated from other techniques (in
our case Snobfit and factorial designs of experiments).

In the MBDoE optimisation structure, the constraints are
the DAEs in eqn (5)–(9), but the objective function depends
on the task, which may be MBDoE for model discrimination,
MBDoE for model precision, or a combination thereof. The
two case studies to be considered in Section 3 require
MBDoE for model precision in computing the design vector
φ = [uT, τ, cT0]

T ∈ Φ ⊆ Nnφ to improve the precision of the

kinetic parameters.41 The improvement of parametric
precision is equivalent to the shrinkage of the elements of
the variance covariance matrix of the model parameters. The
expected marginal posterior covariance VNexp+1(,φ) at a new
experimental design can be obtained using:

VNexp+1(,φ) = [HNexp+1(,φ) + V−10 ]−1 (15)

Eqn (15) represents an upper bound on information as
dictated by the Cramer Rao Theorem35 as it strongly depends
on the unknown parameters θ. The design of experiments is
performed using the current estimate for the parameters 
and the variance covariance is computed at this estimate. To
obtain the optimum experimental design the design vector φ
is computed that minimizes or maximizes a relevant metric
J(·) of the V or H respectively. Different metrics have been
proposed in the literature10 including the minimization of
the determinant of V (D-optimal), the minimization of the
trace of V (A-optimal) or the minimization of largest
eigenvalue of V (E-optimal). These metrics on the variance–
covariance matrix of model parameters can equally be used
to rank and compare the information content of the
proposed experimental design to the Nexp past experiments.
For example, a trace-based relative Fisher information index
(RFI) can be computed as:42

R FIi¼Nexpþ1 ¼
tr Hi¼Nexpþ1
� �
PNexpþ1

i¼1
tr Hið Þ

(16)

In this work, the design of experiments for model precision
will be performed in a closed-loop fashion using online
MBDoE. In standard MBDoE, the design is conducted either

Fig. 3 Strategies for redesign of experiments.

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 4
/2

6/
20

24
 9

:4
0:

16
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4re00047a


React. Chem. Eng.This journal is © The Royal Society of Chemistry 2024

offline for all the experiments or sequentially after each
experiment. Both strategies may result in a waste of the bulk
materials as the former designs all experiments with poor
prior knowledge and the latter has a waiting period where
the continuous flow reactor is still running. Here, an online
redesign is proposed,16 where the bulk waste is kept to the
minimum. Initially, the first n preliminary experiments are
designed simultaneously using the method of Latin
Hypercube sampling36 and the ith experiment has duration
Δi, that includes transient (unmeasured) behaviour and
measurement delay. The online strategy for designing the
experiments in the flow reactor is illustrated in Fig. 3. After
the availability of observations from n − 1 experiments and
the corresponding parameter estimates, the n + 1 experiment
is designed using MBDoE. During this period the nth
designed experiment is running in the reactor. Then data
from the nth experiment are collected and the (n + 1)th

experiment is ready to be executed. It should be noted that
the parameter estimation and the MBDoE should efficiently
be computed in a time frame faster than the duration Δi

using fast optimization techniques.43 The online redesign
step is as fast as the offline design, where the information
gathered is exploited only at the end of preliminary
experiments, but faster than the sequential design, where
preliminary experimentation is paused for a time duration to
redesign the subsequent experiment. Specifically, where 4
experiments are initially designed, after the availability of the
first 2, experiments are redesigned using MBDoE, while
experiment #3 is running.

The progressive availability of measurements supports the
statistical evaluation of the model, ensuring at the same time a
precise estimation of kinetic parameters. The procedure stops
when the statistics on lack of fit and parameter precision are
satisfied or when the maximum number of experiments has
been reached.

2.2.5 Numerical solution. MBDoE objectives present
complex mathematical formulations that can only be solved
using computational programming. Parameter estimation, for
example, encountered within the MBDoE framework, aims at
computing parametric values that would optimize the likelihood
function while obeying the differential and algebraic equations.
Computational programming for maximum likelihood parameter
estimation optimisation problems begins with a set of values
(initial guesses) and proceeds to generate a sequence of
parametric values that would converge to a parameter set where
the likelihood function is maximised. An optimization problem
embedded with differential and algebraic equations, can be
solved simultaneously using orthogonal collocation44 and solved
computationally using nonlinear programming. Orthogonal
collocation divides the domain of the independent variable (in
our case, residence time τ) into finite elements and connects each

Fig. 4 Operation of the cloud-based platform connecting the LabBot and SimBot sites displaying the communication protocol (CP) among the
sites, and the expertise and framework or scheme that each site requires.

Table 1 Experimental design space of control variables employed in the
nucleophilic aromatic substitution case study

Limits c1(0) (M) cequiv2 τ (min) Temp (°C)

Lower 0.0967 0.2054 0.3 60
Upper 1.6917 2.54 3.0 130

Reaction Chemistry & Engineering Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 4
/2

6/
20

24
 9

:4
0:

16
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4re00047a


React. Chem. Eng. This journal is © The Royal Society of Chemistry 2024

element using collocation points to describe different states of
the system as a polynomial function. The polynomial
transcription describing initial, intermediate, and final states,
included in the objective function and the constraints, can
then be solved as a stationary optimization problem, consistent
with the real reactor where measurements are taken at steady
state. CasADi, a module in Python for open-source numerical
optimization, provides an environment to implement the
parameter estimation problem while IPOPT, a software
library for nonlinear optimization, solves for the parametric
values.25,27

2.3 Communication protocol – cloud-based communication

The LabBot and SimBot systems operating from University of
Leeds (site 1) and University College London (site 2),

respectively, communicate via Dropbox, a popular cloud-based
technology.45 The technology provides a platform for multiple
concurrent users, online storage of files, and real-time
synchronization and sharing of the files. The cloud-based
communication protocol (CP) between the two sites is shown in
Fig. 4 and summarized as follows:

CP 1: site 1 selects chemical synthesis of interest and
specifies the experimental design space of the control
variables during experimentation. The chemical synthesis
dictates the model structure along with the kinetic
parameters, developed using the plug flow reactor model and
the reaction rate expression of the synthesis mechanism
proposed from a previous study or literature.

CP 2: site 2 generates a number preliminary design of
experiments (DoEs) from the experimental design space that
would create sufficient initial data to estimate the model
parameters.

CP 3: site 1 operates the LabBot as shown in Fig. 4 to
execute the experiments and generate experimental data in
terms of concentration of relevant chemical species that can
be employed in parameter estimation.

CP 4: site 2 employs the experimental data to assesses the
mechanistic models and integrates the set of candidate
models in the MBDoE framework if models are identifiable.

CP 5: site 1 executes the experiments at the conditions
dictated by MBDoE using the LabBot operation scheme and
generates new experimental data.

CP 6: site 2 recalibrates the synthesis model to improve
parameter precision for model validation with previously
unseen experimental data.

The procedure is iterated until the parameters of the best
model are estimated with minimum uncertainty or until the
maximum experimental budget (number of experiments) is
achieved.

3 Results and discussion

In this section, we demonstrate the developed MBDoE-
driven cloud-based platform on two pharmaceutical case
studies: nucleophilic aromatic substitution (case study 1)
and homogeneous amide formation (case study 2). The first
case study, characterised by a unique model structure,
involves the precise identification of kinetic parameters for
a complex reaction mechanism43 while the second case
study requires the development and identification of a new
kinetic model.

Table 2 Parameter values and their respective t-values calculated before and after MBDoE. Tref = 90 °C

ki,ref (M
−1 min−1)/Eai (kJ mol−1) k1,ref Ea1 k2,ref Ea2 k3,ref Ea3 k4,ref Ea4

Parameter values 1.21 34.53 0.21 27.84 0.* 0.* 0.057 42.49
t-value before MBDoE (tref (99%) = 2.68) 9.61 39.04 16.91 5.89 0.* 0.* 0.45 0.23
t-value after MBDoE (tref (99%) = 2.40) 55.04 260.76 136.65 73.08 0.* .0* 27.60 15.60

Note that * means that the true values converged to 0.

Fig. 6 Design variables for the performed experiments: 1–4 are the
experiments design using LH sampling. The experiments 5–9 are
design using the online MBDoE method. The experiments 10 & 11 are
unseen from our algorithm and used to validate the kinetic model.

Fig. 5 Scheme for nucleophilic aromatic substitution reaction mechanism.47
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3.1 Case study 1

To evaluate the cloud-based platform, a first benchmark case
study was used related to the nucleophilic aromatic substitution
(SNAr) of 2,4-difluoronitrobenzene{1} with morpholine{2} in
ethanol (EtOH) to give a mixture of the desired product
ortho-substituted {3}, para-substituted {4} and bis-adduct {5} as
side products. This reaction was chosen because it produces 3
different major products in parallel and consecutive steps, and
there is available data published by both our and other
groups,46–49 as well as being relevant for pharmaceuticals and
fine chemicals.50 In the LabBot setup illustrated by Fig. 2, feed A
contains a solution of 2,4-difluoronitrobenzene while feed B
contains a solution of morpholine. There are four experimental
design variables in this system: residence time, temperature of
the reactor, and inlet concentrations of 2,4-difluoronitrobenzene
and morpholine solutions. It was noticed that the bis-substituted
product has a low solubility in ethanol, and if in higher
concentrations could lead to blockages. Under the described
conditions boundaries, the system was operational for 18 hours
without issues. The experimental design space employed for this
case study is reported in Table 1. Further details about the feed
preparation and chemical analytics can be found in the ESI†,
Section S2.

The scheme in Fig. 5 describes the aromatic substitution
reaction mechanism showing parallel and consecutive
chemical steps of reactants and intermediates.

The molar balance equations for the reactor in the form
given by eqn (1) (using the chemistry from the scheme in
Fig. 5, where each step is assumed as an elementary step)
can be written as:

Fig. 8 Comparison of model predictions with experimental data
before and after MBDoE. Predictions after MBDoE are more accurate
and precise: A. concentration of starting material (SM); B.
concentration of ortho-substituted product; C. concentration of
para-substituted product; D. concentration of bis-substituted product.

Fig. 7 Parity plot for the predictions of models using the kinetic
parameters before and after the MBDoE. ▼ ● ■ + correspond to
starting material, ortho, para and bis product, respectively.

Table 3 The χ2 values for the whole data-set before and after MBDoE

χ2 – Before MBDoE (χ2ref = 78) 1687
χ2 – After MBDoE (χ2ref = 78) 272
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dc1
dτ

¼ −r1 − r2
dc2
dτ

¼ −r1 − r2 − r3 − r4
dc3
dτ

¼ r1 − r3
dc4
dτ

¼ r2 − r4
dc5
dτ

¼ r3 þ r4

(17)

The values of the design variables that were implemented for
LabBot experimentation in this case study are shown in Fig. 6.
The experimental conditions used in experiments 1–4 were the
preliminary ones generated by a LH factorial design, while the
ones used in experiments 5–9 were generated by the MBDoE;
the last 10 and 11 runs were validation experiments. The
measurements obtained by the latter conditions were generated
from Snobfit optimisation and were not included in model
calibration but specifically used to validate the performance of
the kinetic model in an unseen environment. For this case
study, we approximated the MBDoE formulation using a
surrogate model that is based on the Gaussian process (GP) and
optimized using Bayesian optimisation. The GP employs a prior
mean function on the D-optimal MBDoE criterion and a
squared exponential kernel function with the variation
frequency and amplitude being the hyperparameters optimised
during GP training. The approach is necessary in the MBDoE
optimisation when handling Fisher information profiles with
discontinuities. More detail about this MBDoE computational
approach has been reported.43

To compare the results of MBDoE, the t-values for the kinetic
parameters calculated before and after parameter estimation
are provided in Table 2. It should be noticed that originally
kinetic parameters for the reaction from para-product to bis-
product (i.e., k4,ref and Ea4) were not statistically significant.
However, after MBDoE the t-values for these critical parameters
were significantly higher. Notice that the parameters k3,ref and
Ea3 are determined to be 0 by the parameter estimation (i.e. the
corresponding step is not active).

To test the model adequacy, the χ2 was computed according
to eqn (10). It is noticeable that even though χ2 is not small
enough to pass the statistical test (see Table 3), its value has
been significantly reduced using MBDoE. This is evident by
comparing the prediction for the concentrations with the
experimental measurements before and after MBDoE. The
parity plot is depicted in Fig. 7, where the red markers
correspond to the predictions using the kinetic parameters

Table 5 Models 1 and 2 describing the kinetics of single-step forward and reversible mechanisms, respectively, in the amide formation case study

Chemical equations Rate equations Component balances Components

Model 1 RCOOR′ + R″NH2 → RCONH2 + R″OR′ rf = kfc1c2 dc1
dτ

¼ − r f
dc2
dτ

¼ − r f
dc3
dτ

¼ r f

dc4
dτ

¼ r f

(18)

c1 = RCOOR′
c2 = R″NH2

c3 = RCONH2

c4 = R″OR′

Model 2 RCOOR′ + R″NH2 ⇌ RCONH2 + R″OR′ rf = kfc1c2 dc1
dτ

¼ − r f þ rb

dc2
dτ

¼ − r f þ rb

dc3
dτ

¼ r f − rb
dc4
dτ

¼ r f − rb

(19)

rb = kbc3c4

Table 4 Experimental design space for the control variables employed in
the amide formation case study

Limits c1(0) (M) cequiv2 (0) τ (min) Temp (°C)

Lower 0.100 1.000 0.5 40
Upper 0.100 5.000 7.0 150

Fig. 9 Locations of the preliminary design of experiments (PDoEs) in
the design space and the percent amide yield obtained in the LabBot
indicated by the bubble size.
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before the MBDoE was applied. The figure shows that there are
a few points where the prediction with the initial parameters is
not adequate.

This result is also illustrated in Fig. 8, where the model
after the MBDoE has a significantly reduced uncertainty on
the predicted concentrations (see reduced error bars) as a
result of a more precise parameter estimation achieved.

3.2 Case study 2

In the second case study, we demonstrate the cloud-based
platform on an amide synthesis. Amides are a promising

group of organic compounds, which can act as important
lead substances for producing biocidal products, functional
food, cosmeceuticals, and drugs.18

A simple synthesis method involves reacting an amine with
an ester. With the LabBot setup illustrated by Fig. 2, feed A
contains the amine solution and feed B contains the ester
solution. While keeping the inlet concentration of amine c1(0)
constant at 0.100 M, we designed a set of experiments
considering 3 experimental design variables, namely inlet
concentration of ester c2(0), reactor temperature, and residence
time, from which the LabBot calculated the flowrates of the
reactants. The experimental design space employed for this case

Fig. 10 Parity plots for c3 = RCONH2 by model 1 (in A) and model 2 (in B) with the χ2 values being 494 and ∼0, respectively, model 2 accurately
describing the amide synthesis (experimental error {= ±2σ; σ = 0.0003 mol dm−3} is also indicated).
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study is reported in Table 4. The online HPLC analysis provided
the concentration of starting material left-over after the
reaction. Details about sources of reagents with their chemical
analysis, and preparation of stock solutions with the expression
for flowrates are included in the ESI.†

Two mechanisms can be inferred from the literature.
Nakajima and Ikada51 reported that this synthesis is a single-
step, forward reaction to form amide and alcohol. Clark
et al.,52 on the other hand, reported the products can also
react and revert to form amine and ester. Therefore, two
mechanisms have been considered: 1) single-step, forward
reaction and 2) a single-step, reversible reaction. Modelling
for these mechanisms, tested using the cloud-based platform,
are reported in Table 5.

Model 2, which has the highest number of parameters to
be estimated (4), determines the minimum number of
experiments that should be conducted initially for parameter
estimation. Thus, 4 preliminary design of experiments
(PDoEs) were generated by a Latin Hypercube sampling and
these experiments were conducted in the LabBot at Leeds.
Fig. 9 shows the experimental design space and the 4 PDoEs,
evenly dispersed in the design space. Using the data from the
four experiments (whose amide yields have been shown by
the bubble size), the model parameters were estimated, and
the relative model performance has been investigated.

Fig. 10, in the A and B panels, shows the parity plots for
models 1 and 2, respectively. The former fails the χ2-
distribution adequacy test: χ2 = 494.1, significantly higher
than the reference χ2ref = 23.7. Thus, model 1 does not
adequately describe the amide synthesis and is consequently
rejected. Model 2, on the other hand, satisfies the χ2-
distribution adequacy test: χ2 is close to zero illustrating that
this model (and associated mechanism) accurately describes
the synthesis as a reversible single-step reaction.

Because the reaction is reversible, we can estimate its
equilibrium constants, given as:

Keq ¼ k f

kb
(20)

Fig. 11 shows the profile of the equilibrium constant with
temperature, showing that the synthesis obeys the van't Hoff
equation.53

The kinetic parameters were used in predicting the
equilibrium conditions. The amide synthesis had not reached
equilibrium for the conditions reported in the study. Thus,
the reported kinetic information could be extracted. We can
illustrate this assertion using the reaction characteristic time,
which we estimated as ∼30 minutes. This value is longer
than the upper bound of 7 minutes residence time used in
the experimental design space (Table 4).

Nevertheless, the synthesis requires MBDoE to improve the
model performance as some of the kinetic parameters are still
poorly estimated. Table 6 shows the Student's t-test value for
the model 2 parameters before and after MBDoE. The value of
the activation energies before applying MBDoE are not precise.
On applying MBDoE for parameter precision to generate a new
experiment, conducting the experiment in the LabBot, and
recalibrating the model, the parameter statistics improved
illustrating that the new parameter values have been precisely
estimated. D-optimal criterion was used by the SimBot to design
the experiment. In Fig. 12, panel A shows the location of the
D-new experiment on the Fisher information map as the global
optimum in the experimental design space. This MBDoE is
equally the most informative when compared with the PDoEs
using the relative Fisher information index. We had tested in
silico the three metrics of the Fisher information matrix, that is
A-, D-, and E-optimal criteria, and found that only the
D-criterion could significantly improve the parameter precision
because of parameter correlation. Fig. 13 shows the correlation
matrices before and after MBDoE (with A-, D-, and E-design

Fig. 11 Equilibrium constant dependence on temperature with R2 =
1.00 illustrating that the synthesis follows the van't Hoff equation.

Table 6 Values of the estimated pre-exponential factors and activation energies for the forward and backward steps in model 2 {θ = [lnkf,ref, 0.1Ea,f (kJ
mol−1 K−1), lnkb,ref, 0.1Ea,b (kJ mol−1K−1)]T} and their corresponding statistics improving on application of MBDoE for parameter precision. Tref = 75 °C

Design Before MBDoE After MBDoE

Param. estimate θ = [3.090, 0.997, 3.939, 1.096]T θ = [3.031, 1.234, 3.871, 1.348]T

Conf. interval (95%) [±0.207, ±0.804, ±0.276, ± 0.9036]T [±0.078, ±0.235, ±0.167, ± 0.395]T

t-valuea (tref = 1.78) [14.96, 1.24*, 14.25, 1.21*]T [38.99, 5.23, 23.14, 3.42]T

χ2 7.29 × 10−9(χ2ref = 21.03) 3.03 (χ2ref = 26.30)

a Superscript asterisk (*) indicates t-value failing the t-test.
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criteria) from the in silico testing, illustrating that parameter
correlation could reduce significantly by using the D-optimality
criterion. The two other experimental design criteria could not
significantly improve the parameter precision in this specific
case study.

To validate the newly developed kinetic model, we
employed new test data from experiments designed by a full
factorial design of experiments generated at the control
bounds (CBDoEs) of the experimental design space. Fig. 14
illustrates the corner locations of the validation experiments
in the design space (panels A and B showing the yield and %
RFI, respectively by the bubble size) while panel C shows the
model performance at these corner conditions. All the model
predictions are within the 95% confidence interval, that is,
±2σ (σ = 0.0003 mol dm−3).

4 Conclusions

In this work, we developed a novel cloud-based platform to
remotely drive experimentation in a smart flow reactor
situated in the University of Leeds using optimal experiment
design algorithms operated from University College London.
Communicating via the Dropbox cloud technology, the smart
reactor, called the LabBot, receives experimental designs
from the SimBot, a Python-based experimental design and
data analysis software. Through automation, the LabBot sets
the process conditions, conducts experimentation, and sends
data files to the cloud.

SimBot, on the other hand, interrogates Dropbox for
process data and employs kinetic modelling to simulate the
experimental setup. Constituted of modules for preliminary

Fig. 12 Distribution of experimental information among the five experiments employed using RFI, the MBDoE experiment being the most
informative experiment, hence improving the parameter statistics (panel A). D-optimal Fisher information map in the design space showing the
location of the new experiment (panel B).
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Fig. 13 Normalized parameter covariance matrices in the amide synthesis calculated before (panel A) and after the MBDoE of different criteria: A-
(panel B), D- (panel C), and E-optimality (panel D), D-optimality being the criterion that ensured parameter precision after one new experiment.
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Fig. 14 Corner locations of the validation experiments (CBDoEs) as well previous experiments in the design space, yield indicated by the bubble
size in panel A, % RFI indicated by the bubble size in panel B, and parity plot in panel C for the validation experiments and previous experimental
designs showing all model predictions for c3 = RCONH2 within the experimental confidence interval (experimental error {= ±2σ; σ = 0.0003 mol
dm−3} is also indicated).
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DoE, parameter estimation, and model-based design of
experiment (MBDoE), the SimBot software, initially starting
with minimal experimental designs for preliminary
parameter estimation, computes new optimal design of
solutions as soon as a new measurement becomes available
using online MBDoE techniques to improve model
performance in real-time. Efficient numerical solvers for
dynamic optimization and statistical analysis for model
testing available in Python packages (CasADi, IPOPT, Scipy)
have been used.

The SimBot, in tandem with the LabBot, autonomously
identified synthesis chemistry in just a few experiments, as
demonstrated on the two pharmaceutical case studies
employed in this work. While in the first case study
(nucleophilic aromatic substitution) the cloud-based platform
identified well-known complex kinetics guaranteeing the
minimum uncertainty on kinetic parameters, the platform
supported the development of new kinetic models in the
second case study (homogeneous amide formation).

Future work will explore other pharmaceutical systems to:
1) maximise information gained from experimental
campaigns, 2) increase process understanding by
minimising the number of required experiments, 3) advance
the applicability of the developed cloud-based platform to
reduce time and cost in process development as well as
deliver on-demand in drug manufacturing by incorporating
a Pilot Bot to scale up the optimised chemistry from the
LabBot and 4) extend the communication protocol to
multiple automated platforms that satisfy interoperability
within the FAIR guiding principles for scientific data
management.

Symbols
Latin symbols

ci ith species concentration
Ea The activation energy
g Rate master curve function
k0 Arrhenius pre-exponential factor
kref Reparametrized pre-exponential factor applicable at Tref
kobs Assumed first-order rate constant
keq Equilibrium constant
rj Is the reaction rate (mol s−1 L−1) of the jth reaction
R Universal gas constant equal to 8.31 kJ mol−1 K−1

t Time
ti Student-t distribution value
T Reactor temperature
vij The stoichiometric coefficient
vz Speed of fluid flow in z-direction
V Volume of the reactor
vo Volumetric flowrate
z Reactor axial coordinate

Greek symbols

βi Reaction order for component i
χ2 Chi-square distribution value

σ2kk Variance of the kth measured response and the kth
diagonal entry of the measurement's variance–covariance

τ Residence time
λ Eigen value of covariance matrix V

Matrices and vectors

c ∈ Nnc Vector of the state variables (concentrations)
u ∈ Nnu Vector of manipulated variables
Vy Measurement covariance matrix
V(, φ) Expected marginal posterior covariance
x ∈ Nx Is the vector of state variables
ŷ(τ) Matrix of the model predictions of measurements

2-D in number of measurement response
variables Ny and τ

H Corresponds to the Fisher information matrix
R(, φ) The correlation matrix
θ ∈ Nnθ Vector of the kinetic parameters to be identified,
 Vector of estimated parameter values
φ Design vector [uT, τ, cT0]

T

Acronym

CBDoE: Control-bounds DoE
DoE: Design of experiment
MBDoE: Model-based DoE
PDoE: Preliminary DoE
RFI: Relative Fisher information index
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