
Citation: Alnori, A.; Djemame, K.;

Alsenani, Y. Agnostic Energy

Consumption Models for

Heterogeneous GPUs in Cloud

Computing. Appl. Sci. 2024, 14, 2385.

https://doi.org/10.3390/app14062385

Academic Editor: Jose Machado

Received: 6 February 2024

Revised: 29 February 2024

Accepted: 4 March 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Agnostic Energy Consumption Models for Heterogeneous GPUs
in Cloud Computing
Abdulaziz Alnori 1,* , Karim Djemame 2 and Yousef Alsenani 1

1 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
yalsenani@kau.edu.sa

2 School of Computing, University of Leeds, Leeds LS2 9JT, UK; k.djemame@leeds.ac.uk
* Correspondence: asalnori@kau.edu.sa

Abstract: The adoption of cloud computing has grown significantly among individuals and in
organizations. According to this growth, Cloud Service Providers have continuously expanded
and updated cloud-computing infrastructures, which have become more heterogeneous. Managing
these heterogeneous resources in cloud infrastructures while ensuring Quality of Service (QoS) and
minimizing energy consumption is a prominent challenge. Therefore, unifying energy consumption
models to deal with heterogeneous cloud environments is essential in order to efficiently manage
these resources. This paper deeply analyzes factors affecting power consumption and employs these
factors to develop power models. Because of the strong correlation between power consumption
and energy consumption, the influencing factors on power consumption, with the addition of other
factors, are considered when developing energy consumption models to enhance the treatment in
heterogeneous infrastructures in cloud computing. These models have been developed for two
Virtual Machines (VMs) containing heterogeneous Graphics Processing Units (GPUs) architectures
with different features and capabilities. Experiments evaluate the models through a cloud testbed
between the actual and predicted values produced by the models. Deep Neural Network (DNN)
power models are validated with shallow neural networks using performance counters as inputs.
Then, the results are significantly enhanced by 8% when using hybrid inputs (performance counters,
GPU and memory utilization). Moreover, a DNN energy-agnostic model to abstract the complexity
of heterogeneous GPU architectures is presented for the two VMs. A comparison between the
standard and agnostic energy models containing common inputs is conducted in each VM. Agnostic
energy models with common inputs for both VMs show a slight enhancement in accuracy with
input reduction.

Keywords: cloud computing; GPU; power modeling; energy modeling; machine learning

1. Introduction

Cloud-computing usage has grown significantly, and its popularity has rapidly in-
creased in recent years. In 2021, around 50% of the total workload was executed outside
the organization’s servers [1]. The size of the global market for public cloud computing
has increased significantly in recent years; the market size was approximately 58.6 billion
US dollars in 2009, and it is expected to grow to 362.3 billion US dollars in 2022 [2]. Due
to the rapid and continuous growth of cloud computing, cloud service providers (CSPs)
need to expand and update their cloud infrastructures to cover the cloud users’ demands.
However, several challenges arise due to the expansion of the cloud infrastructures to fit
their users’ requests. To expand the cloud infrastructure to cover the rapid increase of cloud
user requests, CSPs need to address the issue of hardware resource heterogeneity. Different
types of processors, storage, and other resources are used in cloud-computing infrastruc-
tures. Moreover, cloud-computing infrastructures have widely adopted accelerator units,
such as Graphics Processing Units (GPUs), to boost their computing power capabilities in

Appl. Sci. 2024, 14, 2385. https://doi.org/10.3390/app14062385 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-5501-8987
https://orcid.org/0000-0001-5811-5263
https://doi.org/10.3390/app14062385
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062385?type=check_update&version=1

Appl. Sci. 2024, 14, 2385 2 of 24

order to cover the rapid demand for intensive computing and data applications. Several
prominent cloud-computing providers including Amazon [3] have enabled the usage of
different types of GPUs for their customers. Because of the programmability of GPUs, GPU
usage has shifted from its standard purpose, showing images and video games on com-
puters’ screens, to computational usage, and this shows a substantial leap in the execution
of high-performance intensive parallelism. Thus, this new trend in GPU usage has been
utilized in a wide range of fields and applications, producing a significant performance
increase. Moreover, the nature of the GPU architecture facilitates the spread of the usage of
Deep Learning (DL) applications, such as image classification [4]. Training DL applications
is a time-consuming task with CPUs since these applications contain massive amounts of
data that need to be trained. Therefore, GPUs dramatically reduce the DL training phase.

Maintaining the services’ performance for end-users’ demands can lead to performing
some operations in the cloud infrastructure, such as live migration. These operations
produce unexpected operational costs. Energy consumption is considered one of the main
costs incurred by CSPs [5]. For instance, 42% of the total budget for Amazon EC2 was spent
on energy consumption, divided between 19% for direct power consumption and 23% for
cooling operations [6]. According to [7], in 2030, data centers will consume between 3%
and 13% of global electricity compared to 1% in 2010. The estimated amount of energy
consumed by these data centers will be approximately 8000 TWh in the worst-case scenario.
Moreover, this increase in energy consumption harms the environment. ICT sectors produce
2% of the total CO2 emissions globally, while data centers produce 0.3% [8]. Therefore,
finding solutions to reduce the energy consumed by cloud-computing infrastructures is
essential. The accurate and direct measuring of power and energy consumption is not
always achievable. Therefore, energy models are an alternative way to predict energy
with a decent level of accuracy by using several modeling techniques, such as Machine
Learning (ML) techniques. Power and energy modeling can be beneficial in several ways,
such as optimizing the power consumption of applications without harmfully affecting
performance. Energy modeling can also save time and financial expenses [9]. Since there
is a strong relationship between power consumption and energy consumption, factors
influencing power consumption will be reused for energy models with other factors.

Different modeling techniques are adopted to model GPU power consumption, most
of which are performed in non-cloud environments. Studies presented in [10,11] have
presented analytical models using low-level micro-architectural components. This ap-
proach can produce acceptable estimation results. Yet, such kinds of models need a deep
knowledge of the GPU micro-architecture [12], and it is hard to acquire information on
heterogeneous GPU micro-architecture components when running several applications,
since the power consumption of each micro-architectural component needs to be measured
and the access rate when running every application needs to be calculated [13]. Other
studies, such as [14,15], have used low-level micro-architectural GPU power modeling
and are aimed to be used as GPU power simulators. Simulation tools are useful for cost
reduction. However, these simulations produce significant overhead and require a high
level of knowledge for the configuration setup. Additionally, simulation tools are un-
suitable for several generations of GPU architectures such as the Kepler architecture [12].
Therefore, we consider using the Machine Learning (ML) approach to deal with these
difficulties, and it can produce remarkably accurate results as well. Even though there
are already several research studies considering ML for the development of GPU power
consumption models like [16,17], they use hardware performance counters as input factors
in non-cloud environments.

Moreover, modeling energy consumption is not an effortless task. Serval studies can
be performed to model energy consumption since different factors should be handled.
Some recent studies have developed energy models. Hardware heterogeneity increases the
difficulty of developing an energy consumption model. Although some studies deal with
heterogeneous GPUs in terms of energy modeling, they handle these GPUs individually or

Appl. Sci. 2024, 14, 2385 3 of 24

handle homogeneous GPUs performed in non-cloud environments, such as [9,18]. A few
studies have been performed in cloud-computing environments.

Therefore, this work aims to investigate other factors affecting GPU power consump-
tion and consider them in the development of GPU power models for heterogenous GPU
architectures combined with performance counters in cloud computing. Moreover, this
work aims to develop a unified GPU energy model to handle different GPU architectures
in cloud computing. The contributions of this work are as follows:

• Novel GPU power consumption models considering hybrid inputs for heterogeneous
GPU architectures in cloud computing. This model aims to predict the power consumed
by GPU applications running on a heterogeneous cloud-computing infrastructure.

• A novel agnostic GPU energy consumption model. This model aims to automatically
estimate the energy consumed by GPU applications executing on a heterogeneous
cloud-computing infrastructure and abstract the heterogeneity of GPU architectures.

The remaining sections in this work are structured as follows: Section 2 presents the
related work in GPU power-modeling and GPU energy-modeling techniques in cloud-
computing and non-cloud-computing environments. Section 3 discusses the power and
energy models in detail. This section begins with the details of developing the GPU power
model. The GPU energy consumption model development details are then introduced.
Section 4 shows the results of this work. Section 5 concludes this work and discusses future
work directions.

2. Related Work

In this section, we discuss studies in GPU power modeling and energy modeling in
non-cloud- and cloud-computing environments. Several studies investigated GPU energy
modeling in cloud and non-cloud environments using machine-learning algorithms and
performance counters including [9,10,19–21]. However, these studies did not consider the
heterogeneity of GPU architectures.

Several studies have been performed for GPU power modeling in conventional (non-
cloud) systems with different techniques. For example, an agnostic power model for
heterogeneous GPU architectures was proposed by Abe et al. [17] using multiple linear
regression. The authors used hardware performance counters to develop the model by
dividing them into two categories. These categories were GPU core frequency counters
and GPU memory counters. The model was applied to GTX 285, GTX 460, GTX 480, and
GTX GPUs. However, the authors have merely investigated the linear models to build
the power model, which is not appropriate for modern GPU generations. Moreover, an
online GPU power estimation model was proposed by Adhinarayanan et al. [12]. The
model aimed to instantaneously estimate the power consumption of GPU applications
on the runtime. The model only relied upon performance counters that were carefully
selected using correlation analysis. The authors used several types of statistical regres-
sion techniques. These statistical regression models were Simple Linear Regression (SLR),
Multiple Linear Regression (MLR), MLR with Interaction, Basic Quadratic Regression,
and Quadratic Regression with Interaction. The authors grouped the power model into
application-independent and application-dependent models. The model was evaluated on
two heterogeneous GPU generations from NVIDIA (Fermi C2075 and Kepler K20c NVIDIA
GPUs, Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu, Taiwan). How-
ever, the power models have produced overheads in some applications at runtime and
dealt just with performance counters to develop GPU power models. Braun et al. [22]
proposed an accurate, simple, and portable GPU power model by using the Random Forest
(RF) algorithm. Independent source code instructions, such as memory instructions and
kernel configurations like block numbers, were used as the model’s inputs. Several CUDA
application types of GPU architectures were used to evaluate the model. However, the
model has not performed well in applications with a short execution time, and they merely
focused on the software side to build the model.

Appl. Sci. 2024, 14, 2385 4 of 24

Boughzala et al. [23] presented a simple and lightweight energy consumption pre-
diction model for CUDA applications using a simulation tool in non-cloud environments.
Instead of adopting hardware performance counters and low-level architectural details, the
model merely considered the block number per Stream Multiprocessor (SM) as an essential
input parameter. To model energy consumption, a performance model was developed
using simple linear regression. Then, the energy consumed by a single block was calculated
including static and dynamic energy consumption. Finally, the energy consumption of
all number of blocks in SMs was calculated by integrating with single linear regression.
The model was conducted on a simulation tool called SimGrid [24] to simulate two hetero-
geneous NVIDIA GPU architectures and compare the simulated energy values with the
real measured energy values. The selected GPUs were Kepler K20Xm and Tesla M2075,
Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu, Taiwan. However,
the model is not applicable to all CUDA applications, and the energy model is not able
to estimate the energy consumption of CUDA applications that have a small number of
blocks. Moreover, simulation tools produce an unavoidable amount of overhead compared
to real experiments.

Makaratzis et al. developed an analytical energy model based on the binary model to
estimate GPU energy consumption [13]. The authors focused on GPU-intensive applica-
tions. The used GPUs were Maxwell GeForce GTX 980, Kepler Tesla K2 and Pascal Tesla
P100 NVIDIA GPUs, Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu,
Taiwan. The authors claimed that the developed model is suitable for integration with
cloud environment simulators. However, the used technique in this work required a deep
knowledge of the GPU architecture and was created in several substages.

Therefore, after the related studies have been investigated, this work will investigate
the feasibility of merely considering hardware performance counters for developing a
power consumption model evaluated on heterogeneous GPU architectures using DNN.
A further investigation will be performed to determine other factors that enhance power
models. Then, an agnostic and straightforward energy model, without conducting sub-
stages to estimate energy consumption, is developed in a cloud-computing environment.

3. Power and Energy Models

This section will delve into the power and energy models and is divided into two main
parts. The first part will discuss the methodology of developing the power consumption
model in detail, while the second part will cover the steps of developing the agnostic energy
model. This work distinguishes between power and energy consumption as follows:

Power consumption is the electrical usage when conducting a workload at a certain
level of time; power consumption is measured in Watts (W).

On the other hand, energy consumption is the amount of the average power consump-
tion (P) within a period of time (T) until we finish executing the workload measured by
Seconds (S); energy consumption (E) can be measured in Joules (J), and it is represented by
Equation (1):

E = P × T (1)

According to Equation (1), there is a strong relationship between power and energy.
When power is increased, energy consumption is also increased, and vice versa. The
objective of this work is to predict energy consumption when GPU applications are executed
on VMs in cloud-computing environments through ML techniques, more specifically,
shallow neural networks and Deep Neural Networks (DNNs). We separately develop GPU
power and energy consumption for several reasons. GPU power and energy consumption
can be beneficially used for different purposes. GPU power consumption models are used
to develop and optimize GPU architectures for power consumption [15]. GPU energy
models are utilized for energy-aware GPU resource management [25]. Unlike power
consumption, energy consumption is affected by other factors, such as execution time and
temperature in the long execution time. Moreover, we develop GPU power consumption for
applications with short execution times like [26], and we develop GPU energy consumption

Appl. Sci. 2024, 14, 2385 5 of 24

for applications having long execution times for measurable energy consumption. Cloud
environments consist of heterogeneous infrastructures. The heterogeneity type in this
research deals with heterogeneous GPUs, each of which contains different characteristics
and capabilities. In this work, we handle two different GPU generations. The GPUs used
for the power and energy models are Nvidia Fermi C2075 and Nvidia Kepler K40c, Taiwan
Semiconductor Manufacturing Company (TSMC), Hsinchu, Taiwan.

3.1. Power Models

This section illustrates the methodology for developing the power consumption model
in detail. Firstly, we present the execution of GPU applications in the experiment. Secondly,
we provide a brief overview of the data collection stage. Thirdly, we delve into the input
selection process utilized in the model. Then, we will comprehensively examine the power
model design. Furthermore, we showcase the training of the model. Finally, we will discuss
the hybrid input model.

(1) Applications

The power model involves the training phase that contains collected data from several
GPU applications to develop, train, and test the prediction accuracy of the developed
model. Several GPU applications that contain different computational and communication
characteristics and implementation techniques are selected to train and test the model,
and evaluate the strength of the model as well. Different GPU application types including
compute-intensive and memory-intensive applications are considered to develop the power
model. N-body is an example of a compute-intensive application, and Spmv is an example
of a memory-intensive application, chosen to harden and generalize the model’s usage.
Selected applications are found in several fields, such as linear algebra, image processing,
simulation, and fluid dynamics. The main dataset is divided into training and testing sets.
The training phase contains 30 applications, and the testing phase contains 10 applications.
The applications in the training and testing phases are selected from well-known bench-
marks in the field of GPU computing. These benchmarks are Rodinia [27], Parboil [28],
and CUDA SDK applications [29]. We separately run two different profiling tools to collect
data (nvprof and nvidia-smi), and nvprof has considerable overhead. Additionally, we
consider two different GPUs to collect the required data for the model. Table 1 represents
the application name, its source, and the application’s size in the training set. Table 2
similarly illustrates the details of the selected applications in the testing set.

Table 1. Training set characteristics in the power model.

Application Source Description Size

RecursiveGaussian Cuda SDK Gaussian blur implementation using Deriche’s recursive
way or recursive Gaussian filter 512 × 512

HSOpticalFlow Cuda SDK A clear movement of objects estimation in a picture 640 × 480
Interval Cuda SDK Interval Newton method calculation 65,536 equations

SobolQRNG Cuda SDK Sobol quasirandom sequence implementation 1,000,000 vectors and
1000 dimensions

Reduction Cuda SDK Parallel reduction technique implementation 16,777,216 elements

ScalarProd Cuda SDK Scalar product implementation 2048 vectors and
131,072 elements

StereoDisparity Cuda SDK Stereo disparity computation implementation 1800 × 1800

ThreadFenceReduction Cuda SDK Implementation of array reduction operation using thread
fence instruction approach

1,048,576 elements;
128 threads; 64 blocks

Sgemm Parboil Single matrix multiplication implementation A × B; A = 2048 × 1984,
B = 1984 × 2112

Spmv Parboil Sparse matrix vector multiplication implementation 146,689 × 146,689

Stencil Parboil 3D seven-point stencil implementation 128 × 128 × 32;
200 iterations

Appl. Sci. 2024, 14, 2385 6 of 24

Table 1. Cont.

Application Source Description Size
Heartwall Rodinia Ultrasound image for heart wall tracking 656 × 744 frame

Kmeans Rodinia Clustering algorithm 494,020 objects and
34 features

Gaussian Rodinia Gaussian elimination technique for solving equations 1024 × 1024
Leukocyte Rodinia Microscopy tracking of white blood cells 640 × 480 frames

Nw Rodinia Needleman–Wunsch method for optimized
DNA alignment 6400 × 6400

Hotspot Rodinia Simulation For estimating a processor temperature 4096 × 4096
Dwt2d Rodinia Two-dimensional discrete wavelet transform algorithm 3900 × 4200 pixels

CFD Rodinia Computational fluid dynamic solver 97,000 elements
AlignedTypes Cuda SDK Memory aligned access implementation type 49,999,872 bytes

Binomial Options Cuda SDK The European pricing options between seller and buyer 1024 options

BlackScholes Cuda SDK The European pricing options using the
Black–Scholes model

8,000,000 options and
512 iterations

Dxtc Cuda SDK DirectX texture compression algorithm 512 × 512 pixels
ConvolutionSeparable Cuda SDK Convolution technique for image filtrations 3072 × 3072 pixels

Histogram Cuda SDK Analysis tool for applications 64 and 256 bins
Transpose Cuda SDK Matrix transpose implementation 1024 × 1024
FDTD3d Cuda SDK Three-dimensional finite difference time domain model 376 × 376 × 376

MergeSort Cuda SDK Merge sort implementation 4,194,304 elements
RadixSortThrust Cuda SDK Parallel radix sort implementation 1,048,576 elements

GuasirandomGenerator Cuda SDK Niederreiter quasirandom sequence implementation 31,148,576 elements

Table 2. Testing set characteristics in the power model.

Application Source Size
ConvolutionTexture Cuda SDK 3072 × 1536 Pixels
FastWalshTransform Cuda SDK 8,388,608 data length

MontCarlo Cuda SDK 8192 options and 262,144 paths
Nbody Cuda SDK 16,640 bodies
Cutcp Parboil 96,603 atoms
Histo Parboil 256 × 8192
Mri-q Parboil 64 × 64 × 64

Bfs Rodinia 1,000,000 nodes
Streamcluster Rodinia 65,536 points

Srad_2 Rodinia 8192 × 8192 data points

(2) Data Collection

A built-in nvidia-smi [30] profiling tool is used to collect power consumption, and a
built-in nvprof [31] profiling tool is used to collect the hardware performance counters of
the GPU architecture components by querying the counter name during the execution of
the application in each GPU for 40 real applications in the training and testing sets. An
appropriate application size is selected for suitable power consumption measurements
since the Kepler GPU has a better performance and is newer than the Fermi GPU. After
measuring the power consumption for each application, the average power consumption is
calculated. The nvprof tool separately profiles the performance counters of each kernel,
and some applications have more than one kernel. If the application has more than one
kernel, the average value is calculated to unify all counters’ values.

(3) Input Selection

The first GPU power models’ inputs mainly rely upon hardware performance coun-
ters to evaluate them with other input criteria. Selecting appropriate model inputs
can increase the model’s accuracy. Each generation of GPU architecture has a different
number of hardware performance counters than others. The nvprof tool can profile 98

Appl. Sci. 2024, 14, 2385 7 of 24

and 111 performance metrics in the Fermi C2075 and Kepler K40c GPUs (Taiwan Semi-
conductor Manufacturing Company (TSMC), Hsinchu, Taiwan) [32]. Using all existing
performance counters to feed the model can increase the model’s accuracy. However,
considering all existing performance counters as model inputs will increase the model’s
training complexity and the cost of data collection because of the overhead incurred by
the usage of the profiling tools. Therefore, we develop the candidacy algorithm to find
the performance counters that have a reasonable impact on power consumption in each
GPU (Fermi and Kepler), as shown in Algorithm 1. It is difficult to statistically compute
the significance between each performance counter and power consumption differing
from zero in two different GPUs because of the large number of performance counters
in each GPU. Thus, we follow [12,33] to develop the candidacy algorithm by using the
correlation analysis to find the collection of hardware performance counters that have
a reasonable correlation with power consumption in each GPU and assess this way of
selecting the model’s inputs.

The candidacy algorithm consists of two main phases. Phase 1 aims to find the main
performance counters in each GPU that have an impact on power consumption. In the
CUDA programming language, there are several implementations to handle the GPU
memory types, such as global, shared, and texture memories. The basic implementation for
dealing with GPU memories is global memory, which is used in Phase 1. In this phase, we
aim to reduce the nvprof profiling tool overhead since we found that some of the training
set applications have a significant time delay when the profiling tool is executed. The
output of Phase 1 is used as an input for Phase 2. Phase 2 aims to find the performance
counters that have a notable impact on power consumption on applications located in the
training set.

The algorithm’s inputs are all existing performance counters in each GPU (Fermi and
Kepler) and all the applications considered in the training set. The algorithm’s output is
performance counter sets that have reasonable impacts on power consumption that will be
used to train the model. In Phase 1, the matrix size is gradually increased starting from
480 × 480 up to 2560 × 2560 with a regular increase, to analyze the number of threads
per block in terms of power. This increase creates eight different matrix sizes. Then, the
power consumption and the performance counter values of each matrix size are profiled.
Once the profiling of the power consumption and values of certain performance counters
in all the matrices is completed, the level of strength between them is measured. The
Pearson correlation coefficient is applied to evaluate the strength of the relationship between
the power consumption and the performance counter values. The Pearson correlation
coefficient aims to measure the linear correlation between two variables sets X and Y
between −1 and 1. When the absolute value of the coefficient is 1 or close to 1, this means
that there is a linear high correlation. In [33], the authors selected the top 10 performance
counters that have a strong correlation with GPU power consumption. However, since we
consider two heterogeneous GPUs containing different features, we initially selected the
hardware performance counters that are greater or equal to 0.5 as a predefined threshold
that represents the middle of the value between 0 and 1, as mentioned in [34]. After applying
the Pearson correlation coefficient, a threshold is set to select the Pearson coefficient Ptc
(line 14). The outcome of Phase 1 is the FC set which includes the essential performance
counter metrics that are greater than the assigned 0.5, and the FC set will be used as an
input for the second phase.

Similar to Phase 1, the power consumption and the performance counter value of each
application in the training set that contains 30 applications are profiled. After profiling
the power consumption and performance counters values, another Pearson correlation
coefficient Pt2c is applied between the counter value and the profiled power consumption
in all applications in the training set. After applying the correlation analysis in Phase 2, we
found that there is low overlapping in the correlation relationship between the selected
performance counters and power consumption. The reason behind this low overlapping
in Phase 2 is that we applied the Pearson correlation coefficient on 30 applications with

Appl. Sci. 2024, 14, 2385 8 of 24

different sizes and different characteristics to find the strength of the relationship between
each selected performance counter and power consumption. Increasing the number of
applications and applying this correlation analysis will show us how strong the correla-
tion is, and this correlation analysis will give us a clear and more confident view of the
relationship between each selected performance counter and power consumption, unlike
applying the correlation analysis on only one application with a regular increase, such as in
Phase 1. Therefore, Ω is calculated to find the average of the correlation analysis values of
all selected counters in each GPU and used as an appropriate threshold like [35,36] using
Equation (2):

Ω = ∑n
c=1

∣∣∣∣P
n

∣∣∣∣ (2)

where P is the value of every performance counter and n is the total number of performance
counters in Phase 2 in every used GPU. Therefore, Ω aims to calculate the average of
all performance counters in Phase 2 for every GPU after using the absolute value. The
value of Ω is 0.232 and 0.087 for Fermi C2075 and Kepler K40c (Taiwan Semiconductor
Manufacturing Company (TSMC), Hsinchu, Taiwan), respectively. Then, Ω is assigned to
be a threshold value to compare it with each selected counter in Phase 2. If the Pearson
correlation coefficient Pt2c is greater than or equal to the threshold value Ω (line 32), the
performance counter metric will be added to the PC set. Otherwise, the metric will be
rejected. The candidacy algorithm applies to the performance counters twice on Fermi and
Kepler GPUs’ performance counters.

According to the candidacy algorithm’s outcomes, there are nine and six selected
counter metrics for the model inputs for Fermi C2075 and Kepler K40c, respectively. After
applying the developed candidacy algorithm, we found that performance counters can not
only be considered to develop GPU power models, as shown in Tables 3 and 4.

Table 3. Selected performance counters for Fermi C2075.

Metric Name Description Pt2c Value
Gst_transactions Transactions of global memory store number 0.281

Ecc_transactions Error-correcting code memory transactions sent between L2 cache
memory and DRAM memory number 0.421

L2_read_transactions L2 cache memory read transactions number 0.236
L2_write_transactions L2 cache memory write transactions number 0.281

L2_L1_read_transactions Memory read transactions requested by L1 cache memory and seen
in L2 cache memory number 0.310

L2_L1_write_transactions Memory write transactions requested by L1 cache memory and seen
in L2 cache memory number 0.310

Eligible_warps_per_cycle The average number of eligible wraps to be issued in every cycle 0.291
DRAM_read_transactions The GPU device RAM read transactions number 0.293
DRAM_write_transactions The GPU device RAM write transactions number 0.284

Table 4. Selected performance counters for Kepler K40c.

Metric Name Description Pt2c Value

Gld_transactions_per_request The average number of transactions of the global memory load
conducted for every global memory request −0.187

Gld_transactions Transactions of global memory load number 0.102
Inst_per_warp The average number of instructions run by every warp 0.165

DRAM_read_transactions The GPU device RAM read transactions number −0.090
IPC Instructions performed per cycle number 0.275

Issued_IPC Issued number of instructions for every cycle 0.214

Appl. Sci. 2024, 14, 2385 9 of 24

Algorithm 1: CANDIDACY ALGORITHM

Input: C [], A []
Output: HC []
1: set HC [], P1 [], P2 [], FC [] = null
2: m [] = 480 × 480
3: begin phase 1
4: for each c in C [] do
5: for (i = 1; i ≤ 8; i++) do
6: set PC1 [] = null
7: increase m (the matrix size) gradually
8: profile average pi (power consumption) in every matrix size
9: profile ci (performance counter) in every matrix size
10: enqueue pi into P1 []
11: enqueue ci into PC1 []
12: end for
13: apply the Pearson correlation test Ptc between P1 and PC1c
14: if |Ptc| ≥ 0.5 then
15: enqueue ci into FC []
16: else
17: reject ci
18: end if
19: end for
20: end phase 1
21: begin phase 2
22: for each c in FC [] do
23: for (i = 1; i ≤ 30; i++) do
24: set PC2 [] = null
25: profile average pi (power consumption) in every application
26: profile ci (performance counter) in every application
27: enqueue pi into P2 []
28: enqueue ci into PC2 []
29: end for
30: apply Pearson correlation test Pt2c between P2 and PC2c
31: calculate Ω
32: if |Pt2c| ≥ Ω then
33: enqueue ci into HC []
34: else
35: reject ci
36: end if
37: end for
38: end phase 2

(4) Model Design

Some studies such as [26] have confirmed that the linear regression method is appro-
priate for old GPU architectures. Nevertheless, the study conducted in [16] has argued
that linear models can not fit the complexity of modern GPUs. The relationship between
the workload and power consumption in both GPUs tends to be non-linear. Therefore,
DNN is selected to predict the power consumption for heterogeneous GPUs connected
with VMs since DNN is a non-linear model and shows a better performance than other
machine-learning algorithms [37].

Since every model’s input has a different range of value scale, the collected data in
each input attribute have been pre-processed by using the z-score technique since it is a
popular technique [38]. The aim of using this technique is to simplify the procedure of
model training. The z-score is represented by Equation (3):

Z =
X − µ

σ
(3)

Appl. Sci. 2024, 14, 2385 10 of 24

where X is the element value—in this case, it will be the counter value for every application;
µ is the mean of all application values for a certain selected counter in the training set;
and σ is the standard deviation of a single selected counter. We similarly use the process
of µ to calculate σ. Then, we calculate Z for the remaining applications on other selected
counters. After the inputs are pre-processed, they will be fed to the model’s training stage.

The model aims to develop a function f that maps the X inputs set to the Y outputs set
f: (X → Y) to estimate the power consumption P of a GPU (Fermi and Kepler) connected
with a VM. Two power models are developed for the Fermi and Kepler GPUs. For the
Fermi power model, the input layer has nine neurons representing every selected input, as
shown in Table 3.

After performing some experiments to find the adequate number of hidden layers
and neuron numbers in every layer, we found that four hidden layers and eight neurons
in each hidden layer are appropriate numbers. Therefore, the model contains four hidden
layers to enable the layers to extract features from the data, and each hidden layer contains
eight neurons; moreover, the output layer contains one neuron representing the predicted
power consumption.

For the Kepler GPU power model, the input layer consists of six neurons indicating
the selected inputs for Kepler GPU. Like the Fermi Power model, the Kepler model has four
hidden layers, and each hidden layer has eight neurons. Finally, the output layer contains
one neuron to represent the predicted power consumption.

Suppose x ϵ X = { x1, x2, x3, . . . , xn} is a selected input variable and wij represents a
certain synapse weight S in each layer j which contains i neurons. Every s represents the
summation of the product of all wij with x to every neuron by using Equation (4):

si = ∑j wijxi (4)

After obtaining s for every neuron, the value will be passed to the activation function
f(si) by using the appropriate non-linear function. In this model, the rectified linear unit
(ReLU) function is used as an activation function.

Since ReLU cannot be an activation function for the output layer, the activation
function in the output layer so is the linear activation function.

In DNN, to find the output of every layer l and map them together, Equation (5) can
be used to estimate power consumption Pd:

Pd =f(W, X, b) (5)

where W is the weight matrix in every layer, X is the input features matrix in every layer,
and b is the bias in every layer. In DNN, it is beneficial to randomly initialize weights by
small values to avoid the similarity of the values among layers and to rapidly train the
model [39]. More specifically, the weights of the synapses in the input layer are randomly
initialized under a uniform distribution. The synapse weights in the hidden and output
layers are randomly initialized under normal distribution, and bias values are initialized to
be zero. Hyper-parameters are the parameters that their values establish before starting
to train the model. Some DNN models can have a range of hyper-parameters between
ten to fifty based on the model’s developer who sets certain hyper-parameters and keeps
others as defaults. Hyper-parameters should be tuned carefully by experiments since it
is a challenging task [40]. Some hyper-parameters are adjusted in this model, such as
the learning rater, number of epochs, and batch size. The learning rate is considered the
most substantial type of hyper-parameter [41]. The learning rate is the step size of every
iteration to reduce the loss function during the training phase [42], and the suggested value
is 0.01 number of epochs which is defined as the iteration number for the training algorithm.
The assigned number of epochs is 1000. The batch size is the sample number in the training
set used in every step for a faster training process, and it is assigned to be 30.

Appl. Sci. 2024, 14, 2385 11 of 24

(5) Model Training

After designing the model, the model training step is established. The loss function L is
used to measure the difference between Pd and Pac in each training step using Equation (6):

L
(

Pi
d, Pi

ac

)
=

1
2

(
Pi

d − Pi
ac

)2
(6)

where i is a certain training step. The DNN training process is a time-consuming and hard
task [43]. Therefore, the Adam optimization algorithm [44] is the selected algorithm for the
model’s training stage. Adam is an extension of the classic stochastic gradient descent to
update the edge weights. Adam has a better ability to train the model than other training
algorithms, such as stochastic gradient descent and AdaGrad [45].

Next, to validate DNN models, a shallow neural network that contains only one
hidden layer is developed for the Fermi and Kepler GPUs connected with VMs. We aim to
compare the performance of shallow and deep neural networks. The hyper-parameters for
this model are identical to the DNN model except for the hidden layer which contains only
one layer.

(6) Hybrid Input Model

Since the relationship between the selected performance counters and power con-
sumption in both GPUs is not very correlated, we need another investigation to find other
input factors that contain a better correlation. Therefore, another DNN model that contains
hybrid inputs is developed. These inputs are a mix of input parameters. These inputs
are the selected performance counters combined with the utility of GPU and memory,
measured in percentage, to give a comprehensive overview of the GPU behavior during
the running of applications for each GPU. The nvidia-smi tool is used to collect GPU and
memory utilization. When the Pearson correlation coefficient has been applied on GPU
and memory utilization, the Pt2c values in the Fermi GPU are 0.368 and 0.479, respectively.
The Pt2c values for GPU and memory utilizations in the Kepler GPU are 0.653 and 0.872,
respectively. After the candidacy algorithm has been applied on GPU and memory utiliza-
tion, it can be observed that GPU and memory utilization have an acceptable correlation
with power consumption in both GPUs, better than performance counters.

In terms of the model design stage, the number of hidden layers and the output layer
is similar to the previous DNN model that only uses performance counters, unless the
number of neurons in the input layer is changed in both GPUs since the input parameters
are increased. For the Fermi GPU, the number of neurons in the input layer is equivalent
to the number of the model’s inputs. Therefore, the number of neurons in the input
layer is 11 neurons. For the Kepler GPU, the number of neurons in the input layer is
8. The hyper-parameters for this model are similar to the previous DNN, which were
created by the only-performance-counters-inputs model, except the number of epochs is
300, which decreased.

3.2. Energy Models

This section illustrates the methodology of developing the energy consumption model
in detail. Initially, we outline the execution of GPU applications in the experiment. Subse-
quently, we will provide a succinct overview of both the data collection and input selection
stages. Finally, we will thoroughly discuss the intricacies of the model design.

(1) Applications

The applications that are selected for the energy consumption models are derived
from the previous GPU power model. The selected applications are capable of increasing
their sizes and being executed for longer periods of time to analyze the increase of the
application’s execution time on energy consumption. Each application has different patterns
and characteristics. The applications’ sizes are regularly and gradually increased until
the VM cannot execute the application’s size based on the GPU resources’ computing

Appl. Sci. 2024, 14, 2385 12 of 24

capabilities that are connected to the VM or when the application’s execution time reaches
1 h and 40 min. The range of the execution time is between 5 s up to 1 h and 40 min. Tables 5
and 6 depict the applications in the training set and the testing set in the energy model,
respectively.

Table 5. Training set in the energy model.

Application Size
Gaussian 4000 × 4000
Gaussian 6000 × 6000
Gaussian 8000 × 8000
Gaussian 10,000 × 10,000
Gaussian 12,000 × 12,000
Gaussian 14,000 × 14,000
Gaussian 18,000 × 18,000
Gaussian 20,000 × 20,000
Hotspot 1024 × 1024
Hotspot 2048 × 2048
Hotspot 4096 × 4096
Hotspot 16,384 × 16,384
Nbody 665,600
Nbody 998,400
Nbody 1,331,200
Nbody 1,664,000
Nbody 1,996,800
Nbody 2,329,600
Nbody 2,995,200
Nbody 3,328,000

Srad 3200 × 3200
Srad 4800 × 4800
Srad 6400 × 6400
Srad 8000 × 8000
Srad 9600 × 9600
Srad 11,200 × 11,200
Srad 14,400 × 14,400

Streamcluster 65,536
Streamcluster 131,072
Streamcluster 262,144
Streamcluster 524,288
Streamcluster 2,097,152
Streamcluster 4,194,304

Table 6. Testing set in the energy model.

Application Size Abbreviation
Gaussian 16,000 × 16,000 G16000
Hotspot 8192 × 8192 H8192
Nbody 2,662,400 N2662400

Srad 12,800 × 12,800 S12800
Streamcluster 1,048,576 SC1048576

(2) Data Collection and Input Selection

To obtain the energy consumption, the application’s execution time should be con-
sidered. Moreover, according to the experiments between power and temperature, it has
been found that device temperature has a great impact on power consumption when the
execution time is increased [46]. Thus, the device temperature also should be considered in
order to enhance the energy consumption estimation.

Appl. Sci. 2024, 14, 2385 13 of 24

Nvidia-smi is used to profile the temperature, power consumption, and GPU and
memory utilizations with 1 s time intervals. The nvidia-smi tool collects power consump-
tion through sensors located in the GPU with an assumed +/− 5% error margin. Then,
the average temperature, power consumption, and GPU and memory utilization are cal-
culated after profiling them for every application. Nvprof is used to profile the selected
performance counters in the power model. However, nvprof is unable to profile some
counters when the application’s size and execution time are increased because an overflow
happened when profiling these counters. Therefore, the remaining performance counters
that nvprof can profile are used as the model’s inputs. The remaining counters represent
the behavior of GPU memory types.

An agnostic energy model is also developed by selecting the inputs that share both
GPUs (Fermi and Kepler). This agnostic energy model aims to standardize the difference
and complexity of heterogeneous GPU architectures by selecting the common inputs
between the used GPUs. Table 7 illustrates the model’s inputs for every VM connected
with a different GPU and the agnostic one.

Table 7. The energy model inputs for each VM.

Model Input VM with C2075 VM with K40c Common Inputs
(Agnostic Model)

Gst_transactions X
Ecc_transactions X

L2_read_transactions X
L2_write_transactions X

L2_l1_read_transactions X
L2_l1_write_transactions X
Dram_read_transactions X X X
Dram_write_transactions X

Gld_transactions_per_request X
Gld_transactions X
Execution time X X X
Temperature X X X

Power consumption X X X
GPU utilization X X X

Memory utilization X X X

(3) Model Design

This model aims to calculate GPU applications’ energy consumption and eliminates
human intervention directly and automatically. Two different energy models are designed
for two VMs that are connected with heterogeneous GPUs (Fermi C2075 and Kepler K40c).
The model will calculate the application’s energy consumption by Equation (1). However,
as has been discussed earlier, other factors affect energy consumption, such as device
temperature, GPU utilization, and memory utilization. Therefore, these factors will be
considered in order to predict the energy consumption. For every VM connected, there are
two groups of models. The first group is for developing the energy model with individual
inputs representing every GPU architecture. The second model is for developing the
model with common input parameters (the agnostic model) to abstract the heterogeneity
of the hardware.

When the relationship between the size of the applications and their execution time
was analyzed, we found that most of the relationships are not linear even though the size
has been regularly increased. Similarly, the relationship between the size of the applications
and power consumption is also not linear. This analysis is performed in both VMs that
contain heterogeneous GPUs.

Figure 1 shows the relationship trend between the execution time and the size of
Gaussian application running in the Fermi GPU.

Appl. Sci. 2024, 14, 2385 14 of 24

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 25

Gld_transactions_per_request X
Gld_transactions X
Execution time X X X
Temperature X X X

Power consumption X X X
GPU utilization X X X

Memory utilization X X X

(3) Model Design
This model aims to calculate GPU applications’ energy consumption and eliminates

human intervention directly and automatically. Two different energy models are de-
signed for two VMs that are connected with heterogeneous GPUs (Fermi C2075 and Kep-
ler K40c). The model will calculate the application’s energy consumption by Equation 1.
However, as has been discussed earlier, other factors affect energy consumption, such as
device temperature, GPU utilization, and memory utilization. Therefore, these factors will
be considered in order to predict the energy consumption. For every VM connected, there
are two groups of models. The first group is for developing the energy model with indi-
vidual inputs representing every GPU architecture. The second model is for developing
the model with common input parameters (the agnostic model) to abstract the heteroge-
neity of the hardware.

When the relationship between the size of the applications and their execution time
was analyzed, we found that most of the relationships are not linear even though the size
has been regularly increased. Similarly, the relationship between the size of the applica-
tions and power consumption is also not linear. This analysis is performed in both VMs
that contain heterogeneous GPUs.

Figure 1 shows the relationship trend between the execution time and the size of
Gaussian application running in the Fermi GPU.

Figure 1. Relationship between execution time and size of the Gaussian application on the VM con-
nected with Fermi GPU.

The calculated energy consumption when the application is increased is not linear.
Thus, predicting the application’s energy consumption will be complex. Therefore, DNN
is an appropriate candidate for automatically calculating energy consumption.

As illustrated in the power model section, the procedures for designing the energy
consumption model are similar to those for the power consumption model. Firstly, the
model’s inputs in the training set have been pre-processed using z-score normalization to

Figure 1. Relationship between execution time and size of the Gaussian application on the VM
connected with Fermi GPU.

The calculated energy consumption when the application is increased is not linear.
Thus, predicting the application’s energy consumption will be complex. Therefore, DNN is
an appropriate candidate for automatically calculating energy consumption.

As illustrated in the power model section, the procedures for designing the energy
consumption model are similar to those for the power consumption model. Firstly, the
model’s inputs in the training set have been pre-processed using z-score normalization to
unify the scale range. Then, the model has been designed using a DNN to estimate energy
consumption Ed by the following equation:

Ed =f(W, X, b) (7)

where W is the weight matrix in every layer, X is the input features matrix in every layer,
and b is the bias value in every layer. For the VM connected with the Fermi GPU, for the
DNN model that has the standard input, the input layer contains 13 neurons equivalent to
the number of input attributes. Similar to the power model, the number of hidden layers
is four layers, and each layer contains eight neurons. The output layer has one neuron to
represent the predicted energy consumption. Another energy model for the VM connected
with the Fermi GPU is the common inputs (the agnostic model). The features of this model
are similar to the standard model except the number of neurons in the input layer is six
neurons and the number of neurons in every hidden layer is six neurons.

For the VM connected with the Kepler GPU, for the structure of the DNN model that
has the standard inputs, the input layer contains six neurons equivalent to the number of
input attributes, the number of hidden layers is four layers, and each layer contains six
neurons. The output layer has one neuron to represent the predicted energy consumption.

Another energy model for the VM connected with the Kepler GPU is with the common
inputs (the agnostic model). The input layer has six neurons, and the other layers are
identical to the DNN model with the standard inputs for the VM connected with Kepler.
Then, we compare the agnostic energy model’s accuracy with the standard inputs model.
The number of hidden layers in all models is fixed. The selected activation function for
all DNN layers except the output layer is the ReLU activation function. The activation
function of the output layer is the linear function.

Similar to the power models, the weights of the synapses in the input layer are
randomly initialized under the uniform distribution, the weights of the synapses in the
hidden and output layers are randomly initialized under normal distribution, and the bias
values are initialized to be zero.

Appl. Sci. 2024, 14, 2385 15 of 24

The tuned hyper-parameters are the learning rate, epochs, and batch size. The learning
rate, epoch, and batch size are 0.01, 1000, and 33, respectively. Then, the energy models are
trained using the Adam algorithm to adjust the weights of the edges in the DNN layers,
similar to the power models. The difference between the actual energy and the predicted
energy is evaluated by the loss function in every training step.

4. Result

This section will first illustrate the details of implementing the experiments and the
experiments’ setup. Then, the results of the power and hybrid power models in both GPUs
will be shown. After that, the energy and agnostic models’ results will be given. Finally, a
discussion of the results will be illustrated in this section.

4.1. Implementation

To evaluate the developed model, several experiments have been performed in a cloud
testbed located in the School of Computing at Leeds University to generate historical data
for the models’ training and testing. Several applications are selected for their well-known
benchmarks and CUDA SDKs containing different features and characteristics to evaluate
the models. The DNN models for power and energy predictions are implemented using
the Keras platform [47] which is based on the Python programming language.

4.2. Experimental Set-Up

The experiments are performed on two different virtual machines (VMs) supported
by two heterogeneous GPUs, mainly used for GPU computing. These heterogeneous GPUs
are NVIDIA Fermi C2075 (released in 2010) and NVIDIA Kepler K40c (released in 2012).
OpenNebula [48] is used as a Virtual Infrastructure Manager (VIM), and the KVM is the
used hypervisor, as shown in Table 8. Additionally, the Operating System (OS) used is
Linux CentOS in the VM. Moreover, the used CUDA compiler version is 7.5. The used
GPUs have distinctive features and resources, as shown Table 9.

Table 8. Two VMs’ details in the cloud testbed.

VM Characteristics VM1 VM2
CPU Intel Xeon E5-2630 v3 2.4 GHz Intel Xeon E5-2630 v3 2.4 GHz

VCPU 8 8
RAM Size 32 GB 64 GB

GPU NVIDIA Fermi C2075 NVIDIA Kepler K40c
Hypervisor KVM

CUDA Compiler Version 7.5
OS Linux CentOS

VIM OpenNebula

Table 9. Fermi C2075 and Kepler K40c GPUs’ characteristics.

GPU Details Fermi C2075 Kepler K40c
CUDA Cores 448 2880

SMs 14 15
Cores/SM 32 192

Core Frequency (MHz) 1150 745
Memory Size (GB) 6 12

Max Power Consumption (W) 225 235
Max Threads/Block 1024 1024

Max Warp/SM 48 64
Max Thread Blocks/SM 8 16

ECC Mode Enabled Enabled

Appl. Sci. 2024, 14, 2385 16 of 24

Moreover, the VMs connected with the GPUs were set with different RAM sizes. For
both VMs, the physical RAM was allocated to the virtual RAM. In all models, we selected
application sizes to be compatible with both GPUs’ resources, since the Kepler GPU and
the connected VM have better resources and performance, and to enable fairness between
the GPUs as well. Additionally, the nvprof profiling tool measured the time of data transfer
between the RAM and the GPU, which is included in the execution time. This work does
not consider the impact of other factors on energy consumption when GPU applications
are executed in a cloud-computing infrastructure, including I/O traffic and networking,
since the majority of power consumption is consumed by processing units.

To measure the model accuracy with the actual value for each application in the testing
set, the absolute error percentage is utilized, and it is calculated by the following formula:

Error (%) =
Predicted − Actual

Actual
× 100 (8)

4.3. Power Models’ Results

This section shows the results of power models when the selected performance coun-
ters are utilized for developing the GPU power models.

Figure 2 summarizes the difference between the actual and estimated application
power consumption of the shallow and deep neural networks when they run on a VM
connected with the Fermi C2075 GPU.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 25

This section shows the results of power models when the selected performance

counters are utilized for developing the GPU power models.

Figure 2 summarizes the difference between the actual and estimated application

power consumption of the shallow and deep neural networks when they run on a VM

connected with the Fermi C2075 GPU.

Figure 2. The difference between actual and estimated power consumption in VM connected with

Fermi C2075 GPU.

Figure 3 shows the absolute percentage error difference between the shallow and

deep neural network models for predicting applications’ power consumption when they

are executed on a VM connected with the Fermi C2075 GPU.

Figure 3. The absolute percentage error between shallow and deep neural network power models

in VM connected with Fermi C2075 GPU.

Figure 4 summarizes the difference between the actual and estimated applications’

power consumption of the shallow and deep neural networks running on the VM

connected with the Kepler GPU.

Figure 2. The difference between actual and estimated power consumption in VM connected with
Fermi C2075 GPU.

Figure 3 shows the absolute percentage error difference between the shallow and deep
neural network models for predicting applications’ power consumption when they are
executed on a VM connected with the Fermi C2075 GPU.

Figure 4 summarizes the difference between the actual and estimated applications’
power consumption of the shallow and deep neural networks running on the VM connected
with the Kepler GPU.

Figure 5 depicts the absolute percentage error difference between the shallow and
deep neural network models for predicting applications’ power consumption when they
are executed on a VM connected with the Kepler K40c GPU.

Appl. Sci. 2024, 14, 2385 17 of 24

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 25

This section shows the results of power models when the selected performance

counters are utilized for developing the GPU power models.

Figure 2 summarizes the difference between the actual and estimated application

power consumption of the shallow and deep neural networks when they run on a VM

connected with the Fermi C2075 GPU.

Figure 2. The difference between actual and estimated power consumption in VM connected with

Fermi C2075 GPU.

Figure 3 shows the absolute percentage error difference between the shallow and

deep neural network models for predicting applications’ power consumption when they

are executed on a VM connected with the Fermi C2075 GPU.

Figure 3. The absolute percentage error between shallow and deep neural network power models

in VM connected with Fermi C2075 GPU.

Figure 4 summarizes the difference between the actual and estimated applications’

power consumption of the shallow and deep neural networks running on the VM

connected with the Kepler GPU.

Figure 3. The absolute percentage error between shallow and deep neural network power models in
VM connected with Fermi C2075 GPU.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 25

Figure 4. The difference between actual and estimated power consumption in VM connected with

Kepler K40c GPU.

Figure 5 depicts the absolute percentage error difference between the shallow and

deep neural network models for predicting applications’ power consumption when they

are executed on a VM connected with the Kepler K40c GPU.

Figure 5. The absolute percentage error between shallow and deep neural network power models

in VM connected with Kepler K40c GPU.

4.4. Hybrid Inputs Power Models

Figure 6 and Figure 7 summarize the absolute percentage error difference between

the shallow and deep neural network models developed by hybrid inputs for predicting

applications’ power consumption when they are executed on the VM connected with the

Fermi GPU and the VM with the Kepler GPU, respectively.

Figure 6. The absolute percentage error between shallow and deep neural network power models

of hybrid inputs in VM connected with Fermi C2075 GPU.

Figure 4. The difference between actual and estimated power consumption in VM connected with
Kepler K40c GPU.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 25

Figure 4. The difference between actual and estimated power consumption in VM connected with

Kepler K40c GPU.

Figure 5 depicts the absolute percentage error difference between the shallow and

deep neural network models for predicting applications’ power consumption when they

are executed on a VM connected with the Kepler K40c GPU.

Figure 5. The absolute percentage error between shallow and deep neural network power models

in VM connected with Kepler K40c GPU.

4.4. Hybrid Inputs Power Models

Figure 6 and Figure 7 summarize the absolute percentage error difference between

the shallow and deep neural network models developed by hybrid inputs for predicting

applications’ power consumption when they are executed on the VM connected with the

Fermi GPU and the VM with the Kepler GPU, respectively.

Figure 6. The absolute percentage error between shallow and deep neural network power models

of hybrid inputs in VM connected with Fermi C2075 GPU.

Figure 5. The absolute percentage error between shallow and deep neural network power models in
VM connected with Kepler K40c GPU.

4.4. Hybrid Inputs Power Models

Figures 6 and 7 summarize the absolute percentage error difference between the
shallow and deep neural network models developed by hybrid inputs for predicting

Appl. Sci. 2024, 14, 2385 18 of 24

applications’ power consumption when they are executed on the VM connected with the
Fermi GPU and the VM with the Kepler GPU, respectively.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 25

Figure 4. The difference between actual and estimated power consumption in VM connected with

Kepler K40c GPU.

Figure 5 depicts the absolute percentage error difference between the shallow and

deep neural network models for predicting applications’ power consumption when they

are executed on a VM connected with the Kepler K40c GPU.

Figure 5. The absolute percentage error between shallow and deep neural network power models

in VM connected with Kepler K40c GPU.

4.4. Hybrid Inputs Power Models

Figure 6 and Figure 7 summarize the absolute percentage error difference between

the shallow and deep neural network models developed by hybrid inputs for predicting

applications’ power consumption when they are executed on the VM connected with the

Fermi GPU and the VM with the Kepler GPU, respectively.

Figure 6. The absolute percentage error between shallow and deep neural network power models

of hybrid inputs in VM connected with Fermi C2075 GPU.
Figure 6. The absolute percentage error between shallow and deep neural network power models of
hybrid inputs in VM connected with Fermi C2075 GPU.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 25

Figure 7. The absolute percentage error between shallow and deep neural network power models

of hybrid inputs in a VM connected with Kepler K40c GPU.

4.5. Energy Models

Figure 8 depicts the energy consumption differences among the estimated values by

the model with the standard inputs, the actual values, and the estimated values by the

model developed by the common inputs (the agnostic model) of the applications in the

testing set when these applications are executed on the Fermi GPU VM.

Figure 8. The energy difference between actual and estimated values of standard and agnostic

models on a VM connected with Fermi C2075 GPU.

Figure 9 shows the absolute percentage error value difference between the energy

model with standard inputs and the agnostic energy model on the applications in the

testing set when these applications are executed on the Fermi GPU VM.

Figure 9. Absolute percentage error of energy models (standard and agnostic) on a VM connected

with Fermi C2075 GPU.

Figure 7. The absolute percentage error between shallow and deep neural network power models of
hybrid inputs in a VM connected with Kepler K40c GPU.

4.5. Energy Models

Figure 8 depicts the energy consumption differences among the estimated values by
the model with the standard inputs, the actual values, and the estimated values by the
model developed by the common inputs (the agnostic model) of the applications in the
testing set when these applications are executed on the Fermi GPU VM.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 25

Figure 7. The absolute percentage error between shallow and deep neural network power models

of hybrid inputs in a VM connected with Kepler K40c GPU.

4.5. Energy Models

Figure 8 depicts the energy consumption differences among the estimated values by

the model with the standard inputs, the actual values, and the estimated values by the

model developed by the common inputs (the agnostic model) of the applications in the

testing set when these applications are executed on the Fermi GPU VM.

Figure 8. The energy difference between actual and estimated values of standard and agnostic

models on a VM connected with Fermi C2075 GPU.

Figure 9 shows the absolute percentage error value difference between the energy

model with standard inputs and the agnostic energy model on the applications in the

testing set when these applications are executed on the Fermi GPU VM.

Figure 9. Absolute percentage error of energy models (standard and agnostic) on a VM connected

with Fermi C2075 GPU.

Figure 8. The energy difference between actual and estimated values of standard and agnostic models
on a VM connected with Fermi C2075 GPU.

Appl. Sci. 2024, 14, 2385 19 of 24

Figure 9 shows the absolute percentage error value difference between the energy
model with standard inputs and the agnostic energy model on the applications in the
testing set when these applications are executed on the Fermi GPU VM.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 25

Figure 7. The absolute percentage error between shallow and deep neural network power models

of hybrid inputs in a VM connected with Kepler K40c GPU.

4.5. Energy Models

Figure 8 depicts the energy consumption differences among the estimated values by

the model with the standard inputs, the actual values, and the estimated values by the

model developed by the common inputs (the agnostic model) of the applications in the

testing set when these applications are executed on the Fermi GPU VM.

Figure 8. The energy difference between actual and estimated values of standard and agnostic

models on a VM connected with Fermi C2075 GPU.

Figure 9 shows the absolute percentage error value difference between the energy

model with standard inputs and the agnostic energy model on the applications in the

testing set when these applications are executed on the Fermi GPU VM.

Figure 9. Absolute percentage error of energy models (standard and agnostic) on a VM connected

with Fermi C2075 GPU.
Figure 9. Absolute percentage error of energy models (standard and agnostic) on a VM connected
with Fermi C2075 GPU.

Figure 10 depicts the energy consumption differences between the actual and the
estimated values of the developed models (standard and agnostic) for the applications in
the testing set when these applications are executed on the Kepler GPU VM.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 25

Figure 10 depicts the energy consumption differences between the actual and the

estimated values of the developed models (standard and agnostic) for the applications in

the testing set when these applications are executed on the Kepler GPU VM.

Figure 10. The energy difference between actual and estimated values (standard and agnostic) on a

VM connected with Kepler K40c GPU.

Figure 11 shows the absolute percentage error values of the energy models (standard

and agnostic) on the applications in the testing set when these applications are executed

on the Kepler VM.

Figure 11. The absolute percentage error of energy models (standard and agnostic) on a VM

connected with Kepler K40c GPU.

5. Discussion

Several models have been developed to predict power and energy consumption on

heterogeneous GPUs connected with VMs in a cloud environment; each GPU has different

characteristics. The absolute percentage error has been calculated to measure the overall

accuracy in the testing set.

(1) Power Consumption Models

A comparison between shallow neural networks and DNNs to validate DNN models

has been performed in power consumption models. Acceptable accuracy differences

between actual and predicted power values have been conducted using neural networks

(shallow and deep) by merely using performance counters as models’ inputs. According

to the power models’ results on heterogeneous VMs, DNN models systematically produce

a better accuracy compared with shallow networks in both VMs connected with

heterogeneous GPUs.

In power consumption models’ results on a VM with the Fermi C2075 GPU, the

outliers of power consumption values in Nbody, Mri-q, and Streamcluster applications

Figure 10. The energy difference between actual and estimated values (standard and agnostic) on a
VM connected with Kepler K40c GPU.

Figure 11 shows the absolute percentage error values of the energy models (standard
and agnostic) on the applications in the testing set when these applications are executed on
the Kepler VM.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 25

Figure 10 depicts the energy consumption differences between the actual and the

estimated values of the developed models (standard and agnostic) for the applications in

the testing set when these applications are executed on the Kepler GPU VM.

Figure 10. The energy difference between actual and estimated values (standard and agnostic) on a

VM connected with Kepler K40c GPU.

Figure 11 shows the absolute percentage error values of the energy models (standard

and agnostic) on the applications in the testing set when these applications are executed

on the Kepler VM.

Figure 11. The absolute percentage error of energy models (standard and agnostic) on a VM

connected with Kepler K40c GPU.

5. Discussion

Several models have been developed to predict power and energy consumption on

heterogeneous GPUs connected with VMs in a cloud environment; each GPU has different

characteristics. The absolute percentage error has been calculated to measure the overall

accuracy in the testing set.

(1) Power Consumption Models

A comparison between shallow neural networks and DNNs to validate DNN models

has been performed in power consumption models. Acceptable accuracy differences

between actual and predicted power values have been conducted using neural networks

(shallow and deep) by merely using performance counters as models’ inputs. According

to the power models’ results on heterogeneous VMs, DNN models systematically produce

a better accuracy compared with shallow networks in both VMs connected with

heterogeneous GPUs.

In power consumption models’ results on a VM with the Fermi C2075 GPU, the

outliers of power consumption values in Nbody, Mri-q, and Streamcluster applications

Figure 11. The absolute percentage error of energy models (standard and agnostic) on a VM connected
with Kepler K40c GPU.

Appl. Sci. 2024, 14, 2385 20 of 24

5. Discussion

Several models have been developed to predict power and energy consumption on
heterogeneous GPUs connected with VMs in a cloud environment; each GPU has different
characteristics. The absolute percentage error has been calculated to measure the overall
accuracy in the testing set.

(1) Power Consumption Models

A comparison between shallow neural networks and DNNs to validate DNN mod-
els has been performed in power consumption models. Acceptable accuracy differences
between actual and predicted power values have been conducted using neural networks
(shallow and deep) by merely using performance counters as models’ inputs. According
to the power models’ results on heterogeneous VMs, DNN models systematically pro-
duce a better accuracy compared with shallow networks in both VMs connected with
heterogeneous GPUs.

In power consumption models’ results on a VM with the Fermi C2075 GPU, the outliers
of power consumption values in Nbody, Mri-q, and Streamcluster applications produced
by shallow networks have been dramatically decreased in the DNN model. Additionally,
the overall accuracy in the DNN GPU power model has exhibited better accuracy than
shallow networks with a mean error of 18.1% compared with 45% in shallow networks.
Furthermore, in the power consumption model results on a VM with the Kepler K40c
GPU, many power consumption outliers have been produced by the shallow network in
ConvolutionTexture, FastWalshTransform, Nbody, and Cutcp applications, while these
outliers have been mitigated in the DNN power model, as shown in Figure 6.

The overall accuracy of the DNN model is also greater than the shallow network with
17% in comparison with the 27.4% mean error in the shallow network.

A significant accuracy improvement has occurred when the utility percentage of GPU
and memory have been added with the selected performance counters—hybrid inputs—
for the power consumption prediction in both heterogeneous GPUs connected with two
different VMs.

In the power consumption model’s results on a VM with the Fermi C2075 GPU, the
accuracy of shallow networks has been improved with a mean error of 12.5% compared
with 45% in the performance-counters-only model. Similarly, the DNN power model’s
accuracy has been improved from 18.1% in the performance counters model to 9% in the
hybrid inputs model. In terms of the accuracy of each application individually, the greatest
absolute percentage error has been dropped by adopting hybrid inputs from 38.1% (Histo)
to 28.3 (Streamcluster) in the DNN model. However, in the shallow networks model, the
greatest absolute percentage error has been reduced from 137% (Streamclucter) to 40%
(Srad) on the VM connected with Fermi C2075. However, the accuracy of the DNN was
better than shallow networks with a 9% mean error and 12.5% for shallow networks.

In the power consumption results on a VM with the Kepler K40c GPU, an improvement
of the overall accuracy has occurred in the shallow networks model from a 27.4% mean
error with the only-performance-counters-inputs model to a 10% mean error in the hybrid
inputs model. Moreover, the overall accuracy in DNN has been enhanced from a 17%
mean error in only-performance-counters-inputs to a 9% mean error in hybrid inputs.
Although the accuracy of the shallow networks has been improved in hybrid inputs, the
DNN model has performed better than the shallow networks model with 9% compared
with a 10% mean error in the shallow network model. For individual evaluation, the
greatest absolute percentage error has been decreased from 82% (Bfs) to 23% (Cutcp) in
the DNN model with hybrid inputs. Similarly, in the hybrid inputs model, the greatest
absolute percentage error value in shallow networks has dropped from 56.3% (Cutcp) to
29% (Cutcp). Table 10 summarizes the mean errors and the greatest error percentages of
the GPU power consumption models on both VMs.

Appl. Sci. 2024, 14, 2385 21 of 24

Table 10. The mean errors and greatest errors values summary of power consumption models on
Both VMs.

VM with Fermi C2075 GPU VM with Kepler K40c
Power Models

VMs
Mean Error Greatest Error Mean Error Greatest Error

Performance Counters Inputs
(Shallow) 45 137 27.4 56.3

Performance Counters Inputs
(Deep) 18.1 38.1 17 82

Hybrid Inputs (Shallow) 12.5 40 10 29
Hybrid Inputs (Deep) 9 28.3 9 23

According to Table 10, the minimum mean error percentage of all power models on
both VMs was 9%, for DNN models with hybrid inputs in both VMs, and the minimum
greatest error percentage of all power models was 23%, for the DNN model with hybrid
inputs in the VM connected with Kepler K40c. This indicates that adding both the utility
percentage of GPU usage and the memory usage improves the model’s accuracy.

(2) Energy Consumption Models

The outliers in the energy DNN model results do not exist when compared with the
actual energy values in both VMs, as shown in the energy models’ section.

In comparing the energy models having standard inputs and the agnostic model that
has the common inputs in the VM connected with the Fermi GPU, the overall accuracy in
the agnostic energy model performed slightly better than the energy model with standard
inputs with a mean error of 8.6% compared with a 9.1% mean error in the standard energy
model. In terms of individual accuracy, the maximum percentage error in the DNN energy
model with standard inputs was 25% (H8192), while the greatest error in the agnostic DNN
energy model with the common inputs was 15.4% (SC 1048576).

In a VM connected with the Kepler GPU, the agnostic energy model performance
is slightly better than the energy model with standard inputs with a mean error of 6.3%
compared with 6.5% in the energy model with standard inputs. Moreover, the maximum
individual percentage error in the DNN energy model with standard inputs is 23.6%
(H8192), while the highest individual percentage error in the DNN agnostic energy model
is 24.3% (H8192). Therefore, the agnostic DNN energy model has exhibited a better
performance in terms of the mean error and the maximum individual error percentage.
Table 11 summarizes the mean error and the greatest error percentages of energy models in
both VMs.

Table 11. The mean errors and greatest errors values summary of energy models for both VMs.

VM with Fermi C2075 GPU VM with Kepler K40c
Energy Models

VMs
Mean Error Greatest Error Mean Error Greatest Error

DNN with Standard Inputs 9.1 25 6.5 24.3
DNN with Common Inputs

(agnostic model) 8.6 15.4 6.3 23.6

According to Table 11, for a comparison of both VMs, the best mean percentage error
for the energy prediction model was found on the VM connected with the Kepler K40c
GPU (6.3%), while the VM that connected with the Fermi C2075 GPU had the minimum
greatest individual error (15.4%). Thus, the energy agnostic model has a better performance
and allows us to reduce the input parameters required, which contributes to a reduction in
the cost of data collection.

Another interesting finding is that the agnostic model provides an unintended level of
bias in some cases. For example, the overall performance (measured by the mean) of the
agnostic model in the Kepler GPU is better than the Fermi GPU. However, the Fermi GPU
is better in terms of the greatest error. Therefore, there is a trade-off between accuracy and
the cost of data collection in agnostic models.

Appl. Sci. 2024, 14, 2385 22 of 24

6. Limitations

The evaluations conducted in this study through direct experiments for the developed
models have shown promising results for enabling energy awareness in order to manage
the heterogeneous resources of cloud computing. However, this study has a few limitations.
These limitations are as follows:

• Each VM in cloud computing consists of different virtual resources, such as CPUs,
memory, and network traffic. These resources affect the total VM energy consump-
tion. Although the workload has been executed by the GPU, the developed energy
consumption models in this study have only considered the energy consumed by the
GPU and neglected other resources that affect the total VM energy consumption.

• Cloud computing is known for the diversity and heterogeneity of its resources, and
the cloud-computing infrastructure hosts a great number of VMs and PMs. However,
this work has only considered two VMs and two types of NVIDIA GPU architectures
in cloud computing. This is because of the high cost of performing experiments on
a real cloud testbed that contains a large number of heterogeneous GPUs. Moreover,
simulation tools that support heterogeneous GPU architectures in cloud-computing
environments are not available.

7. Conclusions and Future Work

The cloud infrastructure has grown more varied in terms of hardware due to cloud
service providers’ considerations regarding using accelerators, making resource manage-
ment more difficult. It can be challenging to maintain QoS when operating a heterogeneous
cloud architecture. This paper presents and discusses power and energy consumption
models. These models were created for two virtual machines, each of which has hetero-
geneous GPUs from two generations (Fermi C2075 and K40c). Each GPU has a variety of
unique characteristics and features. The models have been assessed by studies comparing
predicted and actual values generated by models on a cloud testbed. Performance counters
were used as inputs in shallow neural networks to test DNN power models. Secondly,
employing hybrid inputs considerably improved the outcomes (performance counters, and
GPU and memory utilization). Additionally, DNN energy models for two VMs have been
presented. In each VM, comparisons between conventional and agnostic energy models
with similar inputs have been made. Agnostic energy models that abstract the infrastruc-
ture heterogeneity for both VMs have demonstrated a small accuracy improvement with
reduced inputs.

The suggested future directions for extending this study are structured as follows:
First, we will employ Deep Convolutional Neural Network (CNN) workloads to enhance
the generalization of GPU energy models to apply to different types of GPU architectures.
Second, we will consider other cloud infrastructure resources including CPU, main memory,
and network traffic to estimate the total energy consumption of the VM. Another potential
extension of this work is to increase the heterogeneity of GPU architectures, for example,
through the consideration of GPU generations—from older to new to the newest, the
Maxwell, Pascal, and Volta NVIDIA architectures running together in cloud-computing
environments. Finally, based on the enhanced energy models, scheduling policies to reduce
energy consumption, and then balancing the trade-off between energy and performance
will be developed in a cloud-computing environment.

Author Contributions: Methodology, A.A.; Software, A.A.; Validation, Y.A.; Resources, Y.A.; Writing—
original draft, A.A.; Writing—review & editing, K.D. and Y.A.; Supervision, K.D.; Funding acquisition,
A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education of Saudi Arabia and funded by
King Abdulaziz University under Grant G: 690-611-1443.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2024, 14, 2385 23 of 24

Data Availability Statement: The datasets presented in this article are not readily available be-
cause they are part of an ongoing study. Requests to access the datasets should be directed to the
corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CISCO. Cisco Annual Internet Report 2018–2023 White Paper; CISCO: San Jose, CA, USA, 2020.
2. Public Cloud Computing Market Size 2022|Statista. Available online: https://www.statista.com/statistics/273818/global-

revenue-generated-with-cloud-computing-since-2009/ (accessed on 25 July 2023).
3. Amazon EC2 P3—Ideal for Machine Learning and HPC—AWS. Available online: https://aws.amazon.com/ec2/instance-types/

p3/ (accessed on 1 August 2023).
4. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on

learning. arXiv preprint 2016, arXiv:1602.07261. [CrossRef]
5. Mukherjee, T.; Dasgupta, K.; Gujar, S.; Jung, G.; Lee, H. An economic model for green cloud. In Proceedings of the 10th

International Workshop on Middleware for Grids, Clouds and e-Science, MGC 2012, Montreal, QC, Canada, 3–7 December 2012.
[CrossRef]

6. Hamilton, J. Cooperative expendable micro-slice servers (CEMS): Low cost, low power servers for internet-scale services. In
Proceedings of the Conference on Innovative Data Systems Research (CIDR’09), Asilomar, CA, USA, 4–7 January 2009; pp. 1–8.

7. Andrae, A.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157.
[CrossRef]

8. Jones, N. The information factories. Nature 2018, 561, 163–166. [CrossRef] [PubMed]
9. Ghosh, S.; Chandrasekaran, S.; Chapman, B.M. Statistical Modeling of Power/Energy of Scientific Kernels on a Multi-GPU

system. In Proceedings of the 2013 International Green Computing Conference Proceedings, Arlington, VA, USA, 27–29 June
2013; pp. 1–6. [CrossRef]

10. Hong, S.; Kim, H. An integrated GPU power and performance model. In Proceedings of the 37th Annual International Symposium
on Computer Architecture, Saint-Malo, France, 19–23 June 2010; pp. 280–289. [CrossRef]

11. Kasichayanula, K.; Terpstra, D.; Luszczek, P.; Tomov, S.; Moore, S.; Peterson, G.D. Power aware computing on GPUs. In
Proceedings of the Symposium on Application Accelerators in High-Performance Computing, Argonne, IL, USA, 10–11 July 2012;
pp. 64–73. [CrossRef]

12. Adhinarayanan, V.; Subramaniam, B.; Feng, W. Online Power Estimation of Graphics Processing Units. In Proceedings of the
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Cartagena, Colombia, 16–19 May 2016.
[CrossRef]

13. Makaratzis, A.T.; Khan, M.M.; Giannoutakis, K.M.; Elster, A.C.; Tzovaras, D. GPU Power Modeling of HPC Applications for
the Simulation of Heterogeneous Clouds. In International Conference on Parallel Processing and Applied Mathematics; Springer
International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 91–101. [CrossRef]

14. Leng, J.; Hetherington, T.; ElTantawy, A.; Gilani, S.; Kim, N.S.; Aamodt, T.M.; Reddi, V.J. GPUWattch: Enabling Energy
Optimizations in GPGPUs. ACM SIGARCH Comput. Archit. News 2013, 41, 487–498. [CrossRef]

15. Lucas, J.; Lal, S.; Andersch, M.; Alvarez-Mesa, M.; Juurlink, B. How a single chip causes massive power bills GPUSimPow:
A GPGPU power simulator. In Proceedings of the ISPASS 2013—IEEE International Symposium on Performance Analysis of
Systems and Software, Austin, TX, USA, 21–23 April 2013; pp. 97–106. [CrossRef]

16. Song, S.; Su, C.; Rountree, B.; Cameron, K.W. A simplified and accurate model of power-performance efficiency on emergent
GPU architectures. In Proceedings of the IEEE 27th International Parallel and Distributed Processing Symposium, IPDPS 2013,
Cambridge, MA, USA, 20–24 May 2013; pp. 673–686. [CrossRef]

17. Abe, Y.; Sasaki, H.; Kato, S.; Inoue, K.; Edahiro, M.; Peres, M. Power and performance characterization and modeling of GPU-
accelerated systems. In Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS, Phoenix, AZ,
USA, 19–23 May 2014; pp. 113–122. [CrossRef]

18. Xie, Q.; Huang, T.; Zou, Z.; Xia, L.; Zhu, Y.; Jiang, J. An accurate power model for GPU processors. In Proceedings of the 2012 7th
International Conference on Computing and Convergence Technology (ICCIT, ICEI and ICACT), ICCCT 2012, Seoul, Republic of
Korea, 3–5 December 2012; pp. 1141–1146.

19. Siavashi, A.; Momtazpour, M. GPUCloudSim: An extension of CloudSim for modeling and simulation of GPUs in cloud data
centers. J. Supercomput. 2019, 75, 2535–2561. [CrossRef]

20. Metz, C.A.; Goli, M.; Drechsler, R. ML-based Power Estimation of Convolutional Neural Networks on GPGPUs. In Proceedings
of the 2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2022, Prague,
Czech Republic, 6–8 April 2022; pp. 166–171. [CrossRef]

21. Moolchandani, D.; Kumar, A.; Sarangi, S.R. Performance and Power Prediction for Concurrent Execution on GPUs. ACM Trans.
Archit. Code Optim. 2022, 19, 1–27. [CrossRef]

22. Braun, L.; Nikas, S.; Song, C.; Heuveline, V.; Fröning, H. A Simple Model for Portable and Fast Prediction of Execution Time and
Power Consumption of GPU Kernels. ACM Trans. Archit. Code Optim. 2021, 18, 1–25. [CrossRef]

https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1145/2405136.2405141
https://doi.org/10.3390/challe6010117
https://doi.org/10.1038/d41586-018-06610-y
https://www.ncbi.nlm.nih.gov/pubmed/30209383
https://doi.org/10.1109/SC.Companion.2012.298
https://doi.org/10.1145/1816038.1815998
https://doi.org/10.1109/SAAHPC.2012.26
https://doi.org/10.1109/CCGrid.2016.93
https://doi.org/10.1007/978-3-319-78054-2
https://doi.org/10.1145/2508148.2485964
https://doi.org/10.1109/ISPASS.2013.6557150
https://doi.org/10.1109/IPDPS.2013.73
https://doi.org/10.1109/IPDPS.2014.23
https://doi.org/10.1007/s11227-018-2636-7
https://doi.org/10.1109/DDECS54261.2022.9770153
https://doi.org/10.1145/3522712
https://doi.org/10.1145/3431731

Appl. Sci. 2024, 14, 2385 24 of 24

23. Boughzala, D.; Lefèvre, L.; Orgerie, A.C. Predicting the energy consumption of CUDA kernels using SimGrid. In Proceedings of
the SBAC-PAD-IEEE International Symposium on Computer Archi- Tecture and High Performance Computing International
Symposium on Computer Archi- Tecture and High Performance Computing, Porto, Portugal, 9–11 September 2020; pp. 1–8.

24. Casanova, H.; Giersch, A.; Legrand, A.; Quinson, M.; Suter, F. Versatile, scalable, and accurate simulation of distributed
applications and platforms. J. Parallel Distrib. Comput. 2014, 74, 2899–2917. [CrossRef]

25. Ilager, S.; Muralidhar, R.; Rammohanrao, K.; Buyya, R. A Data-Driven Frequency Scaling Approach for Deadline-aware Energy
Efficient Scheduling on Graphics Processing Units (GPUs). arXiv preprint 2020, arXiv:2004.08177.

26. Nagasaka, H.; Maruyama, N.; Nukada, A.; Endo, T.; Matsuoka, S. Statistical power modeling of GPU kernels using performance
counters. In Proceedings of the International Conference on Green Computing, Green Comp, Chicago, IL, USA, 15–18 August
2010; pp. 115–122. [CrossRef]

27. Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer, J.W.; Lee, S.H.; Skadron, K. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the IEEE International Symposium on Workload Characterization, Austin, TX, USA, 4–6 October
2009; pp. 44–54.

28. Stratton, J.A.; Rodrigues, C.; Sung, I.J.; Obeid, N.; Chang, L.W.; Anssari, N.; Liu, G.; Hwu, W.M.W. Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput Computing. Cent. Reliab. High-Perform. Comput. 2012, 127, 27.

29. CUDA Code Samples|NVIDIA Developer. Available online: https://developer.nvidia.com/cuda-code-samples (accessed on 23
April 2023).

30. nvidia-smi. Available online: http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf (accessed
on 20 February 2023).

31. Profiler User’s Guide. Available online: http://docs.nvidia.com/cuda/profiler-users-guide/index.html#gpu-trace-and-api-
trace-modes (accessed on 10 April 2023).

32. Profiler User’s Guide. Available online: https://cseweb.ucsd.edu/classes/wi15/cse262-a/static/cuda-5.5-doc/pdf/CUDA_
Profiler_Users_Guide.pdf (accessed on 5 May 2023).

33. Curtis-Maury, M.; Shah, A.; Blagojevic, F.; Nikolopoulos, D.S.; De Supinski, B.R.; Schulz, M. Prediction models for multi-
dimensional power-performance optimization on many cores. In Proceedings of the Parallel Architectures and Compilation
Techniques—Conference Proceedings, PACT, Toronto, ON, Canada, 25–29 October 2008; pp. 250–259. [CrossRef]

34. Zaharia, M.; Konwinski, A.; Joseph, A.; Katz, R.; Stoica, I. Improving MapReduce performance in heterogeneous environments.
OSDI 2008, 8, 7. [CrossRef]

35. Fall, D.; Okuda, T.; Kadobayashi, Y.; Yamaguchi, S. Risk adaptive authorization mechanism (RAdAM) for cloud computing. J. Inf.
Process. 2016, 24, 371–380. [CrossRef]

36. Shao, G.; Chen, J. A load balancing strategy based on data correlation in cloud computing. In Proceedings of the 9th IEEE/ACM
International Conference on Utility and Cloud Computing, UCC 2016, ACM, New York, NY, USA, 6–9 December 2016; pp. 364–368.
[CrossRef]

37. Lek, S.; Delacoste, M.; Baran, P.; Dimopoulos, I.; Lauga, J.; Aulagnier, S. Application of neural networks to modelling nonlinear
relationships in ecology. Ecol. Model. 1996, 90, 39–52. [CrossRef]

38. Mukhopadhyay, S.; Samanta, P. Deep Learning and Neural Networks. In Advanced Data Analytics Using Python; Apress: Berkeley,
CA, USA, 2015. [CrossRef]

39. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep
neural network for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag.
2012, 29, 82–97. [CrossRef]

40. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 2011,
24, 1–9.

41. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

42. Borovcnik, M.; Bentz, H.-J.; Kapadia, R. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.
[CrossRef]

43. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [CrossRef]

44. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint 2014, arXiv:1412.6980. [CrossRef]
45. Duchi, J.C.; Bartlett, P.L.; Wainwright, M.J. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J.

Ofmachine Learn. Res. 2011, 12, 2121–2159. [CrossRef]
46. Alnori, A.; Djemame, K. A Holistic Resource Management for Graphics Processing Units in Cloud Computing. Electron. Notes

Theor. Comput. Sci. 2018, 340, 3–22. [CrossRef]
47. Home—Keras Documentation. Available online: https://keras.io/ (accessed on 27 July 2023).
48. OpenNebula. Available online: https://opennebula.io/ (accessed on 26 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1109/GREENCOMP.2010.5598315
https://developer.nvidia.com/cuda-code-samples
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#gpu-trace-and-api-trace-modes
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#gpu-trace-and-api-trace-modes
https://cseweb.ucsd.edu/classes/wi15/cse262-a/static/cuda-5.5-doc/pdf/CUDA_Profiler_Users_Guide.pdf
https://cseweb.ucsd.edu/classes/wi15/cse262-a/static/cuda-5.5-doc/pdf/CUDA_Profiler_Users_Guide.pdf
https://doi.org/10.1145/1454115.1454151
https://doi.org/10.1109/IPDPSW.2010.5470880
https://doi.org/10.2197/ipsjjip.24.371
https://doi.org/10.1145/2996890.3007852
https://doi.org/10.1016/0304-3800(95)00142-5
https://doi.org/10.1007/978-1-4842-3450-1_5
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/TNNLS.2016.2582924
https://www.ncbi.nlm.nih.gov/pubmed/27411231
https://doi.org/10.1007/978-94-011-3532-0_2
https://doi.org/10.1021/ct2009208
https://doi.org/10.1145/1830483.1830503
https://doi.org/10.1109/CDC.2012.6426698
https://doi.org/10.1016/j.entcs.2018.09.002
https://keras.io/
https://opennebula.io/

	Introduction
	Related Work
	Power and Energy Models
	Power Models
	Energy Models

	Result
	Implementation
	Experimental Set-Up
	Power Models’ Results
	Hybrid Inputs Power Models
	Energy Models

	Discussion
	Limitations
	Conclusions and Future Work
	References

