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Estimating protein fractions and their degradation rate are vital to ensure optimum protein supply and
degradation in the digestive system of ruminants. This study investigated the possibility of using the
ANKOM gas production system and preserved rumen fluid to estimate the protein fractions and
in vitro degradability of protein-rich feeds. Three in vitro methods: (1) gas production method (2)
Cornell Net Carbohydrate and Protein System (CNCPS), and (3) the unavailable nitrogen assay of Ross
(uNRoss) were used to quantify protein fractions of four feeds (lupin meal, vetch grain, Desmanthus
hay, and soybean meal). Rumen fluid mixed with 5% dimethyl sulfoxide and frozen at �20 �C was also
compared against fresh rumen fluid in the gas production and uNRoss methods. All three methods ranked
the feeds identically in the proportions of available (degradable or ‘a + b’) protein fractions as vetch grain,
soybean meal, lupin meal, and Desmanthus hay in decreasing order. The use of fresh rumen fluid pro-
duced greater available protein fractions than preserved rumen fluid in all feeds. However, there was
no difference between total gas production from lupin meal and vetch grain fermented for 16 h in either
rumen fluid source. The in vitro degradable CP (IVDP) was higher for vetch grain (46 and 70%) at the 4th
and 8th hours of incubation than other feeds, whereas soybean meal (85%) exceeded the other feeds after
the 16th hour of incubation (P < 0.001). The greatest ammonia-N concentration was from soybean meal
(1.27 mg/g) and lupin meal (0.87 mg/g) fermented for four hours using fresh rumen fluid. The proportion
of fraction ’b’ for soybean (82.1% CP) and lupin meals (39.4% CP) from the CNCPS method were not dif-
ferent (P = 0.001) from the fraction ’b’ estimation of the gas production method for the same feeds
(r = 0.99). Regardless of the methods, a greater water-soluble protein fraction was found from vetch grain
(39.6–46.6% CP), and the proportion of fraction ‘c’ or unavailable protein in Desmanthus hay (39.1–41.5%
CP) exceeded other substrates (P < 0.001). The strong positive correlation between fractions across differ-
ent methods and identical ranking of feeds suggests the possibility of using ANKOM gas production appa-
ratus for protein fractionation.
� 2023 Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

The tested feeds can be used as a degradable protein source in
ruminant feed. The application of the gas production system, along
with the procedural modifications to the ammonia-N sampling in
ANKOM gas production apparatus, can assist in developing a rela-
tively simple and reliable method as a suitable alternative tool for
protein fractionation. Preserving rumen fluid using 5% dimethyl
sulfoxide and �20 �C for in vitro protein quantification was not
as effective as that of fresh rumen fluid.
Introduction

The information on feed quality needs to be precise for the
effective mixing of ingredients during feed formulation. Protein is
one of the major feed components that affects productivity, as it
supports diverse physiological processes in the ruminant body,
and could be a limiting factor for an optimized rumen system
and for microbial protein synthesis (Roe et al., 1991). Surplus N
supply leads to inefficient protein utilization, physiological stress
from ammonia toxicity (Patra and Aschenbach, 2018), and a higher
N-excretion, whereby more than 70% of the ingested protein can be
lost in urine and faeces (Huws et al., 2018; Li et al., 2020), causing
adverse effects on the environment (Lebzien et al., 2006; Pacheco
and Waghorn, 2008). Furthermore, protein-rich feeds are expen-
sive feed ingredients. Thus, one of the critical factors determining
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the profitability and productivity of ruminant systems is managing
their supply through proper feed formulation (Pacheco et al.,
2012).

CP is commonly used as a quantification unit for the amount of
protein, but it provides inadequate information on the amount of
metabolizable protein (ARC, 1980; Gutierrez-Botero et al., 2014).
Moreover, chemical composition analysis alone tells us about
nutrients within feeds but not about their availability and degrada-
tion in the digestive tract of animals (Licitra et al., 1996; Sallam,
2005). Therefore, it is crucial to develop better ways of estimating
protein quality, its fractions and their degradation rate to ensure
optimum protein supply and digestibility in the digestive system
(Ross et al., 2013; Liebe et al., 2018). The in situ technique (NRC,
2001), exponential (Ørskov and McDonald, 1979) and Cornell Net
Carbohydrate and Protein System (CNCPS) (Higgs et al., 2015)
mathematical models of protein fractionation divide the CP into
three to five fractions based on their degradation in the digestive
system.

The in situ technique has been extensively used for the determi-
nation of protein degradation in ruminants. However, the results
are affected by factors such as the bag material, size, insertion,
removal and rinsing procedures, sample size, incubation time,
number and physiological condition of animals, feed and feeding
frequency, microbial contamination, and mathematical models.
The degradability of some proteins could be overstated as a result
of escaping through the bag pores before degradation (Michalet-
Doreau and Ould-Bah, 1992; López, 2005). Moreover, in situ tech-
nique is costly and more time consuming than in vitro techniques
(Gosselink et al., 2004). Therefore, in vitro procedures can be useful.

Available techniques for the estimation of in vitro protein
digestibility in the rumen and post-rumen environment have their
drawbacks. The enzymatic approach cannot represent the spec-
trum of proteolytic activities found in the rumen (Stern et al.,
1997; Licitra et al., 1998; Hristov et al., 2019). The inhibitor
in vitro method uses either hydrazine sulphate or chloramphenicol
as inhibitors of ammonia-N and amino acid absorption by bacteria
(Broderick, 1987; Broderick, 1994). However, this method cannot
run beyond 4 hours as the inhibitors become less active, and bac-
teria become nitrogen-starved (Broderick et al., 1988). Therefore,
the inhibitor method is limited to feeds that show rapid degrada-
tion within this time and is not applicable to feeds containing high
volume of ammonia and soluble nitrogen as these compounds can
hinder the estimation of insoluble nitrogen (Cottrill, 1998).

Another alternative is using a modified CNCPS to determine the
protein fractions of the feed (Sniffen et al., 1992; Higgs et al., 2015).
The CNCPS system fractionates feed protein as ammonia (a1), sol-
uble true protein (a2), insoluble true protein (b1), fibre bound pro-
tein (b2) and indigestible protein (c) (Higgs et al., 2015). The CNCPS
model is highly sensitive to variations in chemical composition,
environmental factors affecting the composition, and the rate of
degradation in predicting the nutritional value of feeds. The
unavailable nitrogen assay of Ross (uNRoss) is another method for
the estimation of degradable, undegradable and intestinal
digestibility of rumen undegradable proteins using rumen fluid
and enzymes in sequential steps to simulate the digestive system
of ruminants (Ross et al., 2013). However, the procedure is lengthy
and expensive, which affects applicability. Therefore, there is cur-
rently a demand to develop a relatively simple and reliable method
for estimating the protein degradation of ruminant feeds.

The gas production method has mostly been used to evaluate
in vitro fermentation of ruminant feeds for its rapid analysis and
low cost. This method is relatively simple to quantify the volume
and rate of gas production, and provides opportunity to collect
the gas and liquid samples for further analysis (Getachew et al.,
1998). Furthermore, it eliminates the confounding effects of de
novo microbial protein synthesis during fermentation using a
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mathematical approach (Bueno et al., 2005; Falahatizow et al.,
2015). To our knowledge, the automated ANKOM gas production
system has not been used to quantify protein fractions; hence,
the gas production method of Karlsson et al., 2009 was adapted
to the ANKOM equipment in this experiment. The CNCPS and
uNRoss assay have not been compared against the gas production
method for protein fractionation and the relationship between
their results has not yet been established. The protein fractions
and in vitro protein degradation of Desmanthus hay and lupin meal
have also not been reported.

The gas production method involves the fermentation of sub-
strates using rumen fluid. Preservation of rumen fluid may be
one method to minimize the collection time, cost of handling can-
nulated animals, avoid seasonal effects on the rumen fluid quality
and reduce ethical concerns about cannulation (Getachew et al.,
2004; Denek et al., 2010). However, the information on the use
of preserved rumen fluid for in vitro protein assessment is scarce
(Chaudhry and Mohamed, 2012).

The objectives of this study were to compare the gas production
method against the CNCPS and uNRoss methods for protein frac-
tionation, to investigate the applicability of using the ANKOM gas
production system and preserved rumen fluid to estimate the pro-
tein fractions and degradability of protein-rich feeds. This research
hypothesized that firstly there would be no difference between the
various protein quantification methods in the fraction values of the
same feed and secondly that preserved rumen fluid can accurately
be used for in vitro estimation of protein fractions and
degradability.
Material and methods

The study was conducted in animal production, in vitro fermen-
tation, and food science laboratories at the University of Mel-
bourne, Australia.
Substrates, rumen fluid, and experimental design

A solvent-extracted soybean meal (Glycine max L.), solvent-
extracted sweet lupin meal (Lupinus angustifolius L.), common
vetch grain (Vicia sativa L.), and Desmanthus virgatus (JCU 2) hay
were selected to represent categories of meals, grains, and hay as
protein-rich substrates. The meals and grain were purchased from
a commercial supplier (Peter Gibbs Stock Feeds, Australia). The hay
was collected from Townsville, Queensland and prepared by sun
drying the leaf and young stems.

Three litres of rumen fluid were collected twice from four Hol-
stein Friesian dairy cows at Agriculture Victoria Research (Ellin-
bank, Victoria, Australia) before the morning feeding and
transported to the laboratory as described by Gonzalez-Rivas
et al. (2016). Cows were grazing perennial ryegrass (Lolium perenne
L.) pasture, and wheat and barley grain mix (6 kg DM per day per
cow) was supplied in the milking parlour. The rumen fluid was fil-
tered using cheesecloth and divided into three bottles. The first and
second bottles of rumen fluid were used as fresh for gas production
and uNRoss assays, and the remaining rumen fluid was mixed with
5% dimethyl sulfoxide (DMSO) (CSA Scientific, 500 ml, Chemsup-
ply) and frozen at �20 �C (D-20 �C) for 30 days.

A three-way factorial design was used to compare four feeds
and three protein fractionation methods (CNCPS, gas production
and uNRoss assay) using two kinds of rumen fluid, fresh and pre-
served. The rumen fluid preservation using D-20 �C was selected
following the results of previous studies (Tunkala et al., 2022).

The incubation runs of gas production method were carried out
twice on the first and 30th day of post-rumen fluid collection. A
total of eight ANKOM modules connected to 250 ml bottles were



Table 1
Equations of Cornell Net Carbohydrate and Protein System (CNCPS) used for
calculating protein fractions in ruminant feeds as described by Sniffen et al. (1992)
and Higgs et al. (2015).

Fraction Description Equation1

a1 Soluble nitrogen Ammonia � (SP/100) � (CP/100) [2]
a2 Soluble true protein SP � CP/100 � A1 [3]
b1 Insoluble true protein CP � (a1 � a2 � b2 � c) [4]
b2 Fibre-bound protein (NDICP � ADICP) � CP/100 [5]
c Indigestible protein ADICP � CP/100 [6]

Abbreviations: SP = soluble protein; ADICP = acid detergent-insoluble protein;
NDICP = neutral detergent-insoluble protein.

1 Protein component is expressed in % CP for SP, ADICP, and NDICP.
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incubated for 16 h. The choice of 16 h incubation was based on the
procedures of Ross et al., 2013 and other researchers who demon-
strated no variation when comparing data from 16 or 24 h incuba-
tions in CP disappearance of alfalfa hay (Aghajanzadeh-Golshani
et al., 2015) and the in vitro degradable CP estimates of fish meal
and alfalfa (Falahatizow et al., 2015). The treatments were repli-
cated six times for the CNCPS method and uNRoss assay.

Parameters measured on the substrates

The chemical composition parameters namely DM (g/kg), DM
digestibility (DMD; % DM), ash (% DM), and ether extract (% DM)
were assessed in a commercial laboratory (FeedTest Laboratory,
Agrifood Technology, Werribee, Victoria). The ADF (% DM) and
NDF (% DM) were determined by an ANKOM200 fiber analyzer using
the AOAC 2002.4 method (Mertens et al., 2002). The NDF was trea-
ted with sodium sulphite (FSS, ANKOM Technology, USA) and ther-
mostable alpha amylase enzyme (FAA, ANKOM Technology, USA).
The CP (% DM), acid detergent-insoluble protein (ADIP), and neu-
tral detergent-insoluble protein were measured using a Kjeldahl
method (method 954.01) (Horwitz, 2010). Ammonia-N concentra-
tion was quantified by the colorimetric technique described by
Weatherburn, 1967 using a multiscan colorimetric plate reader
(Thermo Multiskan Spectrum, Thermo Fisher Scientific, Australia).
Soluble protein was determined using a borate-phosphate buffer,
and non-protein nitrogen (NPN) was analyzed using trichloroacetic
acid, as described by Licitra et al., 1996. DM digestibility was mea-
sured by pepsin-cellulase method (Dowman and Collins, 1982;
AFFIA, 2014).

The protein fractionation methods of the Cornell Net Carbohydrate and
protein system

The CNCPS was implemented as originally described by Sniffen
et al., 1992 with the modifications reported by Higgs et al., 2015.
The CNCPS fractionates CP into five fractions based on solubility:
the ’a1’ and ‘a2’ fractions are derived from ammonia-N and soluble
protein, respectively. The fraction ‘b’ is a true protein, and ‘c’ is an
unavailable and bound true protein (Van Soest et al., 1981). The
fraction C is insoluble in the acid detergent, associated with lignin
and Maillard products, resistant to mammalian and microbial
enzymes, hence, cannot be degraded in the rumen and post-
rumen environments (Sniffen et al., 1992). The fraction ‘b’ is
divided into ‘b1’ and ‘b2’ based on degradation and passage rates.
The ‘b2’ fraction was computed from residual proteins of ADF and
NDF analysis as indicated in Table 1. The ‘b1’ fraction was calcu-
lated by subtracting fractions ‘a1’, ‘a2’, ‘b2’, and c from total CP con-
tent. The c fraction was estimated from ADIP (% CP) (Higgs et al.,
2015) following ADF (% DM) analysis.

Gas production method

Gas production was estimated using an automated ANKOM RF
gas production system (ANKOM Technology, Macedon, NY, USA)
using the method of Raab et al. (1983), revised by Karlsson et al.
(2009), with minor modifications to fit into ANKOM gas production
system. A total of 10 g/L of rapidly soluble carbohydrates (3.33 g of
maltose, 3.33 g of starch, and 3.33 g of xylose) were added to fil-
tered rumen fluid as described by Aghajanzadeh-Golshani et al.
(2015) for pre-incubation conditioning which minimizes the back-
ground ammonia-N and stimulates microbial activity. Pre-
incubation conditioning was held for three hrs in a 39 �C water
bath (20-L Analogue Water bath, WB20; Ratek Instruments Pty
Ltd, Boronia, VIC, Australia). Sodium bicarbonate NaHCO3 (3.1 g
dissolved in 63 ml of McDougall’s buffer per L of rumen fluid)
3

was also added to the rumen fluid under continuous flushing of
CO2 before and during the three h pre-incubation.

The pre-incubated rumen fluid was mixed with McDougall’s
buffer to obtain a buffered rumen fluid with a 1:2 rumen fluid to
buffer ratio. The feed samples were ground into 2 mm particle
diameter and sieved to ensure the size. A 500 mg of substrates
was weighed in 250 ml ANKOM bottles, mixed with 90 ml buffered
rumen fluid, and incubated for 16 h in a 39 �C water bath. Each
substrate was replicated in eight ANKOM modules.

Samples were collected during fermentation to estimate
ammonia-N concentration at 4 h, 8 h, 12 h and 16 h of gas produc-
tion and frozen at �20 �C until analysis. Six additional modules
were used as a source of ammonia-N samples for up to 12 h for
each treatment in two runs, and these modules were removed
from the incubation after sampling. The modules from gas produc-
tion samples were used as a source of ammonia-N samples at 16 h.
The use of additional modules as a source of the ammonia-N sam-
ple is a modification of the original method to fit into the ANKOM
gas production system avoiding the possible change in the gas pro-
duction after the opening of modules.

The in vitro degradable CP (IVDP) is a proportion of potentially
degradable CP in in vitro assay and was calculated for each feed at
4 h, 8 h, 12 h and 16 h of gas production through intercepts of
ammonia-N (y, mg/g) and gas production (x, ml/g), as described
by Raab et al., 1983 using the equation:

IVDP ¼
Ammonia� N at zero gas production b0 intercept

� �
� Ammonia� N in blank

Total N of incubated feed
ð8Þ

The proportion of protein fractions and the effective CP degra-
dation value were estimated by fitting the IVDP to the equations
of Ørskov and McDonald (1979) using the exponential regression
model of GenStat 21st edition.

Y ¼ a þ b � ð1� e�ctÞ ð9Þ
where Y is the proportion of CP degraded at time t, a is the propor-
tion of CP degraded at time 0 h, b is the proportion of potentially
degradable CP, and c is the degradation rate of fraction b.

The effective CP degradation (EPD) value was calculated using
the equation of Ørskov and McDonald (1979) as:

EPD ¼ aþ ðb � cÞ
ðkþ cÞ ð10Þ

where a, b, and c are as above, and the passage rate (k) was assumed
to be 0.08 h�1.

The unavailable nitrogen assay of Ross

The uNRoss assay is described in detail by Ross et al. (2013) and
was conducted as follows; first, 0.5 g of the substrate was weighed
and placed into a 125 ml Erlenmeyer flask. Then, 40 ml Van Soest
buffer (Van Soest, 2015) with 6.8 pH and 10 ml of rumen fluid was
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added to each flask. A total of eight flasks were incubated per treat-
ment in a water bath kept at 39 �C for 16 h. The samples in each
bottle were acidified with 2 ml of 3 M HCL and incubated again
with 2 ml of 100% pepsin solution for one hour, simulating abo-
masal digestion, and neutralized by 2 ml of 2 M NaOH to stop
the pepsin reaction. The 100% pepsin solution was prepared by dis-
solving 50 g of pepsin powder (Extra Pure, SLR, Fisher ChemicalTM,
Australia) in 50 ml distilled water.

After the pepsin incubation, a 10 ml enzyme mix containing
alpha amylase (FAA, ANKOM Technology, USA), trypsin (EC Num-
ber: 232-650-8, model number: MFCD00082094, Sigma-aldrich,
Australia), alpha chymotrypsin (EC Number: 232-671-2, model
number: MFCD00130481, Sigma-aldrich, Australia), and lipase
(Product Code: LL107, CAS No. 9001-62-1, Chemsupply, Australia)
in 50, 24, 20, and 4 U per ml, respectively, was added to the
ANKOM bottles and incubated for a further 24 h in a water bath
at 39 �C. Samples were filtered through a 1.5 lm glass filter (What-
man 934AH) with warm water. The residue was then dried for 48 h
in a 60 �C incubator. The N content of the residue was determined
using the Kjeldahl method and expressed as a % of the total N in the
sample. The entire uNRoss assay procedure was repeated four times
using fresh (twice) and preserved (twice) rumen fluids on the first
and 30th days of post-rumen fluid collection with a total of eight
replicates per treatment. The total N in the residue is unavailable
protein and can be compared with ADIP in CNCPS, which is equiv-
alent to fraction c (Sniffen et al., 1992; Ross et al., 2013; Higgs et al.,
2015). The amount of available protein to the animal was com-
puted by deducting the unavailable protein from 100.
Statistical analysis

The uNRoss assay uses both rumen fluid and HCl for feed incuba-
tion in sequence (Gutierrez-Botero et al., 2014); therefore, the
unavailable N fraction of the uNRoss assay is non-utilizable protein
in the digestive system. Therefore, the utilizable protein proportion
was calculated by subtracting the non-utilizable protein from 100%
and compared with ‘a + b’ of gas production. Fraction ‘c’ of gas pro-
duction was computed by subtracting the proportions of fractions
‘a’ and ‘b’ from the total CP. Moreover, fractions with similar alpha-
betic designation in the CNCPS method were combined to use a
single value for the correlation analysis with the values from the
gas production method as described by Romagnolo et al., 1990.

The mean differences between feeds, sources of rumen fluid and
SD were calculated by ANOVA using the Genstat 21st edition sta-
tistical package for the CNCPS method using the model:

Yij = l + Si + Rj + eij.where Yij is the general mean of continuous
dependent variables, l is the mean value of all substrates exam-
ined, Si is the fixed effect of each substrate (i = Soybean meal, Lupin
meal, Vetch grain, Desmanthus hay or fresh and preserved rumen
fluid) on the tested parameter, Rj is the random effect of runs, eij
is the SE term.

The effects of the feed and incubation time on the IVDP and
ammonia-N values were evaluated by two-way ANOVA using the
Genstat 21st edition statistical package using the model:

Yij = l + Fi + Tj + FTij + eij.where Yij is the general mean of con-
tinuous dependent variables, l is the mean value of all substrates
examined, Si is the fixed effect of each substrate (i = Soybean meal,
Lupin meal, Vetch grain, Desmanthus hay) on the tested parameter,
Tj is the fixed effect of time, FTij is the interaction effect between
the independent variables, eij is the SE term.

The linear correlations among the protein fractions (from the
CNCPS and gas production, and uNRoss assay against gas production
method using fresh rumen fluid) were determined using Pearson’s
correlation through correlation’s function, and 2D scatter plot of
Genstat 21st Edition. The regression equations were derived after
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regression analysis of protein fraction values of the gas production
methods (x) and CNCPS (y) using Genstat.
Results

Chemical composition

Substrates used in this experiment varied in their chemical
composition. The percentage of fat content in lupin meal and the
ash content in Desmathus hay were greater than in the other feeds.
Lupin meal and vetch grain had similar proportions of DM contents
but were different in fat and DMD, as indicated in Table 2. Desman-
thus hay had the greatest ADF and NDF contents than other feeds,
followed by lupin meal, (P < 0.001). The CP content was greater in
soybean meal and lowest in Desmanthus hay (P < 0.001), but the CP
and NPN content of lupin meal and vetch grain were not different.

Gas production

The greatest total gas production was yielded from the fermen-
tation of lupin meal using fresh rumen fluid, followed by vetch
grain and soybean meal (P < 0.001, Fig. 1). There was no difference
between total gas production from lupin meal fermented using
fresh and preserved rumen fluid for 16 h. The total gas production
was lower for Desmanthus hay fermented in fresh and preserved
rumen fluid compared to other substrates.

The IVDP proportion was affected by the fixed factors and their
interaction (feed x rumen fluid x time) (P < 0.001, Table 3). The
IVDP values increased with the incubation time for all feeds, and
the preservation of rumen fluid caused lower IVDP values com-
pared with fresh rumen fluid (P < 0.001). The IVDP was greater
for vetch grain at the 4th and 8th hours of incubation, whereas soy-
bean meal exceeded the other feeds after the 16th hour of incuba-
tion (P < 0.001).

Protein fractions

The ammonia-N content was reduced over time for all sub-
strates incubated using fresh and preserved rumen fluid
(P < 0.001, Table 4). However, the amount of ammonia-N released
was greater for feeds fermented using fresh rumen fluid compared
to preserved rumen fluid. The greatest ammonia-N concentration
was measured from soybean meal and lupin meal fermented for
4 h using fresh rumen fluid. Regardless of the methods, a higher
water-soluble protein fraction was found from vetch grain, fol-
lowed by lupin meal.

The fraction ‘a’ was slightly overestimated, and fraction ‘c’ was
underestimated in the CNCPS method (Table 5) compared to the
observed values of the gas production method for all feeds. The
proportion of fraction ‘b’ for soybean and lupin meals from the
CNCPS method were not different (P = 0.001) from the fraction
‘b’ estimation of the gas production method for similar feeds
(r = 0.99). Soybean meal showed a greater fraction ‘b’, and the pro-
portion of fraction c or unavailable protein in Desmanthus hay
exceeded other substrates (P < 0.001).

The EPD calculated from protein fractions in the gas production
method ranged from 95.1% in lupin meal to 60.8% in vetch grain
(P < 0.001). The percentage of available protein from uNRoss assay
was not different from the ‘a’ + ‘b’ proportion of the gas production
method for all feeds and rumen fluid types, except for vetch grain
and Desmanthus hay fermented using the preserved rumen fluid.

The overall estimation of protein fractions between the gas pro-
duction method and uNRoss assay are strongly correlated (r � 0.90,
P = 0.001; Table 4). The protein fraction results from gas production
and CNCPS methods were also highly correlated (r > 0.74;



Table 2
Chemical composition, fibre and nitrogen contents of ruminant feeds used as substrates in this experiment.

Parameters Soybean meal Lupin meal Vetch grain Desmanthus hay SED P-value

DM, % sample 82.3 85.0 84.8 91.5
Fat, % DM 1.20 5.50 1.70 4.90
Ash, % DM 6.30 3.20 2.60 7.50
DMD, % DM 93.5 82.2 88.4 61.8
CP, % DM 46.5 30.4 29.8 16.7 0.83 <0.001
NDF, % DM 11.2 29.7 14.1 35.9 0.69 <0.001
ADF, % DM 12.2 23.8 10.8 29.7 0.35 <0.001
NPN, % N 0.61 1.74 1.89 0.27 0.162 <0.001
ADIP, % CP 0.34 6.43 0.66 40.1 0.441 <0.001
NDIP, % CP 11.9 7.72 37.9 38.5 0.852 <0.001

Abbreviations: DMD = DM digestibility; NPN = non-protein nitrogen; ADIP = acid detergent indigestible protein; NDIP = neutral detergent indigestible protein. The DM, fat,
ash, and DMD contents were quantified in a commercial laboratory.
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Fig. 1. The total gas production of lupin meal ( and ), vetch grain ( and ), Desmanthus hay ( and ), and Soybean meal (
and ) incubated in vitro using fresh and preserved rumen fluid, respectively, in 39 �C water bath for 16 hours. The data were a least mean of eight replications per
treatment.

Table 3
The in vitro degradable CP (IVDP) of substrates (lupin meal, vetch grain, Desmanthus hay, soybean meal) calculated using the intercept of gas production and ammonia-N values at
4, 8, 12, and 16 hours of in vitro rumen fermentation.

Time (h) Lupin Meal Vetch grain Desmanthus
hay

Soybean meal SED P-value

F P F P F P F P S R T SxRxT

4 0.35 0.16 0.46 0.30 0.13 0.06 0.34 0.20 0.011 <0.001 <0.001 <0.001 <0.001
8 0.60 0.21 0.70 0.38 0.17 0.04 0.62 0.16
12 0.77 0.16 0.73 0.40 0.20 0.06 0.77 0.19
16 0.80 0.12 0.75 0.41 0.25 0.06 0.85 0.13

Abbreviations: T = time; F = fresh rumen fluid; P = preserved rumen fluid; S = substrates; R = rumen fluid.
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P < 0.001; Fig. 2). Moreover, all three methods ranked the feeds
similarly in the proportions of degradable protein fractions (avail-
able or ‘a + b’) as vetch grain, soybean meal, lupin meal, and Des-
manthus hay in decreasing order.
Discussion

The protein fractions and fermentation characteristics differed
between the methods and the rumen fluid types tested. However,
a strong positive correlation was observed between the protein
5

fractions of the feeds using different methods. Moreover, the rank-
ing of feeds based on their protein fractions was identical across all
methods. The gas production and uNRoss assay methods behaved
similarly in terms of protein fractionation. Therefore, the major
finding of this research is that the adaptation of ANKOM gas pro-
duction apparatus to the gas production technique of Karlsson
et al. (2009) has the potential to be an alternative protein quantifi-
cation tool to CNCPS and uNRoss assay, along with the procedural
modifications to the ammonia-N sampling.

The protein fractions of soybean meal fermented using fresh
rumen fluid in the gas production and the uNRoss assay methods



Table 4
Effect of protein quantification methods (gas production vs. uNRoss assay) and rumen fluid preservation on ammonia-N (mg/g), protein fractions (a, b, c), effective CP degradation
(EPD), and availability of protein after fermentation of protein-rich ruminant feeds (soybean meal, lupin meal, vetch grain, and Desmanthus hay).

Parameters Soybean meal Lupin meal Vetch grain Desmanthus hay SED P-value

F P F P F P F P S T SxT

GP method
NH3-N4h, mg/g 1.27 0.53 0.87 0.44 0.66 0.54 0.31 0.16 0.054 <0.001 <0.001 0.12
NH3-N8h, mg/g 0.97 0.34 0.74 0.20 0.67 0.34 0.26 0.12
NH3-N12h, mg/g 0.76 0.28 0.57 0.16 0.41 0.24 0.17 0.05
NH3-N16h, mg/g 0.60 0.15 0.37 0.11 0.20 0.16 0.14 0.03
a, %CP 13.3 13.3 43.5 40.1 48.6 21.5 11.5 22.1 1.46 <0.001
b, %CP 79.8 51.6 37.6 19.8 47.4 31.1 49.4 24.0 1.12 <0.001
c, % CP 6.84 35.1 18.9 40.2 4.02 47.4 39.1 53.9 2.836 <0.001
EPD, %CP 92.2 64.8 80.9 59.8 95.1 52.5 60.8 46.1 3.51 <0.001

uNRoss assay
Unavailable, %CP 9.53 41.7 20.9 37.8 6.70 34.3 41.5 79.5 0.383 <0.001
Available, %CP 90.5 58.4 79.1 62.2 93.3 65.7 58.5 20.5 0.93 <0.001
Correlation, r 0.93 0.91 0.96 0.92 0.93 0.94 0.90 0.91

Abbreviations: F = fresh rumen fluid; P = preserved rumen fluid; S = substrates; T = time; GP = gas production; a = soluble protein; b = degradable protein; and c = un-
degradable protein fraction; uNRoss = the unavailable nitrogen assay of Ross; EPD = effective protein degradation. The degradation rate of 8%/h was used for EPD calculation
from Ørskov and McDonald (1979). The correlation values were computed between ‘a + b’ of gas production with the available fractions of Ross assay.

Table 5
Protein fractions (a1, a2, b1, b2 and c) of ruminant feeds obtained from the Cornell Net Carbohydrate and Protein System (CNCPS) method.

Protein fractions Soybean meal Lupin meal Vetch grain Desmanthus hay SED P-value

a1 8.22 35.6 39.6 10.2 1.012 <0.001
a2 9.37 23.0 18.2 15.7 0.074 <0.001
b1 36.8 19.0 33.0 27.7 0.49 <0.001
b2 45.3 20.4 9.04 41.2 0.078 <0.001
c 0.26 1.95 0.20 5.24 0.018 <0.001

Abbreviations: a1 = ammonia, a2 = small peptides and free amino acids, b1 = insoluble true protein, b2 = fibre-bound protein, c = indigestible protein.
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were within the same range as reported by Ghoorchi and Arbabi
(2010) (’a’ = 11.3% CP, ‘b’ = 84.5% CP and ‘c’ = 4.11% CP), who used
the CNCPS method to quantify the protein fractions of soybean
meal. Additionally, the protein fractions of soybean meal from
the CNCPS method of our study were in the range of the fractions
reported by Romagnolo et al. (1990) where fractions ‘a’, ‘b’, and ‘c’
were 13.5, 85.9, and 0.5% of total CP after an in situ experiment
using cannulated dairy cows. They were also in range with the
results of Maxin et al. (2013), who reported 11.8 and 88.3% frac-
tions ‘a’ and ‘b’ of soybean meal incubated in rumen fistulated Hol-
stein cows and corrected for particle loss. In our study, the fraction
‘a’ proportion of vetch grain from gas production and CNCPS meth-
ods was slightly higher, and fraction ‘b’ was lower than the results
demonstrated by Ramos-Morales et al. (2010) and Huang et al.
(2019) who used in situ method in canulated goat and sheep,
respectively. However, they were not different in EPD value com-
pared with five vetch grain varieties, ranging from 73.2 to 92.1%
in both studies. The tested feeds showed high EPD values above
80%, except Desmanthus hay; hence, they can be used as a degrad-
able protein source in ruminant feed (Ramos-Morales et al., 2010).

The gas production method requires less time, chemicals, and
labour than the CNCPS and uNRoss methods. Moreover, the strong
positive correlation between fractions, identical ranking of feeds
from all three methods examined in this experiment and the
equivalent values of fraction ‘b’ for soybean and lupin meals from
the CNCPS and gas production methods using fresh rumen fluid
suggests the possibility of using ANKOM gas production system
for protein fractionation. However, larger values of protein fraction
‘a’ and lower proportion of fraction ‘c’ from CNCPS could imply the
advanced efficiency of this method for protein fractionation.

It has been reported that the ammonia-N concentration was
reduced when the fermentation time increased as the ammonia-
N released from feed was lower than the nitrogen uptake by
microorganisms during in vitro fermentation (Getachew et al.,
6

2000), causing an inverse relationship between the amount of
ammonia-N and IVDP. The increasing IVDP and decreasing
ammonia-N values over the incubation period for all feeds resulted
from increasing gas production and continuous utilization of
degraded protein for microbial protein synthesis. These findings
are consistent with previous research that used the gas production
method to quantify in vitro protein digestion parameters of rumi-
nant feeds (Karlsson et al., 2009; Falahatizow et al., 2015). Gener-
ally, the microbial consumption of ammonia-N as input for gas
production is a base for estimating protein fractions using a gas
production method. Moreover, modification of the original gas pro-
duction method using additional modules for ammonia-N sam-
pling facilitates the application of ANKOM gas production system
for protein quantification. However, the increasing number of
modules or runs could affect the time and labour efficiency of
the system based on the availability of active modules per run.

The preservation of rumen fluid using D-20 �C negatively
affected protein fractionation. The values of IVDP, ammonia-N,
and protein fractions from all feeds fermented using preserved
rumen fluid were lower compared to fresh rumen fluid. The prote-
olysis of lysed cells after cold shock and the proliferation of
microorganisms in thawed rumen fluid consuming nitrogen from
the feeds (Luchini et al., 1996; Fabro et al., 2020) may cause the
reduced availability of nitrogen when using preserved rumen fluid.
Therefore, testing more options of rumen fluid preservation meth-
ods such as liquid nitrogen and �80 �C for in vitro protein quantifi-
cation is still required to find appropriate techniques. It is also
possible that an extended fermentation period may assist or even
a greater proportion of preserved rumen fluid to buffer may be
efficacious.

Prior reports on protein fractions of lupin meal and Desmanthus
hay are limited. The fraction ’a’ of lupin meal in this study was not
different from the result of lupin seed fermented using lactating
cannulated cows (44.3% CP) (Goelema et al., 1998); however, frac-
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Fig. 2. The linear regression equations, correlation coefficients, and best fit ( ) between the protein fractions ‘a’ = soluble protein (a), ‘b’ = degradable protein (b) and
‘c’ = undegradable protein fraction (c) from the Cornell Net Carbohydrate and Protein System (CNCPS) (X axis) and gas production (Y axis) methods with correlation points for
Lupin Meal ( ), Vetch grain ( ) Desmanthus hay ( ) and Soybean meal ( ) samples. The five fractions of the CNCPS method (’a1’, ’a2’, ’b1’, ’b2’ and ’c’) were combined to make
’a’, ’b’ and ’c’ fractions (where a = a1 + a2, b = b1 + b2) to examine the correlation between similar parameters with the gas production method. The P-values for the correlation
between protein fractionation methods of ruminant feeds tested were P < 0.001.
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tion ‘b’ was lower than the result of these researchers (55.7% DM).
The fraction ‘a’ of lupin meal in the current experiment was lower
than fine-sized lupin meal sample (0.8 mm, 74.3% DM) and higher
than large-sized lupin meal (4.0 mm, 33.7% DM) fermented using
nylon bags in cannulated ewes (Freer and Dove, 1984). Moreover,
the fraction ‘b’ of lupin meal was higher than the fine-sized lupin
meal (21.9% DM) and lower than large-sized lupin meal (67.3%
DM) reported by Freer and Dove (1984). The change in particle size
could increase or decrease the feed surface exposed to the micro-
bial and enzymatic actions, affecting degradability (Goelema
et al., 1998; Iommelli et al., 2022). Thus, the differences in feed
type and sample preparation could be the source of the variations
in the amount of protein fractions.

The findings on Desmanthus hay were consistent with the report
of Tunkala et al. (2023), who compared three Desmanthus species
with other five legume hays for their in vitro fermentability and
protein fractions. The lower gas production and proportion of
degradable protein fractions from Desmanthus hay resulted from
the 4.0–4.6% condensed tannin concentration (Tunkala et al.,
2023), and higher amount of ADF and NDF contents. Getachew
et al. (2000) demonstrated that the higher concentration of ADF
facilitates the formation of a tannin-protein complex, which pro-
tects protein digestion. Therefore, the tannin and fibre contents
are relevant factors determining in vitro protein digestion.

The variations in protein fractions between studies arise mainly
from differences in the plant varieties, cultivation environments,
7

and the methods applied for quantification, including the size of
feed particles fermented (Bhardwaj and Hamama, 2012; Liebe
et al., 2018). The difference between fraction ‘a’ of CNCPS and gas
production methods could be also attributed to the procedural dif-
ferences used for determination. Moreover, despite the recommen-
dation of Ross et al. (2013), the main difference between the
methods is that the higher proportions of fraction ’c’ from the
gas production and uNRoss assays compared to the CNCPS method
could be from a shorter duration of incubation as the gas produc-
tion curves did not reach a plateau after 16 hours of incubation.
The stationary stage of the gas production curve is attained when
the degradable substrates are fully depleted, and fermentation of
slowly degradable subcomponents is ongoing, which requires pro-
longed incubation (Groot et al., 1996; Cone et al., 1997). Therefore,
extended fermentation periods could change the proportion of
fractions for both the fresh and particularly the preserved rumen
fluid allowing more time for a microbial breakdown and thus min-
imizing differences between protein fractionation methods.
Conclusion

All three methods ranked the feeds identically in the propor-
tions of available (degradable or ’a + b’) protein fractions as vetch
grain, soybean meal, lupin meal, and Desmanthus hay in decreasing
order. The strong positive correlation between fractions and simi-
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lar ranking of feeds indicates that the ANKOM gas production sys-
tem is suitable for protein fractionation and degradation. However,
a comparison of these three methods and two rumen fluid types in
a longer duration of incubation may reduce the differences in frac-
tion ’c’ and reveal the maximum potential of the methods. The
preservation of rumen fluid using D-20 �C negatively affected pro-
tein fractionation. Therefore, further studies should be conducted
on rumen fluid preservation techniques for in vitro protein
quantification.
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