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Abstract. Engineering design optimization poses a significant chal-

lenge, usually requiring human expertise to discover superior solutions.

While various search techniques have been employed to generate di-

verse designs, their effectiveness is often limited by problem-specific

parameter tuning, making them less generalizable and scalable. This pa-

per introduces a framework inspired by evolutionary and developmental

(Evo-Devo) concepts, aiming to automate the evolution of structural en-

gineering designs. In biological systems, Evo-Devo governs the growth

of single-cell organisms into multi-cellular organisms through the use

of Gene Regulatory Networks (GRNs). GRNs are inherently complex and

highly nonlinear, and this paper explores the use of neural networks and

genetic programming as artificial representations of GRNs to emulate

such behaviors. In order to evolve a wide range of Pareto fronts for

artificial GRNs, this paper introduces a new technique, a real-value en-

coded neuro-evolutionary method termed “real-encoded NEAT” (RNEAT).

The performance of RNEAT is compared with two well-known evolution-

ary search techniques across different 2D and 3D problems. The ex-

perimental results demonstrate two key findings: Firstly, the proposed

framework effectively generates a population of GRNs that can produce

diverse structures for both 2D and 3D problems. Secondly, the proposed

RNEAT algorithm outperforms its competitors on more than 50% of the

problems examined.

Keywords: Evolutionary Search, Gene Regulatory Networks, NEAT,
CGP, Design Optimization

2



1 Introduction1

Evolutionary developmental (Evo-Devo) biology is the part of biology that tries to explain2

the evolution of growth patterns in organisms, which determine how they develop from a3

single cell to adulthood (Hall, 2012). Every cell of an organism contains the same DNA yet4

each can function in different ways to generate different organs like the heart or eyes (Ol-5

son, 2006). These differences in functionality are caused by gene regulation that turns on6

and off different parts of the genome depending on local environmental factors, endowing7

cells with state. The DNA/genome of a cell consists of a set of genes but only a fraction8

of these are activated (turned ON) to create a specific organ. The cohort of gene regu-9

lations happening in parallel can then generate a complex multi-organ organism. These10

different molecular gene regulators combined together create a Gene Regulatory Network11

(GRN) (Cussat-Blanc et al., 2019). The GRN is the central and the most crucial component12

of the evolutionary developmental cycle.13

This paper takes inspiration from the Evo-Devo concept to generate different engineering14

designs by evolving an artificial gene regulatory network. In the field of engineering, struc-15

tural design optimization has been a topic of study for several decades, involving the use of16

domain expert knowledge (Christensen & Klarbring, 2008) and computational intelligence17

techniques (Chi et al., 2021). This optimization process encompasses various aspects such18

as size, shape, and topology optimization, either individually or in combination. Conven-19

tional approaches to design optimization focus on finding solutions for specific problems20

by directly encoding the structural representation of the genome. This approach often21

results in a large search space that needs to be explored through automated evolution.22

Direct encoding implies that these approaches can only be problem specific, and so face23

limitations in both scalability and generalizability.24

To address these challenges, a framework based on Evo-Devo principles to generate and25

evolve diverse designs using artificial gene regulatory networks is introduced here. The26
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evolutionary component offers a direct encoding of GRNs, while the developmental aspect27

utilizes these GRNs to update the structures. The primary objective of this approach is to28

evolve GRNs that are both generalizable and scalable, enabling them to effectively control29

the growth of engineering designs in order to optimize the structure for given performance30

targets (e.g. structural loads). In the existing literature, various computational models of31

GRNs have been proposed, ranging from low complexity with better explainability to high32

complexity with lower explainability (Karlebach & Shamir, 2008). However, there is cur-33

rently no consensus regarding the most suitable method or methods for their applicability.34

GRNs are inherently non-linear and thus different non-linear models have been studied to35

mimic the behavior of GRNs.36

In this paper, an artificial gene regulatory network is represented by two different mod-37

els: neural networks (NN) and computer programs encoded in graphs where problems38

are formulated as multi-objective optimization problems. The nonlinearity of both NNs39

and graphs can be varied by changing their hyper-parameters. Since the problems are40

multi-objective in nature, two different evolutionary search methods have been employed:41

multi-objective cartesian genetic programming (CGP) (Miller & Harding, 2008), and multi-42

objective neuro-evolution of augmenting topologies (NEAT) (Stanley & Miikkulainen, 2002)43

are used to evolve complex computer programs and neural networks respectively. How-44

ever, extending NEAT to evolve for multi-objective problems while maintaining speciation45

poses a significant challenge (van Willigen et al., 2013). To evolve multi-objective neural46

network topologies, this paper introduces a CGP-style encoding to encode a neural archi-47

tecture, where the number of hidden layers and nodes in each hidden layer can be defined.48

CGP-style network encoding allows tuning of the connections between nodes, weights, and49

biases. The entire architecture can be encoded into a real-value chromosome and thus is50

referred to as “Real-encoded NEAT” (RNEAT).51

By employing the proposed Evo-Devo-based approach, a range of experiments were car-52

2



ried out on diverse 2D and 3D engineering structural design problems. In these experi-53

ments, a GRN receives inputs derived from the local geometry of the structure, including54

the cross-sectional (CS) area of members, node locations, as well as information obtained55

through finite element analysis (FEA), such as member force or strain energy (SE). The GRN,56

encoded as either a NN or a computer program, subsequently generates small changes57

to update (i.e. grow) the physical structure, aiming to minimize both the volume and max-58

imum deflection. The experimental results obtained under various settings demonstrate59

the viability of the Evo-Devo-based approach for controlling the growth of structures while60

achieving the desired objectives. Furthermore, the results reveal that RNEAT-evolved so-61

lutions outperformed its competitors on more than 50% of the problems, indicating its62

superiority in terms of effectiveness and performance.63

The two major contributions of this paper are as follows: 1) the paper introduces a gener-64

alizable and scalable approach based on the Evo-Devo concept to evolve diverse Pareto65

front engineering designs, and 2) the paper presents RNEAT by taking inspiration from66

NEAT and CGP to evolve multi-objective NNs. The rest of this paper is structured as fol-67

lows. Section 2 discusses the literature on Evo-Devo approaches, GRNs, and evolutionary68

search in engineering design. Section 3 presents the proposed Evo-Devo framework, and69

section 4 outlines different GRN representations and the methodology of the proposed70

RNEAT algorithm. The experimental setup and resulting data are presented and discussed71

in Section 5, while section 6 provides the conclusions and suggests areas for future re-72

search.73

2 Related Work74

Numerous difficulties emerge when employing evolutionary search techniques to evolve75

solutions for intricate real-world problems, including the challenges of selecting relevant76

parameters for tuning and formulating the fitness function (Goldberg, 2002; Osaba et al.,77
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2021). The complexity of the search space further exacerbates the situation in engineering78

design problems, as these are characterized by a nonlinear relationship between parame-79

ters that generate phenotypes (Zou et al., 2022). This paper introduces an Evo-Devo-based80

approach to address these challenges in evolving GRNs for controlling the growth of struc-81

tural designs.82

Approaches based on Evolutionary development have been studied to improve the perfor-83

mance of both hardware and software in different domain-specific tasks that include de-84

signs (Richards et al., 2012), digital architecture (Navarro-Mateu & Cocho-Bermejo, 2019),85

music (Albarracín-Molina et al., 2016), and color-based pattern generation (Navarro-Mateu86

& Cocho-Bermejo, 2020). For instance, Vuk (Vujovic et al., 2017) introduced an Evo-Devo87

strategy to evolve the morphology of physical robots. Their proposed approach enabled88

robots to grow their leg size to simulate ontogenetic morphological changes in three de-89

velopmental steps. In each step either the length of robot legs changes or the length and90

thickness both change.91

Wu (Wu et al., 2022) proposed an evolutionary developmental framework to facilitate robotic92

Chinese stroke writing. Here a genome encodes stroke trajectory points, and the fitness of93

the genome is computed using a developmental learning algorithm. However, the genome94

encoding is not scalable and evolved solutions are problem specific. Jon (Mccormack &95

Gambardella, 2022) presented “growing and evolving 3D printable designs” where a covari-96

ance matrix adaptation evolutionary strategies algorithm (CMA-ES) tunes five genetic pa-97

rameters for optimizing 3D printable structures. Bidlo (Bidlo & Dobeš, 2020) presented an98

evolutionary developmental method for the design of arbitrarily-growing sorting networks.99

The proposed method basically evolves a grammar, an alphabetically encoded genome, to100

generate complex strings, and these strings are later converted onto comparator structures101

which are the building blocks of sorting networks.102

These Evo-Devo approaches use evolutionary algorithms to tune numerical or alphabetical103
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parameters to evolve solutions and are limited in terms of scalability and generalizability.104

Unlike these, the Evo-Devo approach proposed in this paper relies on GRNs to govern the105

growth of design in developmental steps. In the field of engineering design, Evo-Devo106

inspired approaches have not been investigated significantly to evolve designs.107

The GRN plays a crucial role in the development of organisms and different computational108

techniques that act as GRN representations have been studied in the literature e.g. (Cussat-109

Blanc et al., 2019; Delgado & Gómez-Vela, 2019; Karlebach & Shamir, 2008; Schlitt &110

Brazma, 2007). These techniques range from simple logical functions such as Boolean111

functions to complex non-linear functions represented by neural networks. In the litera-112

ture, various evolutionary and swarm algorithms have been used to evolve GRNs. In 2005113

Swain (Swain et al., 2005) used evolutionary algorithms to generate computational mod-114

els of GRNs using data obtained from observations. Xu (Xu et al., 2007) used differential115

evolution (DE), partial swarm optimization (PSO), and a hybrid of DE and PSO to optimize116

the hyperparameters of recurrent neural networks to model the behavior of a GRN on time117

series data-set, and Sylvain (Cussat-Blanc et al., 2015) used NEAT to evolve neural network118

topologies. In a manner similar to neural networks, computer graphs (evolving using ge-119

netic programming) have also been studied as a representation for GRN e.g. (Streichert et120

al., 2004). In this paper, neural networks and genetic programming are considered proxies121

for artificial gene regulatory networks that govern the growth of structural designs and are122

evolved using CGP and NEAT. CGP was chosen to evolve computer programs because it123

has been shown in the literature that other types of GPs suffer from bloating whereas CGP124

does not (Turner & Miller, 2014).125

Evolving multi-objective neural architectures has been recognized as a challenging prob-126

lem. Willigen (van Willigen et al., 2013) modified standard NEAT using strength Pareto127

evolutionary algorithms (SPEA2) to evolve multi-objective network topologies. However, in128

order to preserve speciation in the population, fitness-based domination is used to convert129

5



multi-objective fitness into single-objective fitness and thus is not a true multi-objective130

NEAT. Schrum (Schrum & Miikkulainen, 2008) used NSGA2 (Deb et al., 2002) to modify131

NEAT and evolved different topologies. The concept of speciation is not used here be-132

cause fitness sharing in multi-objectives is difficult, as there is more than one objective133

value. This paper presents a hybrid of CGP and NEAT, where encoding is inspired by CGP134

and information flow between layers is inspired by NEAT.135

Apart from Evo-Devo-based approaches, in the literature, different bio-inspired algorithms136

have been used to evolve design (Balamurugan et al., 2008; Perez & Behdinan, 2007;137

Yildiz, 2013) where problems are categorized into topology, size, and shape optimization.138

In topology optimization, a bit-array representation scheme has been frequently used to139

formulate the design problem where the design space is discretized into a grid where140

rectangular blocks are filled with materials to generate different topologies (Wang et al.,141

2006). The optimal solution in this representation is dependent on the resolution of the142

grid where the smaller the resolution, the better chance of searching for optimal solutions.143

As the grid resolution increases, the search space increases, and thus these approaches144

are not scalable as well as generalizable. The next section describes in detail the new145

algorithm and framework that form the foundation work of this paper.146

3 Methodology147

3.1 Biological to Structural Cell Analogy148

As biological cells are the basic building block of any organ (Kaldis, 2016), this paper149

considers a triangular shape cell for 2D problems and a tetrahedral shape cell for 3D prob-150

lems as building blocks to create engineering designs. Figure 1 (a) illustrates biological151

cell growth where the size of the cell changes and the cell multiplies (by dividing a cell) to152

generate multiple cells. Cell growth and division mechanisms are controlled by a GRN or153
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(a) biological cell growth and division (Kaldis,
2016)

(b) 2D triangular cell, its growth, and division

Figure 1: Biological and structural cell analogy. Figure show (a) an example biological unit
cell, its growth, and division, (b) show examples of cell growth in three different types of
growth mechanisms: G1 edge growth, G2 node growth, and G3 cell division.

a set of GRNs based on local environmental factors.154

Figure 1(b) shows an artificial cell, its growth, and multiplication mechanisms. An artificial155

2D triangular shape cell1 consists of three nodes (na, nb, and nc) and three edges (ea, eb, and156

ec) where the cell grows by changing the properties of nodes and edges. For consistency,157

cell division is also referred to as a type of growth mechanism here. A cell grows in one158

of the following ways: edge growth (G1), node growth (G2), and cell division (G3) as shown159

in Figure 1(b). A GRN takes the state information of a cell (such as the cross-section area160

of edges, locations of nodes, and other properties computed using finite element analysis161

such as edge force and strain energy) and generates a response to growing the cell.162

In the first type of growth G1, a GRN governs/updates the thickness of the edge/member’s163

CS area as shown in Figure 1(b)(B) where the red line shows an increment in CS area, the164

green line indicates a reduction in CS area. By changing the CS area of members, the165

size of the structure can be optimized. In a similar fashion, the second type of growth166

1This type of cell representation has been chosen because the aim here is to evolve 2D and 3D truss-like
structural designs. This cell definition can be easily changed as per the problem requirement.
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(a) Nodes (b) Structure with four cells

Figure 2: Illustrates an example of the initial seedling/structure generated using a set of
points, (a) shows a set of points which are locations of supports and loads, and (b) shows
the resulting geometry with four cells (c1, c2, c3, c4) using Delaunay triangulation.

mechanism (G2) updates the location of the nodes as shown in Figure 1(b)(C). Again, by167

changing the node locations, the size of the structure can be optimized. Finally, the topol-168

ogy of the structure can be modified by adding nodes to the structure, the third type of169

growth mechanism (G3) where a single cell is divided into three cells by placing a node170

(nd) at the centroid of the parent cell Figure 1(b)(D). In the proposed Evo-Devo framework,171

a node can be added at the centroid of a cell. The same types of growth mechanisms are172

also applicable to 3D structures where a cell is tetrahedral.173

3.2 Structure Initialization174

The previous subsection discussed artificial cell representation and different types of175

growth mechanisms. These cells are the basic building blocks of design. To produce176

designs, an initial structure is generated within an environment that represents the design177

context, for example including support points, load points, load magnitude with direction,178

and material properties. One such example of a 2D initial structure is shown in Figure 2179

where (a) shows the location of points, and (b) shows the resulting geometry. The initial180
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Figure 3: Block diagram representation of the Evo-Devo framework for growing structural
design where Evo evolves solutions/GRNs and Devo grows the structure for a predefined
number of developmental steps for each GRN. A GRN controls the growth and at the end,
the physical properties of the structure are assigned as the fitness to the GRN.

topology is called the ‘seedling’, and it is from this basis that all growth steps proceed. In181

the case of the simple frame structures being used here, a Delaunay triangulation (DT) can182

be used to create the topology of the seedling/structure. The initialized structure is made183

up of four cells and each cell has three nodes and three edges/members. Once the ini-184

tial structure/seed is generated, this structure can grow depending on local environmental185

factors in the evo-devo phase.186

The block diagram in Figure 3 illustrates the Evo-Devo framework for the evolutionary de-187

velopment of engineering designs. The framework consists of two main components: Evo188

and Devo. The Evo component focuses on the representation and evolution of GRNs, with189

Devo serving as the evaluator of the GRN’s quality, measured by its ability to generate190

Pareto-optimal designs.191
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3.3 Evo: Evolving GRNs192

The Evo stage randomly initializes a population of solutions/genomes where each solu-193

tion encodes an artificial GRN. Here the encoding differs depending on the type of GRN194

representation. To evaluate the quality/fitness of each genome, the devo component is195

initialized where the GRN controls the growth of a structure for d developmental steps. At196

the conclusion of the devo process, the physical properties (e.g. volume and deflection)197

of the updated structure are assigned as fitness to the genome. Based on the fitness198

of GRNs, the selection, crossover, and mutation operators evolve GRNs for a predefined199

number of generations within the evo-loop. In this work NNs and computer programs are200

used as GRNs representation where different multi-objective evolutionary search tech-201

niques evolve a Pareto front of GRNs that generates diverse designs. Section 4 discusses202

in detail GRNs representation and the proposed hybrid evolutionary search algorithm.203

3.4 Devo: Growing Structure204

In the Devo component, a structure undergoes in a growth phase through various mecha-205

nisms such as altering cross-sectional areas, relocating nodes, adding new nodes, or com-206

binations thereof. Within the evo-devo framework, Evo provides an indirect encoding of207

growth rules, while Devo carries out the actual growth process based on local environmen-208

tal factors. Figure 3, right, shows the block diagram representation of the Devo component.209

Here, first, a structure is generated using pre-defined structural properties, and a GRN is210

generated by decoding the genome. In artificial evolution, the introduction of a develop-211

ment step allows a structure to be updated through different growth mechanisms. In the212

literature, the principles of Devo have been demonstrated on simple engineering design213

problems such as brackets (Price et al., 2022) and trusses (Hickinbotham et al., 2022).214
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Algorithm 1: Developmental Phase
Input : GRN, d,S

1 for i in d do
2 cellsp = FEA(S)
3 cellsg = getGeometry(S)
4 cellsnorm = normState(cellsp, cellsg)
5 δ = []
6 for cell in cellsnorm do
7 δcell = GRN(cell)
8 δ.append(δcell)

9 end
10 S = GrowStructure(S , δ)
11 end

3.4.1 Growth Phase215

In Devo, after the initial structure/seedling is generated, for example as shown in Fig-216

ure 2(b), the structure grows for a predefined number of developmental steps where the217

growth is regulated by a GRN. Algorithm 1 presents the developmental algorithm that takes218

a genome from Evo, initialized structure (S), and the maximum number of developmental219

cycles (d).220

During each step, local physical states of the structure are recorded such as member221

forces, stress, and strain energy (cellsp) using an open-source finite element analysis (FEA)222

tool, CalculiX (Dhondt, 2017) and node locations from structure geometry (cellsg). As dis-223

cussed earlier, artificial cells are the basic building block of a structure, thus physical224

properties of the structure are divided into a number of cells. The cell properties are nor-225

malized in each developmental step. Each cell’s state information, iteratively, is then fed226

to the GRN that generates delta (δ). Depending on the δ generated by GRNs, the structure227

grows by changing the cross-section area of members in each cell, by moving nodes, or by228

adding new nodes in cells. At the end of d cycles, the fitness of the final modified structure229

is computed and assigned to the genome.230

In the field of engineering design, these growth mechanisms are referred to as size, shape,231
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and topology optimization (Dhondt, 2017) respectively. Although there are several other232

challenges involved in growing a seedling/structure such as the representation of the struc-233

ture, utilization of the global structure state information, and more, the scope of this study234

is limited to the search for a controller or regulator using evolutionary search algorithms.235

3.4.2 Fitness and Constraints Formulation236

At the end of the developmental steps, the fitness of the modified structure is calculated237

and assigned to the GRN. The experiments outlined in this paper aim to minimize the to-238

tal volume and minimize the maximum deflection recorded at nodes. Volume is selected239

alongside deflection as this represents a stiffness to weight optimization problem which240

is commonplace in engineering design especially in structural design. When evolving de-241

signs, several constraints must be taken into consideration. These constraints are volume242

and max deflection to restrict the evolved structure from being too thin to manufacture or243

too heavy.244

min (f1, f2) =

∑m

i=0
AmLm

Vd0

,
max[nd0, ..., ndn]

MD0

s.t. C1 : 1− f1 ≤ 0

C2 : 1− f2 ≤ 0

(1)

Equation 1 shows the two objectives (f1, f2) subjected to two inequality constraints (C1, C2).245

Assuming the structure has m members where Ai and Li are the cross-sectional area and246

length of the ith member respectively. Assuming there are n nodes in the structure, each247

node’s deflection (nd) is computed using finite element analysis, and themaximum is taken248

as the objective. Depending on material type, loading conditions, and size of the structure,249

the objective values can have different ranges. Thus, objectives are normalized by dividing250

Vd0 and MDd0 which are the volume and max deflection of the initial structure/seedling251

respectively.252

12



4 GRN Representations and Evolution253

Gene regulatory networks are complex and highly non-linear functions, thus GRNs are rep-254

resented by non-linear models. In this work, neural network and symbolic programs are255

used as proxies for GRNs where muti-objective NEAT and CGP evolve Pareto optimal so-256

lutions.257

4.1 NEAT and CGP based GRN representations258

In the literature, both NEAT and CGP have been used to evolve complex non-linear sys-259

tems. NEAT evolves neural network architecture where during the evolutionary phase, it260

randomly adds or removes nodes to the networks, and due to this, the non-linear response261

of the networks can change. These random changes often result in a reduction in fitness,262

and so to keep diverse NN architectures in the population speciation was introduced in263

NEAT for single-objective problems (Stanley & Miikkulainen, 2002). However, when NEAT264

is modified with NSGA-II to evolve Pareto fronts of neural network architectures, the con-265

cept of speciation is not used – instead, Pareto ranking and the crowding distance-based266

matric maintain the diversity in the population. This diversity is purely based on the fit-267

ness values, and not on the network topologies (Schrum & Miikkulainen, 2008). Deeper268

inspection reveals that when Pareto ranking is combined with standard NEAT, the evolved269

networks are not complex (i.e. evolved networks have fewer hidden nodes), and thus are270

not suitable for complex non-linear problems. This is one of the drawbacks of the NEAT271

algorithm in a multi-objective setting.272

Similar to NEAT, genetic programming has also been employed for searching non-linear273

functions. However, when evolving functions or programs for intricate problems using stan-274

dard GP, bloating becomes a significant concern, leading to uncontrolled growth during275

evolutionary searches. To mitigate this issue, cartesian genetic programming was intro-276

duced, representing a type of GP where the tree depth is predefined. When utilizing CGP,277
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Figure 4: An example of a two-input and one-output neural network encoding in CGP style
genotype representation where a grid 2× 2 is defined as hidden layers.

users are required to define the number of rows and columns based on the number of278

inputs, outputs, and desired tree depth (Miller & Harding, 2008). In this setting, nodes at279

lower depths can receive inputs from any higher tree nodes, offering flexibility in generat-280

ing various functions. However, CGP does not scale well with complex problems. (O’Neill281

et al., 2010).282

For multi objective problems, neural networks can scale well as problem complexity in-283

creases, but NEAT algorithm is unable to evolve complex networks, whereas CGP provides284

flexible tree structure representation but does not scale with problem complexity. This285

paper combines the useful features from NEAT and CGP, and presents a new algorithm as286

described in the next subsection. Figure 4 shows a neural network representation using287

this hybrid approach which has two inputs (I1, I2), one output node (O1), and two hidden288

layers with two nodes in each layer. The output node can receive inputs from the input289

nodes or any other hidden layer nodes, and hidden layer nodes can receive inputs from290

any node in previous layers similar to CGP.291

4.2 Real-value encoded NEAT (RNEAT)292

To evolve multi-objective neural network topologies in a controlled manner, a hybrid repre-293

sentation based on NEAT and CGP is presented where connection, weights, and biases can294

be tuned using existing evolutionary search algorithms. The primary motivation of RNEAT295

is to evolve neural networks of different architectures for multi-objective problems.296
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Algorithm 2: RNEAT Algorithm
Input : popSize,maxItr, numH, numN,S

1 numInput, numOutput = Size(S)
2 Cl = Chromosome Size(numInput, numOutput, numH, numN )
3 P0 = Initialize Population(popSize, Cl)
4 Evaluation(P0,S, numInput, numOutput, numH, numN )
5 for t in maxItr do
6 Pc = Reproduction(Pt)
7 Evaluation(Pc,S, numInput, numOutput, numH, numN )
8 Fronts = Ranking(Pt, Pc)
9 cwd = Crowding Distance(Fronts)
10 Pt+1 ← NextGenIndividuals(Fronts, cwd)

11 end
12 return Best Front

Algorithm 3: Evaluation
Input : genomes,S, numInput, numOutput, numH, numN

1 GRN = Network Architecture(numInput, numOutput, numH, numN )
2 for g in genomes do
3 /*** Decode neural network architecture from the genome ***/
4 for node in GRN.nodes() do
5 node.weights = weights(g, node)
6 node.connection = Connections(g, node)

7 end
8 /*** Growth in Developmental Phase ***/
9 S = Developmental Phase(GRN, d,S)
10 gf , gc = computePerformance(S) (using eq.1)
11 end

Algorithm 2 shows the proposed RNEAT algorithm that takes population size (popSize),297

maximum number of generations (maxItr), number of maximum hidden layers (numH),298

maximum number of nodes in a hidden layer (numN), and initial seedling/structure (S) as299

inputs, and returns the best evolved Pareto solutions. To generate the initial population,300

first, the number of inputs and outputs are computed using the initial seedling/structure,301

and then the length of the chromosome is calculated. The length depends on the type302

of experiment being performed. Table 1 shows the number of inputs and outputs for dif-303

ferent experimental setup. Figure 5 shows the genome encoding of the network shown304
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Figure 5: Genome encoding of the example network as shown in Figure 4 where each
hidden and output node has two types of genes: connection genes and weight genes. The
connection genes (c) are represented by blue color and weight genes (w) by green color.
Hidden and output nodes can take inputs from all previous nodes. For example, hidden
node h21 has four connection (c1, c2, c3, c4) and four weight (w1, w2, w3, w4) genes.

in Figure 4. Note that here each node (hidden and output) has two different types of305

genes: connections genes and weight genes. For example, node h21 can take inputs from306

four nodes (I1, I2, h11, h12) and thus has four connection and weight genes which can be307

evolved in multi objective setting. Once the initial population is generated Algorithm 3308

evaluates each individual’s fitness. The rest of Algorithm 2 implements tournament selec-309

tion, simulated binary crossover, polynomial mutation, and Pareto ranking operators, as in310

standard NSGA-II.311

Algorithm 3takes genomes, initial structure, number of inputs, outputs, hidden layers, num-312

ber of nodes in a hidden layer, and computes the fitness of each genome. Here a genome313

encodes the network architecture and weights between nodes. Note that similar to CGP,314

the dimension of the network is pre-defined whereas a real-value encoded chromosome315

defines the connectivity and associated weights. Line 1 of the Algorithm 3 creates a fixed316

size network (which is termed as GRN), and then connections and weights are decoded317

from each genome. The network’s architecture follows feed-forward information propa-318

gation, enabling nodes from previous layers to connect to the current layer nodes. This319

decoded neural network is the gene regulatory network that controls the growth of the ini-320

tial structure in d developmental steps as presented in Algorithm 1. The performance of321

the full grown structure in computed using eq. 1.322

Since RNEAT draws inspiration from NEAT and CGP, it shares some common features, but323
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(a) WT (b) CB (c) MBB (d) TL

Figure 6: Initial seedling of (1) Warren truss with seven cells, (b) cantilever with nine cells,
(c) MBB with six cells, and (d) 3D trabecular lattice. These initial seedlings are designed to
be sub-optimal, by having different cross-sectional areas of members, and will be modified
by GRNs to improve the quality in terms of volume and maximum deflection.

also has some differences. For example, NEAT relies on complexification to add hidden324

layer nodes and uses speciation to preserve the diversity in the population, whereas RNEAT325

defines a fixed architecture similar to CGP. NEAT focuses more on topological evolution326

through crossover andmutation, whereas weights and biases are only mutated. In contrast,327

when using RNEAT, both topology, and weights get a fair chance of being searched through328

crossover and mutation.329

5 Experimental Results and Discussion330

This section presents and analyzes experimental results pertaining to studies formulated331

as size, shape, and topology optimization problems. Note that, the growth of a structure332

can occur in three ways: by altering the cross-sectional area of members G1, by relocating333

nodes G2, or by adding nodes G3. The objective is to evolve a gene regulatory network334

that utilizes local structural state information to govern the growth of the structure, with335

the aim of minimizing both volume and maximum deflection. To facilitate a comparative336

analysis, experiments on four distinct problems were conducted, and employed three dif-337

ferent algorithms1 RNEAT, NEAT, and CGP. The results obtained from these experiments338

are examined and discussed.339

1We also compared CPPN but results of NEAT and CPPN were almost the same.

17



Table 1: Problem specifications: structures support and load points, number of inputs, and
outputs under different types of growth/update mechanisms.

Problems
WT CB MBB 3L

Support
Points

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(200, 0, 0) (0, 60, 0) (200, 0, 0) (0, 0, 20)

(0, 20, 0)
(0, 20, 20)

Load
Points

(100, 50, 0) (180, 30, 0) (100, 40, 0) (20, 0, 0)
(20, 0, 20)
(20, 20, 0)
(20, 20, 20)

G1: In 3 mse, 3 mcs 6 mse, 6 mcs

G1: Out 3 δcs 6 δcs
G1, G2: In 3 mse, 3 mcs, 9 nl 6 mse, 6 mcs, 12 nl

G1, G2: Out 3 δcs, 9 δn 6 δcs, 12 δn
G1, G2, G3: In 3 mse, 3 mcs, 9 nl 6 mse, 6 mcs, 12 nl

G1, G2, G3: Out 3 δcs, 9 δn, 1 δcd 6 δcs, 12 δn, 1 δcd

This paper encompasses a total of 11 diverse experiments from three 2D problems and340

one 3D problem, wherein the performance of the three algorithms is compared. In the341

first four experimental setups, only one type of growth mechanism, G1 was used to update342

the structure design, in the next four experiments two types of growth rules (G1, G2) were343

applied together, and in the last three experiments, all three growth rules were applied344

concurrently. Results on these diverse problems show the generalizability and the scala-345

bility of the proposed approach and the effectiveness of the proposed RNEAT in evolving346

Pareto optimal/near-optimal solutions/GRNs.347

5.1 Experimental Set-up348

The experiments encompassed the evaluation of GRNs on aWarren Truss (WT), a Cantilever349

Beam (CB), Messerschmitt-Bolkow-Blohm (MBB) beam structures in a 2D space, as well as350

a Trabecular Lattice (TL) in a 3D space as shown in Figure 6. In literature, these sample351

structures are commonly used to test the effectiveness of new algorithms and approaches.352

Note that structures aremade of cells, where theWT has seven cells, CB nine cells, andMBB353
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has six cells. Experiments were conducted considering different types and combinations354

of growth mechanisms such as G1, G1 and G2, and G1, G2, and G3. Table 1 shows support and355

load locations for these problems, and local structure state information as input to GRN,356

in addition to output deltas suggested by the GRNs. In each experiment, the loads act in357

the direction of the negative y-axis.358

These experiments aimed to evolve the Pareto front of solutions using different parame-359

ters tailored to the complexity of each problem, allowing for meaningful comparisons. To360

assess and compare the Pareto fronts obtained through various algorithms, the hypervol-361

ume (HV) (Guerreiro et al., 2021) performance indicator was employed. The selection of HV362

was based on its Pareto-agnostic nature, meaning it does not rely on a true Pareto front,363

thus enabling effective comparisons across different algorithms.364

5.2 Evolving GRNs for size optimization365

In size optimization, the CS area of members is modified to minimize material usage. Note366

that, a structure is made up of cells, and a GRN takes input from each cell and generates367

deltas to update the state of each cell iteratively. In this case, the gene regulatory network368

takes into account the strain energy (mse) and the CS area (mcs) of each member of a369

cell as input and provides a delta change in the CS area (δcs) for a predefined number370

of developmental steps. For 2D size optimization problems, a GRN takes six inputs and371

provides three outputs as shown in Table 1 while G1 type of growth mechanism happens372

whereas, for the 3D size optimization problem, a GRN has 12 inputs and six outputs.373

These initial structures, shown in Figure 6 are suboptimal designs, and the aim here is to374

evolve a Pareto front of GRNs that can generate a diverse set of optimal or near-optimal375

structures. Figure 7(a) shows the Pareto fronts obtained using the three algorithms on376

the WT problem over 10 runs where red dots are RNEAT evolved solutions, blue and aqua377

represents NEAT and CGP solutions respectively. Here a solution represents a GRN (ei-378
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(a) Last generation Pareto front of 10 runs (b) Fitness trajectory in devo steps

Figure 7: (a) the Pareto fronts obtained using the three algorithms in 10 runs on the WT
problem, and (b) an example of fitness movement in different developmental steps where
the last developmental step fitness is recorded as the fitness of the genome.

(a) WT (b) CB (c) MBB (d) TL

(e) WT (f) CB (g) MBB (h) TL

Figure 8: Size optimization: Figures (a), (b), (c), and (d) compare the average value HV
per generation obtained using different algorithms over 10 runs, and (e), (f), (g), and (h)
compare the distribution of HV from the last generation over 10 runs.
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ther a NN or a computer program). The black dot is the initial structure fitness and the379

green dot is the reference point to compute the hyper-volume performance indicator. The380

initial structure objectives are (1, 1) because each objective is normalized where the initial381

structure objectives are taken as a reference.382

Figure 7(a) shows that evolved GRNs were able to grow the structure such that both volume383

andmax deflection reduces. Note that a GRN grows the structure for d developmental steps384

and the at the end the fitness of the final modified structure is computed and assigned385

as the fitness to the GRN. Figure 7(b) shows the fitness trajectory in different devo steps386

indicating that GRN, chosen from a Pareto front, learned to minimize both objectives in the387

initial few steps and then a compromise has been made between the two objectives. This388

behavior is expected because reducing the volume often tends to increase the deflection at389

nodes. Incorporating each devo step fitness into final fitness might be helpful in evolving390

even better quality Pareto solutions, but this is part of the future endeavors of this work.391

Similar experiments were conducted on the other three problems: CB, MBB, and TL.392

Experimental results are presented in Figure 8, where subfigures (a), (b), (c) and (d) com-393

pare the average hypervolume obtained in each generation over 10 runs using the three394

algorithms. Subfigures (e), (f), (g), and (h) compare the distribution of HV values of the last395

generation Pareto fronts. It is important to note that a higher HV value indicates a better396

quality Pareto front (Guerreiro et al., 2021).397

From the complexity perspective, the size optimization problem is the least complex com-398

pared to other experiments conducted in this paper. Figures 8(a) and (c) demonstrate that399

RNEAT achieves higher HV values compared to the other two algorithms on the WT and400

MBB problems, indicating superior performance. However, on CB problem, RNEAT shows401

inferior results compared to NEAT, but better than CGP. The distribution figures, Figure 8402

(e, f, g, and h), also reveal that RNEAT’s performance is better than NEAT on WT and MBB,403

comparable on TL, and better than CGP on all four problems.404
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Table 2: Comparing the best, median, and worst values of HV obtained from the last gen-
eration Pareto front on four problems over 10 runs, for size optimization problem

RNEAT NEAT CGP RNEAT NEAT CGP RNEAT NEAT CGP RNEAT NEAT CGP
WT CB MBB TL

Best 0.46 0.43 0.34 0.35 0.34 0.21 0.49 0.46 0.34 11.91 11.97 11.78
Median 0.45 0.42 0.3 0.28 0.33 0.12 0.44 0.425 0.20 10.87 10.795 10.64
Worst 0.45 0.4 0.2 0.21 0.31 0.08 0.37 0.39 0.12 7.78 7.66 7.63

Statistical analysis has been conducted from the data obtained using three methods and405

is indicated in Figures 8(e, f, g, and h) where P1 refers to the p-value calculated using the406

distribution of HV obtained using RNEAT and NEAT, and P2 when the p-value is computed407

using the HV distribution obtained using RNEAT and CGP. Experimental results show that408

RNEAT is statistically significantly better than NEAT on WT problem with a p-value of less409

than 0.05, and better than CGP on WT, CB, and MBB problems again with p-values less410

than 0.05. Table 2 shows the best, worst, and median HVs from the last generation Pareto411

front over 10 runs indicating that on three out of four problems, the median performance412

of RNEAT is better than others.413

Note that the three 2D problems have different search space sizes where WT, CB, and414

MBB have 15, 17, and 13 members respectively. As the number of members in the struc-415

ture increases, the complexity also increases, and it would be difficult for standard GAs416

to manage the problem’s complexity. However, the proposed Evo-Devo approach grows417

cells of the structure iteratively and is thus applicable to these complex problems. This418

shows the scalability property of the proposed approach. These results provide encour-419

aging evidence that the Evo-Devo-based approach can effectively evolve a diverse set of420

Pareto-optimal GRNs that have learned how to control the growth of initial structures, re-421

sulting in simultaneous minimization of both volume and deflection.422

5.3 Evolving GRNs for Topology Optimization423

In a similar manner to size, the topology of the structure can be optimized with minimal424

modifications to GRN’s inputs and outputs. In the case of topology optimization, the GRN425
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(a) WT (b) CB (c) MBB (d) TL

(e) WT (f) CB (g) MBB (h) TL

Figure 9: Results for topology optimization. The figure compares the average HV and
distribution of HV over 10 runs when a GRN control both nodemovement and edge/member
thickness of structures.

governs both member CS area and nodemovement. In this scenario, the GRN incorporates426

node location (nl) information, along with member thickness (mcs) and strain energy (mse),427

to generate deltas for both node location (δn) and member thickness(δcs), thus two types428

of growth mechanism happen together, G1, and G2. The number of inputs and outputs for429

topology optimization is 15 and 12 respectively for 2D problems, and 24 and 18 for 3D430

problems as shown in Table 1.431

As different types of growth mechanisms are combined to update/grow a given structure,432

the complexity of the problem increases, however, the same GRN representations can433

be used to evolve diverse designs. This shows the generalizability characteristics of the434

proposed Evo-Devo approach.435

Similar experiments have been conducted and comparative results are presented. The436

average HV values obtained in each generation using different techniques, along with the437

distribution of HVs from the last generation Pareto fronts over 10 runs, are illustrated in438

Figure 9. Figure 9 (a) shows that on WT, RNEAT’s HV is higher than the other two, and439
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Table 3: Comparing the best, median, and worst values of HV obtained from the last gen-
eration Pareto front on four problems over 10 runs, for topology optimization problem

RNEAT NEAT CGP RNEAT NEAT CGP RNEAT NEAT CGP RNEAT NEAT CGP
WT CB MBB TL

Best 0.54 0.51 0.5 0.24 0.06 0.35 0.43 0.39 0.46 0.82 0.74 0.81
Median 0.51 0.49 0.435 0.175 0.02 0.265 0.38 0.3 0.385 0.63 0.52 0.59
Worst 0.47 0.39 0.36 0.05 0.0 0.19 0.19 0.26 0.26 0.39 0.2 0.43

Figure 9 (e) shows the distribution of last generation HV values over 10 runs. The figure440

also shows p-values obtained using the distribution of RNEAT and NEAT HV values (P1), and441

RNEAT and CGP HV values (P2). Both P1 and P2 are less than 0.05 indicating statistical442

significance, on the WT problem. Table 3 compares the best, worst, and median HV values443

from the last generation Pareto front in 10 runs. From this table, it is clear that on the WT,444

RNEAT’s best, and median HVs are better (higher) than the others.445

A similar performance comparison is made on CB, MBB, and TL. On CB and MBB, CGP is446

the best-performing algorithm. On TL, the performance of RNEAT is comparable to CGP447

and better than NEAT. However, Table 3 shows that the best and the median HV values448

obtained using RNEAT are higher than both NEAT and CGP. Statistical analysis shows that449

RNEAT is better than NEAT on WT, CB, and MBB problems.450

5.4 GRNs for Size, Shape, and Topology Optimization451

In previous experiments, the initial structure/seedlings had more than one cell, as shown452

in Figure 6, and in the growth phase, only the member’s thickness and node locations were453

changed. In this subsection, experiments are devised to closely mimic the Evo-devo-based454

concept.455

In the proposed Evo-devo-based approach, the integration of size, shape, and topology456

allows for a unified problem setting, wherein GRNs govern the cross-sectional area of457

members, the relocation of nodes, and even the addition of new nodes to modify the struc-458

ture’s geometry and topology. Among the various experimental setups, this particular con-459
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Figure 10: Figure shows the Pareto fronts obtained using the three algorithms in 10
runs on the TL problem. The black dot on the top right show the fitness of the initial
seedling/structure.

figuration is the most complex due to the significantly larger search space compared to460

optimizing for size or topology alone. Here all three types of growth mechanisms (G1, G2,461

and G3) can happen simultaneously at every growth step.462

At the start of the simulation, initial seedlings are generated with minimal cells (minimum463

of one). In each developmental step, the GRN takes mcs, mse, and nl as input and deter-464

mines δcs, and δn, and whether to add a node by dividing a cell (δcd). If the cell division465

takes place, then new members are added to the structure, and this results in volume in-466

crement. Due to fitness-based selection pressure, evolution prefers solutions/GRNs that467

decide not to divide cells (to keep the volume lower) which over the generations decreases468

the diversity in the population. Thus to evolve a diverse set of structures, the constraint469

limit on this experiment is relaxed. Note that Table 1shows the design space boundary470

of three problems considered here. Throughout the simulation process, it is possible to471

adjust the initial design in a manner that leads to a deflection exceeding the prescribed472

space constraints. Such outcomes represent solutions that are deemed infeasible. When473

computing the HV of the rank zero Pareto front from each generation, obviously infeasible474

solutions were excluded, if there were any.475

Experiments were conducted on two 2D problems: CB, MBB, and a 3D problem, TL, where476
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(a) CB (b) MBB (c) TL

(d) CB (e) MBB (f) TL

Figure 11: Results for Size, shape, and topology. Figure compares average HV and distri-
bution of HV over 10 runs when a GRN control both node movement, edge thickness, and
cell division.

the initial seedling for CB and MBB is a single triangular cell structure, and TL’s initial477

seedling has more than one tetrahedral cell. Figure 10 shows the Pareto fronts obtained478

using the three algorithms over 10 runs on the 3D TL problem. The figure shows that RNEAT479

evolved Pareto solutions are better than the other two methods. In this set of experiments,480

cell division adds new nodes and edges/members to the structure resulting in the volume481

increment and whereas modifications in the CS area and node movement can lead to a482

reduction in deflection.483

Comparative results are shown in Figure 11 where subfigures (a), (b), and (c) compares the484

average HV per generation over 10 runs. Figure 11 (d), (e), and (f) show the distribution485

of HVs from the last generation over 10 runs. Figure 11 shows that RNEAT is better than486

the other two on all three problems. Additionally, p-values (P1 and P2) are less than 0.05487

indicating that RNEAT performance is statistically significantly better than NEAT and CGP488

on CB, MBB, and TL.489
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Table 4: Comparing the best, median, and worst values of HV obtained from the last gen-
eration Pareto front on four problems over 10 runs, for combined optimization problem

RNEAT NEAT CGP RNEAT NEAT CGP RNEAT NEAT CGP
CB MBB TL

HV

Best 2.41 2.35 2.39 2.81 2.78 2.78 3.52 3.24 3.41
Median 2.41 2.295 2.34 2.79 2.685 2.75 3.43 3.06 3.36
Worst 2.37 2.24 2.28 2.78 2.45 2.71 3.27 2.9 3.26

Table 5: Ranking three algorithms based on the quality of evolved Pareto fronts, the dis-
tribution of HV values, and statistical analysis

Problems and Types of Growth
Methods G1 G1, G2 G1, G2, G3

WT CB MBB TL WT CB MBB TL CB MBB TL

RNEAT I II I II I II II I I I I
NEAT II I II I II III III II III III II
CGP III III III III III I I III II II III

Table 4 compares the best, worst, and median HV values from the last generation Pareto490

front obtained using the three algorithms. For each problem and in each case, RNEAT’s HV491

is higher than NEAT and CGP. These results (Figure 11 and Table 4), provide evidence that492

as the complexity of the problems starts increasing, RNEAT performs better than NEAT and493

CGP.494

To summarize these findings, Table 5 provides rankings for the different algorithms on all495

problems. This ranking is derived from results such as average HV per generation, the dis-496

tribution of last-generation HV values, and statistical analysis under different experimen-497

tal setups. Out of the total of 11 experiments, RNEAT outperformed the other algorithms498

seven times, while NEAT achieved the best performance two times, and CGP emerged as499

the top performer twice. These promising results serve as compelling evidence that first,500

Evo-devo-based approaches can effectively generate Pareto fronts of GRNs, that gener-501

ate designs, and second, RNEAT (a hybrid of NEAT and CGP) performs well against NEAT502

and CGP, particularly for more complex design problems. The experimental outcomes503

across these four problems demonstrated the generalizability and scalability of the pro-504

posed method. Nonetheless, because RNEAT evolves non-linear neural networks as black505
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box models, delving into the behaviors of the evolved network will necessitate additional506

experimental analysis.507

6 Conclusions and Future Work508

This paper introduces a framework based on evolutionary developmental biology (Evo-509

Devo), in which the growth of structures is controlled by gene regulatory networks repre-510

sented by neural networks and genetic programming. To evolve high-quality Pareto solu-511

tions (GRNs), the paper presents a multi-objective neuro-evolutionary algorithm termed512

RNEAT, which draws inspiration from NEAT and utilizes a CGP-style encoding of geno-513

types. The performance of RNEAT is compared to NEAT, and CGP on various 2D and 3D514

problems, considering different initialization and types of growth. A total of 11 different515

experiments were conducted to assess the viability of the proposed Evo-Devo approach516

for evolving structural designs and to compare the effectiveness of RNEAT with the other517

two algorithms.518

The results indicate that by considering diverse growth mechanisms and structural initial-519

ization, evolved GRNs were able to enhance performance in terms of objective functions.520

This provides compelling evidence that the proposed Evo-Devo approach can effectively521

facilitate the growth of designs under different environmental conditions. Evaluating the522

performance using the hypervolume as a performance indicator, RNEAT outperformed the523

other algorithms on seven problems, while NEAT and CGP only performed better on two524

problems, each. These results on the different problems under different types of growth525

rules show that the proposed approach is generalizable and scalable.526

The experimental outcomes demonstrate the efficacy of Evo-Devo when local information527

is incorporated into a gene regulatory network. Further work will involve extending the pro-528

posed approach to evolve even more complex engineering designs, incorporating global529

structural information to determine local growth. Additionally, the proposed approach will530
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be applied to problems characterized by non-linear loading conditions, where the search531

space is highly constrained.532
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