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ABSTRACT
Seaweeds have garnered considerable attention due to their capacity to serve as exceptional 
reservoirs of numerous bioactive metabolites possessing substantial chemical and biological 
significance. .Phlorotannins constitute a significant class of natural polyphenols originating from 
brown seaweeds, featuring a broad spectrum of bioactive attributes and demonstrating potential 
applicability across various sectors. The potential health advantages associated with phlorotannins, 
particularly concerning the prevention of conditions linked to oxidative stress, such as inflammation, 
diabetes, and allergies, have generated substantial interest within the food and pharmaceutical 
industries. Nevertheless, current research remains insufficient in providing a comprehensive 
understanding of their absorption, as comparisons drawn with their terrestrial counterparts remain 
speculative. It is commonly presumed that phenolic compounds, including phlorotannins, face 
challenges due to their limited solubility, instability, and extensive metabolism, all of which restrict 
their bioavailability. In order to circumvent these limitations and amplify their utility as components 
of medicinal formulations or healthcare products, researchers have explored various strategies, 
including the encapsulation or integration of phlorotannins into nano-/micro-particles or advanced 
drug delivery systems. This review offers a thorough exploration of the structural and biological 
attributes of phlorotannins and furnishes insights into potential strategies showing promise for their 
effective utilization in preclinical and clinical applications.

Introduction

The marine environment, widely recognized as a vast and 
unique repository, houses a multitude of organisms, includ-
ing macroalgae (seaweeds), microalgae and other diverse life 
forms such as tunicates, sponges, soft corals, and mollusks 
(Victor and Sharma 2015). These organisms play a vital role 
within the aquatic ecosystem by providing nourishment and 
shelter to fish and other marine life. Furthermore, they hold 
significant promise as resources for the exploration of novel 
bioactive compounds with potential utility for human health 
(Ghosh et  al. 2022). These bioactive compounds derived 
from natural sources are highly prized for their favorable 
characteristics, including lower toxicity and enhanced effec-
tiveness, making them valuable for a range of therapeutic 
purposes (Aung et  al. 2017). In contrast to terrestrial envi-
ronments, the distinctive environmental factors in the marine 
system, such as fluctuating temperature, pressure, and light 
conditions, likely contribute to the production of unique 
metabolites (including proteins, peptides, amino acids, fatty 
acids, sterols, polysaccharides, oligosaccharides, phenolic 
compounds, photosynthetic pigments, vitamins, and miner-
als) by certain marine organisms (Karthikeyan, Joseph, and 
Nair 2022).

Phlorotannins, a distinct class of secondary metabolites 
belonging to polyphenolic compounds, are particularly 
derived from brown seaweed (Phaeophyta), primarily from 
the orders Laminariales (Laminariaceae) and Fucales 
(Fucaceae and Sargassaceae) (Nazzaro et  al. 2019). Although 
some reviews have suggested the presence of trace amounts 
of phlorotannins in red algae (Pradhan et  al. 2022), these 
claims lack support from published research articles or spe-
cific algal species. Phlorotannins are oligomers or polymers 
composed of the monomeric unit “phloroglucinol” 
(1,3,5-trihydroxybenzene) and exhibit structural dissimilarity 
compared to terrestrial plant polyphenols like phenolic acids 
or flavonoids (Shrestha, Zhang, and Smid 2021). Due to 
variations in size, degree of polymerization, and types of 
subunits, phlorotannins display structural diversity with 
molecular weights ranging from 126 Da to 650 kDa (Catarino 
et  al. 2022). Moreover, different extraction and analytical 
techniques used in research may yield different phlorotannin 
profiles, adding to the complexity of identifying and quanti-
fying specific compounds. To date, approximately 150 phlo-
rotannins have been reported from brown seaweeds, with 
research into these compounds continuing to grow exponen-
tially (Rajan et  al. 2021).
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Reported biological properties of phlorotannins encom-
pass antioxidant (Kord et  al. 2021), anti-inflammatory (Raja 
et  al. 2023), and anti-diabetic (Moheimanian et  al. 2023) 
potentials. Nevertheless, despite the increasing research 
interest in the therapeutic applications of phlorotannins, 
their limited bioavailability in the digestive tract and circu-
latory system remains an area requiring improvements 
(Corona et  al. 2016). Bioavailability is a critical concept 
within the realm of bio-efficacy, serving as a fundamental 
indicator for assessing the efficacy of ingested nutrients. It 
pertains to the degree to which absorbed nutrient compo-
nents successfully enter the systemic circulation, thereby 
enabling the accomplishment of highly efficient biological 
activities (Shahidi and Peng 2018). Like other polyphenols, 
phlorotannins are commonly believed to possess low bioac-
cessibility, ranging from approximately 2%–15% (Zhao et  al. 
2023). These compounds readily form crosslinks with other 
macromolecules, such as carbohydrates or proteins. 
Additionally, high molecular weight phlorotannins (up to 
100 kDa) have demonstrated a propensity to interact with 
dietary and endogenous proteins, resulting in poor absorp-
tion in the upper gastrointestinal tract (Corona et  al. 2016). 
Furthermore, phlorotannins are highly unstable in the 
acid-base environment encountered during the transition 
from the small intestine to the gut, undergoing rapid trans-
formation and/or metabolism by digestive enzymes (Tong, 
Liu, and Yu 2021).

Given these properties, further research is warranted to 
explore strategies that maximize the biological activity of 
phlorotannins and their incorporation into clinical treat-
ments. In recent years, encapsulation techniques, which 
enclose targeted materials, have gained widespread applica-
tion for delivery into the system. Various carriers have 
been utilized for encapsulation, including microspheres, 
hydrogels, and nanoparticle-based drug carriers such as 
liposomes, niosomes, polymeric nanoparticles, and solid 
lipid nanoparticles (Mirchandani, Patravale, and Brijesh 
2021). These carriers have demonstrated remarkable capa-
bilities in enhancing nutrient/drug entrapment, improving 
bioavailability, and optimizing the pharmacokinetic profiles. 
However, to the best of our knowledge, there is currently 
no comprehensive insight into the specific digestive process 
of phlorotannins or the strategies to improve their bioavail-
ability. Therefore, this review aims to shed light on the 
possibilities of improving the delivery and therapeutic 
potential of phlorotannins by exploring various strategies 
and considering plausible perspectives. Additionally, it 
offers promising opportunities for maximizing their bio-
availability and harnessing their beneficial properties for 
targeted and controlled drug release.

Overview of seaweeds and their global utilization

Importance of seaweeds

Seaweeds, also known as marine macroalgae, constitute a 
foundational botanical category within marine ecology, 
comprising an estimated ~24,000 species, of which ~12,000 
have been described (Guiry 2012). Anchoring themselves 

to shallow-water rocky substrates or aggregating in shallow 
marine waters, seaweeds are taxonomically categorized into 
three groups based on pigmentation: Rhodophyta (red), 
Phaeophyta (brown) and Chlorophyta (green) macroalgae 
(Xie et  al. 2023). Seaweeds are renowned for their ecolog-
ical significance, giving rise to benthic seascape formations 
that, in terms of ecological importance, can be likened to 
terrestrial forests, such as primarily production construc-
tion, contribution to nitrogen fixation, and cementation of 
reef framework, facilitation of coral settlement and creation 
of habitats for other reef species (El-Manaway and Rashedy 
2022). Within submerged ecosystems, numerous herbivo-
rous organisms sustain themselves by relying on seaweeds, 
thus facilitating energy transfer to higher trophic levels. 
The central role played by seaweeds in the marine food 
web is highlighted by their ability to capture solar energy 
for autotrophic nutrition, simultaneously releasing oxygen 
through photosynthesis. This pivotal role is exemplified by 
their contribution to approximately half of the total pri-
mary production, despite their representation comprising 
less than 1% of Earth’s total photosynthetic biomass 
(Falkowski 2012). Beyond this, seaweeds fulfill a critical 
ecological function by serving as agents of nutrient and 
toxin regulation, actively sequestering substances deleteri-
ous to marine organisms. In this capacity, they function as 
a natural filtration system within the vast underwater envi-
ronment, entrapping heavy metals and chemical agents 
(Znad, Awual, and Martini 2022).

Undoubtedly, seaweeds possess an inherent appeal due to 
their culinary and edible attributes. However, while over 200 
species of seaweeds are globally cultivated or wild-harvested 
for various industries, only 21 of these have received official 
authorization for use as vegetables and condiments (Pereira 
2016). Upon closer examination, seaweeds reveal a wealth of 
functional ingredients and bioactive compounds that can be 
harnessed for the development of food supplements and 
dietary health products. From a nutritional perspective, sea-
weeds excel in their capacity to accumulate saccharides, pro-
teins, phenolic compounds, unsaturated fatty acids, vitamins, 
and minerals. Specifically, saccharides are the most prevalent 
constituents within seaweed species, constituting a range of 
4%–76% of their dry mass (DW) (Shannon and 
Abu-Ghannam 2019). Primary polysaccharides found in 
brown algae include alginate, fucoidan, and laminarin, while 
red algae contain carrageenans and agarans, and green algae 
contain ulvans (Patel et  al. 2023). Although protein, poly-
phenol, and lipid contents are generally modest across all 
species, they play indispensable roles, with proteins aiding in 
the synthesis of hormones, enzymes, and hemoglobin, lipids 
mitigating the risk of several chronic diseases, and polyphe-
nols acting as potent antioxidants (Subbiah et  al. 2023). 
Notably, the nutritional profiles of seaweeds exhibit multifac-
eted variability influenced by factors such as species, age, 
size, reproductive status, ecological context, and a constella-
tion of environmental parameters, including seawater pH, 
depth, temperature, salinity, nutrient enrichment, oxygen 
levels, ultraviolet radiation exposure, light intensity, and the 
extent of herbivore activity (Lobine, Rengasamy, and 
Mahomoodally 2022; E. Park et  al. 2023).
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Global market of seaweeds

The global cultivation and production of seaweed have 
undergone significant growth in recent decades, witnessing a 
remarkable increase from 0.56 million tons in 1950 to 35.82 
million tons in 2019 (Junning and Giulia 2021). According 
to the estimations by Food and Agriculture Organization 
(FAO), the global seaweed industry was valued at over USD 
$6 billion annually in 2018 (FAO 2018). This value is pro-
jected to continue its upward trajectory and reach USD 
$30.2 billion by 2025 (Deepika et  al. 2022).

As documented by FAO (2022), Asia overwhelmingly 
dominates global seaweed production, accounting for 
~99.54% of the total output. In contrast, Africa contributes 
0.3%, America 0.07%, Europe 0.06% and Oceania 0.03% to 
a much lesser extent. Within Asian seaweed production, 
China stands as the foremost contributor, yielding over 20 
million tons annually, constituting ~59.46% of the global 
aggregate (FAO 2022). Notable contributors following China 
include Indonesia, South Korea, the Philippines, North 
Korea, and Japan. Japan, in particular, with its archipelagic 
geography, has a longstanding culinary tradition rooted in 
the utilization of various seaweed species for sustenance. The 
harvesting of Pyropia sp. from wild populations in Japan can 
be traced back to the seventeenth century. Additionally, 
additional seaweed species such as Undaria, Saccharina, 
Monostroma, Ulva, and Cladosiphon have also undergone 
significant cultivation and development (Tanaka, Ohno, and 
Largo 2020). Likewise, Australia, benefiting from its geo-
graphical location amidst the convergence of three distinct 
oceanic currents, showcases a rich tapestry of algal diversity, 
although it represents only 0.03% of the world market. For 
example, native seaweeds of the Chlorophyta phylum thrive 
in the pristine ecosystems of the Great Barrier Reef (Deepika 
et  al. 2022).

In the broader context of global seaweed production, 
brown seaweeds hold a significant share, accounting for 
~62.37% in the year 2019. Within this category, noteworthy 
brown seaweed species such as Laminaria, Saccharina, and 
Lessonia emerge as preeminent contributors, collectively 
constituting ~57.06% of the total brown seaweed produc-
tion worldwide. Additional species, including Undaria, 
Sargassum, Macrocystis, and various miscellaneous varieties, 
make more modest contributions to this sector (Junning 
and Giulia 2021).

Utilizations of seaweeds

Seaweeds possess a rich history of utilization, extending 
into both culinary and medicinal domains. They have been 
integral to human diets, with particularly notable promi-
nence in the Asian region, and have also been highly 
regarded for their ability to yield valuable compounds 
(Chopin and Tacon 2021). The global seaweed industry 
comprises 85% of food products for human consumption, 
and seaweed-derived extracts make up almost 40% of the 
world’s hydrocolloids market (Debbarma et  al. 2022). For 
instance, agars and carrageenans extracted from red sea-
weeds, as well as alginates extracted from brown seaweeds, 

have found applications as thickening and gelling agents in 
various food products such as ice creams, jellies and shakes 
(Deepika et  al. 2022). Furthermore, due to their macro- 
and micro-nutritional constituents, seaweeds are seen as a 
promising strategy to address the growing challenges asso-
ciated with food supply stress resulting from the increasing 
global population (Duarte, Bruhn, and Krause-Jensen 
2021). In addition to their culinary uses, some commer-
cially significant seaweed species are also employed in the 
production of fertilizers, feed additives, biofuels, and vari-
ous environmental applications, although to a lesser extent 
(Hessami, Rao, and Ravishankar 2019). For example, cer-
tain quaternary cations, such as NH4

+ found in seaweed 
extracts from Laminaria sp., provide buffering capacity for 
the roots while acting as osmoprotectants, which are par-
ticularly beneficial in agriculture, especially in marshy 
lands (Blanz et  al. 2019).

Brown seaweed-derived phlorotannins

Generalized structural diversity

Phlorotannins are found in various brown seaweed species, 
including but not limited to Ecklonia, Eisenia, and Ishige 
species (Erpel et  al. 2020). They are known for their chain- 
and/or net-like structures with diverse molecular weights. 
Phlorotannins can be further classified into six subclasses 
based on their linkage polymorphism: phlorethols, fuhalols, 
fucols, fucophloroethols, eckols, and carmalols (as shown in 
Figure 1). These subclasses are characterized by various 
types of covalent bonds, including:

•	 Aryl-ether bonds and ether bridges (para- or 
ortho-arranged).

•	 Aryl-aryl bonds.
•	 Phenyl bonds.
•	 Dibenzo-1,4-dioxin bonds (Charoensiddhi et  al. 2020; 

Kumar et  al. 2022).

The presence of additional hydroxyl groups (–OH) 
accounts for the differences between fuhalols and phlore-
thols (Y. Li et  al. 2017), as well as between eckols and car-
malols (Catarino, Amarante, et  al. 2021).

In addition to nonhalogenated phlorotannins, halogenated 
phlorotannins have also been reported. For instance, mono-
bromo-/monoiodophloroglucinol and 4′-bromo/4′-idodoeckol 
were identified several decades ago by Glombitza and 
Gerstberger (1985) from the brown alga Eisenia arborea. 
Subsequently, four other halogenated phlorotannins were 
discovered and reported in 1999 from another species, 
Carpophyllum angustifolium, after per-acetylation. These 
include 2-chlorophloroglucinol triacetate, 2[D’] iododiphlore-
thol pentaacetate, 3[A] chlorobifuhalol hexaacetate, and 
3[A4] chlorodifucol hexaacetate (Glombitza and Schmidt 
1999). In the same year, Sailler and Glombitza (1999) iso-
lated and characterized no fewer than 17 halogenated (bro-
minated, chlorinated and iodinated) phlorotannins, along 
with 30 non-halogenated forms from the Sargassaceae 
Cystophora retroflexa.
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Biosynthesis of phlorotannins in brown algae

The biosynthesis of phlorotannins involves multiple steps, and 
although consensus on the exact mechanisms varies among 
scientists, a general outline of the biosynthesis process can be 
summarized as follows: (A) phloroglucinol formulation, (B) 
oxidative coupling and enzymatic modification, and (C) sub-
cellular localization. For a more detailed understanding of the 
potential biosynthetic pathway, refer to Figure 2.

The biosynthesis of phlorotannins, which are considered 
the fundamental building blocks of this class of compounds, 
is thought to commence with the production of phloroglu-
cinol. Three potential pathways for phloroglucinol produc-
tion have been proposed, namely the shikimic acid pathway, 
the phenylpropanoid pathway, and/or a polyketide synthase 

pathway (PKS), based on existing knowledge (Pelletreau 
2008). However, Siriwardhana, Lee, and Jeon (2005) have 
suggested that the shikimic acid pathway is more likely to 
serve as the metabolic pathway for condensed tannins and 
hydrolyzable tannins within the polyphenol category, with 
limited evidence specifically addressing phlorotannins. 
Conversely, due to the involvement of type III polyketide 
synthase (PKS III), the PKS pathway has gained stronger 
support as a more plausible and widely accepted route for 
phlorotannin biosynthesis, as corroborated by research stud-
ies (Bertoni 2013; Subbiah et  al. 2023).

This hypothesis received support from Meslet-Cladière 
et  al. (2013), whose genome investigation of the brown alga 
Ectocarpus siliculosus led to the discovery of a predicted key 
enzyme, PKS1, capable of facilitating the consecutive 

Figure 1. T he example structures of phlorotannins, divided by their linkages and functional groups.

Figure 2.  Potential biosynthesis pathway of phlorotannin in brown seaweed cells (Gómez and Huovinen 2020; Phang et  al. 2023). PKS: polyketide synthase; CoA: 
coenzyme A.
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condensation of acetate and malonate units. In the first step, 
two molecules of acetyl coenzyme A (acetyl-CoA) are con-
verted into malonyl-CoA in the presence of carbon dioxide, 
catalyzed by PKS III. The resulting polyketide chain under-
goes Claisen-type cyclization, generating a hexacyclic triketide. 
Subsequently, tautomerization and aromatic stabilization pro-
cesses occur, resulting in the production of thermodynami-
cally stable phloroglucinols (Fernando, Lee, and Ahn 2022).

Once phloroglucinol is synthesized, it undergoes oxidative 
coupling reactions facilitated by peroxidases, notably 
vanadium-dependent haloperoxidases, or phenoloxidases, as 
well as heme-containing glycoproteins. These enzymes play a 
catalytic role in the formation of end-radicals within phloro-
glucinol oligomers, achieved through the dehydrogenation of 
hydrogen atoms on –OH bonds, utilizing hydrogen peroxide 
(H2O2) as a reactant (Berglin et  al. 2004; Lemesheva et  al. 
2020). The coupled C–C and/or C–O–C linkages contribute 
to the structural diversity observed among the six classes of 
phlorotannins mentioned above.

Regarding the localization of phlorotannin biosynthesis, it 
has been proposed that they are predominantly found within 
the chloroplast or its membrane, with potential involvement 
of the endoplasmic reticulum and Golgi bodies 
(Schoenwaelder and Clayton 2000). In general, based on 
their interactions with algal cells, phlorotannins exist in two 
distinct sub-cellular fractions: intracellular (cytoplasm) and 
cell wall-binding fractions (Birkemeyer et  al. 2020). Polar 
and/or reactive-formed phlorotannins are initially seques-
tered in physodes, specialized secretion vesicles, which have 
the ability to be secreted into the extracellular compartment 
to form insoluble cell-wall phlorotannins that become 
embedded in the alginate matrix and other components of 
the cell wall through oxidative cross-linking (Arnold and 
Targett 2003; Emeline et  al. 2021). The second fraction of 
phlorotannins is predominantly associated with carbohy-
drates or proteins, such as alginates, and they exhibit char-
acteristics akin to conventional tannins, contributing to the 
integrity of the cell wall (Birkemeyer et  al. 2020).

Quantification of phlorotannins

Quantifying phlorotannins holds significant importance 
across various research and industrial purposes. Researchers, 
for instance, employ phlorotannin quantification to enhance 
their understanding of the ecological roles played by brown 
seaweeds in marine ecosystems or to assess potential appli-
cations in the food, pharmaceutical, or cosmetic industries, 
along with determining the nutritional values of 
seaweed-based products. Common methodologies utilized 
for the quantification of phlorotannins encompass spectro-
photometry assays (e.g., Folin-Ciocalteu assay), 
high-performance liquid chromatography (HPLC), and 
nuclear magnetic resonance (NMR).

Two spectrophotometry assays have been commonly 
employed to quantitatively assess the phlorotannin contents 
in seaweeds, including the Folin-Ciocalteu assay and the 
2,4-dimethoxybenzaldehyde (DMBA) assay, which have gar-
nered recognition due to their applicability, stemming from 

their distinctive interactions with the target compounds 
(Erpel et  al. 2023; Gümüş Yılmaz et  al. 2019). However, 
reports indicate that the Folin-Ciocalteu method has limited 
sensitivity. There are also concerns about its accuracy due to 
potential interference from other constituents in the plant 
matrix. Soluble sugars and proteins, for instance, can react 
with the Folin-Ciocalteu reagents, leading to artificially ele-
vated values (Castro-Alves and Cordenunsi 2015). Similarly, 
although the DMBA assay demonstrates greater specificity as 
it selectively reacts with 1,3- and 1,3,5-trihydroxybenzenes, 
making it a more discerning option for assessing the phlo-
rotannin structures within seaweed, some phlorotannins may 
exhibit branching or feature aryl linkages and fuhalols with 
additional –OH groups at positions 2, 4, or 6. In cases where 
substitutions occur at these positions, the absence of a color 
change may impede the detection of these particular phloro-
tannins (Ford et  al. 2019).

The Prussian blue assay (PBA), in addition, has seen lim-
ited application in a few studies and may exhibit somewhat 
lower specificity compared to the other two methods 
(Margraf et  al. 2015; Subbiah et  al. 2023). Given that phlo-
rotannins are classified as tannins, the butanol-HCl-iron 
method may also represent a potential means of quantifying 
their content, although there is currently no confirmed 
research validating this approach.

Proton (1H) NMR spectroscopy indeed stands as another 
valuable approach for quantifying phlorotannin contents 
when utilizing phloroglucinol as an internal standard. 
However, it is essential to emphasize that NMR directly 
measures molar concentrations, and as such, the results 
obtained through NMR cannot be directly compared with 
those determined using spectrophotometric assays. Moreover, 
the quantification of phlorotannins using HPLC is impeded 
by the scarcity of commercially standardized reference com-
pounds. In other words, the calibration of the sample con-
tent can only be achieved through quantification using 
known standards (Ford et  al. 2019). Table 1 presents the 
phlorotannin contents as reported in various scholarly 
sources through the aforementioned methodologies.

Indeed, the quantification of phlorotannin content can 
vary significantly based on the chosen extraction method, 
including the selection of organic solvents or solvents ratios. 
In the case of brown algae, specifically Sargassum angustifo-
lium, researchers have employed three distinct ratios of 
ethanol-aqueous solvents (30%, 50% and 70%, v/v), resulting 
in a range of phlorotannin content from 0.4 to 3.4 mg phlo-
roglucinol equivalents (PGE)/g (Hodhodi, Babakhani, and 
Rostamzad 2022). It is well-established that brown algae can 
adjust their production of these metabolites in response to 
environmental cues and stress conditions. Typically, phloro-
tannin levels in brown algae surpass 2% DW in temperate 
and tropical Atlantic areas, as well as temperate Pacific 
regions. As noted by Ank, da Gama, and Pereira (2019), 
brown seaweeds from higher latitudes have demonstrated 
the capacity to produce phlorotannins in a broader range, 
often exceeding 4% DW, likely in response to environmental 
factors or stimuli, compared to algae found in lower lati-
tudes, which generally contain less than 2% DW.
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Furthermore, different seaweed parts and growth condi-
tions also affect their phlorotannin contents. For instance, 
Iken et  al. (2007) reported the presence of 0.5% DW of 
phlorotannins in the pneumatocysts of Cystosphaera jac-
quinotii (Montagne) Skottsberg and 9% DW of phlorotan-
nins in the branches of Desmarestia antárctica. Singh and 
Sidana (2013) reported that phlorotannin concentrations can 
reach notable levels, sometimes as high as 25–30% DW in 
various algal thalli. However, it is a limitation that the spe-
cific seaweed species associated with these high phlorotan-
nin concentrations are not specified in the provided 
information. This lack of information may suggest the pos-
sibility of referring to hypothetical or unidentified species, 
or it could indicate a potential misunderstanding or misin-
terpretation of the literature, thus warranting further research 
and investigation.

Biological activities and bioavailability of 
phlorotannins

Fascinating biological activities

Due to their diverse chemical structures and the presence of 
polyhydroxy groups, phlorotannins exhibit a wide range of 
biological activities. These activities, summarized in Table 2, 
highlight their promising potential in functional foods, 
nutraceuticals, and the pharmaceutical industry. These bio-
logical properties include antioxidative, anti-inflammatory, 
anti-allergic/histamine, anti-diabetic, and anti-bacterial/
microbial effects, among others.

Antioxidant
Phlorotannins have been affirmed as excellent exogenous 
antioxidants that exhibit their antioxidant properties through 
three main mechanisms, including direct reactive oxygen 
species (ROS) scavenging, nuclear factor erythroid 2-related 
factor 2 (Nrf2) signaling pathway and the upregulation of 
antioxidant enzyme activities.

The ROS are commonly generated as natural byproducts 
of various metabolic processes in living organisms. When 
overproduced, they can lead to a state of oxidative stress, 
which can, in turn, cause damage to lipids, proteins, and 
DNA, and is associated with various diseases. The ability of 
phlorotannins to defend against ROS is linked to their intri-
cately branched molecular structure, where phenol rings 
donate their electrons to these oxidative agents, resulting in 
the formation of an intermediate phenoxyl radical species 
that stabilizes unpaired electrons and establishes hydrogen 
bonds with neighboring –OH groups or engages in dimeriza-
tion (phenol coupling) to create C–O or C–C linkages 
(Phang et  al. 2023). These mechanisms have been corrobo-
rated by numerous previous studies employing colorimetric 
assays focused on determining radical scavenging activity. 
These assays encompass the assessment of radical scavenging 
activity against various radicals, including the 2,2-diphenyl-1-
picryl-hydrazine-hydrate (DPPH) and 2,2-azino-bis-3-et
hylbenzothiazoline-6-sulfonic acid (ABTS) radicals. For 
example, phlorotannins derived from Fucus vesiculosus and Se
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Ascophyllum nodosum have exhibited comparable or even 
superior DPPH radical scavenging activity when compared 
to commercially available antioxidants such as butylated 
hydroxytoluene and ascorbic acid (Liu et  al. 2017). Similarly, 
stronger ABTS inhibitory effects than those observed with 
ascorbic acid were found in the ethyl acetate fractions of 
Sargassum hemiphyllum and Sargassum pallidum, with the 
half maximal inhibitory concentration (IC50) values of 
0.11 ± 0.01 mg/mL and 0.02 ± 0.00 mg/mL, respectively, in 
contrast to 0.27 ± 0.00 mg/mL (Chen et al. 2023). Additionally, 
they include assessments of reducing power via ferric ion 
reducing antioxidant power and phosphomolybdate assay, as 
well as metal chelating activity. The ferrous chelating prop-
erties of phlorotannins obtained from F. vesiculosus were 
further investigated, revealing up to 95% chelation in water 
extracts and 55% in acetone aqueous (v/v, 7:3) extracts 
(Wang, Jonsdottir, and Ólafsdóttir 2009).

Another mechanism modulated by phlorotannins involves 
the activation of Nrf2, a signaling pathway that leads to the 
downstream production of antioxidants. Phlorotannins have 
been found to form quinones that act as electrophiles, inter-
acting with the thiol group in Kelch-like ECH-associated pro-
tein 1, a crucial sensor of oxidative and electrophilic stress. 
With further activating quinone reductase activity that led to 
the reduction and detoxification of electrophilic quinones and 
quinone derivatives, phlorotannins help result in the forma-
tion of Michael adducts and induce a conformational change 
that releases the Nrf2 protein, which, in turn, promotes the 
translocation of Nrf2 from the cytoplasm into the nucleus, 
upregulating the production of antioxidant enzymes such as 
the heme oxygenase-1 (Hmox-1) (Jun et  al. 2014). 
Phlorotannins can also activate the Nrf2 pathway through 
other mechanisms, such as the phosphorylation of several 
downstream pathways. Notably, the differential activation of 
various signaling pathways in response to phlorotannin 
administration, such as the induction of phosphorylated c-Jun 
N-terminal kinase (JNK) and phosphorylated protein kinase B 
(PKB) on HepG2 hepatocytes and the activation of p-Akt and 
phosphorylated extracellular signal-regulated kinase (ERK) 
pathways on V79-4 lung fibroblasts by eckol (Jun et  al. 2014; 
K. C. Kim et  al. 2010), is contingent on several factors, 
including the specific types of phlorotannins, the cell types 
involved, and the nature of the oxidative stimuli applied.

In addition to its impact on Hmox-1, phlorotannins have 
also been observed to reduce the expression of NADPH oxi-
dase 2 (NOX-2), a significant source of ROS production 
induced by lipopolysaccharide (LPS). This findings are sup-
ported with an increased expression of glycoprotein 91phox, a 
catalytic substrates of NOX complex (Cui et  al. 2015). 
Meanwhile, A. D. Kim et  al. (2014) reported that eckol 
derived from Ecklonia cava could enhance the expression of 
manganese superoxide dismutase, which serves as the pri-
mary defense mechanism against mitochondrial ROS, safe-
guarding cells from oxidative stress.

Anti-inflammatory
Inflammation, whether acute or chronic, can give rise to a 
range of health complications, including autoimmune 
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diseases like rheumatoid arthritis (Shrivastava and Pandey 
2013), cardiovascular diseases such as high blood pressure 
(Botelho et  al. 2021), and gastrointestinal disorders like 
inflammatory bowel disease (Yao et  al. 2019). Researchers 
have posited that phlorotannins exert significant effects on 
three pivotal mediators, including cytokines, enzymes, and 
signaling pathways, drawing from observations in cell cul-
tures and animal studies.

Besides the previously mentioned antioxidant mecha-
nisms, phlorotannins alleviate inflammation, often associated 
with oxidative stress, by modulating the production of 
inflammation-related cytokines. For instance, treatment with 
eckol isolated from E. cava at concentrations of 50 µg/mL 
and 100 µg/mL in a mouse model of anaphylaxis resulted in 
the reduction of mRNA expression levels of proinflamma-
tory cytokines such as interleukin 1β (IL-1β), IL-6, and 
tumor necrosis factor-α (TNF-α) (Han et  al. 2020). They 
also observed the downregulation of Th2-type cytokines, 
specifically IL-4, IL-5, and IL-13, which led to a reduction 
in immunoglobulin (Ig) E and eosinophilic responses. 
Another study reported an amelioration of endothelial dys-
function in mouse models through the use of 
pyrogallol-phloroglucinol-6,6-bieckol extracted from the 
same species, which was attributed to the reduced expression 
of TNF-α and IL-6 (Son et  al. 2019). The observed enhance-
ment of transforming growth factor beta can inhibit the 
activation and function of various immune cells, such as T 
cells and macrophages, reducing their capacity to produce 
pro-inflammatory cytokines and mediators. Simultaneously, 
it promotes the development and differentiation of regula-
tory T cells, which are essential in maintaining immune tol-
erance and preventing excessive inflammation (Bierie and 
Moses 2010).

Several enzymes implicated in the processes of inflamma-
tion are subject to regulation by phlorotannins. Notably, 
inducible nitric oxide synthase (iNOS) is among the enzymes 
responsible for the production of nitric oxide (NO), a piv-
otal signaling molecule associated with a range of physiolog-
ical processes, including inflammation, immune responses, 
and tissue damage (Spiller et  al. 2019). Recent investigations 
have revealed that trifuhalol A, extracted from Agarum 
cribrosum, exerts a significant downregulatory effect on 
iNOS expression in LPS-stimulated RAW264.7 cell models, 
resulting in a notable decrease in NO production, estimated 
at 36.6%–56.8% (Phasanasophon and Kim 2019). Lopes 
et  al. (2012) proposed that phlorotannins have the capacity 
to regulate NO levels not only by inhibiting related enzymes 
but also through direct scavenging and/or by reducing NO 
production via their influence on the inflammatory signaling 
cascade. Moreover, Kurihara, Konno, and Takahashi (2015) 
reported that fucophlorethol C, isolated from the brown sea-
weed Colpomenia bullosa, effectively inhibited lipoxygenases 
(LOX) to a similar extent as the known inhibitor nordihy-
droguaiaretic acid. LOX plays a crucial role as a rate-limiting 
enzyme in the conversion of arachidonic acid into leukot-
rienes, known mediators of inflammation (Hu and Ma 2018); 
therefore, compounds that inhibit LOX have the potential to 
decelerate this process and exert anti-inflammatory effects.

In terms of signaling pathways, Catarino et  al. (2020) 
reported that phlorotannin derivatives from F. vesiculosus 
effectively inhibited the phosphorylation and degradation of 
inhibitory protein κBα, an intracellular protein that func-
tions as a primary inhibitor of the proinflammatory tran-
scription factor nuclear factor kappa B (NF-κB). This 
inhibition, in turn, prevents the activation of the NF-κB sig-
naling pathway, thereby locking the inflammatory cascade at 
the transcriptional level. In line with the findings of S. Kim 
et  al. (2019), they observed that the addition of an ethanolic 
extract of E. cava, primarily containing dieckol, induced the 
translocation of NF-κB to the nucleus while preventing its 
binding to the cell DNA, along with a dose-dependent 
reduction in the levels of cytokines and various enzymes. 
Trifuhalol A was found to significantly inhibit the expression 
of JNK and ERK1/2 at concentrations ranging from 5 to 
20 µg/mL (Phasanasophon and Kim 2019). This inhibition 
further attenuated mitogen-activated protein kinases 
(MAPKs), serving as crucial components of a series of vital 
signal transduction pathways regulating processes such as 
cell proliferation, cell differentiation, and cell death in 
eukaryotes (Morrison 2012).

Anti-diabetic
Diabetes is a global health issue affecting millions of indi-
viduals, with its incidence projected to increase in the com-
ing years. This chronic condition is associated with severe 
complications, including cardiovascular diseases, kidney 
damage, and nerve damage (Dal Canto et  al. 2019). Recent 
advances in the study of plant polyphenols have brought 
attention to phlorotannins as potential candidates for modu-
lating key enzymes, specifically α-glucosidase and α-amylase 
(Lopes et  al. 2019), which are responsible for the elevation 
of postprandial glycemia. Several phlorotannins have demon-
strated lower IC50 values than acarbose, a clinically approved 
inhibitor for type 2 diabetes treatment, indicating greater 
inhibitory potential. For example, fucophloroethol structures 
obtained from Fucus distichus exhibited an IC50 of 0.89 µg/
mL and 13.9 µg/mL against α-glucosidase and α-amylase, 
respectively. In contrast, acarbose, the pharmaceutical inhib-
itor, showed IC50 values of 112.0 µg/mL and 137.8 µg/mL for 
the same enzymes (Kellogg, Grace, and Lila 2014). Consistent 
with the findings of H.-A. Lee, Lee, and Han (2017), oral 
administration of 2,7″-phloroglucinol-6,6′-bieckol led to a 
significant reduction in postprandial blood glucose levels in 
diabetic mouse models induced by streptozotocin, attributed 
to the delayed absorption of dietary carbohydrates through 
the inhibition of the related enzymes. The compound exhib-
ited IC50 values of 23.35 µM against α-glucosidases and 
6.94 µM against α-amylase, in contrast to acarbose at 130.04 
and 165.12 µM, respectively. Lo Piparo et  al. (2008) hypoth-
esized that the inhibitory activity of phlorotannins is influ-
enced by the formation of hydrogen bonds between their 
hydroxyl groups and the carboxylate groups of Asp197 and 
Glu233, two active sites of α-amylase. This impedes the enzy-
matic breakdown of complex carbohydrates into simple sug-
ars like glucose. Moreover, similar polyphenol categories, 
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such as flavonoids and phenolic acids, offer insight into pos-
sible inhibitory mechanisms influenced by methylation and 
methoxylation processes on phlorotannin structures (Guan 
et  al. 2022). The quantity, position, and substitution pattern 
of these hydroxyl and methoxy groups are presumed to par-
ticipate in various chemical interactions with the active sites 
of α-glucosidase and α-amylase, including hydrogen bonding 
and electrostatic interactions, further influencing binding 
affinity and inhibitory potency (J. Zhang et  al. 2022).

Hepatic gluconeogenesis represents another critical target 
for diabetes modulation, involving the regulation of 
insulin-related enzymes, such as glucose-6-phosphatase 
(G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), and 
glucokinase. Octaphlorethol A, derived from Ishige foliacea, 
was identified as an inhibitor of hepatic gluconeogenesis in 
a study by S.-H. Lee et  al. (2016). It significantly suppressed 
the upregulation of hepatic mRNA expression levels of glu-
coneogenic enzymes, particularly PEPCK and G6Pase, lead-
ing to a reduced hepatic glucose production and potential 
benefits in diabetes management. Murray et  al. (2021) pro-
vided compelling evidence through a placebo-controlled ran-
domized clinical trial, demonstrating that the administration 
of a polyphenol-rich seaweed extract containing 8,8′-bieckol, 
6,6′-bieckol, and phlorofurofucoeckol A for 12 weeks resulted 
in a greater reduction in postprandial glucose levels com-
pared to fasting glucose levels, with further support for the 
regulation of G6Pase and PEPCK. Conversely, S. Zhang 
et  al. (2020) indicated that certain phlorotannins, notably 
trifuhalol A, did not exhibit an inhibitory effect on G6Pase, 
even at increased concentrations. In a randomized crossover 
trial, the administration of polyphenols extracted from F. 
vesiculosus demonstrated the potential to moderate glycemic 
responses in females by reducing peak postprandial glucose 
concentration (Murray et  al. 2019). However, this effect was 
not observed in males, suggesting a gender-specific response 
that requires further investigation to understand the under-
lying mechanisms and implications of these gender differ-
ences in response to polyphenol treatment.

Oxidative stress plays a pivotal role in the development of 
type 2 diabetes mellitus (T2DM), resulting from an imbal-
ance between the production of ROS and antioxidant 
defense. In T2DM, the decreased levels of enzymatic antiox-
idants contribute to the development of diabetic complica-
tions. According to a meta-analysis of 22 studies conducted 
by Banik and Ghosh (2021), the association between T2DM 
and biomarkers was emphasized, with eight studies focused 
on superoxide dismutase (SOD) levels and four on glutathi-
one peroxidase levels. Administration of dieckol through 
intraperitoneal injections (10–20 mg/kg for 14 days) in dia-
betic mice resulted in a notable reduction in blood glucose 
and serum insulin levels, with a slight increase in the activ-
ity of the antioxidative enzyme, SOD, in the liver tissues 
(Kang et  al. 2013). Similarly, eckol, 7-phloroeckol, and 
phlorofucofuroeckol-A have been identified as inhibitors of 
protein tyrosine phosphatase 1B (PTP1B) (Gunathilaka, 
Keertihirathna, and Peiris 2021), an enzyme critical for reg-
ulating insulin signaling. PTP1B overactivity can result in 
insulin resistance; thus, the inhibition of PTP1B is a poten-
tial therapeutic strategy to enhance efficient insulin signaling 

by preventing the dephosphorylation of tyrosine residues 
and promoting glucose uptake into cells (Koren and 
Fantus 2007).

Anti-allergy/histamine
Histamine, a bioactive amine released by immune cells, 
serves as a signaling molecule and neurotransmitter in 
response to allergic reactions (Mandola, Nozawa, and 
Eiwegger 2019). The prevalence and severity of allergic dis-
eases have exhibited a significant rise over the past decade 
worldwide, particularly affecting approximately 20% of the 
population in developed countries (Y. Li et  al. 2008). Two 
bioactive phloroglucinol derivatives, fucodiphloroethol G 
and phlorofucofuroeckol A, were initially isolated from E. 
cava by Y. Li et  al. (2008), who reported their notable inhib-
itory activity against histamine release. This inhibition was 
demonstrated in human basophilic leukemia (KU812) and 
rat basophilic leukemia (RBL-2H3) cell lines using a hista-
mine release assay. To support their results, Le et  al. (2009) 
suggested that these active compounds may be useful in pre-
venting allergen-IgE-induced allergic reactions. Likewise, G. 
Ahn et  al. (2015) highlighted the inhibitory effects of dieckol 
on IgE-mediated degranulation observed in LAD2 cells. An 
insightful hypothesis posits that phlorotannins have the 
capacity to stabilize the cell membrane by reducing intracel-
lular Ca2+ levels, thereby inhibiting the binding activity 
between IgE and its high-affinity receptor. This inhibition, in 
turn, disrupts downstream signaling cascades, including the 
activation of protein tyrosine kinases (Syk, Lyn), calcium 
mobilization, and protein kinase C translocation, all of 
which are essential for degranulation (Shim, Lee, and Lee 
2016; Yoshioka et  al. 2014).

Sugiura et  al. (2021) discovered that the phlorotannin 
dieckol exhibited significant anti-allergic effects in an ear 
swelling test conducted on mice sensitized to arachidonic 
acid, 12-O-tetradecanoylphorbol-13-acetate and oxazolone. 
These effects were attributed to the suppression of degranu-
lation, the release of chemical mediators, and the expression 
of mRNA, including cyclooxygenase-2 (COX-2), IL-6, and 
TNF-α, in rat basophilic leukemia-2H3 cells. In another 
study, 6,6′-bieckol and 6,8′-bieckol were found to inhibit 
COX-2 activity at a concentration of 500 µM, with inhibi-
tion ratios of 9.8% and 40.4%, respectively. Notably, 
8,8′-bieckol (96.6%) and phlorofucofuroeckol A (96.8%) 
exhibited inhibitory effects comparable to that of epigallocat-
echin gallate (95.8%) (Sugiura et  al. 2018). These findings 
align with the explanation that the bioactivity of phlorotan-
nins is strongly influenced by their molecular size or the 
number of phenol groups. The structures of eckols and the 
bieckols, as presented by Sugiura et  al. (2018), suggest that 
the positioning of the hydroxyl group at either C-4 or C-4′ 
in these compounds may play a crucial role in their ability 
to suppress degranulation and COX-2 mRNA expression.

In addition, a recent study isolated three phlorotannins 
from Sargassum carpophyllum, including 2-[2-(3,5-dihydr
oxyphenoxy)-3,5-dihydroxyphenoxy]-1,3,5-benzenetriol,  
2,2′-[[2-(3,5 dihydroxyphenoxy)-5-hydroxy-1,3-phenylene]bis 
(oxy)]bis(1,3,5-benzenetriol), and 2-[2-[4-[2-(3,5-dihydroxyp



12 X. DUAN ET AL.

henoxy)-3,5-dihydroxyphenoxy]-3,5-dihydroxyphenoxy]- 
3,5 dihydroxyphenoxy]-1,3,5-benzenetriol (Matsui et  al. 
2022). These compounds were found to prevent immediate 
hypersensitivity by exhibiting a dose-dependent reduction in 
β-hexosaminidase secretion in vitro similar to other phloro-
tannins such as eckol (Han et  al. 2020), with IC50 values of 
50.7, 35.9, and 43.5 µM, respectively. Meanwhile, these phlo-
rotannins exhibited a significant reduction of approximately 
50% in prostaglandin D2 (PGD2) levels compared to the 
positive control group. PGD2 is a major prostanoid secreted 
by activated mast cells, and elevated PGD2 levels have been 
closely associated with medical conditions, including asthma 
and allergic reactions (Nakamura et  al. 2015). However, their 
findings revealed no statistically significant effect on the 
expression of COX-2, the enzyme responsible for converting 
arachidonic acid to prostaglandin H2 (PGH2), the precursor 
of PGD2 synthesis. This contrasts with the conclusion previ-
ously reported by Sugiura et  al. (2018), and as a result, they 
were unable to establish a definitive relationship between 
COX-2 expression and the levels of PGD2. It is plausible 
that the activity of downstream enzymes involved in PGD2 
synthesis or the presence of other mediators in the cellular 
environment may have influenced the observed results.

Anti-microbial/viral
The hypothesis suggests that phlorotannins may exert antivi-
ral effects through two primary mechanisms: by preventing 
the virus from entering host cells and by inhibiting viral 
replication once it has entered the host cell. J.-Y. Park et  al. 
(2013) observed that the dieckol derived from E. cava com-
petitively inhibits 3CLpro, a cysteine proteinase with similar-
ities to chymotrypsin, which is crucial for viral replication. 
Other enzymes, such as reverse transcriptase and protease of 
human immunodeficiency virus type 1 (HIV-1), were 
reported to be potently inhibited by 8,4′′′-dieckol and 
8,8′-bieckol (M.-J. Ahn et al. 2004). Likewise, it was observed 
that phlorotannins extracted from E. cava suppressed the 
production of surface proteins, such as hemagglutinin and 
neuraminidase, which are responsible for the initial attach-
ment of the virus to host cells and the release of newly 
formed virions, respectively (Cho et  al. 2019). Meanwhile, 
phlorotannins were found to increase the activity of mito-
chondrial dehydrogenases, causing membrane depolarization, 
as well as reducing the ergosterol content of the fungal cell 
wall, thus demonstrating efficacy against yeast and several 
dermatophytes (Lopes et  al. 2013). A synergistic effect was 
reported when using phlorotannins in conjunction with anti-
biotics against the Listeria genus (H.-J. Kim et  al. 2018).

Bioavailability of phlorotannins

The concept of bioavailability refers to the proportion of an 
administrated dose of nutrients that enters the systemic cir-
culation (Price and Patel 2021), which is influenced by fac-
tors such as biological response (bioactivity), metabolism, 
absorption (bioaccessibility). While numerous biological 
activities of phlorotannins have been determined, research 
on their bioavailability is still ongoing. Scientists have 

hypothesized that they exhibit similar behaviors to other 
polyphenols, such as phenolic acids and flavonoids. In this 
regard, the overall bioavailability of phlorotannins is antici-
pated to be limited, as Catarino, Marçal, et  al. (2021) 
reported only a small fraction (14.1%) of phlorotannins 
from F. vesiculosus is likely to undergo absorption in the 
upper gastrointestinal tract. This finding aligns with the 
results of Corona et  al. (2016), who observed that, following 
the ingestion of a phlorotannin-rich capsule by healthy vol-
unteers, most of the phlorotannin metabolites were subse-
quently detected in their urine and plasma, indicating a low 
rate of absorption in the small intestine.

In detail, the low absorption rate could probably be 
explained by the polymeric nature of phlorotannins, as well 
as their molecular weight and interactions with other dietary 
components (Meng et  al. 2021). The initial challenge in the 
absorption of phlorotannins is to liberate them from the sea-
weed matrices, because they are typically embedded or 
bound within the cellular and structural components that 
hinder their release, especially polysaccharides and proteins 
(Ford et  al. 2020). Phlorotannins, with higher molecular 
weights, have a greater capacity to form bonds with proteins, 
which reduces their solubility and makes it more challenging 
for the digestive system to break them down and absorb 
them in the small intestine (Cáceres-Jiménez et  al. 2023). 
Also, it is hypothesized that enzymes responsible for metab-
olizing them may have reduced access to the bound phloro-
tannins, slowing down their transformation into low 
molecular weight derivatives. Catarino, Marçal, et  al. (2021) 
observed a shielding effects between bound phlorotannins 
and gastric enzymes that prevent their degradation during 
the upper gastrointestinal and therefore forcing their trans-
portation to the colon. On the other hand, some interactions 
between phlorotannins and cell wall polysaccharides, such as 
fucoidans and alginates, would also affects their release. For 
example, alginates can form a three-dimensional gel-like net-
work that captures phlorotannins, similar to the patterns 
seen with condensed tannins-proanthocyanidins (Liu and 
Bourvellec 2023).

Moreover, phlorotannins undergo various metabolic pro-
cesses. Similar to terrestrial polyphenols, these metabolism 
processes can be categorized into three phases. Phase I reac-
tions primarily entail intramolecular modifications, including 
processes such as oxidation, reduction, and hydrolysis. 
Meanwhile, Phase II reactions involve the conjugation of 
endogenous substances with ingested compounds, transform-
ing them into water-soluble substances that can be easily 
excreted from the body. This process is often referred to as 
detoxification and is achieved through main processes like 
acetylation, methylation, glucuronidation, and sulfation (also 
known as sulfonation) (Schaffenburg, Lockshin, and DeKlotz 
2021). It is worth noting that recent emphasis has been 
placed on a term “Phase III reaction” in the context of drug 
or nutrient metabolism, which is responsible for the final 
elimination of toxins and metabolic products from cells 
(Phang-Lyn and Llerena 2019). Together, these processes 
influence their stability during transit. In their pioneering 
work, Corona et  al. (2016) investigated the possibility of the 
relationship between ingested seaweed and their colonic 
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biotransformation by gut microbiota. This study successfully 
identified a variety of unconjugated and conjugated metabo-
lites of phlorotannins, including glucuronides and/or sul-
fates, in urine and plasma samples. During Phase II 
detoxification, phlorotannins undergo transformations that 
cause them to form larger and more polar conjugates, which 
hampers their passive diffusion across biological membranes, 
ultimately diminishing their bioavailability and facilitating 
their elimination from the body (Corona et  al. 2017). This 
possibility found further support in a clinical experiment 
conducted on obese individuals, where the analysis of their 
urine revealed the presence of various phlorotannin conju-
gates, including phloroglucinol sulfate, hydroxytrifurahol 
A-sulfate, dioxinodehydroeckol, fucophloroethol glucuronide, 
diphlorethol sulfates, and dioxinodehydroeckol glucuronide 
(Baldrick et  al. 2018).

Safety and stability of phlorotannins

When considering phlorotannins for medical or 
health-promoting purposes, addressing their safety concerns 
is imperative. However, the majority of the available studies 
are conducted in vitro based on cell models, with limited in 
vivo animal or human research. Indeed, phlorotannins have 
been shown to be nontoxic or not significantly toxic to sev-
eral cell lines in most of the studies.

For example, diphlorethohydroxycarmalol from Ishige 
okamurae was reported to increase cell viability against 
H2O2-induced oxidative stress in murine hippocampal neu-
ronal cells. The highest cell survival rate reached 77.21% at 
a dose of 50 µM, compared to the blank control, which only 
had a survival rate of 17.18% (Heo et  al. 2012). This assess-
ment was conducted using the 2,5-diphenyl-2H-tetrazolium 
bromide (MTT) assay, a widely used test in cell biology and 
toxicology for evaluating cell viability and proliferation, 
enabling the indirect assessment of substance toxicity. 
However, there were some controversial results, such as 
dieckol (20–100 µg/mL) decreasing cell viability and increas-
ing prostaglandin E2 (PGE2) release on HaCaT cells exposed 
to particulate matter (PM10) (Ha et  al. 2019), which could 
potentially lead to cardiovascular conditions, respiratory 
symptoms, chronic inflammation and tissue damage. These 
results suggest that the response patterns may vary depend-
ing on the cell line models and the specific doses applied.

In terms of animal studies, the safety and toxicity of 
phlorotannins have been extensively investigated using 
zebrafish, mice, rats and dogs. These studies have generally 
shown a 100% survival rate while exhibiting efficient biolog-
ical activities. However, some slight symptoms have been 
reported, such as soft stool and diarrhea in Beagle dogs 
when given high-purity phlorotannin fractions at a dose of 
750 mg/kg on days 3 and 13 (Yang et  al. 2014). It is worth 
noting that these effects were only observed at high oral 
doses, and no adverse effects were found at doses of 250 
and 500 mg/kg. Similar safety has also been demonstrated in 
human trials with phlorotannin-rich capsules, especially 
eckol from E. cava at a dose of 500 mg/day and treatment 
for one week (Um et  al. 2018).

The European Food Safety Authority (EFSA) Panel on 
Dietetic Products, Nutrition and Allergies (NDA) delivered a 
scientific report on the safety of E. cava products 
(SeaPolynolTM) (Patent NO.: US10016471B2) as a 
phlorotannin-rich food supplements (Turck et  al. 2017). 
They reported that there is no evidence of genotoxicity for 
the product and identified a low risk of allergic reactions. 
They suggested an intake of 163 mg/day for adolescents aged 
12 to 14 years (mean body weight of 43.4 kg), 230 mg/day for 
adolescents above 14 years of age (mean body weight of 
61.3 kg), and 263 mg/day for adults (default body weight 
of 70 kg).

Investigating strategies to improve bioavailability 
and bioactivities of phlorotannins

Research on phlorotannins is still in its early stages, and one 
commonly employed approach to overcome their inherent 
limitations involves the micro-/nano-encapsulation of phlo-
rotannins within a carrier (Tong, Liu, and Yu 2021). Various 
carrier systems, such as nano-emulsions, liposomes, edible 
films, nanoparticles, nanogels, have been utilized for deliver-
ing terrestrial polyphenols (J. Zhang et  al. 2023). In the case 
of phlorotannins, specific examples of targeted carriers can 
be observed.

Polymeric nanoparticles

To enhance the therapeutic effectiveness of phlorotannins in 
the human body, Bai et  al. (2020) conducted a study on the 
encapsulation efficiency of polyvinylpyrrolidone (PVP) 
nanoparticles, employing various ratios in combination with 
phlorotannins. Among these ratios, the nanoparticles with a 
1:8 ratio exhibited superior stability in water, remaining 
without precipitation for 5, 10, and 15 days at room tem-
perature compared to free phlorotannins. Furthermore, the 
application of PVP nanoparticles at concentrations of 6.25 
and 12.5 µg/mL in a HaCaT keratinocyte model resulted in 
a significant reduction of ROS production by 12% and 18%, 
respectively, without detectable irreversible cytotoxic effects. 
However, after discovering the carcinogenic nature of PVP, 
its use in health supplements and oral administration became 
limited. Consequently, Bai, Chen, and Qi (2022) developed 
an alternative approach by formulating improved 
protein-polysaccharide nanocomplexes using whey protein 
isolate and chitosan oligosaccharides, which are edible, 
cost-effective, and commercially available. In their experi-
ment, Caco-2 cells exposed to hydrogen peroxide exhibited 
a decrease in cell viability to 68.79 ± 3.78%. However, treat-
ment with phlorotannin-loaded nanoparticles at varying 
concentrations revealed a dose-dependent increase in cell 
viability. Notably, at a concentration of 40 µg/mL of 
phlorotannin-loaded nanoparticles, the cell viability signifi-
cantly rose to 84.83 ± 1.92% (p < .05). Additionally, the 
administration of the nanoparticles at the aforementioned 
concentration effectively restrained ROS generation in 
H2O2-treated cells and NO production in LPS-induced cells, 
bringing them to levels comparable to the negative control 
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group, which further validates the enhanced anti-inflammatory 
and antioxidant capacity achieved through nano-encapsulation.

Another investigation employed electrospinning to prepare 
zein nanofiber membranes loaded with ε-polylysin
e-polyphenol-polyaspartic acid for the controlled delivery of 
polyphenols, including phlorotannins (Yingying et  al. 2022). In 
terms of their in vitro release profile, approximately 19.65% of 
the phlorotannins were released within the initial 2 h under 
acidic conditions (pH 1.2), thereby illustrating the protective 
effect of zein nanofiber membranes against the acidic gastric 
pH environment. Moreover, a higher release of 62.35% occurred 
over an 8-h period at pH 6.8, which was facilitated by the elec-
trostatic interaction between ɛ-polylysine and polyaspartic acid, 
effectively enhancing system stability and preventing burst 
release. Consistent with the findings reported by Amjadi et  al. 
(2022), the investigation revealed that zein nanofiber mem-
branes effectively preserved the activity of polyphenols and dis-
played favorable biocompatibility, as well as induced a higher 
degree of stress and apoptosis in HT-29 cells, a human colorec-
tal adenocarcinoma cell line with epithelial morphology. 
Consequently, electrospinning has been validated as a highly 
effective method for fabricating sub-micron or nano-scale poly-
mer fibers, which can be tailored to serve as safe and nontoxic 
drug delivery systems (DDSs). Moreover, Surendhiran, Cui, and 
Lin (2019) suggested using various biodegradable polymer-based 
nanofibers for food preservation purposes. In their study, they 
fabricated sodium alginate and poly(ethylene oxide) (PEO) 
blended nanofibers encapsulated with phlorotannin (50:50:10, 
v/v/v) via electrospinning process, which exhibited 
temperature-dependent antimicrobial activity. The preservation 
capacity of active nanofibers was assessed against Salmonella 
enteritidis on chicken at 4 and 25 °C, with cell count drastically 
decreasing from 6.20 to 3.28 Log CFU/g at 4 °C and from 8.80 
to 2.53 Log CFU/g at 25 °C. Due to the presence of 8 intercon-
nected rings in marine algal polyphenols, the phlorotannin 
encapsulated nanofibers showed higher overall acceptability 
scores in sensory assessment, with food preservability almost 
equal to sodium nitrite, a widely used synthetic preservative in 
meat industries (Sathya et  al. 2017). Similarly, a multifunctional 
wound dressing using gelatin/chitosan hybrid fibers embedded 
with a phlorotannin-enriched extract derived from the seaweed 
Undaria pinnatifida was prepared (Ferreira et  al. 2021). 
Electrospun meshes were created by incorporating 1 or 2 
weight (wt)% of the extract, resulting in enhanced structural 
stability over time, as indicated by reduced in vitro degradation 
rates under enzymatic conditions. Initial antimicrobial assess-
ments demonstrated the effectiveness of mesh against 
Pseudomonas aeruginosa and Staphylococcus aureus, confirming 
its antimicrobial activity. Regarding biological characterization, 
none of the tested conditions showed cytotoxic effects on 
hDNF cells, allowing for the adhesion and proliferation of the 
cells over a span of 14 days, with the exception of the 2 wt% 
condition after 7 days exhibited some cytotoxicity effects.

Liposomes

Nano-liposomes, also known as submicron bilayer lipid ves-
icles, represent a novel technology for the efficient 

encapsulation and targeted delivery of bioactive agents, 
which enable the incorporation of a wide range of bioactive 
materials, including pharmaceuticals, cosmetics, and nutra-
ceuticals (Mozafari 2010). This technology has opened up 
diverse opportunities for the development of advanced deliv-
ery systems in various fields, allowing for improved efficacy 
and controlled release of bioactive compounds. Savaghebi, 
Ghaderi-Ghahfarokhi, and Barzegar (2021) explored the 
potential of nano-liposomes encapsulated with brown algae 
extract (Sargassum boveanum) for their antioxidant and anti-
microbial properties. Their research indicated that the ethyl 
acetate fraction demonstrated significant activity against 
gram-positive bacteria (Bacillus cereus), with minimum 
inhibitory concentration (MIC) values of 0.937 and 0.469 mg/
mL before and after encapsulation in nano-liposomes. This 
finding was supported by the speculation made by Hierholtzer 
et  al. (2013) that phlorotannins, present in the brown algae 
extract, exert antimicrobial effects by disrupting cell mem-
branes and eliciting substantial extra- and intra-cellular 
responses. On the contrary, certain bacterial strains have 
developed resistance to a vast array of antibiotics, particu-
larly among gram-negative species. This resistance can be 
attributed to the presence of an additional outer membrane 
within their cell wall structure, serving as a protective bar-
rier that restricts the entry of numerous antibiotics into the 
bacterial cell (Breijyeh, Jubeh, and Karaman 2020). 
Phlorotannin extracts and their encapsulated forms exhibited 
MIC values of 1.875 and 0.937 mg/mL, respectively, against 
P. aeruginosa and Escherichia coli (Savaghebi, 
Ghaderi-Ghahfarokhi, and Barzegar 2021). Contrary to 
expectations, a previous study conducted by Savaghebi, 
Barzegar, and Mozafari (2020) on the same seaweed species 
revealed that nano-liposomes exhibited a lower antioxidant 
capacity compared to the free algal extract. The investigation 
specifically highlighted a reduction in both the radical scav-
enging ability and the reducing antioxidant power of the 
nano-liposomes when compared to the unencapsulated algal 
extract. Notably, the nano-liposomes displayed a notably 
diminished scavenging capacity on ABTS radicals, with half 
maximal effective concentration (EC50) values measured at 
453.9 and 219.5 ppm, respectively. Zou et  al. (2014) pro-
posed that the observed phenomenon can be plausibly 
attributed to the structural interactions between the lipo-
some matrix and the loaded compounds. In addition to the 
localization of phenolic compounds within the core of 
nano-liposomes, the interactions between the compounds 
and the lipid bilayers also play a significant role in enhanc-
ing their retention time and impeding the kinetics of their 
release (Karonen 2022). The balance between the biological 
activities of the encapsulated compounds and their release 
patterns within nano-liposomes introduces new challenges 
for their diverse applications. Undoubtedly, the attainment of 
an optimal release profile, which guarantees the desired bio-
logical effects while preserving stability and controlled 
release, constitutes a complex undertaking. Addressing these 
challenges holds the key to unlocking the successful utiliza-
tion of nano-liposomes as efficacious delivery systems within 
a wide array of industries.
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Composite scaffolds

The incorporation of specific compounds within a range of 
composite scaffolds, achieved through various mechanisms 
such as encapsulation, absorption, or entrapment, holds prom-
ise for advantageous utilization in osteoinductive applications 
within the realm of bone tissue engineering (Romagnoli, 
D’Asta, and Brandi 2013). Im et  al. (2017) have introduced a 
biocomposite scaffold that incorporates collagen extracted 
from fish skin along with phlorotannin sourced from brown 
algae E. cava. Significantly, this composite scaffold exhibited a 
substantial increase in both proliferation and mineralization 
(p < .05) of osteoblast-like cells, in stark contrast to the control 
group lacking phlorotannins, as well as the group that was 
only exposed to phlorotannins. This notable enhancement can 
likely be attributed to the delayed and sustained release of 
phlorotannin facilitated by the coated components. Supported 
by Yeo, Jung, and Kim (2012), the utilization of phlorotannins 
as supplemental bioactive agents in conjunction with scaffolds 
has been shown to be advantageous for promoting bone tissue 
growth, attributed to the ability of phlorotannin to create pro-
nounced hydrophilic sites on the composite materials, leading 
to enhanced wettability.

Future perspectives and possibilities

Apart from using different materials to embed phlorotannins, 
various chemical/physical modifications to the vehicle can 
achieve more targeted delivery and controlled release (Priya, 
Desai, and Singhvi 2023). Some of the most widely employed 
approaches can be summarized as follows: PEGylation (attach-
ment or amalgamation of polyethylene glycol), surface modi-
fications (grafting ligands, peptides and/or proteins), as well 
as the addition of co-solvents or co-surfactants. Moreover, 
significant attention has been devoted to the manipulation of 
microenvironments through the incorporation of magnetic 
fields (Hari et  al. 2023; Sanadgol and Wackerlig 2020) and/or 
ultrasonic fields (Wei, Cornel, and Du 2021). These modifica-
tions alter the drug delivery environment and enhance the 
permeability of nutrients, ultimately leading to the desired 
outcomes of targeted or controlled release effects. However, it 
should be noted that although these strategies have been 
applied to several terrestrial polyphenols, no research has 
been conducted specifically on phlorotannins.

PEGylation

The term “PEGylation” was coined to describe the covalent 
and non-covalent processes that attach or merge PEG poly-
mer chains with molecules and macrostructures (Gupta 
et  al. 2019). PEGylation offers various benefits over 
non-PEGylated products in enhancing the drug circulation 
time and improving drug stability by reducing their immu-
nogenicity and antigenicity (Yadav and Dewangan 2021). It 
has also been confirmed that PEGylation enhances the per-
meability and retention effects due to its unrecognizable 
property by the reticuloendothelial system, providing a 
unique opportunity to target tumors following systemic 

administration (Kalyane et  al. 2019). Regarding specific 
applications of polyphenols, multifunctional PEG-mesoporous 
silica nanoparticles (MSNPs) loaded with curcumin (CUR), 
a polyphenol with a long history of use in Ayurveda medi-
cines to treat various diseases, exhibited strong fluorescence 
in HepG2 and HeLa cells compared to non-PEGylated 
MSPNs, reflecting a high accumulation of nanocarriers 
within cancerous cells and an enhancement in the bioavail-
ability of CUR (Elbialy et  al. 2020). Likewise, liposomal for-
mulations of luteolin, a naturally derived polyphenol, with 
or without PEG modification, were studied (Sinha and PK 
2019). PEGylated liposomes carrying luteolin were the most 
effective in inducing caspase-3 and caspase-14 protein 
expressions, two proteins that modulate the cell death pro-
gram of human keratinocytes. Similar results were observed 
with liposome containing polyphenols from the red seaweed 
Kappaphycus alvarezii, which not only increased cellular 
uptake efficiency but also offered site-specific targeted deliv-
ery to overexpressed folate receptors in human adenoma 
MCF-7 breast cancer cells (Baskararaj et  al. 2020), suggesting 
a promising future for phlorotannins.

Recent scrutiny has raised concerns about PEGylation, 
making it a topic of controversy. While PEGylation reduces 
interactions with the mononuclear phagocyte system, it is 
also expected to impede interactions with tumor cells (e.g., 
via a receptor), potentially affecting uptake by the target tis-
sue (Verhoef and Anchordoquy 2013). One critical step in 
DDSs is the internalization of nanoparticles by cells through 
endocytosis. Interestingly, evidence suggests that certain 
PEGylated nanocarriers may not undergo effective 
receptor-mediated endocytosis in cancer cells within carci-
noma tissue (Magarkar et  al. 2012). Through free energy 
analysis, Shen et  al. (2018) discovered that the aggregation 
of PEG polymers during the membrane wrapping process of 
PEGylated carriers introduces a significant energy penalty of 
approximately 800kBT. The presence of such a substantial 
energy barrier and the formation of a ligand-free region on 
the surface of PEGylated nanoparticles can hinder the 
membrane-wrapping process and reduce the likelihood of 
internalization by tumor cells. This physically-based theory 
of free energy transformation was also emphasized by Y. Li, 
Kröger, and Liu (2014), who suggested that the grafting of 
PEG polymers before and after the endocytosis process had 
an effect comparable to or even greater than the bending 
energy of the membrane during endocytosis. Neglecting an 
investigation into this free energy gap, the delivery of 
PEGylated nanoparticles to diseased cells cannot be pre-
dicted. Apart from that, it has been observed that linear 
PEGylated nanocarriers can stimulate the production of 
anti-PEG IgM, resulting in significant alterations in the 
pharmacokinetics and biological distribution after several 
repeated injections, a phenomenon known as “accelerated 
blood clearance” (Kierstead et  al. 2015).

Peptide-functionalization

Peptide-functionalization, as the name suggests, involves 
attaching specific peptides to the surface of co-polymer 
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nanoparticles or micelles. This approach is commonly used 
in DDSs, particularly in gene therapy, to enhance various 
desirable characteristics such as superior colloidal stability, 
enhanced cellular uptake efficiency, effective escape from 
endo/lysosomes, efficient nuclear import, and successful 
unpacking of DNA (Muhammad et  al. 2019). By designing 
peptides that can recognize specific receptors or biomarkers 
on target cells or tissues, these modified copolymer carriers 
can improve drug delivery efficiency and minimize off-target 
effects. Sun et  al. (2017) demonstrated the effectiveness of 
this strategy by coating MSPNs encapsulating CUR and 
doxorubicin (DOX) with an azido-peptide sequence com-
posed of glycine (G), phenylalanine (F), leucine (L), histi-
dine (H-H-H), arginine (R-R), aspartic acid (D), and serine 
(S). These MSPNs exhibited high loading efficiency and con-
tent of CUR and DOX, and they were selectively taken up 
by DOX-resistant MCF-7/ADR cells due to specific recogni-
tion triggered by the attached tetrapeptide R-G-D-S, allow-
ing them to enter lysosomes. Additionally, another part of 
this sequence, H-H-H-R, was found to induce effective lyso-
somal membrane permeability, which is beneficial for drug 
escape from lysosomes, CUR-mediated inhibition of 
P-glycoprotein 1 (P-gp), and nuclear import of DOX into 
cells. P-gp is a type of membrane transporter primarily 
responsible for pumping foreign substances out of cells, 
which can limit the entry of drugs, reduce their bioavailabil-
ity, and contribute to multidrug resistance. Another example 
is the TAT peptide, a short sequence derived from HIV, 
which can facilitate the delivery of various cargoes, including 
drugs, proteins, and genetic material, into cells. Sancini et  al. 
(2013) reported that CUR-decorated nanoliposomes gained 
the ability to cross the blood-brain barrier (BBB), a selective 
barrier that restricts the entry of various molecules (e.g., 
drugs, toxins, and pathogens), after functionalization with a 
modified cell-penetrating TAT peptide. They observed a 
three-fold increase in the uptake of intact nanoliposomes by 
human brain capillary endothelial cells, with no adverse 
effects on cell viability.

Magnetic drug targeting

Superparamagnetic iron oxide nanoparticles (SPIONs), like 
maghemite (γ-Fe2O3), magnetite (Fe3O4) or hematite 
(α-Fe2O3) particles, offer the potential to encapsulate drugs 
or therapeutic agents for controlled release, hyperthermia 
therapy and BBB crossing, and targeted delivery when sub-
jected to an external magnetic field (Mittal, Roy, and Gandhi 
2022). Amanzadeh et  al. (2019) demonstrated the benefits of 
quercetin-SPIONs, which significantly enhanced learning 
and memory in rats compared to free quercetin. This 
enhancement is likely due to the prolonged circulation of 
quercetin in the bloodstream and its increased concentration 
in the brain, facilitated by the incorporation of SPIONs. In 
addition to these improvements, Ramya et  al. (2021) pro-
posed a pH-responsive release behavior with silibinin-loaded 
Fe2O3 nanoparticles. They observed that less than 25 ± 2.2% 
of silibinin was released within 48 h at pH 7.4 in 
phosphate-buffered saline. However, more than 54 ± 1.6% of 

entrapped silibinin was released after a 48-h incubation at 
pH 4.5. This behavior is attributed to the deformation of the 
linkage between silibinin and Fe2O3 nanoparticles induced 
by the acidic pH, facilitating their efficient delivery to the 
tumor environment (pH 4.0–5.0). Furthermore, C. Li et  al. 
(2020) optimized and prepared tea polyphenol-alginate/chi-
tosan magnetic microcapsules by incorporating nano-Fe3O4 
particles and magnetofluid. These microcapsules demon-
strated a good slow-release effect lasting up to 100 h and 
exhibited superparamagnetism with extremely low magnetic 
retention and coercivity, which means that there is no rema-
nent magnetization when an external magnetic field is 
removed, making them excellent carriers for delivering tea 
polyphenols in tumor endovascular embolization therapy.

In the field of seaweed bioactive compounds, magnetic 
MSPNs coated with a Fe3O4 network have been synthesized 
for the delivery of fucoxanthin, a carotenoid pigment derived 
from brown seaweeds (Feng et  al. 2022), and they can be 
effectively guided to the tumor site with no adverse effects. 
Indeed, while specific research on phlorotannins may be 
limited, the applications and strategies discussed in the con-
text of other compounds provide a valuable foundation for 
exploring the potential delivery of phlorotannins through 
various nanocarriers and modifications.

Conclusion

Seaweeds exhibit remarkable versatility, holding significant 
importance across various sectors of the global market. They 
function as a valuable resource for environmental conserva-
tion, economic growth, and numerous industries. Capitalizing 
on their rich array of macro- and micro-nutrients, seaweeds 
present diverse and sustainable opportunities to enhance soil 
fertility, serve as constituents in animal feed, act as a renew-
able source of bioenergy, and contribute to the improvement 
of water quality. Moreover, beyond their pivotal role in envi-
ronmental ecosystems, seaweeds merge as highly nutritious 
components, offering a broad spectrum of health benefits 
attributable to their distinctive composition of metabolites. 
This review has highlighted the generalized chemical prop-
erties of phlorotannins, a group of polyphenols derived from 
brown seaweeds. It covers their classification, biosynthesis 
pathway, and quantification among different seaweed species. 
Phlorotannins are promising candidates in the biomedical 
and nutraceutical sectors that provide safe and effective 
alternatives to synthetic counterparts, due to their remark-
able biological activities, such as antioxidant, 
anti-inflammatory, anti-diabetic, anti-allergy/histamine, and 
anti-microbial/viral, which can be the basic mechanisms of 
further therapeutic applications. Despite their importance, 
few studies have focused on the absorption of phlorotannins. 
Current evidence suggests they have a bioavailability similar 
to terrestrial polyphenols, which hinders a comprehensive 
understanding of their interactions and underlying mecha-
nisms within the human gastrointestinal tract and presenting 
a significant challenge for their prospective applications. To 
address these challenges, several innovative strategies, partic-
ularly encapsulation techniques, have been proposed to 
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protect phlorotannins against gastrointestinal tract biotrans-
formation and degradation. Additionally, phlorotannins can 
be released in a controlled and targeted manner through 
additional modifications, with the goal of maximizing their 
therapeutic potential. However, further in-depth research 
and exploration of these strategies are crucial to unlock the 
full potential of phlorotannins in various applications, 
including pharmaceuticals, functional foods, and 
nutraceuticals.
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