UNIVERSITYW

This is a repository copy of Integration of a graph-based model indexer in commercial
modelling tools.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211854/

Version: Accepted Version

Proceedings Paper:

Garcia-Dominguez, Antonio orcid.org/0000-0002-4744-9150, Barmpis, Konstantinos,
Kolovos, Dimitrios S. orcid.org/0000-0002-1724-6563 et al. (3 more authors) (2016)
Integration of a graph-based model indexer in commercial modelling tools. In: Proceedings
- 19th ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, MODELS 2016. 19th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2016, 02-07 Oct 2016 ACM , FRA, pp.
340-350.

https://doi.org/10.1145/2976767.2976809

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Integration of a Graph-Based Model Indexer in Commercial
Modelling Tools

_Antonio
Garcia-Dominguez
University of York
Deramore Lane, York
YO10 5GH, United Kingdom
antonio.garcia-

dominguez@york.ac.uk

Marcos Aurelio Almeida
da Silva
Softeam Cadextan
21 Avenue Victor Hugo, Paris
75016 France
marcos.almeida
@softeam.fr

ABSTRACT

Softeam has over 20 years of experience providing UML-
based modelling solutions, such as its Modelio modelling
tool, and its Constellation enterprise model management
and collaboration environment. Due to the increasing num-
ber and size of the models used by Softeam’s clients, Soft-
eam joined the MONDO FP7 EU research project, which
worked on solutions for these scalability challenges and pro-
duced the Hawk model indexer among other results. This
paper presents the technical details and several case stud-
ies on the integration of Hawk into Softeam’s toolset. The
first case study measured the performance of Hawk’s Mode-
lio support using varying amounts of memory for the Neo4;j
backend. In another case study, Hawk was integrated into
Constellation to provide scalable global querying of model
repositories. Finally, the combination of Hawk and the Ep-
silon Generation Language was compared against Modelio
for document generation: for the largest model, Hawk was
two orders of magnitude faster.

CCS Concepts

eSoftware and its engineering — Unified Modeling
Language (UML); Software performance; Interoperabil-
ity; eInformation systems — Specialized information re-
trieval;

Keywords

scalability; model querying; model-driven engineering; model
fragmentation

1. INTRODUCTION

Softeam is a French consulting and technology service
company with over 20 years of experience in building mod-
elling environments, over 800 employees and operations in
London, Singapore and Paris. Two of Softeam’s products
are the open source Modelio modelling environment, and

Konstantinos Barmpis
University of York
Deramore Lane, York
YO10 5GH, United Kingdom
konstantinos.barmpis

@york.ac.uk

Antonin Abherve
Softeam Cadextan
21 Avenue Victor Hugo, Paris
75016 France
antonin.abherve
@softeam.fr

Dimitrios S Kolovos
University of York
Deramore Lane, York
YO10 5GH, United Kingdom
dimitris.kolovos
@york.ac.uk

Alessandra Bagnato
Softeam Cadextan
21 Avenue Victor Hugo, Paris
75016 France
alessandra.bagnato

@softeam.fr

the recently developed Constellation enterprise model man-
agement and collaboration solution. Softeam noticed that
their clients were producing increasingly larger models and
collaborating over larger teams, and decided to participate
in the MONDO EU FP7 project on scalable model-driven
engineering to improve their products in this regard.

The MONDO EU FP7 project was motivated by the iden-
tification of scalability as a major issue that prevented wider
use of MDE [10, 13] and its well-documented benefits of im-
proved productivity and reuse [12]. The MONDO project
consisted of multiple work packages dedicated to tackle scal-
ability on its various perspectives: notations, queries and
transformations, collaborative modelling, and model persis-
tence. Within the scalable model persistence work package,
the Hawk model indexer was developed by the University
of York [2]. Hawk can monitor repositories containing file-
based models and mirror their contents into a graph that
can be leveraged to perform efficient querying.

Within the Softeam use case in MONDO, it was decided
to integrate Hawk into the Softeam toolset and evaluate its
advantages over its existing approaches. This paper dis-
cusses the challenges involved in this integration, how they
were addressed and the results that were produced. It also
introduces several new features in Hawk, some of which were
motivated by these integration efforts.

The rest of this paper is structured as follows: Section 2
provides the necessary background on Modelio, Constella-
tion and Hawk. Section 3 discusses the various steps in-
volved in the integration process. Section 4 describes three
case studies in which the costs and benefits of using Hawk
were evaluated, and Hawk was integrated into the Constel-
lation administration server and web-based user interface.
Section 5 mentions related works, and Section 6 presents
conclusions and future lines of work.

2. BACKGROUND

This section introduces the main concepts discussed through-

out the rest of the work. It presents the Modelio toolset

developed by Softeam and the Hawk model indexer, and
discusses certain technical details that are important for the
presented integration case studies.

2.1 Modelio

Modelio is a commercial open-source modelling environ-
ment developed by Softeam Cadextan'. It allows modellers
to create and manage models in various notations, including
UML, BPMN, SysML, TOGAF and SoaML, among oth-
ers. It is licensed under the GNU General Public License
version 3 and is written in Java, being implemented as an
Eclipse Rich-Client Platform application. Modelio includes
its own scripting environment for various modeling tasks
(e.g. code generation), based on the Jython implementation
of the Python programming language.

Unlike many tools in the MDE research community, Mod-
elio is not based on the Eclipse Modelling Framework (EMF):
users can extend it with new modules that provide additional
UML profiles. Models are handled through Modelio’s be-
spoke modelling infrastructure. XMI is only used for model
interchange within certain metamodels: for instance, UML
models can be imported from/exported to EMF/MOF XMI.

Modelio users work within one project at a time. In the
local system, a Modelio project consists of a folder with a
certain structure. The model elements themselves are con-
tained within .exml and .ramc files, but projects also include
various configuration files, small binary files with manage-
ment metadata and an ad hoc binary index to speed up
certain queries.

Conceptually, a Modelio project can be thought of as a
single large model. However, projects can get quite large
and it may be needed to reuse certain parts across projects
(e.g. reverse engineered models from Java libraries). To
cope with this, projects are divided into model fragments
according to a predefined strategy. A model fragment is a
collection of model elements with a single root object and
a subtree of objects contained within. .exml files contain
model fragments, which may be shared across projects, and
.ramc files are ZIP archives that contain .exml files with
some additional metadata.

An example of a simple .exml file containing the model
fragment for a UML Component class is shown in Listing 1.
This class is within the Architecture package and inherits
from the Element class. The contents of this file are orga-
nized as follows:

e Line 1 indicates that this file conforms to version 3
of the EXML format, and lines 2-5 list all the frag-
ments that are required to resolve this fragment by
UID (Unique IDentifier).

e The “OBJECT” element in line 6 is the root object
within this fragment: the Component class itself. The
“ID” element in line 7 indicates that the metaclass or
MClass (equivalent to the EMF EClass) of the object
is Class (a UML class), and that the object has the
UID (Unique IDentifier) “2d7b...”. The “PID” (parent
ID) element in line 8 indicates that Component is con-
tained within the Architecture package with the UID
“ca87...7.

Modelio UIDs are 16 bytes long and are assigned ran-
domly to new objects: they are guaranteed to be unique

"https://www.modelio.org

© 00O ULk W+

Listing 1: Example Modelio .exml file with the
model fragment for the Component UML class

<EXT object="Component” version="3">
<DEPS>
<ID name="Component” mc="Class” uid="2d7b...” />
<EXTID name="Element” mc="Class” uid="4ed7...” />
</DEPS>
<OBJECT>
<ID name="Component” mc="Class” uid="2d7b...” />
<PID name="Architecture” mc="Package” uid="ea87...” />
<ATTRIBUTES>
<ATT name="Name”>Component</ATT>...
</ATTRIBUTES>
<DEPENDENCIES>
<COMP relation="0OwnedOperation”>
<OBJECT>
<ID name="execute” mc="Operation” uid="795e...”/>
<PID name="Component” mc="Class” uid="2d7b...”/>
<ATTRIBUTES>
<ATT name="Name”>execute</ATT>...
</ATTRIBUTES>
<DEPENDENCIES>...</DEPENDENCIES >
</OBJECT>

</COMP>
<COMP relation="Parent”>
<OBJECT>
<ID name="...” mc="Generalization” uid="58€6...” />

<PID name="Component” mc="Class” uid="2d7b...”/>
<ATTRIBUTES>..</ATTRIBUTES>
<DEPENDENCIES>
<LINK relation="SuperType”>
<ID name="Element” mc="Class” uid="4ed7...”/>
</LINK>
</DEPENDENCIES>
</OBJECT>
</COMP>
</DEPENDENCIES>
</OBJECT>
</EXT>

within a Modelio project. Across projects, Modelio as-
sumes that two “OBJECT”s with the same UID are
conceptually the same model element (e.g. during
merging). This is very common when reusing model li-
braries (.ramc files) that provide read-only model frag-
ments that were reverse-engineered from popular Java
libraries, for instance.

e The “ATTRIBUTES” element in line 9 provides a list
of name-value pairs for the MAttributes of Component
(similar to EMF EAttributes).

e The “DEPENDENCIES” element in line 12 provides
another list of name-value pairs for the MDependencys
of Component (again, similar to EMF EReferences). A
“COMP?” child element (such as those in lines 13 or 23)
represents a composition (equivalent to a containment
EReference). A “LINK” child element represents a sim-
ple association and does not imply containment.

Interestingly, even if “COMP” is used, the nested ob-
jects might be contained in a different object if they
have an explicit “PID” pointing to something else. In
this case the two nested objects have explicit PIDs, but
they are still pointing to Component. This is impor-
tant in certain corner cases (e.g. UML associations and
association ends, in which containers are assigned dif-
ferently based on the navigability of the association).
This is different from EMF XMI, in which element
nesting is always equivalent to containment.

An example of “LINK” is shown in line 30. In this
case, it points to the UID of the Element superclass
of Component, which is defined in a different model
fragment. Again, this purely UID-based reference is
different from EMF, whose references combine a loca-
tion and a “fragment” within the location. In fact,
“COMP” elements can also use ID-based references
through “COMPID” elements (not shown here).

In summary, Modelio has many similarities with EMF, but
it has three major differences: container relationships are
preferred to containment relationships, associations between
model elements are entirely based on unique identifiers, and
the same model element may be contained in multiple model
fragments at once. These two differences will be important
to the integration efforts in Section 3.

2.2 Constellation

Constellation? is a client/server-based solution developed
by Softeam which allows users of Modelio to collaborate with
each other. It can host model fragments, allowing their col-
laborative use across teams, and can organise these frag-
ments into catalogues and monitor their evolution.

A deployment of Constellation is organised as shown on
Figure 1 and involves two types of server nodes: the Admin-
istration Server and one or more agents. The administration
server coordinates all the agents and provides a centralised
view of all their information. The agents host the model
fragments themselves and may be of various types depending
on the underlying access mechanism. At the time of writ-
ing, two agent types exist: SVN model agents that access
a standard Subversion version control system and HTTP

*https://www.modeliosoft.com/en/products/
modelio-constellation.html

Client node'g

‘ Modelio }(—

Constellation
Agent Manager

Agent node!

Constellation
SVN Agent

Constellation
HTTP Agent

HTTP Server

SVN Repository

Figure 1: Typical deployment of Constellation for
collaborative modelling

model agents that access a HI'TP server hosted elsewhere
by the user.

Constellation provides its own web interface for browsing
through the projects and teams and an API that Modelio
can use. However, before the integration described in this
paper it did not have any model query capabilities of its own.
Users wishing to search for collections of model elements of
interest would have to load the fragments in Constellation
into their Modelio instance and use the local search or script-
ing capabilities.

2.3 Hawk

Hawk [2] is a heterogeneous model indexing framework
that keeps track of collections of file-based models and main-
tains a NoSQL model-element-level graph database with
their latest versions, in order to provide efficient and scalable
model querying. Using a database makes it possible to load
only the part of the model that is needed at a time, and the
join-free adjacency provided by modern graph databases can
speed up many common queries. Hawk consists of multiple
types of components:

e Backend components integrate Hawk with a specific
graph database technology: implementations exist for
OrientDB? and Neo4j.

e Repository connector components allow Hawk to read
files from local folders, SVN/Git repositories, Eclipse
workspaces, among others.

3http://orientdb.com
“http://neodj.com

e The files are parsed by model drivers that understand
specified modelling technologies and metamodels (e.g.
generic EMF models in XMI format or IFC models in
the STEP format).

e The updater takes the detected changes in the model
files and turns them into graphs.

e The query language component provides a convenient
way to perform fast and efficient queries that make
the most out of the underlying graph database: the
current implementation is based on the Epsilon Object
Language [9].

e The model view components expose the Hawk index
itself as a model. Currently, it is possible to expose an
entire index or parts of it as Epsilon or EMF models.

Figure 2 shows the graph Hawk would build from a simple
Library model based on EMF:

e The original Library metamodel would be turned into
one metamodel node for the original EPackage and two
type nodes for the Author and Book EClasses.

e The model would be turned into a file node that would
contain two element nodes: one for the Book “bl” and
one for the Author “al”. The original association from
the Book to the Author would be mapped to an edge,
and additional edges would represent their types.

e Two indices would be built: a metamodel index from
namespace URIs to metamodel nodes, and a file index
from the full location of the file (repository and path)
to the file node.

Later versions of Hawk have added support for indexed
and derived attributes, further speeding up queries [4]. The
EOL query engine in Hawk is aware of when an attribute
has been indexed and will replace filtered iteration with di-
rect lookups when using the OCL-inspired select operation
and other similar ones. Derived attributes allow Hawk to
precompute partial results and reuse them in later queries,
possibly as direct lookups as well.

Hawk can be used in many different ways: as a Java li-
brary, as an Eclipse plugin, as an Epsilon or EMF model,
or as a network service through its Thrift API. More details
will be provided about these access methods throughout the
rest of this work as necessary.

3. INTEGRATION

As mentioned during the introduction, Softeam intended
to evaluate Hawk in two ways: to extend their products with
efficient global search capabilities through a concise query
language, and to speed up code generation through the use
of graph databases. This required completing several tasks:

e Creating a standalone representation of the Modelio
metamodels.

e Developing a standalone parser for .exml and .ramc
files.

e Integrating the metamodels and the parser into a new
Modelio model driver for Hawk.

e Generating an EMF-compatible metamodel from the
Modelio metamodels.

The rest of this section will explain how these tasks were
completed and present several new features of Hawk that
were necessary for the case study.

3.1 ModelioMetamodelLib

The first hurdle to solve when integrating Modelio and
Hawk was a legal one: since most of Modelio is under the
GPLv3 strong copyleft license, integrating any of these com-
ponents directly would require releasing Hawk under the
GPLv3 and not under the EPL. This would have hindered
future integration efforts with other EPL-compatible tools,
which was undesirable.

Instead, the developers from Softeam and Hawk agreed
on an alternative solution that would not require licensing
changes: since the Modelio metamodels are developed as
Modelio models themselves, Softeam created a new model-
to-text transformation that produced ModelioMetamodel-
Lib® (MML). MML is a small Java library (around 4KLOC)
released under an EPL-compatible license (the Apache Soft-
ware License) that exposes the Modelio metamodel as a set
of Java classes. The metamodel is accessible through in-
stances of the MMetamodel class through their getMPack-
ages, getClassByName, and getDataTypeByName methods,
exposing all the MPackages, MClasses, MAttributes, MDe-
pendencys and MDataTypes.

3.2 EXML parser

While recent versions of Modelio had cleanly separated the
EXML parser as a reusable component, its GPLv3 license
presented the same legal issues as above. In this case, the
Hawk developers created a clean-room description in natural
language of the Modelio EXML file format and validated it
with Softeam. Based on this clean-room description, the
Hawk developers created a Java StAX parser for EXML.

Java StAX parsers operate on a “pull streaming” basis:
they only keep the last parsing event in memory, and pro-
duce further events when instructed by the user. This makes
it possible to process the file without having it entirely in
memory at once. In order to keep the parsing algorithm
as robust as possible (since the Modelio EXML format may
evolve slightly over time), it focuses on the specific elements
mentioned in Section 2.1 and ignores the rest.

The algorithm is shown in pseudocode in Listing 2. It
is a recursive algorithm that takes advantage of the simplic-
ity that StAX parsers provide in comparison to SAX parsers
(“push streaming” parsers that send all events to a callback).
The parser works with only 2 Java classes: ExmlReferences
that consist of a name, MClass and UID triplet, and Exm-
[Objects that extend ExmlReferences with the ability to con-
tain attributes, links and compositions.

The parser also includes a component for iterating through
all the model fragments in a .ramc archive, decompressing
in memory and ensuring that only one model fragment is in
memory at each time. The last detail is especially impor-
tant, as .ramc files can grow to large sizes: a 30MB .ramc file
might expand to 200MB+ in memory if all model fragments
are loaded at once.

3.3 Modelio model driver

®https://github.com/aabherve/modelio-metamodel-lib

Hawk Index

library.ecore
Key Value Metamodel
library (nsUri="http://library") | s
3 http://library { 3 name = "library"
2 AN nsUri = "http://library"
5
metamodel
title : String 3 metamodel
1S
2 [oee | [e |
/ = |name = "Book"l |name = "Author"l
1
1
/ ofType of Type
;' | Key Value
H i I/"\\ Element Element
[; . i i <
linstance of ';lnstance of http://host/path + library1.xmi '\\ &/' title = "b1" ‘books name = "al"
T - - r P "~
\ \ library1.xmi 3 N
\ I k] N
\ N c NG
\ =
\ [} ~ ¥
\ T Al File
name = "libraryl.xmi
lastRevision = 145
type = "EMF"

Figure 2: Example of a Hawk model index

To make Hawk understand Modelio .exml and .ramc files,
ModelioMetamodelLib and the EXML parser were integrated
into a new Modelio model driver component for Hawk. The
model driver component includes three components: a meta-
model resource factory that allows Hawk to generate meta-
model and type nodes for the MPackages in ModelioMeta-
modelLib, a model resource factory that produces Hawk ob-
jects from the ExmlObjects, and a graph change listener that
reacts to key events happening inside a Hawk index.

Hawk needs to deal with the special features of Modelio
mentioned in Section 2.1:

e UID-based references: Modelio metamodel elements
and model elements indicate to the Hawk updater that
their URI fragments are globally unique. In this case,
Hawk will associate the URI fragment to the graph
node in an object-by-1D index, and will use it to resolve
references flagged to be UID-based.

e A model element can be contained in multiple model
fragments: the Modelio model resource indicates that
it may contain model elements that are shared with
other resources. Hawk will then reuse the same object-
by-ID index to check if the model element is already
indexed from another resource, and if so it will reuse
the node and simply record the fact that it is contained
in one more file.

e Explicit container references that override containment
references: the Modelio model elements report explicit
container (from child to parent) references as a new
hawkParent reference in all Modelio types, and do not
report any explicit containment (from parent to child)
references. This is enough for querying the graph with
EOL and for using the index as an Epsilon model:
when using eContents from Epsilon, the children el-
ements will be computed on the fly.

However, when exposing a remote Hawk index as an

EMF model over the network, explicit containment ref-
erences need to be sent in advance to the client. These
containment references must also have been computed
in advance as well. In this case, an additional com-
ponent in the Modelio model driver can be optionally
enabled: a graph change listener that will extend all
Modelio types with a hawkChildren derived reference.
These derived references are an extension of previous
work on derived attributes [4].

The derived reference is defined through an EOL query
(“return self.revRefNav_hawkChildren;”). This simple
query retrieves the source nodes of all the incoming
hawkChildren references: the “revRefNav_” tells Hawk
to perform reverse reference navigation.

3.4 Ecore Metamodel Generation

When exposing a local or remote Hawk index as a stan-
dard EMF model, it is necessary to associate an EClass to
every FEObject created from each model element node. This
EClass must be an accurate mapping of the original MClass
to avoid losing information when using the Modelio models
from EMF.

These EClasses have been generated through a Java-based
transformation that maps every MPackage to an EPack-
age and so forth. FEClasses are further extended with the
hawkChildren and hawkParent references mentioned in Sec-
tion 3.3, in order to allow EMF to recreate the original con-
tainment tree. The resulting metamodel has 289 EClasses
divided over 53 packages.

With this metamodel, the EMF drivers that expose local
and remote Hawk indexes can access the type node of the
model element node, obtain the metamodel URI and type
name and retrieve the equivalent EClass. An EObject can be
produced from the EClass and filled in with the information
from the model element node.

4. CASE STUDIES

© 00O Uk WN

Listing 2: Pseudocode for the EXML parser

main(file) {
open file with StAX parser
advance to first OBJECT
exmlObj = new ExmlObject(file)
fillObject(exmlObj)
close file

}

fillObject(exmlObj) {
currentLink = null
currentComposition = null
do {
advance to next XML element start
if event is element start {
if element is ID, FOREIGNID or EXTID {
if currentLink is null {
fill in exmlObj with mc, name and UID
} else {
newRef = new ExmlReference(file)
fill in newRef with mc, name and UID attributes
add newRef to currentLink

} else if element is PID {
fill in parent of exmlObj with mc, name and UID
} else if element is COMPID {
newRef = new ExmlReference()
fill in newRef with mc, name and UID attributes
add newRef to composition currentComp
} else if element is ATT {
fill in attribute of exmlObj with name and value
} else if element is LINK {
currentLink = value of "name” attribute
} else if element is COMP {
currentComp = value of "name” attribute
} else if element is OBJECT {
nestedObj = new ExmlObject(file)
fillObject(nestedObj)
add nestedODbj to currentComposition

}
} while (not at end of OBJECT)

}
File type .exml .ramc
Minimum 229B 23kB
Q1 953B 1.88MB
Median 1.51kB 8.45MB
Mean 8.41kB 11.59MB
Q3 3.00kB 22.38MB
Maximum 2.77MB 30.98MB
Count 201526 23
Table 1: Distribution of .exml and .ramc sizes in

Modelio workspace with 15 internal projects

Having completed the initial technical work on integrat-
ing Hawk into Modelio and Constellation, Softeam and the
Hawk developers conducted a series of case studies to eval-
uate the performance of Modelio. These case studies used
two types of models:

e The first type (InternalWorkspace) consisted of 15 in-
ternal projects, which took up 3.9GB in total including
indices: 2.0GB were .exml and .ramc files that con-
tained over 1.23M unique model elements. These were
intended to test if Hawk could scale to realistic collec-
tions of Modelio projects.

File sizes were distributed as shown in Table 1: 75%
of the .exml files were within 3kB, while 75% of the
.ramc files were within 22.38MB.

e The second type (SyntheticWorkspace) was a collec-
tion of synthetic Modelio projects with UML models
of various sizes, which were randomly generated with
a Jython script inside Modelio, written by Softeam.
These were intended to evaluate the effect of model
size on Hawk’s memory usage and execution time.

The script took a multiplier parameter m and pro-
duced a random number of packages (uniformly dis-
tributed between 15m and 20m), with each package
having between 40 and 65 classes, and each class hav-
ing between 5 and 15 attributes and between 15 and
25 operations. Metrics for the generated projects are
shown in Table 2.

The rest of this section shows how these two types of mod-
els were used in three case studies: ensuring Hawk could
process real-world collections of Modelio projects, integrat-
ing Hawk into the Constellation product and using Hawk
to speed up code and document generation from Modelio
models. All these case studies were conducted on a laptop
with an Intel i7-5600 CPU, 16GiB of RAM, and a SanDisk
SATA3 256GB SSD running Ubuntu 15.10 and Linux 4.2.0-
35-generic, using Oracle Java 8u60 and the latest version of
Hawk at the time of writing (commit “e329048” on Github).

4.1 Testing Real-World Scalability

The first question asked by Softeam was if Hawk could
deal with the large models that their clients managed in their
day-to-day work, and which would be the system require-
ments. To answer these questions, the InternalWorkspace
models were indexed by Hawk using the Neo4j backend, giv-
ing the Java VM different amounts of memory through the
-XmsNg -XmxNg options (where N is the number of GB to
allocate). The G1 garbage collector was used by passing the
-XX:+UseG1GC option, as recommended by Neo4j.

Each of the generated Neo4j databases took up 2.5GB of
disk space. The results are shown on Table 3, which includes
the times of the three main stages in which Hawk processes
the Modelio model fragments are : adding each model frag-
ment to the graph, connecting the fragments together and
optionally deriving the hawkChildren containment references
for EMF. An additional row shows the total time required,
which is slightly higher than the sum due to other minor
operations before and after these main stages.

Hawk was also run with only 1GB of RAM, but in that
case containment derivation had to be disabled in order to
complete the process (which took 3146s), by disabling the

Metric m=1 m = 2 m =4 m=8 m=16
Project size 80MB 150MB 279MB 814MB 1.8GB
Size of .exml files 58MB 104MB 179MB 422MB 752MB
Number of .exml files 1255 2087 3430 7849 13790
Number of model elements 47981 88451 154281 367840 657228

Table 2: Metrics for the randomly generated Modelio projects, by multiplier generator parameter m

Main stages 2GB 4GB 8GB

Fragment insertion 2554s 2502s 2371s
Fragment connection 728s 541s 443s
Containment derivation 1851s 1234s 1123s

5171s 4287s 3958s

Sum + minor ops

Table 3: Indexing times by stage and memory
amount for the InternalWorkspace projects (Neo4j
backend)

ModelioGraphChangeListener when creating the Hawk in-
dex through the Ul This is because of the memory overhead
incurred by the Lucene indexes used to store the derived
references. While disabling containment derivation results
in flat Hawk EMF resources, EOL queries and the Epsilon
model driver can still reproduce the containment tree on the
fly. Future versions of the Hawk EMF resource could do this
on-the-fly computation as well to overcome this issue.

These results confirm that Hawk can index the collections
of projects that Softeam’s customers deal with on a day-
to-day basis, being able to index a 2GB folder with 1GB
of RAM without derived references or 2GB with derived
references. Being able to use only 1GB of RAM is important
for cloud deployments (e.g. AWS t2.micro instances), and
additional memory can be used to speed up the process,
with diminishing returns. One of the key factors that enable
this low memory usage is the fact that Hawk only keeps in
memory one model fragment at a time, even when processing
a .ramc archive: as shown in Table 1, 75% of .exm1 files are
within 3kB and the largest file is only 2.77MB.

4.2 Providing Global Remote Queries

After verifying that Hawk could index the usual collec-
tions of projects that Softeam’s clients use, Softeam asked
the Hawk developers to produce a distribution of Hawk that
they could integrate into their Constellation product as a
regular Java library. It should be redistributable under open
source and commercial licenses without additional licensing
costs and be able to index both SVN repositories and indi-
vidual HTTP locations. While Hawk was already usable as a
Java library, the other two requirements required additional
work from the Hawk developers.

At the time, Hawk only supported Neo4j as a backend as it
produced the best results in previous benchmarks [3]. How-
ever, Neodj is only freely redistributable under the GPL,
while Hawk is under the EPL: to avoid a licensing con-
flict, Hawk had to avoid redistributing Neo4j in any form,
so users always had to download Neo4j and compile Hawk
on their own. In order to be able to produce redistributable
releases, an alternative graph database technology with a
more permissive license would have to be integrated. Ori-
entDB was selected as it was based on pure Java and was

available under the EPL-compatible ASL 2.0 license. Initial
implementations used the OrientDB Graph API, but after
some benchmarks the low-level Document API was used in-
stead. Likewise, initial versions used the OrientDB Lucene
integration for internal indexes, but its limited features re-
quired moving to regular SB-Trees, which supported all the
operations required by Hawk.

Another limitation was that Hawk could not directly read
models from HTTP locations. To solve this problem, a new
repository connector component was implemented, which
could monitor a specific HTTP location for changes using
various HTTP headers (e.g. ETag, Last-Modified, or Content-
Length). Due to limitations in the HT'TP protocol it would
not be able to browse HT'TP-hosted directories recursively,
but at the time Softeam deemed this functionality to be
sufficient for their purposes.

Having lifted these two limitations, a binary distribution
of Hawk using the OrientDB backend was given to Soft-
eam for integration. Softeam dedicated less than 3 months
to produce a first version of the integration into the Con-
stellation administration server and its web UI, and then
continued improving it iteratively. A screenshot of the first
release of the web-based model query UI is shown in Fig-
ure 3: users can enter an EOL query and the results are
displayed in paginated form on a table below.

While our prior benchmarks indicate that OrientDB does
result in a performance hit, execution times and memory
usage have shown to be acceptable during internal testing
at Softeam, as a long-running service that processes changes
in model fragments incrementally. Nevertheless, the design
of Hawk could allow Softeam to offer a Neo4j-based version
in the future without any additional development work: the
commercial Neo4j license would be included in the price for
Constellation.

4.3 Speeding Up Document Generation

Having been successful in integrating Hawk into Constel-
lation, Softeam decided to look into other applications for
their Hawk indices. Since Softeam intended to extend Con-
stellation in the future with document/code generation agents,
it was decided to evaluate if the combination of Hawk (ex-
posed as an Epsilon model) and the Epsilon Generation Lan-
guage (EGL [15]) could generate code and documents faster
than the Modelio Jython scripting environment they used
at the moment.

To test this, the SyntheticWorkspace projects were in-
dexed separately by Hawk, using the OrientDB backend
and -Xmx1g to emulate what could happen within an AWS
t2.micro instance running Constellation, and disabling de-
rived containment since the indices would be used only from
Epsilon. The results are shown on Figure 4: both indexing
time and OrientDB index scaled linearly over project size
(measured in model elements). For the largest project with
657 228 model elements, Hawk with the OrientDB backend

Modelio Constellation Server

Logged in as aab (Server administrator) Sign out

&)

Query Engine (Powered by Hawk)

Dashboard

Catalogs retun Cass.all;

Projects

Work models

Libraries

Modules

Domains

Execute Que

i

LDAP Imports
Query Result (Executed in 0.056 secondes)

Administration

Administrators (AP T FIFIL P T F IS TT TS

Agents monitoring o XmiTransient Class DK (8.60.01
1 Equals Class JDK (8.60.01

Maintenance
2 PipelineAssemblerFactory Class 1DK (8.60.01

Querys 3 ResponseBuilder Class DK (8.60.01)

4 TimeZoneNames_en Class IDK (8.60.01

P s SignatureBaseRSA Class DK (8.60.01

Actnty log 6 NetProperties Class JDK (8.60.01)
7 MembershipKey Class JDK (8.60.01
8 SimpleElementVisitor? Class DK (8.60.01
9 SimpleFilevisitor Class IDK (8.60.01
10 Modellnstrument Class DK (8.60.01
11 AttributeChangeNotification Class DK (8.60.01)
12 VerifyAccess Class IDK (8.60.01)
13 JdbcRowSetResourceBundle Class JDK (8.60.01
14 XPATHErorResources_zh_CN Class IDK (8.60.01

15 TRANSACTION UNAVAILABLE Class IDK (8.60.01)

@ Copyrioht EModeliosoft 2014-2015

Constellation v1.1.01

E

Figure 3: Web-based model query Ul in Constellation, powered by Hawk

200

1,200 : : 2,500

—0O— Time o
- | -O- Disk ¢ s

1,000 O- Disk space . 1 2,000 E
Q.
@ g
‘@’ 800 B g
g 1+ 1,500 g
e <
@ 600 - &
3= 4
] [
ﬂg’ + 1,000 =
= 4 B m
00 2
=
1500 -
o

| | | | | |
1 2 3 4 5 6

Project size (model elements) .15

Figure 4: Indexing times and index sizes for the
Synthetic Workspace projects (OrientDB backend)

required 1163s to index and produced a 2.2GB OrientDB
database.

Two versions of a model-to-text transformation that pro-
duced a list of packages, classes, attributes and operations
were developed: the “MT” transformation used the Modelio
Jython scripting environment, and the “HT” transformation
combined Hawk with EGL using the Hawk Epsilon driver.
Within the same execution of Modelio, MT was run 5 times,
and within the same execution of Eclipse, HT was run 5
times. Both tools were given the same amount of memory
(-Xmx1g) to run their transformation. Since the execution
times for Modelio largely changed after the second run (as
it seems to leave the relevant part of the model in memory),
the times for the last 4 runs of MT and HT were displayed
separately and averaged together.

Execution times are shown on Figure 5. In general, it can
be seen that Hawk on its first run is markedly faster than
Modelio on its first run (two orders of magnitude for the
largest project), and that both tools are similar in later runs

—O—MT (run 1) -0O0- MT (runs 2-5)
@ HT (run 1) -+%-- HT (runs 2-5)

102

102

10t

Indexing time (s)
LA

10°

o
—

| | | | |
2 3 4 5 6

Project size (model elements) .15

N

Figure 5: Document generation times by Modelio
(MT) and Hawk+EGL (HT)

10 - I

[MT/(HT run 1 + indexing)]

| | | | | | |
2 3 4 5 6 7

Project size (model elements) .15

o T T
—

Figure 6: Number of first-time runs of MT required
to amortise Hawk (OrientDB backend)

(with a slight edge to Modelio except for the largest project).
For the largest project with 657228 model elements, MT
required 1281s on its first run and 22.89s on average on
later runs, and HT required 22s on its first run and 20.66s
on its later runs. Even including the 1163s of indexing, HT
would have been faster for this size, and this cost only needs
to be paid once per project, instead of once per Modelio
execution. Our prior results suggest that using the Neo4j
backend would have reduced indexing times even further.
Figure 6 plots how many times MT would have to be run
for the first time since Modelio was launched to exceed the
total time required by the very first execution of HT, includ-
ing Hawk indexing time (HIT) and execution (HET). Values
quickly drop below 10 and for the largest model element, it
is below 1: the cost of using Hawk is immediately amortised
on the first run. In any case, the cost itself may not be
that important if the indexing process is left up to a con-
stantly running server (e.g. Constellation): in most cases,
by the time the developer needs to run their model-to-text
transformation, it will have already been indexed.

S. RELATED WORK

The Constellation server into which Hawk was integrated
is a versioned model store that divides models into fragments
in order to improve scalability. The literature has various
other works dealing with model fragmentation and model
versioning: in this section we will discuss the most relevant
works in these areas.

Regarding model fragmentation, modeling frameworks like
EMF offer the capability of physically separating a model
into several smaller interconnected model fragments. There
are two forms of fragmentation:

e With total fragmentation, each model element is inside
its own fragment. This is commonly used when models
are to be stored in databases using tools such as Morsa
[14] or NeoEMF [5, 7].

e With partial fragmentation, models are broken into
fragments according to a certain heuristic, which is

usually based on certain types (e.g. “fragment by class”).
This is the approach followed by tools such as EMF-
Fragments [16] or DSL-Tao [1]. DSL-Tao in particu-
lar is based on Fragmenta, a theory of fragmentation
within MDE that provides both bottom-up and top-
down fragmentation that has been verified and vali-
dated through the Isabelle theorem prover.

This approach is favored by models are stored in tradi-
tional file-based version control systems, and it is the
approach followed by Modelio as well: each .exml file
represents a model fragment, which may contain multi-
ple model elements. .ramc archives contain a collection
of model fragments, which can be processed separately
by Hawk.

As for model versioning, there are two options:

e Using a traditional file-based version control system
(VCS): ModelCVS [11] stores EMF models and offers
a model element versioning abstraction built on top of
an SVN°® VCS.

This is the approach used by Constellation: it keeps
track of file-based models stored in SVN repositories
and hosted in HTTP servers. Users generally feel more
confident about using a mature VCS that is indepen-
dent of their tool vendor.

e Using a specialized model store: Eclipse CDO [6] stores
model versions in a relational or non-relational database:
the default configuration and the most popular one is
an H2 database with the DB Store object/relational
mapping. EMFStore [8] uses a MongoEMF-based back-
end” to implement its versioning model store.

6. CONCLUSIONS AND FUTURE WORK

The present work has shown how Hawk was integrated
with the Modelio modelling tool and Constellation enter-
prise model management and collaboration environment de-
veloped by Softeam. This entailed a collaboration between
Softeam and the developers of Hawk at the University of
York: Softeam provided a Java library that exposed the
Modelio metamodels and reused Hawk as a library inside
Constellation, and York extended Hawk with the required
features to support Modelio models. These extensions have
been published under an open source license on Github®.
Hawk was extended with a clean-room parser for Mode-
lio’s .exml and .ramc file formats, and several new fea-
tures have been introduced to support Modelio’s UID-based
references, reusable model libraries and containment repre-
sentation. The Modelio metamodels have been mapped to
Ecore, and Hawk provides the required functionality to ex-
pose Modelio models as regular EMF models.

After the integration, several case studies have been con-
ducted to evaluate if Hawk could scale up to Softeam’s needs,
and which would be the costs and benefits of using Hawk.
On a first case study using the Neo4j backend, Hawk could
index a collection of 15 Modelio projects containing 1.23M
unique model elements in 3958s with 8GB of RAM and 5171s
with 2GB of RAM: 1GB of RAM could still be used if derived

Shttp://subversion.apache.org/
"https://github.com/BryanHunt /mongo-emf/wiki
Shttps://github.com/mondo-project /mondo-hawk

containment references (only needed for EMF compatibility)
were disabled, requiring 3146s.

The next case study required integrating Hawk into Con-
stellation. A new OrientDB backend was developed to en-
able the redistribution of Hawk within Constellation, and
Hawk was extended with the ability to read models stored
in HTTP servers. While using OrientDB resulted in a slight
performance hit, Hawk’s design would allow Softeam to offer
a Neodj-based edition that bundled the Neo4j license.

The final case study compared the Modelio Jython script-
ing environment against the combination of Hawk (exposed
as an Epsilon model) and the Epsilon Generation Language
for generating documents from a collection of synthetic mod-
els. Hawk showed much stronger performance even with the
OrientDB backend, being 2 orders of magnitude faster than
Modelio for the largest model. Further calculations showed
that the cost of indexing with Hawk could be amortised after
generating 20 documents for the smallest model and only 1
document for the largest model.

These studies point to several future lines for both Soft-
eam and the Hawk developers at York. Softeam is currently
working on reusing Hawk queries beyond the expert-oriented
EOL-based query console, integrating dashboards with use-
ful visualisations about the models stored within the Con-
stellation server. Softeam is also considering adding docu-
ment generation facilities to Constellation based on Hawk
and EGL. The Hawk developers have observed that increas-
ing the memory given to Hawk had diminishing returns (go-
ing from 2GB to 4GB was much more noticeable than going
from 4GB to 8GB), and plan to study if multiple coordi-
nated Hawk instances could scale up better than increasing
the available memory. It is also planned to extend Hawk
with transparent support for “on-the-fly” derived features
that are not computed and stored in advance, but rather
computed on demand. This would make it possible to skip
the precomputation of the optional derived containment ref-
erences required for EMF compatibility, which was costly in
terms of time and memory.

7. ACKNOWLEDGMENTS

This research was part supported by the EPSRC, through
the Large-Scale Complex I'T Systems project (EP/F001096/1)
and by the EU, through the MONDO FP7 STREP project
(#611125).

8.
1]

[11]

[12]

REFERENCES

N. Amalio, J. de Lara, and E. Guerra. Fragmenta: A
theory of fragmentation for MDE. In Proc. 16th Conf.
on Model-Driven Engineering Languages and Systems,
MODELS’15, pages 106—115. IEEE, 2015.

K. Barmpis and D. S. Kolovos. Hawk: towards a
scalable model indexing architecture. In Proc.
Workshop on Scalability in Model Driven Engineering,
BigMDE ’13, pages 6:1-6:9, New York, NY, USA,
June 2013. ACM.

K. Barmpis and D. S. Kolovos. Evaluation of
contemporary graph databases for efficient persistence
of large-scale models. Journal of Object Technology,
13-3:3:1-26, July 2014. DOI 10.5381/jot.2014.13.3.a3.
K. Barmpis, S. Shah, and D. S. Kolovos. Towards
incremental updates in large-scale model indexes. In
Proc. 11th European Conference on Modelling
Foundations and Applications, ECMFA’15, pages
35-50, July 2015.

A. Benelallam, A. Gémez, G. Sunyé, M. Tisi, and

D. Launay. Neo4dEMF, a scalable persistence layer for
EMF models. In Modelling Foundations and
Applications, pages 230-241. Springer, 2014.

Eclipse Connected Data Objects. Available at
http://wiki.eclipse.org/CDO, 2016. Last checked: 9
April 2016.

A. Gémez, M. Tisi, G. Sunyé, and J. Cabot.
Map-based transparent persistence for very large
models. In A. Egyed and 1. Schaefer, editors,
Fundamental Approaches to Software Engineering,
volume 9033 of Lecture Notes in Computer Science,
pages 19-34. Springer Berlin Heidelberg, 2015.

M. Koegel and J. Helming. EMFStore: a model
repository for EMF models. In Proc. 32nd
ACM/IEEE International Conference on Software
Engineering, volume 2, pages 307-308. ACM, 2010.
D. Kolovos, R. Paige, and F. Polack. The Epsilon
Object Language (EOL). In A. Rensink and

J. Warmer, editors, Model Driven Architecture
Foundations and Applications, volume 4066 of Lecture
Notes in Computer Science, pages 128-142. Springer
Berlin / Heidelberg, 2006. 10.1007/11787044_11.

D. S. Kolovos, R. F. Paige, and F. A. Polack.
Scalability: The Holy Grail of Model Driven
Engineering. In Proc. Workshop on Challenges in
MDE, collocated with MoDELS ’08, Toulouse, France,
2008.

G. Kramler, G. Kappel, T. Reiter, E. Kapsammer,
W. Retschitzegger, and W. Schwinger. Towards a
semantic infrastructure supporting model-based tool
integration. In Proc. 2006 International Workshop on
Global Integrated Model Management, GaMMa 06,
pages 43-46, New York, NY, USA, 2006. ACM.

P. Mohagheghi, M. Fernandez, J. Martell,

M. Fritzsche, and W. Gilani. MDE Adoption in
Industry: Challenges and Success Criteria. In Models
in Software Engineering, volume 5421 of Lecture Notes
in Computer Science, pages 54—59. Springer, 2009.

A. Mougenot, A. Darrasse, X. Blanc, and M. Soria.
Uniform Random Generation of Huge Metamodel
Instances. In Proc. 5th Furopean Conference on
Model-Driven Architecture Foundations and

(14]

(15]

(16]

Applications, ECMDA-FA’09, pages 130-145, Berlin,
Heidelberg, 2009. Springer-Verlag.

J. E. Pagan, J. S. Cuadrado, and J. G. Molina. Morsa:
a scalable approach for persisting and accessing large
models. In Proc. of 14th International Conference on
Model Driven Engineering Languages and Systems,
MODELS’11, pages 77-92, Berlin, Heidelberg, 2011.
Springer-Verlag.

L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. C.
Polack. The Epsilon Generation Language. In

I. Schieferdecker and A. Hartman, editors, Model
Driven Architecture - Foundations and Applications,
number 5095 in Lecture Notes in Computer Science,
pages 1-16. Springer Berlin Heidelberg, 2008.

M. Scheidgen and A. Zubow. Map/reduce on emf
models. In Proc. 1st International Workshop on
Model-Driven Engineering for High Performance and
Cloud Computing, MDHPCL ’12, pages 7:1-7:5, New
York, NY, USA, 2012. ACM.

