
This is a repository copy of Automated Provenance Collection at Runtime as a Cross-
Cutting Concern.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211853/

Version: Accepted Version

Proceedings Paper:
Reynolds, Owen James, Garcia-Dominguez, Antonio orcid.org/0000-0002-4744-9150 and
Bencomo, Nelly (2023) Automated Provenance Collection at Runtime as a Cross-Cutting
Concern. In: Proceedings - 2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS-C 2023. 2023 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MODELS-C 2023, 01-06 Oct 2023 Proceedings - 2023 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Companion, MODELS-
C 2023 . Institute of Electrical and Electronics Engineers Inc. , SWE , pp. 276-285.

https://doi.org/10.1109/MODELS-C59198.2023.00057

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Automated provenance collection at runtime as a

cross-cutting concern

Owen James Reynolds

SEA research group,

Aston University

Birmingham, UK

0000-0002-5639-0533

Antonio García-Domínguez

ASE research group,

University of York

York, UK

0000-0002-4744-9150

Nelly Bencomo

AIHS research group,

Durham University

Durham, UK

0000-0001-6895-1636

Abstract—Autonomous decision-making is increasingly applied
to handle highly dynamic, uncertain environments: as incorrect
decisions can cause serious harm to individuals or society, there is
a need for accountability. For systems that use runtime models to
represent their observations and decisions, one possible solution
to understand their behaviour is to study the provenance of the
changes to those runtime models. In this paper, we investigate
how to use Aspect-Oriented Programming (AOP) to solve the
cross-cutting concern of automated provenance collection through
aspect-oriented programming, as a generalisation of previous
work which could only operate on models created with the
Eclipse Modeling Framework. We present a variety of patterns
to identify the elements of the runtime model that are of interest
for automated provenance collection, as well as the additional
supporting infrastructure needed to cover the gaps left by the
lack of a dedicated modelling framework. Two case studies have
been conducted. The first study replicates past results with
an EMF-based system, using AOP instead of customising the
code generation, and compares runtime overheads and required
developer effort. The other case study investigates the use of
Cronista with AOP on a system using plain Java classes for
its runtime model. The results show that the new AOP-based
approach for automated provenance collection can effectively
replace the old generator-based approach, while being applicable
to a broader range of systems, at a cost of a small increase in
runtime memory usage for EMF-based runtime models.

Index Terms—Provenance, runtime models, aspect-oriented
programming.

I. INTRODUCTION

The right for explanation and algorithmic accountability

for autonomous decisions are growing concerns for society,

with the European Union General Data Protection Regulation

(GDPR) being one example of a legal requirement for explain-

ability [1]. However, the increasing uncertainty and complexity

of software-based systems makes it more difficult to identify the

causes for runtime behaviour or decisions [2]. Different kinds

of uncertainty can be introduced, e.g. concurrent processes [3],

or processing of partial information [4].

In our prior work, Cronista was developed to help explain the

behaviour of systems that have runtime models [5] representing

their observations and decisions, which are built with the

Eclipse Modelling Framework (EMF) [6]. Cronista creates

a history model that contains a graph describing the changes to

The work was partially funded by the EPSRC Research Project
Twenty20Insight (Grant EP/T017627/1).

the runtime model, following a provenance ontology. Previous

work [7] identified several external threats to validity: Cronista

had only been evaluated with one system, partly due to its

dependency on the EMF code generator, and further case studies

were needed with different applications and runtime models.

This paper revisits this design decision, comparing two

approaches to deliver automated provenance collection across

a system as a cross-cutting concern: the original approach

using EMF’s code generator, and a new approach using aspect-

oriented programming (AOP) [8]. AOP has the advantage

of being agnostic to the specific modeling framework being

used, being also applicable to systems that have not used

any modeling frameworks and only use plain objects for their

runtime models.

The paper is presented as follows. Background concepts are

provided in Section II. Section III discusses how to implement

the Cronista observer components via AOP. In Section IV, the

new AOP-based approach is evaluated across two case studies,

with results presented in Section V. A discussion of the overall

findings, threats to validity and related works is in Section VI.

Finally, conclusions and lines of future work in Section VII.

II. BACKGROUND

A. Provenance for Software Systems

Provenance is all the information that describes how some-

thing came to be. Provenance has proved to be helpful across

a wide array of applications [9], with examples such as

LogProv [10] applying provenance to big data to evaluate trust-

worthiness of data and processing pipelines, or the SPADE [11]

open-source provenance collection middleware solution that

collects application or operating system level provenance.

The survey by Herschel et al. [12] identified three gen-

eral approaches for provenance capture: manual program

annotation/instrumentation, automated static analysis, and a

hybrid mix of the two. Our Cronista system, first presented

in our previous work [7], is a hybrid: using activity scopes as

coarse-grained provenance of activities, complemented by its

automated collection of runtime model accesses/changes from

the system. These runtime models contain information about the

system’s environment and state, used to enable self-adaptation

[13]. Cronista tracks the provenance of changes to a runtime

model which serves as a high-level abstraction of the system.

Entity

Activity Agent

wasDerivedFrom

w
a
sA
ttrib

uted
To

actedOnBehalfOf

wasAssociatedWith

us
ed

w
as
G
en
er
at
ed
By

wasInformedBy

Figure 1: W3C PROV-DM

Working at a higher level of abstraction allows for tackling

complexity while using provenance. The collected provenance

allows for exploring causal connections and discovering how

a system’s state came to be. Cronista uses W3C PROV [14]

to structure its provenance graph, using the graph nodes and

edges shown in Figure 1:

• Activities represent a piece of work done by the system

that is relevant to the problem domain, with a name

that is meaningful to a domain expert. In Cronista, these

are executions of a certain code region (i.e. a Java try-

with-resources block). Activities can be nested within

each other: Cronista keeps automatically track of this

information through a stack. Entries are pushed when

the activity starts, and popped when it ends (whether

successfully or not). The top of the stack always represents

the current activity.

• Agents are the actors responsible for executing an activity.

In Cronista, each Java thread is an agent of its own.

• Entities are the objects from the system’s runtime model

that are being accessed and modified by the agents within

the activities. In Cronista, these can be EMF objects,

or plain Java objects (depending on the implementation

chosen by the developer).

Cronista aims to reduce the cost of maintaining provenance

graphs to provide explanatory capabilities for new or existing

systems. Cronista follows a modular architecture to provide a

reusable set of components that can be extended or adapted

to various domains or systems (See Figure 2). The current

prototype of Cronista is available under the Eclipse Public

License from its GitLab repository1. This section presents the

high-level architecture of Cronista. Other sections shown later

discuss how the interaction with runtime models in Cronista

was redesigned to broaden its support to a wider range of

systems, by eliminating the dependency on EMF.

As shown in Figure 2, the Observer of concurrent Agents

responds to events detected by instrumenting the system,

detecting access and modification of its Entities within its

Activities. The Observer sends messages about the events to

1https://gitlab.com/sea-aston/cronista

Message queue

Figure 2: Cronista’s System Architecture

a message queue: each message is a complete description of

which agent accessed which model element during a particular

activity. These messages are queued and processed in order

of arrival, by a Curator that creates a provenance graph

representing the information in the messages.

To support long-running systems the Curator maintains the

collected data using a history model. This model is composed of

time windows, containing a snapshot of the system model and

a provenance graph of changes to the model. Time windows

have no data dependencies between them, which enables them

to be deleted (i.e. forgotten) for storage management. Cronista

can use various storage technologies for the history model

store (HMS) through adapter modules: currently supporting

Eclipse CDO model repositories [15] and Apache TinkerPop-

compatible graph databases [16]. These technologies have

existing query languages such as Epsilon Object Language [17]

and Gremlin [18], which enable exploration of the provenance

graphs in the HMS.

B. Addressing Cross-Cutting Concerns via Aspects

Cronista’s Observer components require adding code in

many places (e.g. across a system’s runtime model and its

manipulation), which is a clear case of a cross-cutting concern,

as defined by [19]: a feature or (non-)functional requirement

whose implementation is scattered over more than one module

in a system; which may result in the tangling of code. Kiczales

et al. [8] identify cross-cutting concerns as aspects which

are difficult to cleanly capture in code, and propose Aspect-

Oriented Programming (AOP) techniques to compose and

isolate reusable aspect code. Filman and Friedman [20] consider

that a good AOP system minimises the degree to which

programmers change their behaviours to benefit from AOP.

Mcheick et al. [21] applied AOP to a Chess game without

modifying the original code. In this study, they attempt to

implement logging, add new movements for pieces, and add

a GUI. Their logging is simpler than Cronista’s provenance

graphs, as they insert console logging statements and trace

all method calls from all classes. Our approach to collecting

provenance would require more generalised AOP instructions

to reflect the runtime model abstractions with a provenance

ontology, instead of handcrafted log descriptions. Schaler et

al. [22] also consider provenance collection to be a cross-

cutting concern, and equally solve it using AOP techniques,

but for a different kind of system: database systems.

III. OBSERVATION VIA ASPECT-ORIENTATION

This section will discuss implementing Cronista’s Obser-

vation components using an AOP approach, implemented in

Java using the mature AspectJ framework. The exact pointcuts

may differ between systems, but general object-oriented design

practice suggests common reusable patterns.

To explore the challenges of removing the modeling frame-

work, three successive approaches will be explored, each relying

less and less on EMF and the structure of the code that it

generates. The first approach uses an aspect for EMF-based

models, which replicates the approach in Section II-A by

injecting code using AspectJ. Then, a second implementation

relies on accessor and mutator methods, common in object-

oriented programming and generated by EMF. The third

implementation targets object fields without relying on EMF

nor on getter/setter methods. However, not using a modeling

framework introduces challenges, due to a lack of facilities.

The approaches require annotating the model classes

and adding an instrument package to the system. This

instrument package includes the Inspector class, and

a collection of AspectJ aspects made up of pointcuts and

advice. Pointcuts identify specific system events (e.g. method

calls, known as join points in AspectJ) where certain code (the

advice) should run: the Observer instrumentation.

A. AOP for Provenance Collection over EMF Models

The first approach replaces the code generator for inserting

the instrumentation code for provenance collection into an

EMF model, producing the same provenance as the approach

in Section II-A. This approach uses the conventions of the code

generated by EMF reducing the need for manual annotation.

Defining the pointcuts seems simple, as the EMF code gen-

erator uses a consistent naming style for the accessor methods

(get*() and is*()) and the mutator methods (set*()).

Unfortunately, this approach has a potential problem, as other

methods in the model classes (some of which may have been

manually written) may not call these operations and instead

directly manipulate the underlying storage of the class. Instead,

it is best to use the EMF feature delegation capabilities to

consistently capture EMF model feature accesses: this is a

common approach used in alternative EMF storage layers (e.g.

CDO or NeoEMF). When the EMF generator model is told

to use dynamic feature delegation, it produces model accessor

(eDynamicGet) and mutator (eDynamicSet) methods for

the model features that are clearly identifiable for pointcuts.

In large systems, there may be more than one EMF

model, and we only want to instrument the runtime model

itself. Cronista provides the ObserveModelEMFeDynamic

annotation to identify which classes are to be instrumented.

Developers need to add this annotation to the classes generated

by EMF, either manually2 or with EMF dynamic templates.

1pointcut pcGet() : call (* eDynamicGet(..))
2&& @within(ObserveModelEMFeDynamic);
3pointcut pcSet () : call (* eDynamicSet (..))
4&& @within(ObserveModelEMFeDynamic);

Listing 1: EMF dynamic feature delegation pointcuts

Based on these findings, it is possible to create a set

of robust pointcuts as shown in Listing 1. These point-

cuts target the internal eDynamicSet and eDynamicGet

method calls (using call) that are done from within classes

having the above ObserveModelEMFeDynamic annotation

(using @within). This is similar to the prior EMF code

generator-based approach in Cronista, where the customized

EObject root class overrode those same eDynamicGet and

eDynamicSet methods. This similarity means that the new

approach works at the same abstraction layer, and that the

advice should run at the same times and produce the same

model provenance data.

1after() returning (Object r): pcGet() {
2if (observe) {
3observe = false;
4try { inspector.inspectEMFeDynamic(/*thisModelAccess*/); }
5catch (Exception e) { e.printStackTrace(); }
6finally { observe = true; } } }
7before() : pcSet() { if(observe) { /* ... logic as above ... */ } }
8after() : pcSet() { if(observe) { /* ... logic as above ... */ } }

Listing 2: Excerpt of AspectJ advice for provenance collection

from a system model created using EMF

The pointcuts need advice code that will run after a model

read (to intercept the returned value), and before/after a model

write (to intercept the old/new value). Listing 2 shows the

advice that will be weaved at those points in the system. In

addition to the invocation of the Inspector method with the

appropriate arguments, the advice uses an internal observe

flag to prevent recursive inspection calls, which can occur as

a result of the inspection process.

Finally, an Inspector class provides methods (reusable

across runtime models using the same persistence framework,

e.g. CDO) to collect all necessary provenance information for

model accesses. Some details are easily determined based on

when and where advice is applied, such as model access type

and time. However, information such as the model part name,

type and value will require reflection, which can be challenging

with complex classes like CDOObjectImpl. In particular, the

Inspector is responsible for generating an identifier for the

part of the model that was accessed (e.g. using CDO IDs,

2EMF code generator preserves the Annotations between code generations.

1 pointcut getBean(Object t) : target (t)
2 && execution(* get*()) && @within(ObserveModel);
3 pointcut setBean(Object t, Object a) : target(t) && args (a)
4 && execution (* set*(..)) && @within(ObserveModel);

Listing 3: JavaBeans getter/setter pointcuts

1 pointcut getAttr(Object r) : get(* *)
2 && (@within(ObserveMethod) || @withincode(ObserveMethod))
3 && (@annotation(ObserveModel) || @target(ObserveModel))
4 && !@annotation(HideMe);
5 pointcut setAttr(Object a) : set(* *)
6 && (@within(ObserveMethod) || @withincode(ObserveMethod))
7 && (@annotation(ObserveModel) || @target(ObserveModel))
8 && !@annotation(HideMe);

Listing 4: Java object field read/write pointcuts

ID model features, or Java object IDs as a last resort), and

maintain version numbers for the various features in a model

element. These complexities are discussed in Section III-D.

B. AOP for Provenance Collection over JavaBeans

The previous section shows that a consistent structure is

essential for automating provenance collection with AOP.

Modelling tools such as EMF provide code generators capable

of producing model implementations with a consistent structure,

which are also clearly separated from the logic manipulating

them. However, there are other approaches to creating structured

code: for example, a well-organised software development

team may follow certain coding guidelines or integrate various

frameworks: the JavaBeans API is one example.

The JavaBeans API specification [23] seeks to create reusable

software components by prescribing a common approach

to structure objects. As such, the specification requires the

use of accessor (getter) and mutator (setter) methods for

JavaBeans properties. This use of get/set methods for a

property is comparable to that seen in EMF model code for

model features: its consistent method naming approach (e.g.

getMyModelFeatureName()) can be used to extract the

name of the feature, and AspectJ can retrieve the returned

value (for a getter) or the new value to be set (for a setter).

Other implementation details for the inspector would rely on

the object following the JavaBeans convention correctly, such

that the Observer receives accurate data for model changes.

Listing 3 shows example AspectJ pointcuts for intercepting

the execution of the get/set methods of the JavaBeans classes

annotated with @ObserveModel.

C. AOP for Provenance Collection over Object Fields

In some Java programs, there is no consistent separation

between the runtime model and the processes manipulating this

runtime model, and some of the information is not made visible

through a consistent interface (i.e. via getters/setters named

according to some convention). As an alternative, AspectJ can

be instructed to intercept reads and writes on object fields,

using pointcuts such as those in Listing 4.

The relevant classes or fields implementing the runtime

model are annotated with @ObserveModel, and the methods

whose interactions with the runtime model need to be captured

in the provenance graph are annotated with @ObserveMethod.

Not all model accesses require provenance collection: for

example, a method that saves the runtime model to a file

may not require provenance collection.

If the class is annotated with @ObserveModel, all fields will

be considered relevant for provenance: individual fields can be

excluded by annotating them with @HideMe (in a “blacklisting”

approach, where everything is included by default). As an

example, a field in a class may be used for an expensive

computation whose provenance is not required, but all other

fields are. If only a few fields are desired, users can annotate

only those fields with @ObserveModel instead of annotating

the whole class (in a “whitelisting” approach, where nothing

is included by default).

D. Object-Entity Correlation

In an observed system, multiple objects in memory may

relate to the same model element, e.g. if different agents

manipulate different copies of the model. In order to create

accurate provenance links, Cronista must be able to correlate

the access of a certain property/method in an object (e.g. “the

name field of the Person object at memory position M was

read”) to the identity of a specific entity in the provenance graph

(e.g. “the name of Person #1 was read”). This “object-entity

correlation” from the (object, feature) pair intercepted by the

observer to the (model element, feature) pair that constitutes the

entity can take various forms, if using a modeling framework

(or not), and how the modeling framework is configured.

Modeling frameworks such as EMF provide several ways of

identifying model elements, e.g. through a domain-independent

identifier set at the moment of creation (xmi:id or CDO object

identifiers), through the location of the model element in the

containment tree (e.g. “second child of the root object”), or

through a domain-specific identifier feature declared in the

metamodel (an “EID attribute” in EMF). These approaches have

the advantage of being persistent between system executions.

In addition, xmi:id, CDO object identifiers, and EID attributes

remain the same even if the object is moved across the

containment tree of the model.

Plain Java objects do not have persistent unique IDs such as

those in CDO objects. As an approximation, Cronista uses the

concatenation of the Java object’s hashcode and the name of the

field to produce an EntityID. Within the lifetime of a Java object,

the hashCode() of an object will produce a consistent identifier

which in most practical situations will be different for different

objects (though it is not guaranteed to be unique). Serializing

this object will not always preserve the hashCode() upon

deserialisation, however: different executions of the system will

produce disjoint provenance graphs if relying on hashCode(),

which may or may not be acceptable to the user. The reason

for the graphs for different executions being disjoint would

be that the same conceptual model representations would not

have the same identifier across those executions. For example,

Object A on the first execution has ID-123, and would have ID-

234 on the second execution: thus, they would be considered

to be different objects. Solving the issue essentially requires

some form of persistent identifier such as those provided by

EMF/CDO.

E. Entity Versioning

The various activities in the system may read and write

to different versions of the model: it is important to clearly

identify which version was accessed. This is another aspect

where the underlying infrastructure is important: some model

repositories, such as CDO, provide model versioning. However,

CDO only provides model element-level versioning, and the

version number is only incremented upon a commit: between

commits, the provenance entities of that element (its features)

could be updated multiple times. Therefore, additional field

level versioning is required. For CDO-based models, Cronista

maintains a (storage version, in-memory version) pair for each

provenance entity: the storage version is controlled by CDO,

and the in-memory version is set to 0 upon a CDO commit,

and is incremented upon modification.

In-memory versioning requires each thread to take its own

copy of the model from storage. Cronista tracks changes

for each thread’s in-memory version, and the system is

responsible for resolving conflicts when the in-memory models

are committed back to storage. System models stored in CDO

would require the second thread (agent) to merge or abort a

conflicting commit, to keep the CDO model consistent: the

Cronista provenance graph would show the agents, activities

and entities involved in that conflict.

Since plain Java objects lack versioning, Cronista provides

a fallback implementation based on their EntityID and the Ob-

server instrumentation that detects updates. Cronista keeps a list

of EntityIDs for plain Java objects, with their storage versions

kept at 0 and their in-memory versions being incremented on

every update. This simple approximation is sufficient to track

the provenance of each execution of the single-thread plain

Java system used in the second case study in Section IV-A: for

more complex and long-running systems, adopting a versioned

model store with thread-safety features and persistent object

IDs would be recommended.

IV. EVALUATION

This section describes the experimental approach used to

evaluate the effectiveness of integrating Cronista with an AOP-

based observer as described in Section III.

A. Systems under study

The first system, TrafficControl (TC) featured in previous

Cronista case studies [7]. This system can autonomously adapt

its runtime behaviour, using an EMF-based runtime model to

control the traffic lights on a junction in a simulation. The

original version used the approach in Section II-A to produce

explanations based on its provenance graph. This system has

been selected to show that the new AOP-based approach in

Section III-A collects the same provenance information.

The second system, AI-Checkers (AIC) is a Java-based AI

(a classic alpha-beta tree search) to play checkers [24]. AIC

was not built with a modelling tool: plain Java objects are used

to model the game state (e.g. game board). These objects can

be represented using an ENTITY. Similarly, ACTIVITIES could

be used to represent the processes an AI player performs in a

turn, such as move planning.

B. Research questions

Our goal is to enable Cronista to be used with systems which

have not been built with EMF, with minimal use of resources

and maintaining the quality of the provenance graph. The more

general approach of AOP should have comparable memory and

time costs, and produce provenance graphs that match those

which would be produced by the EMF method, and not impose

undue demands on the developer. The evaluation of the new

method seeks to answer the following questions:

• RQ1: When an explicit EMF-based runtime model is used

by the system, can the aspect-based observer effectively

replace the old generator-based approach?

• RQ2: When the system does not use a modeling framework

for its runtime model, how much developer effort is

required to apply Cronista, and what are the runtime

overheads imposed by Cronista?

RQ1: A direct answer to RQ1 can be provided by developing

new versions of TC that keeps the original activity scopes and

replaces the generator-based observer with the new AOP-based

observer. Given the potentially high cost of graph isomorphisms

for even moderately sized graphs, it was decided to use a

scenario-based equivalence test: the same fault as in [7] was

introduced, and the same queries on the provenance graph

were conducted to find the root cause. Two configurations of

the AOP-based observer were used: one which collected the

same information as the original EMF-based observer, and one

which only collected a partial provenance graph with only the

information needed for that specific query. Partial provenance

collection from the runtime model offers a potential reduction

in runtime overheads, in exchange for a loss of provenance

information. Finally, an unmodified version of TC was run to

set a baseline. These versions were labelled as follows: NoProv

(code and model unchanged, the resource baseline), CodeGen

(code and full model changed using code-generator), AspFull

(code and full model changed using AOP), and AspPart (code

and part of the model changed using AOP).

The provenance graphs produced by each TC version were

verified using a Gremlin graph query. This graph query checks

for a known graph pattern (shown in Figure 3) which can

identify the injected fault in the system. Thus, each modified

TC system was run with and without the injected fault, to

confirm provenance collection is working.

The query used to verify the provenance graphs traces the

cause of the system ending the current traffic light phase

(Figure 3). Such a query can be used to diagnose frequent

phase ending behaviours. The query starts from an entity

representing an execution result of a PhaseEnded being

true; then traversing edges and nodes back to a counter for the

number of Lane Area Detectors (LADs) reporting a jammed

condition. A jammed LAD condition is counted when a queue

of cars in a LAD at a junction exceeds the perceived acceptable

number of waiting cars queuing. When the number of LADs

reporting jammed exceeds 2, the system ends the phase in an

attempt to clear the jammed LADs.

In all cases, TC was run while measuring system and

query execution times, memory consumption, and network

input/output (as measured through a JanusGraph Docker con-

tainer). Experiments were run under Debian 10, Linux kernel

4.19.0-17-amd64, OpenJDK 11.0.12 (default Java settings),

using a computer with an AMD Phenom II X4 970 CPU

(3.5Ghz), 16GB RAM, and SSD storage. A background

thread measured execution times and memory usage until the

simulation completed, the curator processed all messages from

the observer, and HMS shut down.

1 private static Game game;
2 private static Move move;
3 public static void main(String[] args) { ...
4 if (player1iscomputer) {
5 try (var scope1 = new ActivityScope("Player 1 plans"))
6 { move = cpu1.alphaBeta(game); }
7 try (var scope1 = new ActivityScope("Player 1 moves"))
8 { game.applyMove(move, game.board); }
9 move.printMove(); } ... }

Listing 5: AIC: Activity Scopes for Player 1’s turn

RQ2: This research question is evaluated by applying

Cronista to a system whose runtime models are implemented as

plain Java objects: AI-Checkers [24] (AIC). AIC has a simple

design and a runtime model close to the problem domain, based

on a representation of the game board, and the creator of AIC

did not have provenance collection in mind when designing the

system. Without consulting the original developer, integrating

Cronista required understanding the intended actions of the

system code and finding the right level of granularity for the

activities. The codebase required some refactoring to expose

information to the AOP-based observer due to limitations in

what AspectJ can intercept.

The general application of Cronista remains similar to that

for RQ1: i) integrate the observer into the system, ii) delimit the

high-level activities through activity scopes, iii) delimit model

parts for tracking, and iv) use the provenance graph to answer

queries to feed explanations. Steps ii), iii) and iv) are iterated

to incrementally increase the amount of provenance collected.

After each iteration step iv) is performed to check the quality

of the provenance graph and to look for missing nodes and

relationships. GraphExp [25] can be used to visually inspect

the provenance graph for missing relationships. However, the

Gremlin console [16] will be needed to access graphs which

become too complex for visualisation.

Our prior experience of developing Cronista guides the

approach of applying provenance collection: starting with a

coarse-grained provenance collection, and then progressing

towards a more fine-grained approach. For example, relation-

ships between ENTITIES and ACTIVITIES can be checked

manually by a developer, to ensure the information being

passed between ACTIVITIES is being correctly represented.

As the complexity/size of the system’s code grows, so does

the provenance graph representing the execution. Therefore,

like writing code, an incremental process is needed to manage

complexity. The steps used to create a provenance-enabled

version of AIC are presented below.

a) First iteration: Captured the game as a sequence of

high-level activities for each player. Method calls for the move

planning and movement were located in the system’s main

method and annotated with activity scopes, covering both AI

players (Listing 5). When defining the activity scopes, there

was a need to turn local variables such as move into object

fields, so they could be intercepted by AspectJ. In addition,

variables passing information between two activity scopes

need to be exposed as features of a model element to create

ENTITIES connecting ACTIVITIES. Furthermore, a variable

game containing a representation of the game board also had

to be turned into a field.

b) Second iteration: The next iteration sought to expose

some information from the planning process. However, as

mentioned previously, the heuristic search process could result

in excessive amounts of provenance data. Therefore, an activity

BESTMOVESELECTION was marked to extract the high-level

concepts as entities, such as BESTMOVE and BESTMOVE-

VALUE. The BESTMOVESELECTION activity occurs for each

depth of possible moves searched in the limited time available.

c) Third iteration: The system model is missing concepts

that describe the number of equally best scoring moves found

and the chosen move. The existing code collected the equally

best scoring moves in an array; then, based on the size of the

array, generated a random number to choose a move from the

array. Thus, the number of moves was hidden from Cronista

as a property of the array, as was the randomly chosen index.

Creating fields for both enables Cronista to observe the values

and generate entity representations on the provenance graph.

d) Changes for reproducibility: AIC was modified in

several ways to obtain reproducible performance results during

the experiments. A parameter was added to control the random

seed, to ensure the same best move would be selected during

the multiple executions needed to control for system variability.

The time limits for searching the best moves were also

removed, leaving only the depth limit: this prevented differences

due to minor timing changes produced by I/O and system

processes. These changes ensure that replaying a game with

the same seed will produce a similar provenance graph with

consistent resource usage, to reduce noise in the resource usage

measurements.

e) Query invocation: Once these modifications had been

done, the provenance graphs of AIC were used to answer

provenance related queries. Figure 4 shows one such query

that can be used to trace the played moves back to the decision

process that selected it from the results of a search that

found a number of equally good moves. Additionally, metrics

were collected at runtime to evaluate the overheads caused by

Cronista when compared to the original versions of AIC. The

same approach as in RQ1 was used to take the memory, time,

Metric Version Mean SD

TC time NoProv 754.93s 0.25s

CodeGen 757.59s 1.59s

AspFull 757.20s 0.46s

AspPart 757.00s 0.42s

TC memory NoProv 14.98MiB 0.18MiB

CodeGen 37.44MiB 0.89MiB

AspFull 48.97MiB 2.75MiB

AspPart 47.55MiB 2.67MiB

HMS memory NoProv 756.29MiB 6.73MiB

CodeGen 928.44MiB 11.78MiB

AspFull 941.96MiB 10.56MiB

AspPart 926.11MiB 12.65MiB

HMS net IO NoProv 0.01MB 0.00MB

CodeGen 101.40MB 12.62MB

AspFull 150.78MB 13.23MB

AspPart 110.06MB 6.21MB

Table I: Means and standard deviations of execution times,

maximum memory usages, and network I/O for TC, over 10

simulations across 5000 ticks.

g.V()

.has(’Entity’,’AttributeName’,’PhaseEnded’)

.has(’AttributeValue’,’true’)

.has(’AttributeName’,’EndPhase’)

.has(’AttributeName’,’LADsJammed’)

.valueMap()

.out(’WasGeneratedBy’)

.out(’Used’)

.out(’WasGeneratedBy’)

.out(’Used’)

Figure 3: Gremlin query, find the cause of the PhaseEnded

and disk usage measurements. Five different seeds were used,

and each seed was run 10 times. The experiments used the

same system as in Section IV-B.

V. RESULTS

Results of the experiments outlined in Section IV-B.

The first system, for space reasons Table I shows the metrics

for the longest experiment run for TC, which was run for

progressively longer simulations (ticks). With the provenance

collection enabled, the simulation takes longer to run (from

754.93s to 757.59s on average, using the code generation

approach). Similarly, the amount of maximum memory con-

sumed also increases when using provenance collection (from

an average of 14.98MiB on NoProv to 37.44MiB on CodeGen).

However, CodeGen, AspFull and AspPart consume slightly

different amounts of memory (Table I). CodeGen uses less

g.V()

.has(’Entity’,’AttributeName’,’move’)

.has(’AttributeName’,’bestMove’)

.has(’AttributeName’,

’numberOfPossibleMoves’)

.values(’AttributeValue’)

.out(’WasGeneratedBy’)

.out(’Used’)

.out(’WasGeneratedBy’)

.out(’Used’)

Figure 4: Gremlin query, find number of best possible moves

than both AspPart and AspFull, and AspPart is showing a

slight reduction over AspFull. Finally, the execution times in

Table I show that all the provenance collection approaches take

slightly longer than NoProv (NoProv averaged 754.93s TC

time, CodeGen averaged the longest TC time 757.59s): part of

this comes from the processing and shutdown of the curation

process, which lags behind the traffic control processes slightly.

The Gremlin query used to verify the provenance collected

from CodeGen, AspFull and AspPart all returned the expected

subgraph (Figure 3), confirming the provenance graphs were

valid and contained the required data. Analysis of the query

results for each TC with/without the fault correctly returned

the LADsJammed count for each PhaseEnded occurrence.

For example, queries on a faulty TC presented LADsJammed

counts above 4, which exceeds the number of LADs connected

to the system. Similarly, a working system did not have counts

above 4, and the system also did not end phases as often.

The Second system, Table II shows the metrics collected

from the AIC system, which played 5 seeded games 10

times each. The AIC times with no provenance collection

(NoProv) show that the seeded games are ending at the same

time with very little deviation (between 0.03s and 0.27s).

Therefore, the changes to the system to have the AI players

make deterministic decisions are working as intended. The

time differences seen between NoProv and the aspect-based

provenance collection (AspFull) is the added overhead of

Cronista’s Observer components. Table II shows a small

increase in the total execution time of approximately 3.5s

on average has occurred; this is similar to the results for TC.

The metrics in Table II under NoProv conditions show that

memory usage did not significantly change with the game

duration for different game seeds. AspFull shows Cronista’s

Observer components increased the system memory usage. This

increase depended on the game duration: the shortest game

(Seed1) used the least memory. With and without provenance,

the deviation in memory usage of AIC was negligible.

Table II also contains the metrics from the history model

store. The NoProv instance shows the resource usage of an

unused HMS, setting a baseline. For AspFull, memory and

Seed1 Seed2 Seed3 Seed4 Seed5

Metric Version Mean SD Mean SD Mean SD Mean SD Mean SD

AIC time (s) NoProv 103.20 0.01 149.52 0.02 382.80 0.43 421.83s 0.02 230.61 0.01

AspFull 106.91 0.06 152.94 0.04 386.75 0.27 425.29 0.10 234.02 0.03

AIC memory (MiB) NoProv 1.54 0.00 1.55 0.00 1.55 0.00 1.55 0.00 1.55 0.00

AspFull 11.90 0.00 12.31 0.00 15.18 0.00 15.11 0.00 13.12 0.00

HMS memory (MiB) NoProv 752.98 15.32 753.77 12.00 747.79 15.00 751.57 13.41 745.45 13.41

AspFull 768.54 4.71 806.77 24.74 886.22 7.40 885.64 6.01 876.78 6.01

HMS net IO (MB) NoProv 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00

AspFull 4.61 0.00 6.53 0.00 17.58 0.00 17.41 0.05 9.58 0.00

Table II: Means and standard deviations of metric per Table1 for AIC, over 5 Game seeds each run 10 times. As AIC was not

EMF-based, there is no code generation-based version to compare against.

network I/O increase as expected in longer running games.

Some spread can be seen in memory usage (with standard

deviations of 24.74MiB for an 806.77MiB graph), however, the

baseline NoProv shows up to 15.32MiB of SD can occur even

with an unused graph. Network I/O shows little to no change

when replaying the same seed, which implies the Observer is

reporting similar data for each replay.

It is possible to use AspectJ with annotations to collect

provenance data from a system that uses POJO. Figure 4

shows a Gremlin query which accesses the provenance graph

produced from AIC to retrieve ENTITIES and ACTIVITIES that

connect a Move back to the NumberOfPossibleMoves

it was selected from. Thus the number of alternative moves

the AI Player found can be causally connected to the move

played. As a developer, this query tells us how many times

the decision process ended with a random selection from a

collection of equally scoring best moves. As such we might use

the information to further refine the decision making process,

by extending the search time or adding tie breaking strategies.

VI. DISCUSSION

A. Overall findings

Deployment of Cronista’s Observer components can be

automated using AOP and annotations to enable provenance

collection of changes to a system’s runtime model. A system’s

runtime model does not need to be an EMF model; AOP allows

for using plain Java objects as the runtime model. However, Java

objects lack many features provided by a modelling framework,

such as persistent object identities. Cronista provides an initial

set of tools to overcome these challenges, and a more complex

system may implement custom solutions for these problems.

Enabling Cronista with AOP opens the potential for prove-

nance collection from systems that use other Java-based

modeling frameworks. Furthermore, these frameworks might

include solutions for some missing Java object features that

make them harder to track. The framework could be told

to automatically generate Cronista annotations for specific

elements, which could then be targeted via pointcuts.

The history model that Cronista creates reflects the changes

made to a system’s runtime model and, as such, depends on

the quality of the system’s model. Therefore, modelling tools

that encourage creating descriptive and human-understandable

models are more likely to produce a history model than

can explain a certain behaviour. For example, in the AIC

case study, the number of moves found was not explicitly

defined in the runtime model and had to be added. On the

other hand, TC had a model explicitly designed around the

feedback loop and business domain, with the intent to produce

provenance information. Future work could investigate and

quantify how modelling best practices impact the effort needed

to add explanatory capabilities to a system, and the quality of

the resulting provenance graphs.

Cronista imposes some time and memory overheads onto the

observed system, as all logging frameworks do. Regardless, the

observed overheads have been manageable, adding a few (~3.5s)

seconds to total runtime as seen in Table I and Table II, most

likely caused by Cronista’s history model store starting up. AOP

adds a baseline memory overhead which is a slight increase over

the CodeGen approach (~10MiB as seen on Table I); against

a small application like AIC this can seem disproportionate

(Table II). However, while the memory usage for data collection

does not rise significantly over time, ENTITY tracking does

consume some memory to reduce history model lookups at

runtime. In Table I, AspPart only offered a minor saving of

resources in this instance compared to AspFull: this approach

may need to be re-evaluated within larger systems. Further

optimisations could further reduce these, such as removing the

start-up time by hosting the history model store on a separate

machine.

In terms of developer effort, AOP allows developers to use

Cronista by only adding a few annotations to their models. The

same aspects can be used across models of the same modelling

technology (e.g. CDO models). The aspects can be packaged

in a library to facilitate reuse, achieving some implementation

efficiencies across multiple systems.

B. Threats to validity

This section will discuss the threats to the validity of the

results of this paper, by using the classification by Feldt et

al. [26]. Specifically, it will discuss internal validity (whether

the treatment caused the outcome), and external validity (how

well the results could be generalised).

1) Internal validity: Integrating provenance collection into

the AIC case-study was dependant on correct interpretation of

the codebase and the developers’ original intentions. As such,

the quality and detail of the provenance could be improved

with a deeper knowledge of the system. The provenance graph

query was chosen based on what the authors of the paper

would consider to be useful, rather than having been chosen

by the AIC developer.

The graph database used was memory-based to maximise

throughput in Cronista with minimal tuning. However, a larger

deployment would likely need a disk-backed graph database and

performance tuning to hold the massive graphs that would be

produced by large and busy systems. As such, a limitation with

the studies is that our simulations run for limited periods of time

(just over 12 minutes for TC): there is future work in evaluating

the metrics for larger systems, with higher throughputs and

longer executions.

2) External validity: The case studies have not involved

the potential users of the collected provenance. Such a case

study would be better performed when an end user-friendly

application has been created to visualise and explore the

provenance. While our current tools to access provenance

might inspire a provenance exploration tool, in its current form

the technical skills (i.e. writing a Gremlin query) are likely too

demanding for typical non-technical end users.

Cronista has been tested against two different systems,

where different design approaches have been taken. These

systems were developed by different people, so we have

some confidence Cronista can extract meaningful provenance

from systems. However, further evaluation with more systems

would be desirable. Cronista is sensitive to the design style of

the system, and the coding conventions that have been used.

Less structured systems may require refactoring to make their

internal models understandable.

C. Related work

The survey by Herschel et al. [12] identified three general

approaches for provenance capture: manual program annota-

tion/instrumentation, automated static analysis, and a hybrid

mix of the two. Cronista is a hybrid: activity scopes provide a

coarse-grained provenance of activities, complemented by its

automated collection of model accesses from the system.

SPADE [11] is an open-source provenance collection mid-

dleware solution, which can collect application or operating

system level provenance. While SPADE targets function calls

within an application/operating system, Cronista specifically

targets the runtime model of a system.

Schaler et al. [22] also consider provenance collection to

be a cross-cutting concern, and equally solve it using AOP

techniques, but for a different kind of system: database systems.

In their work they do not consider models or runtime models

as the subject for provenance collection, instead requiring the

user to define the points of interest for which provenance is to

be collected.

VII. CONCLUSIONS AND FUTURE WORK

This paper demonstrated using aspect-oriented programming

(AOP) to automate the deployment of Cronista’s instrumenta-

tion without using the code generator of a modelling framework.

This allowed Cronista to work with systems using plain

Java objects, and potentially with other Java-based modelling

frameworks. The results in Section V showed that an AOP

approach can collect the same provenance information as a code

generator-based approach. Section III discussed the parallels

between the original EMF instrumentation, the new AOP-

based instrumentation for EMF models, and the AOP-based

instrumentation for plain Java objects. Given the positive results,

it can be concluded that the collection of the provenance of

the changes to a runtime model can be packaged as a reusable

cross-cutting concern.

Modelling frameworks such as EMF provide solutions for

most provenance collection challenges that appear when using

models built with plain Java objects, which lack the persistent

object IDs and versioning required to track their changes

over time. However, modelling frameworks can also lack the

versioning of model features at sufficient granularity (i.e. fields

are not versioned). These gaps can be either covered by the

basic implementations provided by Cronista, or by integrating

an existing solution (e.g. CDO provides object-level IDs and

versioning). Additionally, a system designed with a modelling

mindset and tools is likely to create more meaningful system

model abstractions and thus more meaningful provenance.

Therefore, modelling tools and techniques seem to improve

a system’s history model: they provide robust model imple-

mentations and encourage descriptive system model designs to

help create more explainable history models.

Adding a logging solution to a system will likely increase the

runtime resources and impose additional overheads. However,

the results indicate that Cronista has a manageable overhead for

the systems under study. In addition, Cronista did not signifi-

cantly affect the target systems’ performance or functionality in

both case studies. Given the modular architecture of Cronista,

future work could seek to separate the most resource-intensive

parts of Cronista (curation and history model storage) to a

different machine from the monitored system.

Regarding the developer effort required to integrate Cronista,

the proposed approach has been designed as a collection

of components that can be reused across systems by being

packaged as Java libraries: these include the activity scopes,

observer, curator, and history model store. A system developer

can reuse the aspects in the AOP-based instrumentation (also

available from its GitLab public repository) by applying the

Cronista annotations on the target system’s runtime model

classes. Validating its reusability in further experiments with

other developers and systems is also future work.

Finally, the presented paper focuses on collecting provenance

information, and querying it with a developer-oriented tool

(Gremlin queries). Non-technical system users would need a

more approachable user experience, that allows for exploration

and avoids information overload. In the future, we plan to

investigate the design of end user-facing interfaces for exploring

Cronista history models, e.g. as a timeline of activities or

evolving states, with explorable casual relationships.

REFERENCES

[1] A. D. Selbst and J. Powles, “Meaningful information and the right to
explanation,” International Data Privacy Law, vol. 7, no. 4, p. 233–242,
Nov 2017.

[2] N. R. Council, Complex Operational Decision Making in Networked

Systems of Humans and Machines: A Multidisciplinary Approach.
Washington DC: National Academies Press, 2014.

[3] F. A. Bianchi, A. Margara, and M. Pezzè, “A survey of recent trends
in testing concurrent software systems,” IEEE Tr. on Soft. Eng., vol. 44,
no. 8, p. 747–783, 2018.

[4] V. Bellotti and W. K. Edwards, “Intelligibility and accountability: Human
considerations in context-aware systems,” Human–Computer Interaction,
vol. 16, pp. 193–212, 2001.

[5] G. S. Blair, N. Bencomo, and N. B. France, “Models@run.time,”
IEEE Computer, vol. 42, no. 10, pp. 22–27, 2009. [Online]. Available:
https://doi.org/10.1109/MC.2009.326

[6] Eclipse Foundation, “Eclipse EMF,” Oct. 2021, date last checked:
October 5th, 2021. [Online]. Available: https://projects.eclipse.org/
projects/modeling.emf.emf

[7] O. Reynolds, A. García-Domínguez, and N. Bencomo, “Cronista: A multi-
database automated provenance collection system for runtime-models,”
Inf. and Soft. Tech., vol. 141, Jan 2022.

[8] G. Kiczales, J. Lamping, A. Mendhekar et al., “Aspect-Oriented
Programming,” in Proceedings of ECOOP’97, ser. LNCS. Jyväskylä,
Finland: Springer-Verlag, Jun. 1997, vol. 1241, pp. 220–242.

[9] B. Pérez, J. Rubio, and C. Sáenz-Adán, “A systematic review of
provenance systems,” Knowledge and Information Systems, vol. 57, no. 3,
p. 495–543, Dec 2018.

[10] R. Wang, D. Sun, G. Li, M. Atif, and S. Nepal, “Logprov: Logging
events as provenance of big data analytics pipelines with trustworthiness,”
in Proceedings of BigData’16, Dec 2016, p. 1402–1411.

[11] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing in
Distributed Environments,” in Middleware 2012, ser. LNCS. Berlin,
Heidelberg: Springer, 2012, pp. 101–120.

[12] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on
provenance: What for? What form? What from?” The VLDB Journal,
vol. 26, no. 6, pp. 881–906, 2017.

[13] N. Bencomo, S. Götz, and H. Song, “Models@run.time: a guided tour
of the state of the art and research challenges,” Software & Systems

Modeling, 2019.

[14] P. Groth and L. Moreau, “PROV-Overview,” W3C, Tech. Rep.,
2013, date last checked: February 14th, 2021. [Online]. Available:
https://www.w3.org/TR/prov-overview/

[15] Eclipse Foundation, “CDO Model Repository,” Dec. 2019, date
last checked: February 14th, 2021. [Online]. Available: https:
//www.eclipse.org/cdo/

[16] Apache Foundation, “Apache TinkerPop homepage,” Oct. 2021,
date last checked: October 5th, 2021. [Online]. Available: https:
//tinkerpop.apache.org/

[17] D. S. Kolovos, R. F. Paige, and F. Polack, “The Epsilon Object Language
(EOL),” in Proceedings of ECMDA-FA 2006, Bilbao, Spain, 2006.

[18] M. A. Rodriguez, “The gremlin graph traversal machine and language
(invited talk),” in Proceedings of DBPL’15, ser. DBPL 2015. New York,
NY, USA: ACM, 2015, p. 1–10.

[19] A. Kaur, Arvinder, and K. Johari, “Identification of crosscutting concerns:
A survey,” International Journal of Engineering Science and Technology,
vol. 1, Dec 2009.

[20] R. E. Filman and D. P. Friedman, “Aspect-oriented programming
is quantification and obliviousness,” in Workshop on Advanced

Separation of Concerns (OOPSLA 2000), 2000. [Online]. Available:
https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.6632

[21] H. Mcheick and S. Godmaire, “Designing and implementing different
use cases of aspect-oriented programming with AspectJ for developing
mobile applications,” in Proceedings of the 7th International Conference

on Software Engineering and New Technologies, ser. ICSENT 2018.
Association for Computing Machinery, Dec 2018, p. 1–8.

[22] M. Schäler, S. Schulze, and G. Saake, “Toward provenance capturing as
cross-cutting concern,” in Proceedings of the 4th USENIX conference on

Theory and Practice of Provenance, ser. TaPP’12. USENIX Association,
Jun 2012, p. 15.

[23] Sun Microsystems, “JavaBeans,” 08 1997, version 1.01-A. [Online].
Available: https://download.oracle.com/otndocs/jcp/7224-javabeans-1.
01-fr-spec-oth-JSpec/

[24] D. Brody, “ai-checkers,” Jan 2021. [Online]. Available: https:
//github.com/dbrody112/ai-checkers

[25] B. Ricaud, “Graphexp github project,” 2021, date last checked: February
7th, 2021. [Online]. Available: https://github.com/bricaud/graphexp

[26] R. Feldt and A. Magazinius, “Validity threats in empirical software
engineering research - an initial survey,” in Proceedings of SEKE 2010,
Jan 2010.

