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Abstract

Nowadays, in the bioethanol production process, improving the simplicity and yield of cell wall saccharification procedure 
represent the main technical hurdles to overcome. This work evaluated the application of a rapid and cost-effective technology 
such as near -infrared spectroscopy (NIRS) for easily predict saccharification efficiency from corn stover biomass. Calibra-
tion process focussing on the number of samples and the genetic background of the maize inbred lines were tested; while 
Modified Partial Least Squares Regression (MPLS) and Multiple Linear Regression (MLR) were assessed in predictions. 
The predictive capacity of the NIRS models was mainly determined by the coefficient of determination  (r2ev) and the index 
of prediction to deviation (RPDev) in external validation. Overall, we could check a better efficiency of the NIRS calibration 
process for saccharification using larger number of observations (1500 sample set) and genetic backgrounds; while MPLS 
regression provided better prediction statistics  (r2ev = 0.80; RPDev = 2.21) compared to MLR  (r2ev = 0.68; RPDev = 1.75). 
These results indicate that NIRS could be successfully implemented as a large-phenotyping tool in order to test the sac-
charification potential of corn biomass.

Highlights

• NIRS could be successfully implemented as a large-phenotyping tool in order to test the saccharification potential of corn biomass.
• NIRS wavelengths noted provide information about associated chemical components interfering in the saccharification potential.
• The best efficiency in the NIRS calibration process was obtained using larger number of observations (1500 samples) and 
genetic backgrounds.
• MPLS regression model is the most reliable for NIRS prediction of corn saccharification.

Keywords Corn stover · Breeding · Calibration process · Regression models · Bioethanol

Introduction

Dependence on fossil biofuels has led to a major energy 
crisis with environmental and economic consequences of 
global concern. This situation has led to the development of 
new methods to find sustainable energy alternatives to meet 
the environmental requirements [1, 2]. The production of 
ethanol from starch represents the most technically advanced 
option but gives rise to strong competition between energy 
and food supply. Second generation biofuels, such as corn 
lignocellulose, derived from plant residues has become one 
of the main sustainable alternatives, not only for its high 
availability and wide adaptability but also for not interrupt-
ing energy demand and food supply [3].

Corn is an important food and feed crop, used as pro-
cessed food, oil, feed and by-products. In addition, it can 
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be used as a bioenergy crop in two ways, (i) the starch in 
the seeds can be used to produce ethanol, and (ii) crop resi-
dues could potentially be used to produce lignocellulosic 
ethanol [3, 4]. The conversion of lignocellulosic biomass to 
ethanol is a three-step process: (i) a pretreatment step, fol-
lowed by (ii) hydrolytic degradation of the carbohydrates 
to the constituent sugar monomers (saccharification) and 
(iii) final fermentation of the free sugars to ethanol [1, 5]. 
Nevertheless, the key obstacle to the production of second-
generation biofuels is the complicated structure of the cell 
wall, which is naturally resistant to decomposition and 
sugars release [6].

Besides cell wall recalcitrance, evaluating and select-
ing the optimal feedstock from large-scale germplasm for 
saccharification efficiency is an indispensable strategy 
to improve lignocellulosic biofuel production [7, 8]. The 
analysis of large plant populations in breeding studies for 
cell wall digestibility is time-consuming, labor-intensive, 
and economically expensive; and it is still restricted to vari-
ous physical and chemical pretreatments [9]. In this regard, 
near-infrared spectroscopy (NIRS) is a versatile, low-cost 
and non-destructive indirect analytical technology than can 
be assessed [10, 11].

NIRS uses electromagnetic radiations in the NIR region 
to rapidly measure the biochemical composition of sam-
ples; however, NIR is a secondary technique, meaning that 
a laboratory reference method is required to create a NIR 
calibration. Accurate NIRS predictions of unknown samples 
depend on a calibration set (i.e. a large database) that is 
representative of the spectral and chemical variation encoun-
tered in the target population [12]. Additionally, the samples 
should be representative of future unknown samples to be 
measured in all areas of potential variability including, ori-
gin, background, constituent range(s), seasonal variation, 
etc. [13]; collecting the right samples is often the most dif-
ficult step in creating an accurate calibration.

Once the reference laboratory data are obtained, they are 
added to raw sample spectra and these data are regressed 
against each other. Processed and standardized NIR spectra 
contain multiple variables in the form of reflectance that is 
regressed with targeted traits. Multivariate regression tech-
niques such as multiple linear regression (MLR), partial least 
square (PLS) and principal component regression (PCR) are 
used to generate robust and effective models [12, 14]. Partial 
least squares (PLS) regression is a powerful multivariate 
technique that finds latent factors in the data to maximize 
the covariance between spectra and the target trait. To ensure 
that the underlying relationship is captured in a PLS model, 
researchers typically perform cross-validation on the cali-
bration set. The newly developed calibration model is then 
tested using spectra from independent samples, the valida-
tion set, to ensure that the model is neither over-fitted nor 
under-fitted [15, 16]. Moreover, modified PLS (MPLS) is 

considered stable and less prone to over fitting due to the 
influence of intragroup variations [17].

The final output will be a linear equation that can be 
applied to future unknown samples in order to predict con-
stituents or properties of interest. It allows the high-through-
put screening of populations at both qualitative and semi-
quantitative levels. In recent years, this technology has been 
applied to evaluate biomass digestibility in several species, 
such as miscanthus [18], Jerusalem artichoke [11], wheat 
[19], eucalyptus [20], sweet sorghum [21], rice [22], and 
sugarcane [23]. However, so far, nothing has been explored 
on the NIRS potential for the determination of corn stover 
saccharification.

In the current work, we investigate about the efficiency 
of the calibration process focussing on the number of sam-
ples and the genetic background of the maize inbred lines 
included. Moreover, we compared two common multivariate 
regression methods in the calibration development (MLR 
and MPLS). Overall, the main objective of the present work 
is to evaluate the capability of NIRS as a fast tool to predict 
the saccharification efficiency of lignocellulosic biomass of 
corn, in order to use this instrument for breeding purposes.

Materials and Methods

Field Trials/Sample Dataset

We used inbred lines from two different sources in order to 
explore maize genetic variability: Recombined inbred lines 
(RILs) from a Multi-parent Advanced Generation Inter-
Crosses (MAGIC) population. We optimized the MAGIC 
using eight temperate maize inbred lines of diverse genetic 
origin, as five of them derive directly from different open 
pollinated varieties from Spain, Italy, and France, while two 
lines are from Northern North America; all the parental lines 
belong to the non-stiff stalk genetic group [24]. On the other 
hand, the USDA North Central Regional Plant Introduction 
Station in AMES, Iowa maintains over 3000 maize inbreds 
from around the world. When the inbreds were classified 
according to breeding program of origin, the different breed-
ing programs tended to group together, with most of the 
USA programs in the two major germplasm groups recog-
nized by temperate maize breeders (stiff stalk and non-stiff 
stalk). They also include other materials from international 
programs (for example, Spain, France, China, Argentina, or 
Australia) that seem to represent germplasm pools different 
from those commonly used in North American programs 
[25].

Field evaluations were carried out at Misión Biológica de 
Galicia in Pontevedra (42º24′ N, 8º38′ W, 20 m above sea 
level). The complete field trials consisted of (i) a subset of 
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408 lines from a MAGIC population together with the eight 
founders (EP17, EP43, EP53, EP86, PB130, F473, A509, 
and EP125) [2] in 2016 and 2017, and (ii) a reduced sub-
set of 836 lines, belonging to the AMES Association Panel 
(North Central Regional Plant Introduction Station, USA), 
together with 6 controls (A619, A632, A662, A665, PH207, 
EP42) in 2018 and 2019 [26].

The subset of 408 lines from the MAGIC population 
was evaluated following a single augmented design with 10 
blocks, 42 non-replicate lines were included in each block, 
along with the eight inbred founders. Each plot consisted 
of a single row, 2.4 m long and 13 plants per row, with the 
spacing between consecutive hills in a row being 0.18 m and 
0.8 m between rows. Whereas, the subset of 836 lines from 
the AMES Panel was evaluated following an augmented 
17-block design, each block consisting of 50 lines and the 
six testers. Each plot consisted of a single row, 2.4 m long 
and 13 plants per row, with the spacing between consecu-
tive hills in a row being 0.21 m and 0.8 m between rows. 
From the 836 lines evaluated in the field, 300 lines with 
great genetic variability, as well as adapted to the growth 
conditions of Pontevedra and with sufficient material for 
saccharification analyses were included. Local agronomical 
practices were followed.

The global dataset included 1500 corn stover samples col-
lected from both subsets (approximately 400 inbred lines 
from the MAGIC and 300 inbred lines from AMES during 
2 years of evaluation, including replicated testers in the cor-
responding blocks)(Supplementary file 1). Each sample was 
composed of tissues from 2 to 10 plants collected at grain 
harvest starting from 55 days after flowering. The samples, 
once dried (60 °C, 7 days) were ground in a mill (Restch 
SM100, Germany) with a 0.75 mm mesh for subsequent 
saccharification determination.

Saccharification Efficiency Measurements

Saccharification efficiency was determined following the 
method described by Gómez and coauthors at the Centre 
for Novel Agricultural Products (CNAP) [9]. Ground mate-
rial was weighed into 96-well plates, each well contained 
4 mg of each sample using a custom-made robotic platform 
(Labman Automation, Stokesley, North Yorkshire, UK). 
Pretreatment, hydrolysis and sugar determination were per-
formed automatically by a robotic platform (Tecan Evo 200; 
Tecan Group Ltd. Männedorf, Switzerland). Samples were 
pre‐treated with sodium hydroxide (NaOH, 0.5 M, Fisher 
Scientific, UK) at 90 °C for 30 min, washed four times with 
500 μl sodium acetate buffer  (C2H3NaO2, Sigma-Aldrich, 
UK) and finally subjected to enzymatic digestion (Celluclast 
2, 7FPU/g, Novozymes, Bagsvaerd, Denmark) at 50 °C for 
9 h. Samples were analyzed in duplicate/triplicate (SD mean 
from 10 to 15). The amount of released sugars was assessed 

against a glucose standard curve using the 3-methyl-2-ben-
zothiazolinone hydrozone method (MTBH, Sigma-Aldrich, 
UK) [27]. This method was tested for detection of a range 
of sugars that are released from the cell wall, and showed 
sensitive detection of several monosaccharides.

NIR Spectra Acquisition

Every sample was allowed to stabilize at room temperature 
prior to spectral data acquisition. The determinations were 
carried out in duplicate in a temperature-controlled room 
(~ 24 °C), with the dry and ground samples (~ 30 g) loaded 
in a circular quartz cuvette for solids (internal diameter of 
11 cm) [13]. NIR spectra were collected on an instrument 
FOSS NIRS D2500 spectrometer (FOSS, Hillerød, Den-
mark) in the visible and near infrared region (400–2498 nm) 
at 0.5 nm intervals, in reflectance mode [12]. The acquired 
spectra were processed with WinISI software (version 4.12, 
Infrasoft International, PA, USA). The average spectrum 
of each sample was used for calibration and validation 
procedures.

Statistical Analysis

Three different calibration and validation process were 
developed: a global approach including samples from both 
panels, and independent processes for MAGIC and AMES 
panels. Chemometric analysis was performed by both Modi-
fied Partial Least Square Regression (MPLS) and Multiple 
Linear Regression (MLR) methods. The MLR models were 
built with Stepwise selection of wavelength applies an F-test 
to identify the best-fitted model. The different datasets were 
randomly divided into two subsets using the SELECT algo-
rithm included in the WinISI IV software.

A principal component analysis (PCA) on the first deriv-
ative of the absorbance was used to calculate the global 
Mahalanobis distance (GH) of each sample to the centre 
of the population in an n-dimensional space [28] using the 
CENTER algorithm included in the WinISI IV software. 
The samples with GH > 3 were identified as spectral outliers 
and removed, repeating the operation until all samples had a 
GH value lower than the recommended maximum [28]. Dur-
ing calibration process, three elimination passes of chemi-
cal outliers were applied, considering the critical T-statistic 
value set for chemical outliers detection was 2.5 [29]. Cali-
brations were developed after removing all outliers.

In order to develop the most accurate calibration models, 
different combinations of scatter corrections (NONE, no 
correction; D, detrending; SNV, standard normal variate; 
SNV + D, standard normal variate and detrending; WMSC, 
weighted multiplicative scatter correction; and SMSC, 
standard multiplicative scatter correction) and mathemati-
cal treatments (0, 0, 1, 1; 1, 4, 4, 1; 1, 5, 5, 1; 1, 6, 4, 1; 1, 8, 
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4, 1; 1, 10, 5, 1; 1, 10, 10, 1; 2, 4, 4, 1; 2, 5, 5, 1; 2, 6, 4, 1; 
2, 8, 4, 1; 2, 10, 5, 1; 2, 10, 10, 1; where the first digit is the 
derivative order, the second is the gap over which the deriva-
tive is calculated, the third is the number of data points in 
the first smoothing, and the fourth is the second smoothing) 
were tested [12].

The prediction models were developed using a subset as 
the calibration set using ~ 75% of the samples (n = 1150 in 
the global approach, n = 536 MAGIC, n = 527 AMES) evalu-
ated by leave-one-out cross-validation, and then tested on 
the remaining ~ 25% of the samples performing an external 
validation (n = 350 in the global approach, n = 195 MAGIC, 
n = 180 AMES).

The best-fit equation was considered qualified as predic-
tion model on the basis of results for standard error of cross-
validation (SEcv), the standard error of external validation 
(SEev), the coefficient of determination calculated in inter-
nal cross-validation (1 − VR) and external validation  (r2ev). 
In addition, in order to evaluate the accuracy of a calibration 
model and to allow standard comparison with other studies, 
we calculated the index of prediction to deviation (RPD), a 
non-dimensional statistic for the quick evaluation and clas-
sification of NIR spectroscopy calibration models which has 
been widely used in NIRS studies, and defined as the ratio of 
the standard deviation of the reference data for the samples 
to SEcv/SEev; and the range error index (RER), defined as 
the ratio of the range in the reference data for the samples 
to the SEcv/SEev [30, 31]. Finally, bias and slope were cal-
culated with the external validation samples; the slope rep-
resents a change in predicted values with a unit change in 
reference values, and biasness is the average of residuals of 
laboratory and reference values, which account as well for 
prediction accuracy.

Results and Discussion

Lignocellulosic biomass consists of three main structural 
units: cellulose, hemicellulose and lignin. Cellulose is a 
crystalline polymer of glucose, hemicellulose is an amor-
phous polymer of xylose and arabinose, and lignin is a 
complex polymer of aromatic alcohols. Vibration bands 
associated with these chemical biomass components [32] 
can be observed in Fig. 1, which displays the average NIR 
spectra of 1500 analysed samples of corn stover. Five main 
absorption peaks at 1456, 1912, 2100, 2252 and 2310 nm, 
were in accordance with the spectral fingerprint showed by 
Guimarães and coauthors [33] for prediction of theoretical 
ethanol yield in sorghum biomass.

Regarding the wavelengths selected in MLR calibration, 
the results showed that two wavelengths were the most rel-
evant characteristic absorption peaks, particular at 824 and 

880 nm, which are associated to the third overtone band of 
C-H bond, related to sugars [34]. The wavelength region 
from 1600 to 1800 nm is associated to the absorption band 
of a C-H stretching first overtone corresponding to fiber 
components of cell wall [35, 36], peaks around 1780 nm 
being associated to the absorption band of a C-H stretching 
first overtone corresponding to carbohydrates, such as cel-
lulose and hemicellulose [35, 37]. Other relevant coefficient 
appears in the region ~ 2332 nm, which assigned to cellu-
lose and lignin absorption (C–H stretching/C–H deforma-
tion combination) [35]. Overall, both regression methods 
used for calibration showed similar trends in wavelength (or 
regions) associated/related to the chemical composition of 
corn stover biomass. The cell wall structure and composi-
tion governs bioethanol production [8]; therefore, the wave-
lengths defined in the current work provide useful informa-
tion about associated chemical components interfering in the 
saccharification potential.

The range of variation for the saccharification efficiency 
of the complete dataset obtained by laboratory analysis at 
CNAP is shown in Fig. 2. Samples of the calibration set 
are reported after the removal of all outliers (spectral and 
chemical), where the means (and ranges) expressed as nmol 
 mg−1  material−1  h−1were: 153.3 (min. 77.6 to max. 204.5) 
and 150.5 (min. 77.6 to max. 204.5) for MPLS and MLR 
model, respectively. The external validation set had similar 
mean and range values, with 153.6 (min. 77.6 to max. 204.5) 
nmol  mg−1  material−1  h−1 for both regression models. These 
means and ranges were higher and wider than previous stud-
ies using other crop species such as rice, barley, wheat, triti-
cale, sorghum, miscanthus or brachypodium [38–40]. This 
range of enzyme-released glucose was expected due to the 
extensive background of the samples [2, 26], and suggest 
that many expected shifts will be represented in order to 
accomplish new germplasm phenotyping screenings.

The prediction models resulting from the second deriva-
tive (2, 4, 4, 1), and a combination of standard normal vari-
ate and detrend as scatter correction method, provided a 
more accurate and precise estimate for saccharification effi-
ciency using the complete dataset. During calibration proce-
dures, the number of samples removed as chemical T outli-
ers, expressed as a percentage of the total initial samples in 
the set, ranged from 7.2 to 8.3% for both prediction models 
obtained, these values being lower than the maximum value 
(20%) annotated by Shenk and Westerhaus [12].

Attending to calibration and cross-validation statistics 
showed in the Table 1, we can define a better prediction 
model for the MPLS regression in comparison to the 
MLR. The coefficients of determination (1 − VR) and the 
standard errors of prediction in cross-validation (SEcv) 
were 0.84 and 10.80 nmol  mg−1  material−1  h−1 for MPLS 
model, and 0.68 and 14.85 nmol  mg−1  material−1  h−1 for 
MLR model, respectively. In this sense, and according 
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to Shenk and coauthors [41], our NIRS prediction using 
MPLS model with an 1-VR value higher than 0.70 indicate 
a good predictive ability, while the use of MLR model 
with a 1-VR lower than this value could be just used to 
qualitative estimation purposes (separating groups with 
higher and lower analytical values).

On the other hand, RPD value governs the predic-
tion accuracy of the models. RPD is defined as the ratio 
of prediction to standard deviation of reference values, 

wherein an RPD value < 1.5 indicates that the calibration 
is not reliable; a value between 1.5 and 2.0 indicates the 
capacity of a model to distinguish between high and low 
values; a value between 2.0 and 2.5 signifies the mod-
el’s capacity to “approximate” quantitative prediction; a 
value between 2.5 and 3.0 suggests “good” quantitative 
prediction; and avalue > 3.0 indicates “excellent” quan-
titative prediction [31, 42], whereas models with RER 
values under 3 are considered unsuccessful, while RER 

1456
225221001912 

2310

a

b

Fig. 1  Average raw (a) and second derivative spectra (b) of a total set 
(n = 1500) of corn biomass samples using near-infrared spectroscopy 
in reflectance mode. Dotted lines indicate five main absorption peaks 
related to the main components of corn stover spectra, in accordance 

with the spectral fingerprint for prediction of theoretical ethanol yield 
in sorghum biomass [33]. NIR spectral absorbance values [log (1/R)], 
where R is the reflectance
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values between 3 and 10 indicate limited applicabil-
ity (e.g., screening) and RER values higher than 10 are 
considered to characterize high-quality models [30, 43]. 
For our models, RPDcv and RERcv achieved values of 
2.55 and 11.75 for MPLS model, and 1.78 and 8.54 for 
MLR model, respectively, indicating a reliable prediction 
power for MPLS model. By contrast, MLR model would 
be fair, but just allow classifying samples into high and 
low groups of saccharification efficiency.

After the calibration process, both models were validated 
with an external (independent) set of samples (Table 1). 
The values of the coefficient of determination  r2ev and the 
RPDev were 0.80 and 2.21 for MPLS model and 0.68 and 
1.75 for MLR model, respectively. Considering the criteria 
previously defined, the predictive quality of the calibration 
models based on RPDev values were considered poor for 

MLR model, and suitable for quantitative predictions for 
MPLS model. However, we have to note that the RERev 
values for both models, shortly exceed the minimum value 
suggested by Williams and Sobering [30] for a reliable quan-
titative model (RER > 10), with 10.03 and 12.64 for MLR 
and MPLS, respectively. Although we should mention that 
the expected range used in RER calculation depends on the 
number of samples, whereas the standard deviations used in 
RPD was not, this dependence is the reason for preferring 
RPD over RER [44].

In the same way, attending to bias and slope of the exter-
nal validation, both models showed good results, although 
MPLS displayed better results (0.27 for bias and 1.00 for 
slope). An ideal slope value should be 1, but any value close 
to 1 would also represent the accuracy of the model; whereas 
bias should have a value close enough to 0, a negative value 

Fig. 2  Boxplots of the sac-
charification data obtained in 
the two sample subsets included 
in this study. a: subset of 408 
lines from a MAGIC popula-
tion together with six founders 
(EP17, EP53, EP86, F473, 
A509, and EP125), and b: a 
subset of 300 lines, belonging 
to the Ames association panel 
(North Central Regional Plant 
Introduction Station, USA), 
together with 6 controls (A619, 
A632, A662, A665, PH207, 
EP42). Red dots indicate the 
mean values
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relates to underestimation by the model, whereas a positive 
bias value depicts overestimation [45].

Comparing the results, the MPLS calibration method 
demonstrated to have more predictive ability than the MLR 
to measure the prediction of saccharification efficiency 
(Fig. 3). MPLS is known to be a more effective model than 
MLR for the development of NIRS calibration models, par-
ticularly with large datasets, by reducing the dataset into a 
small number of orthogonal factors and to enabling avoid 
collinearity and over-fitting [46]. Additionally, MPLS is 
known to be more reliable than MLR for the calibration of 
complex parameters [47]. Additionally, the MPLS technique 
was better than MLR model in the validation on independent 
set. Therefore, we recommend constructed calibration model 
by MPLS technique in preference to MLR technique for this 
saccharification trait.

Finally, contrasting the results obtained with other poten-
tial species for bioethanol production, Huang and coauthors 
[22], using MPLS model, reported similar or slightly lower 
predictive ability for estimating biomass saccharification 
(expressed as total releases sugar)  (r2c = 0.75, RPDev = 2.0) 
in a rice straws; van der Weijde and coauthors [48] devel-
oped NIRS models to predict of saccharification efficiency 
of the crop Miscanthus and obtained good correlations 
(1-VR: 0,82–0,92); while Li and colleagues [10] devel-
oped a calibration model that included different sugarcane 
genotypes, and they found RPD values of over 2.0 in cali-
bration, internal cross-validation, and external validation. 
These results are as good as the obtained in the current work. 
However, and related to the complexity of the parameter, we 
should note that the performance of our calibration models 
was more limited than those reported in sugarcane [23], who 
obtained NIRS models for fermentable hexoses and total 
sugar that exhibited excellent prediction capability (RPD 
values higher than 4.0) for predicting biomass digestibil-
ity. The usefulness of those last traits to estimate bioethanol 
potential could be consider in future studies evaluating corn 
biomass.

Alternatively, as databases get larger, this increases the 
complexity in terms of variability, and although this is nor-
mally seen as an advantage in global calibrations, in practice 
it creates a problem because prediction accuracy decreases 
[49, 50]. Although we do not have variability in terms of dif-
ferent species or local laboratory determination facilities, we 
tried to define the advantages or disadvantages of the use of 
smaller datasets in the calibration process, primarily based 
on genetic variability of the inbred lines included. Focus-
sing in statistics in external validation and MPLS model 
(Table 2), the values of the coefficient of determination  r2ev 
and the RPDev were 0.69 and 1.73 for the MAGIC, and 0.24 
and 1.15 for AMES, respectively. Considering the criteria 
previously defined, the predictive quality of the calibra-
tion models was considered poor or very poor. In addition, Ta
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parameters such as the bias indicate greater overestimation 
in relation to the average of residuals of laboratory and refer-
ence values (5.58 for bias).

Regarding to the genetic background of the datasets, the 
most outstanding different we can note is that the AMES 
set correspond to a non-structured panel (set of genetically 
diverse lines), including assorted materials, but with greater 
proportion of American programs (stiff stalk and non-stiff 
stalk germplasm groups) [25]; whereas the MAGIC popula-
tion refers to a limited number of known parents of diverse 
origins (Spain, Italy, France and Northern North America) 
and just including non-stiff stalk materials [24]; neverthe-
less, although the MAGIC population showed better results 
for some calibration statistics, they are far away from the 
observed in the global approach.

Conclusions

We can check a better efficiency of the NIRS calibration 
process using larger number of observations and genetic 
backgrounds. In addition, the comparison of regression 
methods for estimating saccharification efficiency showed 
that the Modified Partial Least Squares was a better method 
than Multiple Linear Regression, based on terms of higher 
correlation coefficient between predicted and reference 
values and higher index of prediction (RPD). As a result, 
we can state that near-infrared spectroscopy can be effec-
tively used in the screening of large germplasm corn col-
lections in relation to the use of their biomass in bioethanol 
production.
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Fig. 3  Validation scatter plot of reference values vs. predicted values by NIRS of saccharification efficiency (nmol  mg−1  material−1  h−1) for sam-
ples of corn stover biomass. a: Modified Partial Least Squares Regression (MPLS) and b: Multiple Linear Regression (MLR)
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Table 2  Calibration, cross-validation and external validation statistics of NIRS models for predicting the saccharification efficiency (nmol  mg−1  material−1  h−1) of corn stover biomass using the 
samples subsets MAGIC (Multi-parent Advanced Generation InterCrosses) and AMES (USDA North Central Regional Plant Introduction Station). Modified Partial Least Squares Regression 
(MPLS) and Multiple Linear Regression (MLR) models

CALIBRATION: n: number of observations; Out: number of anomalous chemical samples removed from the study; SD: standard deviation; Min: minimum; Max: maximum; SEc: standard 
error of calibration; r2c: coefficient of determination of the calibration model; CROSS VALIDATION: 1-VR: coefficient of determination in cross-validation; SEcv: standard error of cross-
validation; RDPcv: ratio between the standard deviation and the error of prediction in cross-validation; RERcv: ratio between the range of values and the error of prediction in cross-validation; 
EXTERNAL VALIDATION: r2ev: coefficient of determination in external validation; SEev: standard error of prediction; Bias: mean difference between the observed values and those predicted 
by the equation; slope: regression slope; RDPev: ratio between the standard deviation and the error of prediction in external validation; RERev: ratio between the range of values and the error of 
prediction in external validation

Calibration Cross Validation

Panel Model n SD Out Mean Min Max r2c SEc 1-VR SEcv RPDcv RERcv

MAGIC MPLS 536 40.00 36 137.4 77.60 218.7 0.80 19.00 0.71 21.02 1.90 6.71

MLR 536 40.00 34 137.4 77.60 218.7 0.77 19.64 0.76 20.00 2.00 7.06

AMES MPLS 527 15.95 43 158.4 93.10 224.7 0.29 9.71 0.21 10.54 1.51 12.49

MLR 527 15.95 40 158.4 93.10 224.7 0.37 9.96 0.36 10.01 1.59 13.15

External Validation

Panel Model n SD Out Mean Min Max r2ev SEev Bias Slope RPDev RERev

MAGIC MPLS 195 40.08 0 136.2 77.60 218.3 0.69 23.14 5.58 0.92 1.73 6.08

MLR 195 40.08 0 136.2 77.60 218.3 0.74 20.81 1.31 0.92 1.93 6.76

AMES MPLS 180 16.28 0 157.4 93.10 224.7 0.24 14.15 0.47 1.06 1.15 9.30

MLR 180 16.28 0 157.4 93.10 224.7 0.38 13.17 0.55 0.91 1.24 9.99
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