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A B S T R A C T   

There is a growing demand for specialty coffee with more pleasant and uniform sensory perception. Wet 
fermentation could modulate and confer additional aroma notes to final roasted coffee brew. This study aimed to 
assess differences in volatile compounds and the intensities of sensory descriptors between unfermented and 
spontaneously fermented coffee using digital technologies. Fermented (F) and unfermented (UF) coffee samples, 
harvested from two Australia local farms Mountain Top Estate (T) and Kahawa Estate (K), with four roasting 
levels (green, light-, medium-, and dark-) were analysed using near-infrared spectrometry (NIR), and a low-cost 
electronic nose (e-nose) along with some ground truth measurements such as headspace/gas chromatogra-
phy–mass spectrometry (HS-SPME-GC-MS), and quantitative descriptive analysis (QDA ®). Regression machine 
learning (ML) modelling based on artificial neural networks (ANN) was conducted to predict volatile aromatic 
compounds and intensity of sensory descriptors using NIR and e-nose data as inputs. Green fermented coffee had 
significant perception of hay aroma and flavor. Roasted fermented coffee had higher intensities of coffee liquid 
color, crema height and color, aftertaste, aroma and flavor of dark chocolate and roasted, and butter flavor (p <
0.05). According to GC-MS detection, volatile aromatic compounds, including methylpyrazine, 2-ethyl-5-meth-
ylpyrazine, and 2-ethyl-6-methylpyrazine, were observed to discriminate fermented and unfermented roasted 
coffee. The four ML models developed using the NIR absorbance values and e-nose measurements as inputs were 
highly accurate in predicting (i) the peak area of volatile aromatic compounds (Model 1, R = 0.98; Model 3, R =
0.87) and (ii) intensities of sensory descriptors (Model 2 and Model 4; R = 0.91), respectively. The proposed 
efficient, reliable, and affordable method may potentially be used in the coffee industry and smallholders in the 
differentiation and development of specialty coffee, as well as in process monitoring and sensory quality 
assurance.   

1. Introduction 

Nowadays, coffee consumers are paying more attention to the 
rewarding experience of coffee consumption, which requires coffee to 
offer more nutritional benefits and pleasant sensory quality (de Melo 
Pereira et al., 2019). The sensory properties of end-products could be 
attributed to many variables, including physical characteristics, chem-
ical composition, and post-harvest primary and secondary processing of 

coffee beans (Sualeh et al., 2020). Spontaneous fermentation is one of 
the primary postharvest processing methods, where a wide range of 
indigenous microbiota perform microbial activities on the de-pulped 
beans for 6 to 72 h (Masoud et al., 2004; Scholz et al., 2019). 

Involved microorganisms during fermentation would utilize the 
carbohydrates, proteins, and phenolic compounds, especially reducing 
sugar, as carbon sources for growth, which could largely determine the 
remaining content of free sugars and amino acids. Moreover, the 
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generation of microbial metabolites, such as organic acids, alcohols, 
esters, ketones, and aldehydes, may migrate into the coffee beans during 
long-time fermentation (Elhalis et al., 2022). Most of them are essential 
aroma precursors and play a role in the production of volatile aromatic 
compounds and the development of coffee flavor during subsequent 
drying and roasting (da Silva Oliveira et al., 2022). Pereira et al. (2022) 
reported that spontaneously fermented coffee had a higher level of 
trigonelline, which is responsible for the coffee bitterness and astrin-
gency, and the generation of furans correlated to sweet, caramel, and 
burnt aromas (Bressani et al., 2021). Thus, fermentation is believed to 
modulate or confer additional aroma notes to the final coffee beverage 
and influence the sensory qualities both directly and indirectly. 

Generally, the determination of non-volatile and volatile compounds 
in coffee and the evaluation of their sensory properties are achieved 
through liquid chromatography (LC), gas chromatography (GC), and 
quantitative descriptive analysis (QDA®) with a panel of Q-graders, 
which require high cost of time, money, and learning. Furthermore, 
considering the recognition threshold, the sensory analysis could induce 
stimulus errors and become less objective and senseless. Therefore, 
developing novel, rapid, and reliable analyses, such as near-infrared 
(NIR) and electronic noses (e-noses), is beneficial as an alternative to 
advanced but expensive analytical methods. NIR and e-nose coupled 
with artificial neural networks (ANNs) have been explored for several 
purposes, such as coffee varietal differentiation (Buratti et al., 2015), 
determination of coffee geographic origin and postharvest processing 
type (Giraudo et al., 2019; Wu et al., 2023), and the prediction of coffee 
roasting degree (Bertone et al., 2016; Gonzalez Viejo et al., 2021). 
However, individual usage of NIR and e-nose also has limitations when 
analyzing trace composition in complex samples (Wang, 2019). 

This study aimed to evaluate the impacts of spontaneous fermenta-
tion on the physicochemical properties, the pattern of volatile aromatic 
compounds, and the sensory perception of Arabica coffee. For this, NIR, 
e-nose, GC-MS, and QDA tests with machine learning modelling were 
used to evaluate, determine, perceive, and predict the differences be-
tween unfermented and fermented coffee and principal components 
analysis (PCA) was used to assess the grouping relationship between 
variables and sensory profile of coffee. The interactions among post-
harvest processing, chemical composition, and sensory quality could be 
better understood and further investigated to optimize coffee 
processing. 

2. Materials and methods 

2.1. Sample preparation 

There was a total of four bags (500 g each bag) (n = 4), two bags of 
unfermented (n = 2) and two fermented (n = 2) Kenyan arabica green 
coffee beans. One of each type was planted and provided by two sepa-
rated local coffee farms in Australia: (1) Mountain Top Estate and (2) 
Kahawa Estate. Green coffee beans were respectively roasted into light 
roast level (196 ◦C, 10 mins), medium roast level (210 ◦C, 10 mins), and 
dark roast level (225 ◦C, 10mins) using a coffee roaster (Cafemasy, 
model SCR-301, Guangzhou, China). Coffee roaster was pre-heated 
under relevant temperature for 15 min before actual roasting coffee 
beans to ensure the achievement of required temperature. Green and 
roasted coffee beans were ground into a powder with a mean particle 
size by a coffee grinder (Breville Smart Grinder™ Pro, model 
BCG820BSSXL, Melbourne, VIC, Australia) after cooling down to 
ambient temperature (25 ◦C) with natural air flush (Soocas Hair dryer, 
model H3, Shenzhen, Guangdong, China). Interval breaks were applied 
every five grinding operations to avoid the variation from machine 
heating. Ground coffee (2.5 g) was brewed into liquid using the Breville 
Creatista® Plus espresso machine (Breville Pty Ltd., Sydney, New South 
Wales, Australia) under Expresso mode of a constant pouring volume of 
30 mL at 78 ◦C. Therefore, 16 coffee liquid brewed from different pro-
cessed beans (Table 1) were used for the following analysis. 

2.2. Total soluble solids and color measurement 

Total soluble solids in coffee brew and replicates were measured in 
degrees Brix (◦Brix) using an optical refractometer Alla France 
REFBX010 (Alla France Sarl, ChemilléMelay, France) with a range of 
measurement of 0–32 Brix. All coffee brews were measured at 40 ◦C, and 
the refractometer was rinsed with distilled water and dried between 
measurements to avoid cross-contamination. The color of all coffee 
samples brewed from different roasted beans was measured in triplicates 
using a handheld colorimeter NIX (Nix Pro Colour Sensor™, Nix Sensor 
Ltd., Ontario, CA). The CieLab color coordinates (L*, a*, and b* colori-
metric, unitless) were recorded and analyzed. 

2.3. Near-Infrared spectroscopy (NIR) analysis 

A portable NIR device microPHAZIR™ (RX Analyzer; Thermo Fisher 
Scientific, Waltham, MA, USA) was used to evaluate the coffee brew 
according to the method described by Gonzalez Viejo et al. (2018a) with 
the spectral range of 1596 to 2396 nm every 7–9 nm in triplicates and 
three measurements per replicate. The absorbance was measured using a 
Tungsten light bulb with the measurement time less than three seconds. 
A Whatman® filter paper (Whatman plc. Maidstone, UK; qualitative 
grade 3, 7.0 cm) was submerged in each coffee sample to be measured. A 
white background was placed at the top to avoid environmental signal 
noise during the measuring. The absorbance values from the dry and 
empty filter paper were subtracted from the wet filter paper with the 
samples to obtain only the chemical fingerprinting of the coffee sample, 
as described by Gonzalez Viejo et al. (2018a). The first derivative of NIR 
data was obtained using Savitzky Golay filters in The Unscrambler X 
ver.10.3 software (CAMO Software, Oslo, Norway). 

2.4. Electronic nose (e-nose) description and data extraction 

A low-cost and portable e-nose developed by the Digital Agriculture 
Food and Wine Group from the University of Melbourne (DAFW-UoM) 
was used to assess the coffee samples, according to Gonzalez Viejo et al. 
(2020). The device was composed of nine different gas sensors: (i) MQ3: 
Alcohol (ethanol), (ii) MQ4: Methane (CH4), (iii) MQ7: Carbon mon-
oxide (CO), (iv) MQ8: Hydrogen (H2), (v) MQ135: NH3/alcohol/ben-
zene, (vi) MQ136: hydrogen sulfide (H2S), (vii) MQ137: NH3, (viii) 
MQ138: benzene/alcohol/NH3 and (ix) MG811: Carbon dioxide (CO2). 
Each brewed coffee sample in beaker was immediately exposed to sen-
sors placed on the top of beaker for 1 min after 30 s baseline readings. 
The outputs were analyzed using a customized Matlab® R2021a code 
(Mathworks, Inc., Natick, MA, USA) developed by the DAFW-UoM, 
which displays the curves to select the most stable area of the signals 
and subdivide it into 10 sections to calculate 10 mean values per curve 
automatically for further analysis. 

Table 1 
Coffee samples involved in this study, including the origin farm, postharvest 
processing type, roasting degree, and abbreviation.  

Processing 
type 

Origin 
farm 

Green 
(unroasted) 
(G) 

Light 
roasted 
(L) 

Medium 
roasted 
(M) 

Dark 
roasted 
(D) 

Unfermented 
(UF) 

Kahawa 
Estate (K) 

UFKG UFKL UFKM UFKD 

Mountain 
Top Coffee 
(T) 

UFTG UFTL UFTM UFTD  

Fermented 
(F) 

Kahawa 
Estate (K) 

FKG FKL FKM FKD 

Mountain 
Top Coffee 
(T) 

FTG FTL FTM FTD  
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2.5. Identification and quantification of volatiles by HS-SPME-GC-MS 

Volatile compounds in coffee samples were analyzed by HS-SPME- 
GC-MS based on the methods described by Gonzalez Viejo et al. 
(2021) and Wu et al. (2022) with some modifications. GC-MS analysis 
was conducted via a gas chromatograph (6850 series II Network GC 
System, Agilent Technologies, USA) coupled to a headspace solid-phase 
microextraction (HS-SPME) system (PAL RSI I20, Switzerland) and a 
mass spectrometer (5973Network Mass Selective Detector, Agilent 
Technologies, USA). 

A 30 m DB-Wax capillary column (Agilent Technologies, USA) with 
0.25 mm internal diameter and 0.25 µm film thickness was fitted. The 
carrier gas was helium with 60 kPa column head pressure. In headspace 
sampling system, each sample was incubated for 15 mins at 40 ◦C and 
then 15 mins extraction and being sampled by 65 μm PDMS/DVB fiber 
(Fused Silica, Sigma Aldrich, USA). The compounds were desorbed for 6 
mins in splitless mode.The GC oven program was modified and set as 
follows: 40 ◦C for 5 min followed by an increase to 190 ◦C with the rate 
of 5 ◦C/min for 5 min; subsequently, the temperature reached 230 ◦C at 
a rate of 10 ◦C/min and maintained for 7 min. The acquisition was set to 
SCAN mode (35–350 m/z). The solvent delay time was 2 min. 

4-Octanol (20 μL 100 mg/L) was added into vials as internal standard 
and mixed and vortexed with 2.5 g of coffee sample. The linear retention 
index (LRI) of detected volatile compounds with >85% certainty was 
calculated using the alkane standard (C7–C30). Calculated LRI and mass 
spectrum of detected volatile compounds were compared to the data in 
the NIST Chemistry WebBook spectrum library (NIST2017) and NIST 
mass-spectra database, respectively. Semi-quantification was conducted 
by comparing the response area of the target compound and a closely 
eluted compound with known concentration after LRI and compound 
MS were confirmed. 

2.6. Descriptive sensory evaluation 

Twelve participants from the University of Melbourne (UoM; Ethics 
ID:1953926) were pre-screened as regular coffee drinkers and recruited 
into the sensory panel. All the panelists were professionally trained to 
detect basic tastes and aromas using International Standard methodol-
ogy (ISO 8586-1: 1993E Sensory analysis – General guidelines for the 
selection, training and monitoring of selected assessors and expert sen-
sory assessors, and quality control procedures) (ISO 1993) (Gonzalez 
Viejo et al., 2018b). This training was conducted in five sessions of 60 
mins each. As suggested in the above International Standard, briefly, 
sodium chloride (0.5 g/L), sucrose (16 g/L), caffeine (0.5 g/L), mono-
sodium glutamate (0.6 g/L), and citric acid (1 g/L) were used for the 
general training of basic tastes, salty, sweet, bitter, umami, and sour, 
respectively. Subsequently, aroma references (Le Nez du Vin ®: The 
Master kit) (Le Nez du Vin, France), including straw, clove, vanilla, 
honey, butter, leather, toast, coffee blossom, coffee pulp, maple syrup, 
and dark chocolate, were used to train the familiarization with relevant 
aromas generally found in coffee. 

The selection of descriptors for the test was carried out using the 
quantitative descriptive analysis (QDA®) method in blind tasting ses-
sions using the different coffee samples to generate consensus and 
agreement on a set of the most relevant attributes. For QDA®, the 
training sessions and selection of descriptors for arabica coffee samples 
consisted of nine sessions of 60 mins each and divided as follows: (i) two 
sessions for fermented green coffee, (ii) two sessions for fermented light- 
roasted coffee, (iii) two sessions for fermented medium-roasted coffee, 
(iv) two sessions for fermented dark-roasted coffee, (v) two sessions for 
unfermented green coffee, (vi) two sessions for unfermented light- 
roasted coffee, (vii) two sessions for unfermented medium-roasted cof-
fee, (viii) two sessions for unfermented dark-roasted coffee, (ix) one 
session for a mix of all types of coffee. To assess the panel performance 
during the training, a combination of cluster analysis, standard devia-
tion, ANVOA, and spider chart (data not shown) were developed to 

assess significant differences within the panelists for each descriptor. 
The single double-blind sensory session was conducted to evaluate 

the intensity of sensory descriptors for the 16 coffee samples in the focus 
group-type room in the sensory laboratory (School of Agriculture, Food 
and Ecosystem Sciences, UoM). Sample coffee brews (30 mL) were 
served at 70 ◦C in white paper shot cups labeled with 3-digit random 
codes. Water and plain water crackers were offered as palate cleansers. A 
total of 28 sensory descriptors with the rating of their intensity in a 15 
cm non-structured scale in the questionnaire (Table 2) were displayed 
on RedJade® (RedJade Sensory Solutions, LLC, Martinez, CA, USA). 

2.7. Statistical analysis and machine learning (ML) modelling 

GraphPad Prism 9 (GraphPad Prism version 9.0 for Windows, 
GraphPad Software, La Jolla, California, USA) was used for data visu-
alization. One-way and two-way analysis of variance (ANOVA), along 
with Fisher’s least significant difference (LSD) as post hoc test (α = 0.05), 
were performed via XLSTAT 2020.3.1 (Addinsoft, New York, USA) to 
assess significant differences among samples, processing methods, and 
the interactions of fermentation and roasting. Furthermore, a multi-
variate data analysis based on principal components analysis (PCA) was 
performed based on covariance to find relationships between variables 
and their associations with the samples. 

Four ML models were constructed using a Matlab® R2019b code 
developed by the Digital Agriculture Food and Wine group from The 

Table 2 
Sensory descriptors evaluated and anchors used during coffee sensory 
evaluation.  

Descriptor Anchors Descriptor Anchors 

Appearance 
Liquid Turbidity 

(clarity) 
Clear - 
Muddy 

Crema Height Absent - High 

Liquid Color Light - Dark Crema Color Light - Dark  

Aroma (as an odor, sensed through the nose and retronasal olfaction) 
Aroma Floral Absent - 

Intense 
Aroma Dark 
Chocolate 

Absent - Intense 

Aroma Hay Absent - 
Intense 

Aroma Sweet Absent - Intense 

Aroma Butter Absent - 
Intense 

Aroma Spices Absent - Intense 

Aroma Earthy Absent - 
Intense 

Aroma Roasted Absent - Intense  

Taste (the sense experienced by the tongue) 
Sweetness Absent - 

Intense 
Sourness Absent - Intense 

Bitterness Absent - 
Intense 

Astringency (a 
tactile taste felt as a 
dry, rough feeling) 

Absent - Intense  

Flavor (a combination of both aroma and taste) 
Flavor Floral Absent - 

Intense 
Flavor Dark 
Chocolate 

Absent - Intense 

Flavor Hay Absent - 
Intense 

Flavor Sweet Absent - Intense 

Flavor Butter Absent - 
Intense 

Flavor Spices Absent - Intense 

Flavor Earthy Absent - 
Intense 

Flavor Roasted Absent - Intense  

Smoothness (no 
overintense tastes of 
sour/bitter/ 
astringent) 

Absent - 
Intense 

Body (a tactile sense 
of density/viscosity) 

Light - Full 

Aftertaste (the tastes 
and aromas left in the 
mouth after 
swallowing) 

0 Second - 
>5 Seconds 

Overall Quality 
(overall sensory 
performance) 

Unacceptable - 
Extraordinary  
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University of Melbourne to assess 17 training algorithms and find the 
most accurate models with no under- or overfitting in a loop (Gonzalez 
Viejo et al., 2019). Models 1 and 2 (Fig. 1a) were developed using 
regression artificial neural networks (ANN) with the Levenberg- 
Marquardt algorithm to predict the peak area of 26 volatile aromatic 
compounds using the absorbance values of NIR (1596–2396 nm; Model 
1) and e-nose results (Model 2) as inputs. Samples were divided as 70% 
for the training stage, 15% for testing, and 15% for validation using a 
performance algorithm based on mean squared error (MSE). 

Models 3 and 4 (Fig. 1b) were developed using regression ANN with 
the data of NIR and e-nose as inputs, respectively, to predict 28 sensory 
descriptors. Both models were developed using the Bayesian Regulari-
zation algorithm. Data were randomly divided into 70:30 for training 
and testing, respectively, using a performance algorithm based on MSE. 
A neuron number trimming exercise was conducted with 3, 5, 7, and 10 
neurons to assess the best performance and ensure no under or over-
fitting based on accuracy and MSE values. 

3. Results and discussion 

3.1. Descriptive sensory evaluation 

Fig. 2 shows significant differences (p < 0.05) among all coffee 
samples for the 16 sensory descriptors for unfermented (Fig. 2a) and 
fermented (Fig. 2b) coffee T and K (T = Mountain Top Coffee; K =
Kahawa Estate, according to Table 1), except for sweetness. FTD had the 
highest intensities for liquid color (14.31), crema height (thickness) 
(11.66), crema color (8.50), dark chocolate flavor (5.63), and aftertaste 
(10.89). However, UFTD had a relatively higher intensity for bitterness 
(9.04). When considering the processing method as qualitative vari-
ables, significant differences (p < 0.05) (Table A1) only existed in the 
liquid color and bitterness among coffee samples. Overall, fermented 
coffee had lighter liquid color and lower perceived bitterness. As for the 
interactions of fermentation and roasting intensity as qualitative vari-
ables, significant differences (p < 0.05) (Table A2) could be observed 
among coffee samples for the same 15 sensory descriptors but still 
excluding sweetness. 

Overall, it could be deducted that spontaneous fermentation could 
not be a determining factor for the sensory perception of coffee brew, 
whereas roasting seems to play a pivotal role. This observation is 
consistent with the findings reported by Elhalis et al. (2021) and da Silva 

Oliveira et al. (2022). De Bruyn et al. (2017) argued that the microbiota 
of the planting region and processing methods of coffee beans could 
contribute to the sensory quality of coffee drinks. Pereira et al. (2022) 
conducted a sensory evaluation on naturally processed and self- 
fermented green coffee brewed from the coffee beans harvested from 
the farm in Brazil. Fermented coffee was found to have a relatively 
higher dominance of woody, herbaceous, and fruity attributes. In 
accordance with this study, green fermented coffee had higher in-
tensities for hay aroma (8.313) and flavor (5.197). 

Dark-roasted fermented coffee had a relatively higher intensity for 
liquid color (13.05) compared to the unfermented. Nursten (2005) and 
Elhalis et al. (2022) commented that fermented coffee beans contain 
higher amounts of aspartic and glutamic acids, which are intermediate 
browning-producing amino acids during Maillard reaction. Therefore, 
dark-roasted fermented coffee brew was perceived as a darker liquid 
color. 

Sweetness and sourness are commonly negatively correlated with 
each other at medium and high concentration but variably at low con-
centration (da Silva Oliveira et al., 2022). The perceived intensity of 
sweetness and sourness in a mixture could be less at the same concen-
tration level (Zamora et al., 2006). Although fermented coffee brew was 
assessed with significantly higher intense sour taste (FTD: 6.26; FTM: 
7.30; UFTD: 4.37; UFTM: 6.28), non-significant variance in sweetness 
among coffee samples could probably because of both low concentration 
and mixture suppression. 

The weaker perception of bitterness from the fermented coffee 
sample in this study could be attributed to the occurrence of the 
degradation of caffeine and protein and the loss of phenolics (chloro-
genic acid and quinic acid) during fermentation (da Silva Oliveira et al., 
2022; Elhalis et al., 2022; Fujimoto et al., 2021; Lee et al., 2015). 
Bressani et al. (2021) observed consistent results from fermented coffee 
after filamentous fungi and bacteria fermentation, where caffeine could 
be degraded into xanthine or dimethylxanthine. Moreover, after 
fermentation, more free amino acids released from beans were observed 
by Robinson (2014), which indirectly presented the severe protein 
degradation occurring inside the coffee beans. Thus, the perceived 
strength of bitterness from fermented coffee was significantly lower. 

3.2. Multivariate data analysis 

Fig. 3 shows the PCA of the e-nose measurements, 21 aromatic 

Fig. 1. Diagrams of machine learning including the inputs, targets, and the number of neurons used for four regression models: Models 1 and 2 (a), 3 and 4 (b).  
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volatile compounds detected by GC-MS, and the intensities of 19 sensory 
descriptors for all fermented and unfermented coffee brews. The PCA of 
e-nose measurements and volatile compounds (Fig. 3a) accounted for 
98.40% of the total data variability, with principal component one (PC1) 

representing 95.57% and PC2 accounting for 2.83%. From the factor 
loadings in Table A3, PC1 is characterized mainly by 2-Furanmethanol, 
furfural, and acetic acid on the positive side of axis. The PC2 is char-
acterized by 5-methylfurfural, 2-furanmethanol, and maltol on positive 

Fig. 2. Mean evaluation values of 16 out of 28 sensory descriptors showed significant differences for unfermented (UF) and fermented (F) coffee brewed from coffee 
beans T (a) and K (b). Different lowercase letters (a-g) depict significant differences between samples based on one-way ANOVA and Fisher’s least significant dif-
ference (LSD) post hoc test (α < 0.05). The sample abbreviations are listed in Table 1. Standard error ranges from 0.06 to 0.11. 

Fig. 3. PCA from e-nose detection and 21 aromatic volatile compounds (a), and 19 out of 28 sensory descriptors relevant to aroma, flavor, and taste (b). The sample 
abbreviations are listed in Table 1. X-axis represents principal component 1 (PC1) and y-axis represents principal component 2 (PC2). 

H. Wu et al.                                                                                                                                                                                                                                      
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side, methylpyrazine and acetol on negative side. It can be observed that 
unfermented and fermented green beans (UFTG, UFKG, FTG, and FKG) 
grouped visibly at the negative side of PC1, which indicated that post-
harvest fermentation has no significant impact on both the volatile ar-
omatic compounds of green coffee brew. As for roasted coffee, 
significant distance could be observed from fermented and unfermented 
types. Volatile aromatic compounds in the positive quadrant of PC2 
could differentiate FTD from UFTD. The hydrolysis of macromolecules 
and microbial metabolism of carbon and nitrogen occur during wet 
fermentation could produce essential aroma precursors, including 
reducing sugar, amino acids, esters, higher alcohols, aldehydes, and 
ketones, which are related to the coffee aroma after roasting (Bressani 
et al., 2020; Dzialo et al., 2017; Lee et al., 2015). 

Furans, pyrazines, and pyridines are the main groups formed during 
the thermal processing of the non-volatile precursors present in green 
coffee beans, including polysaccharides, lipids, protein, and amino 
acids. 5-Methylfurfural, 2-furanmethanol, and maltol were closer to 
FTD, which could bring sweet, caramellic, and roasted aroma and flavor. 

For Fig. 3b, the PCA of e-nose results and sensory descriptors 
accounted for 87.57% of the total data variability, with the PC1 and PC2 
representing 82.54% and 5.03%, respectively. As observation of factor 
loading in Table A4, PC1 was characterized mainly by roasted aroma 
and flavor, overall quality, and aftertaste on the positive side of the axis, 
and hay flavor, sweet flavor and aroma on the negative side. On the 
other hand, the PC2 was characterized by bitter taste on the positive 
side, and floral aroma on the negative side. UFKG was closer to hay 
aroma and flavor while UFKL, UFKM, UFKD, and UFTD were relatively 
closer to sour taste. FKM had more aftertaste. Therefore, spontaneously 
fermentation could be inferred to influence the generation of non- 
volatile aroma precursors in coffee beans, which impact could be man-
ifested by intensive roasting in the development of volatile aromatic 
compounds and sensory perception of fermented and unfermented 
coffee. 

3.3. Machine learning (ML) modelling 

NIR and e-nose results from unfermented and fermented coffee were 
used as inputs in Model 1 and 2, respectively, to predict the peak area of 
26 volatile aromatic compounds detected by GC-MS. Table 3 showed 
that Models 1 and 2 had similar and high overall accuracy (R = 0.98; R 
= 0.99) and slope values > 0.90. Both models had no signs of under- or 
overfitting according to their performance MSE values, where the 
training-stage MSE values were lower than the values of the validation 
and testing stages. Moreover, the MSE values of validation and testing 
stages were close to each other for both models. 

Fig. 4 presented the overall regression Models 1 and 2 with 95% 
prediction bounds. Model 1 had 6.12% outliers (229 out of 3744 data 
points) according to the 95% prediction bounds, with the majority from 
ethanol, furfural, and 2-furanmethanol. As for Model 2, it only had 
1.53% outliers (191 out of 12,480 data points), where most were from 

the same aromatic compounds as Model 1. A previous publication from 
(Gonzalez Viejo et al., 2021) also reported a very high accuracy (R =
0.99) in the models developed using e-nose measurements as inputs to 
predict the peak area of detected volatile compounds by GC-MS in coffee 
samples with different roasting intensities. 

Table 4 showed that Model 3 had high overall accuracy (R = 0.87) in 
predicting 28 sensory descriptors in unfermented and fermented coffee 
using their NIR absorbance values as inputs without the signs of under- 
or overfitting. The training MSE value (1.68) was significantly lower 
than that of the testing (15.42). Model 4, had higher overall accuracy (R 
= 0.91) than Model 3, and also did not have sings of under- or overfitting 
with the MSE value of the training stage (3.24) lower than the testing 
stage (22.94). 

Fig. 5a and b displayed the overall regression Models 3 and 4, 
respectively with 95% prediction bounds. Model 3 had 4.89% outliers 
(197 out of 4032 data points), where most outliers were aroma sweet, 
flavor butter, aftertaste, and astringency mouthfeel. Similarly, there 
were 3.86% outliers detected in Model 4 (519 out of 13,440 data points), 
with the majority from butter flavor, followed by taste sourness. Harris 
et al. (2023) also reported a high accuracy (R = 0.95) in an ANN model 
using NIR absorbance data as inputs to predict the intensity of 20 sen-
sory descriptors from sensory analysis in wine. 

The developed models showed that the NIR (Models 1 and 3) and e- 
nose (Models 2 and 4) measurements of unfermented and fermented 
coffee accurately predicted the volatile aromatic compounds and the 
intensity of the sensory descriptors. Generally, the sensory quality 
evaluation of coffee is usually conducted through descriptive sensory 
tests, requiring formal training of sensory panelists, which is time- 
consuming and costly (Stone et al., 2020). The prediction models con-
structed using the NIR and e-nose measurements show their higher po-
tential to be applied in specialty coffee processing and its sensory quality 
assessment for the coffee industry. Furthermore, the low-cost and 
portable e-nose can also be utilized by local family coffee farms and 
coffee roasters for process monitoring small coffee retailers for quality 
assurance as it is more rapid, convenient, portable, affordable, objective, 
and reliable. 

4. Conclusion 

Postharvest spontaneous fermentation could only significantly 
contribute to the liquid color and bitterness of coffee. The differences in 
perceived intensities for sensory descriptors and the pattern of volatile 
aromatic compounds of unfermented and fermented coffee brew could 
be manifested more clearly after intensive roasting. Dark-roasted fer-
mented coffee brew presented higher intensity of perceived liquid color, 
crema properties, dark chocolate aroma and flavor, roasted aroma and 
flavor, body, and butter flavor; however, unfermented coffee had a more 
intense taste of bitterness. The ANN models using the measurements of 
NIR (Model 1, 3; R > 0.97) and e-nose (Models 2, 4; R > 0.91) as inputs 
and GC-MS and QDA test as the ground truth predicted the composition 
of 26 volatile aromatic compounds and the intensities of 28 sensory 
descriptors with high accuracy. The combination of novel applications 
(NIR and e-nose) and machine learning modelling with rapid, reliable, 
and low-cost properties in the evaluation of coffee physicochemical data 
and the prediction of sensory properties offers substantial potential in 
the differentiation and development of specialty coffee and beverages, 
process monitoring, and quality assurance. Future studies could explore 
the potential of non-spontaneous fermentation with specific or mixed 
cultures of yeast and bacterial species for improving coffee quality 
combined with consumer acceptance and preference. 
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Fig. 4. Overall regression Models 1 (a) and 2 (b) predicted 26 volatile aromatic compounds from GC-MS analysis, where the x-axis represents the observed data, 
while the y-axis depicts the predicted values. Abbreviation R: correlation coefficient. 

Table 4 
The results of the artificial neural network regression Models 3 and 4. Abbre-
viations: R: correlation coefficient; MSE: means squared error.  

Stage Samples Observations R Slope Performance (MSE) 

Model 3: Inputs: NIR; Targets: sensory descriptors 
Training 100 2,800  0.90  0.82  1.68 
Testing 44 1232  0.85  0.74  15.42 
Overall 144 4,032  0.87  0.71  –  

Model 4: Inputs: electronic nose; Targets: sensory descriptors 
Training 336 9,408  0.93  0.82  3.24 
Testing 144 4,032  0.87  0.71  22.94 
Overall 480 13,440  0.91  0.72  –  

Fig. 5. Overall regression Models 3 (a) and 4 (b) predicted 19 sensory descriptors from quantitative descriptive analysis (QDA), where the x-axis represents the 
observed data, while the y-axis depicts the predicted values. Abbreviation R: correlation coefficient. 
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