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Emulsion stabilised by yeast proteins and biomass: a 
mini review
Sowmya Narsipur1, Ben Kew1, Célia Ferreira1,  
Reem El-Gendy2 and Anwesha Sarkar1

There has been a growing demand for affordable and 
environmentally sustainable, alternative sources of proteins to 
feed the growing human population, promoting planetary 
health. Among various single-cell proteins (SCPs), yeast 
biomass shows an untapped potential for food use. This review 
discusses our current understanding of technofunctional 
performance of yeast proteins either extracted from the cells or 
SCPs via exploiting whole cells, mainly focusing on their 
surface properties. We cover how yeast biomass, extracted 
yeast proteins, or cell wall–bound mannoproteins have been 
used to design molecularly adsorbed conventional emulsions or 
Pickering emulsions. In-depth characterisation of interfacial, 
rheological and tribological properties of yeast proteins is a 
necessary undertaking to allow rational design of yeast 
protein–derived colloidal food formulations for a sustainable 
future.
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Introduction
Food production and choice of diet have a huge impact 
on the environment and sustainability. Meat and animal 
products are a popular source of protein in the diet for 
much of the population on Earth. With the exponential 

growth in population, estimated to touch 10 billion by 
2050, comes the challenge of providing human protein 
requirements [1] without putting undue strain on the 
environment [2]. Focusing on food sector, two major 
studies [3,4] in the last 5 years have quantified green-
house gas (GHG) emissions with Poore and Nemecek 
[3] attributing 26% of anthropogenic GHG emissions to 
food systems, whilst Crippa et al. [4] place this figure at 
34%. Production of meat and dairy proteins results in 
orders of magnitude higher GHG emissions compared 
with their plant counterparts [3]. To reduce carbon 
footprint, the 2019 EAT-Lancet Commission suggests a 
diet with alternative, sustainable sources of proteins, 
which should reduce reliance on animal-farmed proteins 
whilst maintaining a balance between human health and 
environmental sustainability [5]. Although food and feed 
sectors focusing on human and animal nutrition, re-
spectively, are front runners in this area, use of microbial 
biomass is also not uncommon in nutraceutical and 
biodiesel sectors [6]. Grossmann and Weiss defined al-
ternate proteins as those that are “produced from sources 
that have low environmental impact to replace established 
protein sources” [7].

Plant proteins mainly dominate the alternative protein 
space in literature. Although biotechnology has a long 
history of producing feeds and foods, fungi (including 
yeast), bacteria and microalgae themselves have rarely 
been reviewed with respect to their functional perfor-
mance [8]. These single-celled micro-organisms (except 
for certain species of fungi that are filamentous) also 
referred to as single-cell proteins (SCPs) are used as 
whole cells as the protein source without extraction or 
purification in most cases. The production of SCPs was 
important during World War I and II where yeast SCPs 
were produced in Germany to combat food shortages. 
After that, SCPs further captured attention in 1977 when 
the Imperial Chemical Industries in the United 
Kingdom manufactured the microbial protein named 
Pruteen from Methylophilus methylotrophus bacteria that 
was used in animal feed [9]. However, it was only in 
1985, when SCPs became a readily accessible, com-
mercially available food product when Marlow Foods 
(UK) launched its microbial protein-based food product, 
QuornTM, made from the fungi Fusarium venenatum [10].
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SCPs produced in controlled environment can be of 
great interests to provide protein for future. However, 
their functional performance such as their interfacial 
performance at oil–water interface, bulk rheological 
properties and tribological properties have been far less 
explored to date. Interfacial stabilisation of emulsions 
and foams has traditionally relied on the use of low- 
molecular-weight synthetic surfactants or emulsifiers 
derived from animal-based proteins, such as dairy (e.g. β- 
lactoglobulin, casein) and egg proteins (ovalbumin). In 
addition, rheological and tribological properties can offer 
a quantitative understanding of their mouthfeel perfor-
mance [11], where alternative proteins tend to be in-
ferior to animal proteins [12–14]. Hence, showing 
relevant functional performance is crucial before micro-
bial proteins become a regular ingredient in food appli-
cation. Recent studies on microalgae such as Arthrospira 
platensis (Spirulina) and Chlorella protothecoides have de-
monstrated the ability of the biomass (whole cells) and 
extracted protein fractions to stabilise oil-in-water 
emulsions at different protein concentrations [15]. Ad-
ditionally, Firoozmand and Rousseau [16] have demon-
strated that intact yeast (Saccharomyces cerevisiae) and 
bacterial (Lactobacillus acidophilus and Streptococcus ther-
mophilus) cells act as Pickering particles to stabilise oil- 
in-water emulsions. Among the microbial community, 
yeasts are interesting source of inexpensive, microbial 
proteins because of their proficiency for vigorous growth 
and have been used as a food ingredient for baking and 
fermentation industries for centuries [17] but have not 
been reviewed with respect to their functional perfor-
mance in food structure.

The aim of this review is to provide a concise under-
standing of the functional performance of yeast protein 
in food structure. We first discuss the structural features 
of yeast and question whether the intracellular proteins 
derived from the degradation of yeast cells or manno-
proteins at the surface of yeast cells provide the emul-
sification properties in yeast protein-stabilised 
emulsions. Furthermore, we will compare the proteins, 
where relevant to alternative plant proteins. 
Noteworthy, any protein engineering done using yeast as 
a host organism or genetic manipulation is out of scope 
for this review [18]. We examine the very few studies on 
the functional performance of yeast biomass and yeast 
protein isolates (YPIs) that have surfaced in the litera-
ture in the last few years, clearly pinpointing the me-
chanisms of action, separating the molecularly adsorbed 
yeast protein at the droplet surface from the yeast cell- 
stabilised Pickering emulsions. For composition, nutri-
tional properties and bioactivities of yeast proteins, 
readers may refer to other reviews [17,19]. Finally, we 
highlight perspectives for future studies for unlocking 
the full potential of yeast biomass as a functional in-
gredient in food applications.

Yeast structure, biomass production and 
protein extraction
For food applications, yeast is almost synonymous with 
Saccharomyces cerevisiae or S. cerevisiae, a unicellular, eu-
karyotic organism widely used in fermentation and 
brewing industries. In food research, other species have 
been utilised, such as Saccharomyces sp., Candida sp., 
Kluveromyces sp. etc., in creating model emulsion systems 
(see Table 1).

Yeast structure
S. cerevisiae cells are oval or ellipsoidal in shape (Figure 1a); 
their size can vary between 1 and 10 µm in diameter [20]
and generally have a negative surface charge (ζ-potential 
ranging from −9 mV to −30 mV) [21,22] largely associated 
with the cell wall biopolymers.

A dynamic cell wall is being constantly remodelled [26]
in response to various environmental stresses and cell 
growth. This wall is about 200 nm thick, composed of an 
elastic three-dimensional network of β-1,3 glucan dom-
inating the cell wall (50–55% wall dry weight) followed 
by chitin (1–2% wall dry weight) in the inner layer of the 
wall and close to the cell membrane [27,28], whilst the 
outer layer of the cell wall consists of proteins (cell wall 
proteins) of wide range of molecular weights (Figure 1b). 
These proteins are of two types, glycosylpho-
sphatidylinositol (GPI)–linked proteins and proteins 
with internal repeats (Pir). β-1,6-Glucans covalently link 
the GPI-anchored proteins to the inner layer of the cell 
wall proteins, that is, to the β-1,3-glucan-chitin network 
[29], whilst the Pir proteins are directly linked to the 
reducing end of β-1,3-glucan through an alkali-sensitive 
linkage [28]. Within the outer layer of the yeast cell wall, 
highly glycosylated mannoproteins are found to contain 
15–90% glucans by weight (35–40% of the cell wall’s dry 
weight). Overall, the collective volume of the whole 
yeast cells that have been propagated during fermenta-
tion, after removal of the growth media, is known as the 
biomass.

These yeast cells can then undergo further downstream 
processing to yield yeast protein powder or mannopro-
teins, both exhibiting intriguing functional character-
istics (described later). Compared with alternative plant 
proteins, yeast proteins emerge as a favourable option 
due to their naturally higher overall protein content 
(ranging from 40% to 60% on a dry weight basis of yeast 
cells) and balanced essential amino acid profile that ex-
hibits high digestibility, typically around 85% [19,25,30].

Production of yeast biomass and extracted yeast 
proteins
Yeast biomass can be produced by propagating cells in 
glucose-rich growth media, with a rich nitrogen source, 
under controlled temperature and oxygen conditions (2:1 

2 Food Physics & Materials Science 

www.sciencedirect.com Current Opinion in Food Science 2024, 57:101167



Table 1 

Protein extracted from yeast (highlighted in blue) or whole yeast cells (biomass) used 
in literature to stabilise emulsions in the last few years. 

Strain Yeast 
protein type 
as the 
surface 
active agent

Oil type Characterization References

S. cerevisiae Whole cell 
suspension

Kerosene (33.3 
vol%)

Visual observation (pH, 
NaCl treatment), SDS-
PAGE*

[41]

S. cerevisiae Whole cell 
suspension 

(with defects 
in cell wall 
synthesis)

Kerosene (16.67 
vol%)

Visual observation, 
optical microscopy

[40]

S. cerevisiae Whole cell 
suspension
(active or 
heat inactive 
or washed)

Hexadecane (30 
vol%), 

Visual observation, 
confocal laser scanning 
microscopy, static light 
scattering, viscosity, 
contact angle, interfacial 
tension, zeta-potential, 
rheology

[21, 35, 36]

S. cerevisiae,
S. boulardii

Inactivated 
whole cell 
suspension

Medium chain 
triglyceride (MCT) 
oil (50 wt%)

Cell sphericity, optical
microscopy, scanning 
electron microscopy, 
static light scattering, 
interfacial tension, zeta-
potential, viscosity, 
viscoelasticity, EAI*

[22]

S. cerevisiae Inactivated 
whole cell 
Suspension

Olive oil (60-70 
wt%),

Visual observation, 
confocal laser scanning 
microscopy, viscosity, 
contact angle, static light 
scattering

[16]

S. cerevisiae, 
S. boulardii, 
Kluyveromyces 
marxianus

Yeast extract 
after cell lysis

Sunflower oil 
(33.3 vol%)

EAI*, ESI*, volatile 
analysis, sensory 
analysis, amino acid 
profile

[43]

Candida albicans

Cell wall 
protein 
extracted 
using 
enzymatic 
treatment 
preventing 
synthesis of 
GPI-anchor 
or β-1,3-
glucan

Kerosene (33.3 
vol%)

Visual observation, 
SDS-PAGE, mass 
spectrometry

[24, 40]

S. cerevisiae Mannoprotein
extracted 
from yeast 
cell wall by 
enzymatic 
treatment

Iso-octane, 
kerosene (60 
vol%), Olive oil 
(50 wt%)

Capillary 
electrophoresis, protein 
assay, creaming height 
measurement (pH 2-11), 
electron microscopy, 
DSC, NMR, amino acid 
assay, viscosity, 
viscolelasticity, visual 
observation

[45-47]

Yarrowia lipolytica Bioemulsifier 
extracted 
from yeast 
cells (lipid–
carbohydrate
–protein 
complex, 
Yansan)

Perfluoro-n-
hexane, n-
hexadecane and 
toluene (15-30 
wt%)

EAI* (pH), interfacial 
tension, contact angle, 
zeta-potential, protein 
assay, static light 
scattering, FTIR*, XPS*

[48, 49]

Abbreviations: EAI: emulsifying activity index; DSC: differential scanning calorimetry; ESI: 
emulsion stability index (ESI); FT-IR: Fourier-transform infrared spectroscopy; NMR: nu-
clear magnetic resonance spectroscopy; SDS-PAGE: sodium dodecyl sulphate poly-
acrylamide gel electrophoresis; XPS: X-ray photoelectron spectroscopy.
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or 2.5:1 air/liquid ratio being commonly used; Figure 2a). 
The biomass can then be subsequently concentrated 
into functional yeast protein powders encompassing di-
verse protein fractions, such as actin, tubulin, histones 
(H2A, H2B, H3, H4, H1), ribosomal proteins, hormones, 
transporters, signalling receptors, motor proteins (myo-
sins, kinesins, dynein), many functional enzymes (e.g. 
invertase) and mannoproteins located in the outer cell 
wall [20]. These mannoproteins have then been ex-
clusively extracted through mechanical, chemical or 
biochemical means from the cell walls. Mechanical 
treatment includes bead mills, high-pressure homo-
genisation and ultrasonication [31] that mainly lyse the 
cell wall resulting in a mixture of β-glucan and manno-
proteins, which may need further purification. In addi-
tion, such harsh treatment may denature the yeast 
proteins, which needs more investigation in the future.

Based on chemical extraction process, mannoproteins 
can be divided into two classes, which results in differ-
ences in the resultant molecular weight and properties: 
(1) sodium dodecyl sulphate (SDS)-extractable manno-
proteins and (2) glucanase-extractable mannoproteins 
[31]. The molecular weights of mannoproteins may 
range between 20 and 450 kDa [32] (Figure 1b). To 
date, 36 members of mannoproteins have been identi-
fied in the yeast cell walls [33] with molecular weights 
mainly ranging in 34–59 kDa [34] independent of the 

extraction process (e.g. thermal treatment 90°C/4 hours), 
chemical treatment via addition of SDS and analysis by 
fermentation (room temperature/72 hours). This sug-
gests that the mannoproteins of molecular weight range 
similar to plant-based glycoproteins, such as patatins, do 
exist in yeast cell walls [12]. Concerning mannoproteins, 
their association with the β-1,3-glucan-chitin complex 
and the diverse array of extraction methods pose chal-
lenges in achieving a reproducible variant with a specific, 
narrow molecular weight range. These are the bottle-
necks hindering the development of a specific com-
mercial mannoprotein-rich YPI ingredient and 
consequently limits research in the functional perfor-
mance of extracted YPI unlike other alternative proteins.

Emulsification performance of yeast-derived 
proteins and yeast biomass
Yeast biomass and extracted yeast protein (Figure 1a) 
boast a number of emulsifying properties. These include 
Pickering-stabilised droplets from yeast as biomass [16]
(Figure 2b) as well as utilisation of yeast proteins and 
mannoproteins, the latter of which have almost ex-
clusively been exploited for their emulsification pur-
poses [28,37,38]. Indeed, it could be these surface 
proteins or mannoproteins that facilitate the formation of 
such biomass-stabilised emulsions that emerge upon 
droplet homogenisation (discussed later) [35].

We discuss yeast in various forms that have been used to 
stabilise emulsions (Table 1). We categorised the dis-
cussion in this section, focusing on the whole cells/bio-
mass that are used to prepare (1) Pickering emulsions 
with cells as particle stabilisers (Figure 2bi–iv), followed 
by the cell wall–extracted mannoproteins that are used 
to prepare (2) molecularly adsorbed conventional emul-
sions. Although there is a recent study using YPI and 
comparing with plant proteins (Figure 1b) [25], it in-
cludes surface hydrophobicity with no information of 
stability of emulsions prepared using it. It also remains 
unclear whether the protein was isolated from the whole 
cell or the YPI included only mannoproteins from the 
cell wall.

Pickering emulsions
Although the first evidence of yeast cells stabilising 
Pickering droplets dates back from 1970s from oil sector 
[39] and many studies thereafter involved using kero-
sene [40,41] and hexadecane [21,35,36] to showcase 
Pickering effects of yeast cells (Table 1), the first so- 
called food-grade Pickering emulsion using olive oil as 
the dispersed phase was fabricated in 2016 using in-
activated whole yeast cells (Figure 2bi) [16]. The heat- 
inactivated S. cerevisiae cells of 2–15 µm formed droplets 
in the range of 50–350 µm, in line with the usual rule of 
thumb of Pickering droplets being 50–100 times larger 
than those of the Pickering stabilisers. The contact angle 

Figure 1  

Current Opinion in Food Science

Schematical overview (a) showcasing the approaches of using yeast as 
emulsifiers in food. (1) Yeast is used as a whole cell or processed to 
extract (2) intrinsic yeast protein as a powder or (3) mannoproteins are 
extracted from the yeast cell wall to emulsification. (1) results in 
Pickering emulsion, whereas (2) and (3) results in conventional 
molecularly adsorbed emulsions. The proteins that are metabolically 
engineered using yeast cells as host organisms (cell factories) for protein 
production [23] are out of scope for this review as indicated in the red 
box. SDS-polyacrylamide gel electrophoresis (b) of protein fraction 
comparisons are presented, featuring the yeast cell wall protein [24] and 
YPI [25] alongside corresponding reference marker (M) and molecular 
weight (kDa) indicators. 
Figures in (b) are adapted with permission from Elsevier [24,25].  
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was estimated to be ∼30°, highlighting these hydrophilic 
particles were capable of forming oil-in-water emulsions 
that were stable. Noteworthy, the emulsions were highly 
shear thinning, had a self-supporting architecture high-
lighting a gel-like behaviour and showed high resilience 
to droplet coalescence for over 4 months [16]. Such weak 
gel-like behaviour with elastic modulus (G′) exceeding 
the viscous modulus (G″), even using lower droplet vo-
lume fraction (50 vol% medium-chain triglyceride oil) 
has been observed in another study [22] using whole 
yeast cells as Pickering stabilisers, highlighting the im-
portance of cell-entangled network.

Questions may be raised whether such high storage 
stability was due to the true Pickering nature of these 
yeast cells adsorbing to the droplet surface and/ or the 
yeast cell–cell forming a jammed network in the con-
tinuous phase interlocking the high volume fraction of 
oil droplets (60–70 oil droplet vol%) in close vicinity, 
raising the continuous viscosity. In fact, bridging phe-
nomena between particles attached to different droplets 
particularly in case of systems containing high volume 
fraction of droplets as well as particle–particle jamming 
in the continuous phase contributing to emulsion 

stability due to bulk stabilisation rather than true 
Pickering effects have also been commonly seen in ul-
trastable emulsions stabilised by plant-based aggregates 
and microgels [42].

Nevertheless, an elegant study [35] using washed in-
active yeast cells with low volume fraction of hex-
adecane (30 vol%) confirmed that washed yeast cells 
without heat inactivation could reduce interfacial ten-
sion and readily adsorb to the oil droplets via a true 
Pickering phenomenon (Figure 2bii). Nevertheless, 
such surface adsorption did not contribute to more sta-
bility, whereas the presence of mannoproteins and other 
emulsifying molecules in the unwashed yeast cells of-
fered longer stability. Also, it is worth pointing out that 
the type of organism and cell shape may also affect their 
interfacial properties. A recent study [22] has shown that 
S. boulardii does not reduce interfacial tension sig-
nificantly unlike S. cerevisiae, which is likely attributed to 
the larger size, ellipsoid shape of the former and differ-
ence in cell wall composition between the two organ-
isms. Nevertheless, this did not result in difference in 
their Pickering stabilisation property — both cell types 
adsorbed to the droplet surface (Figure 2biii). Overall, 

Figure 2  

Current Opinion in Food Science

Schematic of a typical batch process (a) for producing yeast biomass in laboratory scale (created with BioRender.com) and (b) micrographs of S. 
cerevisiae whole yeast cells used as Pickering stabilisers for oil-in-water emulsions using (i) olive oil [16], (ii) hexadecane [35], (iii) medium-chain 
triglycerides [22], (iv) hexadecane [36] dispersed phase, respectively. ii is stabilised by washed yeast cells. 
Figures in (b) are adapted with permission from Elsevier [16,35,36] and Springer Nature [22].  
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there are speculations about the importance of manno-
proteins or intrinsic cellular proteins that might leach out 
during either heat inactivation of the cells or homo-
genisation steps of the emulsion formation, which affect 
the adhesion of the cells to the droplet surface [16,21]. 
In summary, definitive studies about the role of man-
noproteins in the cell surface contributing to the surface 
adsorbing capacity of the yeast cells in Pickering emul-
sion remain limited in the literature.

Molecularly adsorbed conventional emulsions
Frequently, yeast extracts exhibit emulsification cap-
abilities post-cell lysis, underscoring the significance of 
extracted yeast proteins although the involvement of 
other biopolymers such as glucans, alongside cell wall 
mannoproteins, cannot be overlooked [43,45,48,49]
(Table 1). However, recent studies have realised that 
defects in the formation of N-linked glycans or elim-
inating the synthesis of β-1,3 glucan can still generate 
emulsion stability highlighting the importance of pro-
teinaceous molecules in the emulsification behaviour 
[24,40,44]. Mannoproteins are often hypothesised to be 
the key protein [46] in yeasts responsible for stabilising 
emulsions by molecularly adsorbing to the droplet sur-
face, but systematic studies on pure mannoproteins ex-
tracted from yeast cells are fairly limited in literature 
(Table 1). A recent study [47] showed that enzymatic 
treatment of yeast extract with β-1,6-glucanase can result 
in pure mannoprotein (90.7% purity) of molecular 
weights 30–58 kDa with mannan-to-protein ratio of 14.5. 
Such mannoproteins were capable of producing mole-
cularly adsorbed emulsions but with larger droplet sizes 
reported (> 50 µm) that without any microscopy data is 
difficult to comment on the kinetic stability of such 
emulsions. To date, limited information exists on the 
stability of emulsions stabilised by pure mannoprotein 
when subjected to different food processing–relevant 
environmental conditions (pH, temperature, ions, shear). 
Also, critical aspects of interfacial stabilisation by man-
noproteins such as their adsorption kinetics and inter-
facial viscoelasticity at the oil–water interface compared 
with other alternative proteins are important future 
studies that need to be conducted.

Conclusions and future perspectives
Yeast protein has captured significant research attention 
as an alternative source of protein due to recent demands 
of exploring environmentally sustainable protein 
sources. Despite the literature showing promising di-
rections in exploiting the whole yeast cells or extracted 
mannoproteins for emulsion stabilisation, many knowl-
edge gaps still need to be filled in terms of the interfacial 
properties and stability of emulsions when subjected to 
environmental conditions. In addition, processing 
methods (e.g. extraction, heat treatment, enzyme treat-
ment, degree of washing and removal of glucans) need to 

be standardised so that full practical potential of yeast 
mannoproteins as molecularly adsorbed emulsifiers or 
yeast biomass as Pickering stabilisers can be commer-
cially realised.

Although Baker’s yeast (S. cerevisiae) has been used in 
baking industries for millennia without any sensorial 
concerns, often their addition is limited to 1–2 wt% as 
processing aids. However, if used as an alternative 
source of protein and as Pickering stabilisers, larger cell 
concentrations (10–15 wt%) can be anticipated, which 
might result in rheological modification, gel-like prop-
erty due to cell–cell interactions. Furthermore, potential 
cell-mediated gritty, rough and astringent mouthfeel is-
sues might result in limited acceptability. Although not 
in food, tribological studies have been carried out in 
literature using non–food-grade yeasts, such as 
Rhodotorula toruloides and Cutaneotrichosporon curvatus 
[50], which show excellent lubrication qualities due to 
monounsaturated fatty acid content inherently present 
in those oleaginous yeasts. Nevertheless, detailed rheo-
logical and tribological studies using food-grade yeast 
cells as well as yeast mannoproteins and understanding 
their interaction with human saliva [11] are necessary for 
future studies. This may give indications about their in 
vivo oral processing behaviour and mouthfeel before 
they can be commercialised and used in mainstream 
food applications as technofunctional additives.
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