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Figure 1. Conceptual diagram of microbial carbon use efficiency (CUE) and the stabilization mech- 
anisms of soil organic carbon (SOC). MCP, microbial carbon pump; MnCP, mineral carbon pump; 
MAOC, mineral-associated organic carbon; POC, particulate organic carbon. 

structure of the model by Tao et al. [2 ]. 
Microbial necromass may possess en- 
hanced stability against decomposition 
(the microbial carbon pump) [6 ], but 
research also increasingly suggests that 
the production of microbial biomass and 
consequently necromass lead to a set of 

organic compounds that are themselves 
stabilized against decomposition through 
a variety of chemical and physical pro- 
cesses (e.g. high activation energies for 
further decomposition and/or physico- 
chemical protection with mineral matri- 
ces) [3 ,4 ,7 ,8 ] (Fig. 1 ). For example, it 
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icrobial carbon use efficiency (CUE) 
s defined as the proportion of microbial 
iomass growth C versus substrate C up- 
ake, and thus provides a useful measure 
f microbially driven accumulation and 
oss of soil organic carbon (SOC) [1 ]. In 
 recent study published in Nature [2 ], 
he authors used a data-driven machine- 
earning approach to conclude that CUE 

romotes global SOC storage based on 
 positive correlation between CUE and 
OC content and that, based on sensitiv- 
ty analysis, CUE is at least four times as 
mportant as six other evaluated factors, 
amely plant C inputs, C input alloca- 
ion, non-microbial C transfer, substrate 
ecomposability, environmental modifi- 
ations and vertical transport. We agree 
ith the authors that consensus in the 
cientific community about the relation- 
hip between CUE and SOC is impor- 
ant, and that increasingly used big data 
ethods offer an opportunity to synthe- 
ize and potentially generate new insights 
rom multiple data aggregation. We argue, 
owever, that their study excludes impor- 
ant data sets and lacks mechanistic con- 
ideration of the complexities of SOC for- 
ation, such that their conclusions need 
o be clarified. 
We posit that stabilization matters 
ore than production (CUE) for SOC 

ormation. The accumulation and per- 
istence of SOC are affected by multiple 
actors, including biological, chemical 
nd physical processes [3 –5 ]. Microbial 
se of carbon represents the very pri- 
ary stage of SOC formation (Fig. 1 ). 
hen evaluating SOC storage, it is 

mperative to recognize that the stabiliza- 
ion process can matter more—a facet 

hat was largely overlooked within the 
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Figure 2. The correlation between CUE and SOC 
lation between CUE and SOC; (b) correlation betw
Supplementary Table S1 of Tao et al. [2 ]. CUE, mic
carbon. 

i
n
s
s
m
m
s
i
p
g
t
[
g
S
t
l
d
e
a
f
s
S

t
I
a
t
n
c
S
a
e
c
b
i
f
a
t
D

S
t
n
r
e
e
b
C

c
a
m
m
a
S
t
a
s
t
m
a
l
(
C
d
i
a
b
t
i
o
s
f
U
(
t
b
c
tant factor and the ‘CUE–SOC relation- 

Method

CUE

Longitude

Depth

Latitude

MAT

Microbial biomass

0 5 10 15 20
%IncMSE

P
re

di
ct

or
s

Figure 3. The relative importance of pre- 
dictors in the random forest model predict- 
ing SOC contents. Public raw data from 

Supplementary Table S1 of Tao et al. [2 ]. MAT, 
mean annual temperature; CUE, microbial car- 
bon use efficiency; Method, use of 13 C or 18 O 
for CUE measurement. 
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s found that necromass accumulation is 
ot solely dependent on CUE, but is 
trongly dependent on mechanisms pre- 
erving C components, most notably soil 
ineral content, with necromass accu- 
ulation occurring in soils with high clay- 
ized fraction [9 ]. In other work, CUE 

s found to be negatively correlated with 
ersistent mineral-associated SOC, sug- 
esting that necromass production is not 
he primary driver of SOC persistence 
7 ]. In this work stimulation of microbial 
rowth by high-quality litter enhances 
OC decomposition, offsetting the posi- 
ive effect of litter quality on SOC stabi- 
ization [7 ]. As such, CUE and SOC are 
ecoupled rather than coupled in some 
nvironments [9 ,10 ]. This decoupling is 
lso reflected in Extended Data Fig. 5c 
rom Tao et al. [2 ], where there is no 
ignificant correlation between CUE and 
OC in soil of > 100 cm. 
Meanwhile, it should be cautioned 

hat correlation does not equal causation. 
n Tao et al. [2 ], model-derived CUE is 
n emergent property of the whole sys- 
em from SOC profiles, and it is therefore 
ot surprising that the calculated CUE is 
orrelated with SOC (as in their Fig. 2b). 
ome important factors such as temper- 
ture have not been parameterized prop- 
rly in the microbial model, so the con- 
lusion that temperature does not have a 
ig impact on SOC through the sensitiv- 
ty analysis of this model becomes doubt- 
ul. A microbial model was used by the 
uthors to examine the CUE–SOC rela- 
ionship, yet the results (their Extended 
ata Fig. 4) clearly show that CUE–
R2 = 0.07
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for the data of 132 measurements. (a) Corre- 
een CUE and log (SOC). Public raw data from 

robial carbon use efficiency; SOC, soil organic 

OC correlation depends on the parame- 
er chosen and can be either positively or 
egatively related. Even though a positive 
elationship between CUE and SOC may 
xist, we urge that more sophisticated 
mpirical measurements should be done 
efore a globally causal link between 
UE and SOC can be established. 
We also point out that data selection is 

ritical for correlation results and biased 
nalysis can lead to uncertainty and even 
isleading results. We argue that their 
eta-analysis needs more data in tropical 
nd arid regions as well as clay soils (their 
upplementary Fig. S4), while we posit 
hat results based on 132 measurements 
re somewhat premature for a global as- 
essment. Actually, the correlation be- 
ween CUE and SOC for the data of 132 
easurements is very weak ( R2 = 0.11), 
nd the correlation between CUE and 
og (SOC) is even weaker ( R2 = 0.07) 
Fig. 2 ). This strongly suggests that, while 
UE and SOC may be related, CUE 

oes not play a major role in determin- 
ng SOC. We performed random forest 
nalyses using data in Supplementary Ta- 
le S1 from Tao et al. [2 ] and found 
hat microbial biomass rather than CUE 

s among the most important predictors 
f SOC (Fig. 3 ). Moreover, the authors 
tate that their results agree with findings 
rom a landscape-scale pattern across the 
K [11 ]. Whilst the data from that study 
168 measurements) are not included in 
he 132 measurements for meta-analysis 
y Tao et al. [2 ] in their Fig. 2a, that study 
learly states that soil pH is an impor- 
Page 2 of 3
hip broke down below the threshold pH 

6.2)’ (Fig. 2a from Malik et al. [11 ]). 
Overall, we argue that, while this 

tudy makes an important contribution 
owards our understanding of the links 
etween CUE, microbial necromass and 
OC persistence, it is premature to es- 
ablish a globally robust causal relation- 
hip between CUE and SOC. We cau- 
ion inferring mechanisms or causality 
rom large data sets [12 ,13 ]. We posit that
he analysis and conclusion would bene- 
t from more consideration of mechanis- 
ic processes in SOC formation and cau- 
ion when dealing with big data. While 
he strides made in data science have un- 
oubted ly propel led our understanding 
n many fields, including soil science, we 
ust exercise caution and not oversim- 
lify intricate systems. 
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