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ABSTRACT KEYWORDS

Alginates, hydrophilic anionic polysaccharides with notable bioactivity and Alginates; brown seaweeds;
biocompatibility, have drawn significant attention, particularly due to their ~ health benefits;
extensive use in the pharmaceutical industry and associated health benefits. pharmaceutical applications;
Brown seaweeds serve as the primary source of alginates. However, extrac-  eXtraction methods

tion methods, especially traditional ones, face efficiency challenges, impact-

ing the yield. Green extraction methods promise an eco-friendly alternative,

but their industrial-scale implementation is still unproven. Importantly, these

extraction methods could yield alginates of different molecular weights and

consequent varied biological effects. Alginates possess antibacterial, antiox-

idant, anti-diabetic, and immunomodulatory properties, forming the corner-

stone of their health benefits and pharmaceutical applications. The hydrogel

formation characteristic of alginates is crucial for pharmaceutical applica-

tions, including drug delivery, wound dressing, and tissue regeneration.

Despite the existence of numerous articles exploring the extraction methods,

properties, and applications of alginates, a gap exists in the literature that

connects these aspects with health benefits. This review aims to bridge this

gap by providing a comprehensive discussion of the extraction methods,

properties, health benefits, and pharmaceutical applications of alginates.

Introduction

Alginates also referred to as algin or alginic acid, are hydrophilic or anionic polysaccharides. Alginates’
wide use in the pharmaceutical industry and potential health benefits, sparked considerable research
interest in alginates.

A primary source of alginates is brown seaweed (Phaeophyceae), which includes various species
such as Laminaria hyperborea, Laminaria Digitata, Laminaria japonica, Ascophyllum nodosum,
Macrocystis pyrifera'"!. 1t is found in the cell walls of brown seaweed which provides a flexible
mechanical structure to protect seaweed from damage due to strong water movements.!"! Notably,
Durvillaea potatorum, Macrocystis pyrifera, and Ecklonia radiata are known to have high yields of
alginates, with up to 55%, 46.8% and 44% of dry weight, respectively.!>* These species vary in their
morphology, composition, and distribution, which ultimately affects the yield and quality of the
extracted alginates. It is also notable that the time and area of the collection can impact the alginate
yield for the same species. Based on Kumar’s'*! research for Sargassum wightii, the main axis of the
plant that was collected in March has the highest alginates content, which is about 33%.
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Current research suggests that different extraction methods yield alginates with varying molecular
weights, which can result in distinct biological effects, such as the antioxidant effect. These extraction
methods can be categorized into conventional and green extractions.”” The latter method involves the use of
ultrasound, microwave, mechanical force, or the addition of enzymes to enhance efficacy and confer specific
properties on the alginates, as discussed in this review. Unfortunately, these green extraction methods are
not yet widely implemented on a large scale.

Alginates exhibit antibacterial, antioxidant,'® antidiabetics,””’ antiobesity!® and immunomodulatory
properties, making them beneficial for human health and pharmaceutical applications. For instance, oral
administration of alginates can inhibit bacterial growth in digestive system. The ability of alginates to induce
satiety and their resistance to digestion in the stomach suggests potential applications in weight
management.””) Moreover, the anti-diabetic properties of alginates may be leveraged for blood sugar
regulation.

The ability of alginates to form hydrogels underlies their broad utility. In the presence of divalent
compounds such as Ca>*, which are due to interionic interactions with G residues, alginates rapidly
crosslink. This is one of the most common methods for obtaining a hydrogel, while still incorporating
covalent crosslinking, thermal gelation, and cell cross-linking. For decades, these cross-linking mechan-
isms have been the method of encapsulating biomolecules and cells. Because of the biocompatibility of
ionic gelation mechanisms, coupled with their lower costs and toxicity, alginates are frequently selected
for medical applications, such as drug delivery, wound dressing and tissue engineering.!"!

This review provides a comprehensive overview of alginates. Focusing on their extraction, proper-
ties, health benefits and applications in pharmaceuticals bridged the gap in the literature by addressing
the dearth of comprehensive studies in these areas. It explores the structure and general properties of
alginates, as well as the hydrogel formation of alginates, including ionic cross-linking, covalent cross-
linking, thermal gelation, and cell cross-linking. Additionally, this review examines the antibacterial,
antioxidant and immunomodulatory properties of alginates. Furthermore, it discusses the health
benefits of alginates concerning gastrointestinal health, weight management and satiety effects, and
impact on diabetes. The review also delves into the pharmaceutical applications of alginates in drug
delivery, wound dressing and tissue engineering.

]

Extraction method

Alginates can be extracted using a variety of methods including conventional chemical extraction
(Figure 1) and extraction method with other techniques assisted, including but not limited to
microwave, ultrasound, enzyme and extrusion. Except for the conventional method, the other four
extraction methods can be referred to as green extraction methods.”! These methods incorporate
assisted techniques based on the conventional method and are used to enhance the efficiency of
alginate production while saving energy and reducing waste.

The conventional chemical extraction process follows similar steps across different methods. Fresh
seaweed is washed, dried, and ground into powder. The seaweed biomass is then soaked in an organic
solvent (ethanol is the most used) to remove unwanted compounds such as lipids and polyphenols.
Subsequently, an acid or alkali is added to break the cell wall, followed by sodium carbonate extraction
to obtain water-soluble alginates. Alginates can be precipitated from the solution using one of three
pathways: the sodium alginate pathway, the calcium alginate pathway, or the alginic acid pathway,
with the sodium alginate pathway being the most commonly used."

For ultrasound-assisted extraction, incorporating ultrasound with optimized parameters signifi-
cantly reduces the extraction time from 2 hours to 30 minutes, while doubling the yield. According to
nuclear magnetic resonance (NMR) analysis, 30 minutes of ultrasound does not affect the structure of
polysaccharides.!"!! The mechanism of ultrasound-assisted extraction involves using ultrasound to
destruct the plant tissues and break the cell wall and cell membrane by acoustic cavitation. This
facilitates the penetration of the solvent into the plant tissue matrix, thus accelerating the dissolution
of materials like cytoplasm and cell-sap into the extraction solvent.!?!
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Figure 1. The conventional extraction of Alginates.
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Figure 2. Structure of G blocks, M blocks and aligned G and M blocks."® redrawn by ChemBioDraw 20.0.

For microwave-assisted extraction, the mechanism is that microwaves generate heat power through
ionic conduction and dipole rotations, crucial in removing the algae matrix and aiding the dissolution
of sodium alginate into the solvent.!"* Torabi et al.l'l showed that the effect of microwave on
extraction yield (EY) is quadratic. While the conclusion from the research is the range of 300W to
400W is generally considered optimal, with powers above 500W potentially causing yield loss. The
explanation is increasing microwave power within an appropriate range can improve extraction
efficiency while reducing the extraction period, but high-level microwave power may lead to thermal
degradation to reduce effectiveness.

Enzyme-assisted extraction involves adding enzymes to the extraction process to catalyse the
reaction, increasing efficiency and reducing waste. In alginate extraction, the use of enzymes results
in alginate polymers with higher purity with the lowest concentration of proteins and polyphenols.*’
After treatment with alcalase, with the high molecular-weight alginates lost, lower molecular-weight
alginates are produced as a consequence. Notably, alcalase treated alginates can induce RAW264.7
cells to release inflammatory cytokines while exhibiting high antioxidant ability.!"®’

Extrusion-assisted extraction uses a twin screw extruder to aid in the extraction process,
offering advantages such as reduced time, decreased solvent and reactant usage, minimal waste
generation, safe and applicability in various industries.""”! In Sugiono et al.’s study!'® of extrusion-
assisted extraction, the result showed that there is a quadratic relationship between parameters and
residence time distribution of algae’s stay in the screw channel. Furthermore, increasing the
solution ratio, feed rate and pH were found to increase the residence time distribution.
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Although this method offers a higher yield with a large molecular weight and holds great promise
for alginates extraction, its application to alginates extracted from brown seaweeds remains
underexplored.

Table 1 summarizes some methods for alginates extraction. Notably, there are two data for enzyme
extraction that have significant differences, one is about 90% and another is only 9%. As mentioned
before, the difference might be from different species and with different extraction conditions.
According to the results!"™ which has a 9% alginates yield (Fucus vesiculosus), it used four enzymes
that have four different and lower yields: Alcalase (9.60 £ 1.03%), Viscozyme (9.19 + 0.75%), Neutrase
(8.76 £ 0.22%), and Celluclast (8.75+0.17%). In contrast, the other one with a 90% yield used
Ascophyllum nodosum,™ the lowest yield is from using microwave-assisted method with even 56
+1%.

Property
Structure and general properties

Alginates is a linear polysaccharide consisting of repeating units of 1,4-linked p-D-mannuronic acid
(M) and a-L-guluronic acid (G) residues.®* Three types of alginates may be formed, including
homopolymer sections for consecutive G and M blocks, homopolymer segments for consecutive
M blocks or heteropolymer sections in randomly aligned G and M residues (Figure 2).1°*°
Depending on the specific seaweeds for which alginates are extracted, the M and G block contents
and length of each block including an alternating block are different.**! Alginates commonly exist in
the forms of sodium alginates, calcium alginates and alginic acid.

The M/G ratio would influence alginates’ quality and properties. According to the research of
alginates of Sargassum filipendula from Brazil,””! the M/G ratio lower than 1, it may form resistant
gels which can be used for food and cosmetic applications.”*®! There are conclusions that in alginates,
mannuronic acid residues are the active cytokine inducers.*®! Based on this study, they found that
alginates with low G block have about 10 times more than high G ones in inducing cytokine
production.

The MW of sodium alginates is different, for example, for commercial use, the sodium alginates
range from 32,000 to 400,000 g/mol,!"® which has long M and G chains with polydispersity index from
1.5 to 3 (Mw/Mn). At the same time, increasing the molecular weight of alginates increases the gelling
rate and physical properties of the gel (tensile strength, elasticity, viscosity).*”) However, the combi-
nation of cells and high viscosity solution that need high shear forces to mix would cause damage to
cell membranes, and delay the recovery, which leads to a high cell death rate.!*"’

Alginates can dissolve in water while insoluble in fats, oils, and organic solvents. The solubility
depends on M/G ratio, pH, MW, and crosslink with other compounds. Alginates that have high GG
blocks would have higher water solubility than high MM blocks.!*!! Based on the previous study,
higher amounts of M blocks lead to stronger and less soluble films while crosslinked with CaCl, would
present lower solubility.*?!

Hydrogel formation

In the biomedicine area, alginates are widely used in drug delivery, wound dressing, and tissue
engineering as the form of hydrogels which are high cross-link three-dimension networks contain-
ing hydrophilic polymers.!**) Hydrogels have the advantage of biocompatibility, biodegradability,
proper mechanical strength and so on.**) Hydrogels are formed by hydrophilic polymers through
physical and chemical cross-linking. Their physical and chemical properties depend on the type of
cross-link, the concentration of the cross-linking agent, chemical compounds and the molecular
weight of polymers./*” Alginates have four common hydro-gelling methods!®’ and will be
explained as follow.
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lonic cross-linking

Sol-gel transformation of alginates can occur under the aqueous sodium alginates solution with cross-
link cations. For example, by adding CaCOj in the acidic environment, Ca** would be dissociated and
initiates gelation of the alginates.'**! The Ca®* would replace the sodium ion at the binding site, which
leads to a cross-link “egg-box” model (Fig. 3). This process can be called cooperative in that the first
ion has difficulty in binding while the second is easier to bind."*”) The bivalent cation is a proper cross-
link agent, including Cd**, Co**, Cu**, Mn*", Ni**, Pb>" and Zn>* while Ca>" is the most widely used
one.*®) Because the G block allows bivalent cations to have a higher degree of coordination to let
bivalent cations bind better into G blocks.!"” However, a recent study showed that Ag" can be used as
a cross-linking agent and the beads made by this process are a candidate for drug carrier.*”’

As we mentioned above, after cross-linking with bivalent cations, alginates would have sol-gel
transformation. Depending on the alginates solution concentration, forming methods and M/G ratio,
it can be formed to different thicknesses. Previous studies showed that high G blocks would increase
the interaction between chains and increase the film thickness.!”" The concentration of CaCl, solution
would influence the surface morphology of films.*?! Changing the concentration of a solution, cross-
linking conditions, and adding other compounds can change the mechanical strength and flexibility of
alginate films.

Covalent cross-linking
Ionic crosslinked alginate saline gels exhibit a notable drawback in terms of their stability in
physiological conditions. Water-based media leads to the release of divalent cations. Over time,
hydrogels dissolve in an uncontrolled manner.”®® As a result, alternative covalent cross-linking
strategies have been devised. These novel approaches can generate gels with enhanced stability,
uniformity, and controllable mechanical properties.** In numerous covalent cross-linking reactions,
the Schiff-base reaction demonstrates a non-cytotoxic cross-linking process under non-toxic chemical
cross-linking agents, while the entire self-healing process occurs spontaneously without the need for
stimulation from outside.®® The microspheres consisted of oxidized alginates and carboxyethyl
chitosan by Schiff-base reaction exhibited faster gelation, reduced swelling ratio, and a slower degra-
dation process in vitro.” In another study, the 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide
hydrochloride (EDC)/N-hydroxy-succinimide (NHS)-catalyzed amidation reaction was employed to
couple sodium alginates (SA) and aminopropyl vinyl ether (APVE), facilitating the incorporation of
vinyl ether side chains into the SA backbone. The synthesized SA-VE exhibited the spontaneous
formation of a hydrogen-bonded hydrogel, SA-VE/H20, within 10 seconds upon the addition of
deionized (DI) water.>®

Notably, photo cross-linking is one of the methods of using covalent cross-linking. It is adding
eosin Y that is dissolved by 1-vinyl-pyrrolidinone and tritanol amine into alginates solution, then
using exposure 514 nm laser for 30 seconds, the hydrogel is formed.”®”! Although this method has
great advantages, there still has a problem caused by unreacted photo-initiators and their side products
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Figure 3. The egg box structure of Alginates.”" redrawn by ChemBioDraw 20.0.
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which cannot be removed and stay inside the hydrogel to limit the application, especially, pharma-
ceutical formulations.”*® However, a study developed a new hydrogel made of photoactive cinnamoyl-
modified alginate. This hydrogel can self-photo-induced cross-linking with the existence of UV light
for enough exposure time without a photo-initiator. And this new-type hydrogel is a potential
candidate as an encapsulator for paracetamol.!*”!

Thermal gelation

Thermos-sensitive hydrogels have been widely developed due to the release of bioactive compounds
that are controlled and sensitive to changes in temperature, which give the thermos-sensitive hydro-
gels advantages in the drug delivery area. In the body, temperature-induced transfers of sol-gels are
safer and more suitable for injectable applications because they do not require any denaturing cross-
linking agents.'®” However, alginates are not thermal sensitive. But Zhao et a.®’) made thermo-
sensitive semi-IPN hydrogels containing sodium alginates showing that the hydrogels swelling ratio
would increase with the concentration of sodium alginates but decreased with the increase in
temperature. Lencina et a./?! also obtain thermos-responsive hydrogels consisting of alginate-g-poly
(N-isopropylacrylamide) copolymers and this hydrogel is developed by low doses of gamma radiation.

Cell cross-linking

Cell cross-linking is to use a cell as a cross-linking agent. Lee et a."””" added arginine, glycine, and
aspartic acid to alginates by the water-soluble solution to form a long storage modulus. The result
showed that cells are the cross-linking agent and improve the formation of a hydrogel. The mechanism
is the interaction between cell receptors and adhesion ligands that can be used in forming reversible gel
systems. However, the cell cross-linking method for alginates is still in the shadow.

In all, alginates films are applied in a variety of areas, e.g., food packaging, pharmaceutical and
medical industries, agricultural sector, and cosmetic industry due to their film-forming properties.
They are capable of being applied as coatings, encapsulating matrices, wound care products and
several other applications.

[63]

Antibacterial

Antibacterial ability means that compounds or drugs have the efficiency to inhibit the growth of
bacteria or kill the bacteria, and it is also a measurement of how a compound or drug confronts the
bacterial infection. Sodium alginates solution does not have the antibacterial ability, to endow
antibacterial activity it must be done functionalization. Previous studies have shown that some
nanoparticles of metal,'®" such as silver, copper, and gold, have antibacterial ability. Therefore, we
can combine the alginates with these metallic nanoparticles to give sodium alginates antibacterial
ability. For example, crosslink with CaCl, and immerging in the Cu (II). Strong biocidal action against
E. coli has been shown while Cu (II) releasement has a negative relationship with the number of
sodium alginates and CaClL,.!*”! Adding silver composite nanospheres into an oxidized sodium
alginates sponge would endow this combination with the antibacterial ability for P. aeruginosa,
E. coli and Staphylococcus aureus.'*® Immersing sodium alginates when it has crosslinked with
CaCl, into S-nitroso-N-acetyl-penicillamine (SNAP) to obtain alginates microspheres that can release
NO.!”} The release of NO is under control while the release period can reach 93 hours. The
antibacterial efficiency of S. aureus and E. coli bacteria can be even 100%.

Antioxidant

The ability of hydroxyl radical-scavenging and bleaching of P-carotene be analysed for the
alginates derived from Cystoseira barbata.'®® The hydroxyl radical-scavenging ability is dose-
dependent, as well as the bleaching of (B-carotene, increasing the concentration of sodium
alginates, the ability of hydroxyl radical-scavenging and bleaching of p-carotene would be high.
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ABTS and superoxide radical (O27) scavenging assays showed that lower-weight alginates from
heat treatment would have better antioxidant ability than non-treatment ones. This could be the
result of the production of additional functional groups.[6] At the same time, alginates from
Cystoseira barbata, Sargassum angustifolium,'® and Turbinaria conoides'®’ have been analysed
for the stable form of the DPPH, which can be produced in a dependent way that due to they play
the role of proton blockers.

Immunomodulation

A previous study by Niloofar et a.,'® used 10 to 50 ug/mL alginates solution to analyse the immu-

nomodulation of alginates with RAW264.7 macrophage cells. Alginates, treated by alcalase, at 50 g/
mL showed the greatest increase in RAW264.7 cell proliferation. This not only determines that
alginates do not have toxicity for macrophage cells but also signals macrophage cells to proliferate.
Additionally, another study”®! suggests that molecular size and M/G ratio are important structural
parameters influencing the TNF-a-inducing activity by using RAW264.7 cells. However, only alginate
oligomers showed immunomodulation ability. The mechanism may be that alginate oligomers are
involved in the formation of multiple cytokines, and this is different for different species. The
molecular weight of alginates has also been suggested to have a decisive effect on the magnitude of
cell induction that results from smaller molecules, and more active immunomodulation ability./”")

Health benefits of alginates

As mentioned before, alginates have anti-ability which confers alginates benefits of health.
Antibacterial ability made alginates to inhibit bacterial growth in vivo is possible, such as the digest
system. The potential ability of antidiabetic let the alginates apply in diabetes management.
Application in weight management is because of its ability of water-soluble, undigested by the
stomach, and satiety. Figure 4 showed the health benefits of alginates in gastrointestinal health, weight
management and satiety effects, and potential implications in diabetes management.””%”*!

Health Benefits of Alginates

-

~

@ Gastrointestinal Health @ Impact on Diabetes \
3 Benefits Management
Alginates

Figure 4. Health benefits of alginates.
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Alginates Application in Pharmaceutical Industry
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Figure 5. Pharmaceutical application of Alginates.

Gastrointestinal health benefits

Alginate has the ability to inhibit bacterial growth in the digestive system. In a study of eight healthy
male diets with additional 10 g alginate once a day lasting for two weeks, results showed that during
this period, bifidobacteria concentration increased significantly while the levels of Enterobacteriaceae
and the frequency of occurrence of lecithinase-negative clostridia decreased. No levels or incidences of
other normal microorganisms change had been detected as well.’*! Alginates with high M content also
can bind to iron, helping to treat diseases related to excessive unabsorbed luminal iron in the colon.
A human study'”! determines that having 3 g alginate was tolerated with minor side effects. There was
no significant impact on haematological parameters or intestinal microbiome, the results in human
intestinal microbial ecosystem simulation are the same. But the challenge is alginates may be degraded
by bacteria or enzymes in the gastro-intestine. Alginates, along with their oligosaccharides (AOS),
both confer gastrointestinal health benefits. A recent study revealed that AOS decrease damage to
small intestine cell membranes and microvilli caused by busulfan which is used in anticancer while
AOS promote blood metabolome to assist small intestinal recovery.”® Using microbiota from mice
dosed with AOS can mitigate small intestinal mucositis’””! and also support AOS have gastrointestinal
health benefits.

Weight management and satiety effects

Overweight and obesity have grown to epidemic proportions. Based on the 2017 global burden of
diseases shows that over 4 million people die each year because of being overweight or obese.!”®!
Therefore, there is no time delay. Alginates can be utilised for antiobesity activity for a variety of
reasons, including the fact that they are water-soluble, cannot be digested by the stomach, cause
satiety, and improve gastrointestinal motility.””) These factors may fall under the category of dietary
treatments. Wang et a.”®) found that sodium alginates had the ability to reduce weight gain, adiposity
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index, and glucose homoeostasis brought on by the high-fat diet based on the mice model.
Additionally, it can successfully treat hyperlipidemia and hyperglycemia while lowering the risk of
cardiovascular disease. Notably, sodium alginates can restore the colonic genome’s shape and func-
tionality to support immune system modulation. To find out if calcium-gelled, alginates-pectin
drinking can lower satiety and food intake, Christine et a.”” had research of 29 female adults who
were overweight or obese. The results show that this drinking works, but additional research is
required to explore the likely mechanism. According to a study by El Khoury et a.,'®! putting gel
sodium alginates in chocolate milk can considerably lower pre-meal glycemia, insulinemia, and
hunger in healthy male adults without having a detrimental impact on caloric intake. Adding alginates
into bread may have the potential in the treatment of obesity!® due to its inhibition effect of
pancreatic lipase. The results explore that alginates would not be digested and recoverable in the gut
model, while the molecular of alginates would not be affected by the cooking, digestion and extraction.
Even at 150°C, alginates still have inhibition properties. Above all showed that alginates have potential
applications in weight management and satiety effects for humans based on dietary interventions.

Impact on diabetes management

One mechanism of antidiabetic compounds involves delaying carbohydrate absorption through -
glucosidase inhibitors, which lower postprandial blood glucose concentration by inhibiting carbohy-
drate absorption in the upper small intestine.’®?) According to the conclusion from Idota et a.”’
research with a rat model, in vitro, the study showed that calcium alginates have markedly inhibited a-
glucosidase activity while the in vivo study established that 5% calcium alginate with a weight of 270-
mesh-pass (Sieve size is about 53 pm) was the most resultful to suppress the postprandial increase of
blood glucose. Kato et a.!®*) had done a randomized clinical trial to determine that adding calcium
alginates to Udon noodles would suppress the highest amount of blood glucose concentration
postprandially and glucose absorption, while blood calcium concentration increased without other
parameter values changed.

Unfortunately, the antidiabetic ability of polysaccharides from brown seaweeds are mostly focusing
on fucoidans, which showed significant antidiabetic ability.'®* But alginates are always used to deliver
medications for managing diabetes. The calcium alginates microspheres used to obtain Metformin,
medicine for treatment for type 2 diabetes, for oral treatment of type 2 diabetes can extend the drug’s
release in the stomach and offer continuous release at intestinal fluid, according to the conclusion
from Maestrelli, Mura!®! study with mice model. At the same time, Metformin’s blood glucose-
lowering effects have greatly improved.

Pharmaceutical application

As early as 1970, Food and Drugs Administration (FDA) had approved the use of alginates in food,
pharma, and medicine.’®*® The most famous application of alginates in pharmaceuticals is drug
delivery. Due to the hydrogel formation of alginates, it can form various forms to encapsulate the
drug and release the drug in vivo under specific conditions. Wound dressing is also another wide use
of alginates and there have already many products in the market. Because of the alginates’ scaffold’s
structure, tissue engineering especially tissue regeneration is an area where alginates are involved.
Figure 5. illustrates the various pharmaceutical applications of alginates, highlighting their roles in
drug delivery, wound dressings, and tissue regeneration.

Drug delivery

Alginates are a natural biopolymer that derive from brown seaweed and gain wider use in drug
delivery. Alginate’s properties allow it to encapsulate and deliver drugs to targeted areas effectively.
The drug delivery system (DDS) based on alginates has several advantages, including biocompatibility
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and biodegradability. Gel forming ability of alginates allow alginates to do sol-gel transformation
under the aqueous sodium alginates solution with cross-link cations, which enable the formation of
numerous drug delivery platforms, including but not limited to hydrogels, liposomes, microspheres,
beads, nanofibers, nanoparticles etc.®”**! Table 2 is a mini summary of alginates’ application in drug
delivery.

The drug release timing can be managed via an alginate-based drug delivery system (DDS), limiting
drug degradation and providing targeted delivery. It may be more beneficial if the bond between the
drug and the alginates can be exploited to control the drug release kinetics.!"”) Drug release can be
controlled by adjusting the external environment, including pH, UV, temperature, and the addition of
microbubbles.®!) Because of this, it is possible to carefully monitor medication release kinetics in
order to increase treatment effectiveness and decrease side effects.””) A DDS based on alginates,
gelatine, and Fe304 magnetic nanoparticles with a pH-dependent release system was devised and
created by Rana et al.**! The prospect of treating cancer with this DDS is fascinating. Another example
is Sheng et al. created a dual-drug delivery system (DDDS) for the treatment of colorectal cancer.
Methotrexate and aspirin are loaded into an alginates and sodium carboxymethyl cellulose hydrogel
using Ca®* as a crosslinking agent. Aspirin and methotrexate can be shielded from absorption by the
body using this hydrogel. This hydrogel exhibits excellent biocompatibility and can prevent metho-
trexate and aspirin from being absorbed by the stomach.**

Furthermore, alginates’ biocompatibility and biodegradability ensure that DDS based on alginates
can be metabolized and degraded in vivo, minimizing potential negative effects. DDS based on the
alginates also can protect the drug against the harsh physical environment and enhance the stability to
promote the drug delivery to specific tissues or cells.”

In conclusion, given their notable properties, alginates have significant potential as a valuable
material for DDS. Its biocompatibility, biodegradability and other important properties make this
system become an attractive choice for controlled-release applications. Ongoing research and devel-
opment aim to connect alginates with other low or high-molecular-weight polymers to optimize
alginates’ performance to apply in various therapy and pave the way for innovative and effective drug
delivery strategies.'”!

Wound dressings

Alginates have been widely used in wound dressing ascribed to their biocompatibility, film-forming,
and hydrogel. The platform is based on alginates for wound dressing in the forms of hydrogel, films,
foams, nanofibers, membranes, sponges, wafers, etc. Table 3 is a mini summary of these platforms. The
mechanism of alginates in wound dressing is with the existence of binary cations such as calcium ions,
alginates can form the gels,!"”’ which maintain the moist physical environment to avoid bacterial
infection by absorbing the fluid of wound."**! This leads to promoting re-epithelialization and
granulation tissue formation.!'"!

As a mature, products based on alginates in wound dressing have already in the market, showed in
Table 4.

Tissue engineering

Alginates have drawn attention in the tissue engineering area which aims to create functional tissues
and cells by the combination of cell and biomaterials."">*" Alginate has been proven to be a valuable
biomaterial in scaffolds and matrices based on unique properties, used in various tissue engineering
applications, including bone, cartilage, skin, and vascular tissue regeneration,!*” which shows a mini
summary in Table 5.

Alginates exhibit significant biocompatibility, making them non-toxic to cells and avoiding any
detrimental effects. However, under specific condition,'®!) alginates demonstrate an appropriate host
response. When designing and developing tissue engineering materials using alginates, it becomes
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Table 4. Mini summary of commercial alginate product in wound dressing.

Product

brand Composition Application Ref

Biatain® 85% alginate and 15% Pressure injuries, venous leg ulcers, arterial ulcers, diabetic foot ulcers, (541

carboxymethylcellulose donor sites or traumatic wounds.

Cutimed® calcium sodium alginate (80%  Useful for moderate to heavily exuding wounds, shallow wounds, lesions '*%

calcium and 20% sodium) with rough edges, or deeper sites that are hard to dress

DermaGinate® CA/sliver Postoperative wounds, trauma wounds, pressure ulcers, leg ulcers, (1
diabetic ulcers, grafts, donor sites

AMERX® 100% CA Pressure ulcers, arterial ulcers, venous ulcers, diabetic ulcers, donor sites, '°%
post-operative wounds, dermal lesions, cuts and abrasions.

Restore® calcium sodium alginate Arterial, venous, diabetic, and pressure (stage 1-4) injuries; post-surgical %
incisions; donor sites; dermal lesions, trauma injuries, incisions, or other
trauma wounds; superficial (first-degree) and partial-thickness (second-
degree) burns.

MedVance® CA Leg ulcers, diabetic foot ulcers, pressure ulcers, cavity wounds and (1541
surgical and traumatic wounds healing by secondary intention.

Maxorb® CA and sodium Diabetic, leg and pressure (stage 2-4) ulcers; surgical wounds; donor sites; ">

carboxymethylcellulose lacerations and abrasions; superficial (first-degree) and partial-
fibres thickness (second-degree) burns

KALTOSTAT®  Alginate Calcium Sodium Moderately to highly exuding chronic and acute wounds, and for wounds ['>®!
with minor bleeding

Suprasorb®  CA fibre, Cellulose fibre Arterial ulcers, venous ulcers, diabetic ulcers, decubitus ulcers, surgical %"
wounds, skin grafts and donor sites

Sorbalgon® CA/sliver Postoperative wounds, traumatic wounds, leg ulcers, pressure injuries, (s8]

diabetic ulcers, cavity wounds, grafts, and donor sites.

essential to incorporate peptides or proteins that facilitate cell adhesion."®! A case of this is the
addition of fluorenyl methoxycarbonyl-diphenylalanine (FmocFF) peptide to alginates, resulting in
the formation of a rigid hydrogel suitable for bone regeneration. Furthermore, this hydrogel enhances
the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 preosteoblast cells.!'®’!
Moreover, when combined with 30% nanohydroxyapatite, alginates have shown enhanced cellular
proliferation and activation in vivo. In ex vivo studies, this combination has demonstrated improved
collagenous deposition and trabecular bone formation. However, it is worth noting that ratios of 50%
and 70% have been found to induce detrimental biological responses, necessitating optimization of the
ratio.!"** Additionally, alginates also combinate with other materials, such as natural biopolymers, to
enhance their properties to widen their application in tissue engineering. For example, the combina-
tion of chitosan and alginate is developed for the treatment of articular cartilage.!"**!

Alginates as the most common bio-inks in 3D bioprinting, applications in vascular tissues, bone and
cartilage have been made a figure. For example, there is a hydrogel consisting of methacrylated
carrageenan and sodium alginates''®® showed liquid crystal properties, cell culture confirmed that it
promotes cell growth. Through a 3D extrusion system, this hydrogel has a penetrating formation. All
these properties let the hydrogel has the ability to apply in vascular tissue engineering.

Limitation and future perspective

Despite the significant potential demonstrated by alginates in various applications, it is crucial to
recognize the existing research limitations and uncover areas that have not been fully explored yet and
the ability to integrate alginate extraction with the production of other value-added products."’

While alginates are utilized in drug delivery for cancer therapy, it remains unclear whether they
possess anticancer bioactivity. Most of the research in this field is primarily focused on investigating
other brown seaweed polysaccharides fucoidan.!"’””} At the same time, current studies for alginates
bioactivity are far less attention than it deserves. Alginates have antiobesity and antidiabetic properties,
although there are several research based on animal models or human trials, the products in the
market are still less than the products for pharmaceutical use.
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Table 5. Mini summary of alginates in tissue engineering.

Tissue
types Composition Drug loading Properties Applications Ref
Bone Sodium alginates (SA)/ Ciprofloxacin Biocompatibility, antibacterial activity Bone filler 1661
hydroxyapatite nanorods antibiotic
devices
Bone Poly (lactic-co-glycolic acid) Mg2+  Enhance osteoblastic activity in vitro and in-situ bone (71
biopolymer/alginates (Alg) stimulate in-situ bone regeneration regeneration
hydrogel/magnesium oxide in vivo in terms of total bone volume, clinically
nanoparticles bone mineral density (BMD), and
trabecular thickness after the
operation.
Bone Gelatin/Alg Cerium  Enhanced osteogenic differentiation with Bone regenerative ~ ['®®
oxide the free radical scavenging property. therapies
Cartilage ~ chitosan/Alg/hydroxyapatite - Improved scaffolds’ elastic modulus and ~ Cartilage (1691
hybrid thermal stability behaviour. regeneration
Improvement in swelling,
hydrophilicity properties, and cell
viability, chondrocyte cell attachment
and viability increased.
Cartilage  Poly €-caprolactone/alginate - Better viscosity, cell viability, and Nasal cartilage (7ol
sulfate/extracellular matrix proliferation regeneration
Cartilage  Alginate hydrogel Growth  Effective tissue restoration Repair and (71
factor TGF- regeneration of
1 or BMP-4 articular hyaline
cartilage
Liver Alg/calcium Glycyrrhizin  Biocompatibility maintains the viability, ~ New culture system 7
(GL) proliferation and liver function, and for the
improved the mRNA expression of bioartificial liver
cytochrome P450 device
Liver fibrin/alginate dialdehyde/ - Cells on this hydrogel have metabolically 3D scaffold system 7%
gelatin active and perform natural hepatic cell for liver
function well engineering
Liver Galactosylated chitosan/Alg Collagen  This microcapsule can create an efficient The 3D platform for 174
hepatic microenvironment modular hepatic
tissue
engineering
Vascular  Alg/gelatine - Allowing cardiomyocyte contractility and Cardiac patches for 7
tissue endothelial cell structural self- myocardial
organisation regeneration
Vascular  Sulfated alginate/cationic - Higher endothelial cells attachment, Biodegradable and  ['7®
tissue polyurethane higher anticoagulation ability and biocompatible
significantly less platelet adhesion for vascular
engineering
Vascular  Methacrylated carrageenan/SA - Liquid crystal properties and promote cell Tubular tissue (1631
tissue growth. regeneration

Hydrogel formation and cell cross-linking are the basis of alginates as the potential application
for delivery of cells into the body for therapeutic purposes which need to explore and pay more
attention to it.!**) Enhance the control over gelation kinetics, for example, explore the tempera-
ture-responsive  polymers,!'”®!  photo-responsive hydrogels,'”*) and stimuli-responsive
hydrogels,!'®"! based on the alginates, which may help to produce hydrogels that are more precise
and specific. Adding bioactive factors into hydrogels,"®!! such as peptides, hormones and even
cells gives the hydrogels specific properties to satisfy treatment requirements. Same to alginates
used in tissue engineering, cannot currently simultaneously satisfy all the required strategy
parameters (mechanical strength, degradation, and bioactivities) for tissue engineering.'®%
Therefore, exploring the methods that can improve and optimize hydrogels based on alginates
to have required strategy parameters simultaneously is urgent. Additionally, multiscale hierarchical
architecture is a future development direction for alginates, a study has already shown that
bioinspired calcium silicate nanowires and alginate composite hydrogels have the potential in
tissue regeneration from bone to tendon.!'*?
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Conclusion

Alginates, a class of polysaccharides, leverage their biochemical properties to play pivotal roles in the
pharmaceutical and food industries, bringing considerable benefits to human health. In recent years,
alginates derived from brown seaweeds have garnered significant attention due to their bioactivity and
biocompatibility. To enhance yield and extraction efficiency while conserving energy and reducing
waste, green extraction methods have been proposed. Despite their promise, these methods have yet to
gain widespread use. Owing to their antioxidant, antibacterial, and anti-diabetic properties, alginates
confer various health benefits, including aiding in gastrointestinal, weight, and diabetes management.
Products capitalizing on these benefits have already reached the market. The formation of hydrogels
by alginates underpins their pharmaceutical applications, with their use in the creation of liposomes,
nanoparticles, and beads for drug delivery widely explored. Moreover, they have been studied in the
context of tissue regeneration for bone, cartilage, skin, and vascular systems. By combining with
bioactive compounds, alginates have found increased application in the wound dressing area. Despite
their wide-ranging use, the potential applications of alginates remain vast and largely unexplored.
Future research on alginates should focus on optimizing extraction methods, investigating alginate
bioactivity, integrating bioactive compounds to meet specific requirements, and developing products
with a multiscale hierarchical architecture.
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