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ABSTRACT
In recent studies, marine macroalgae (seaweeds) have been highlighted as 
excellent sources of acquiring many bioactive polymers and metabolites with 
vast chemical and biological values, which has attracted increasing research 
interests in seaweeds. Among a diversity of seaweed-derived bioactive con-
stituents, polysaccharides have been affirmed to possess an extensive array 
of bioactivities, such as antioxidant, antimicrobial, anticarcinogenic, immune- 
enhancing and anti-inflammatory activities. Due to the exhibition of these 
bioactivities, seaweed polysaccharides have been promised great application 
potential in food, feed, pharmaceutical, nutraceutical, and cosmeceutical 
industries. As discovered, these bioactivities were mainly contributed by 
the complex polymeric structural features and chemical compositions of 
seaweed-derived polysaccharides and were highly associated with the 
extraction methods. This study has comprehensively reviewed the current 
and prospective applications of seaweeds and their polysaccharides from 
nutritional and bioactive perspectives, with further shedding light on the 
insight into the structure-bioactivity relationship of seaweed-derived 
polysaccharides.
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Overview of seaweeds and seaweed-derived polysaccharides

Seaweeds, also known as marine macroalgae, are one of the most essential and valuable marine 
source commodities. Classified by pigmentation, there are three taxonomic groups, including red 
algae (Rhodophyta), brown algae (Ochrophyta, Phaeophyceae), and green algae (Chlorophyta).[1] 

For decades, seaweeds have been widely cultivated in 61 countries and territories, contributing 
over fifty percent of global marine and coastal aquaculture production.[2] As an example, seaweeds 
were traditionally harvested and further processed for food purposes in many Asian countries 
(such as China, Japan, and South Korea).[3,4] Globally, over 200 species of seaweeds are cultured or 
wild-harvested for multiple industries.[5] Specifically, 32 green seaweeds, 64 brown seaweeds and 
125 red seaweeds are commercially used.[6] Among these 221 species of algae, 145 species (66%) 
are directly used for food purposes, including 28 green seaweeds (20%), 38 brown seaweeds (26%), 
and 79 red seaweeds (54%).[5,6] As for the rest, 101 species are used for making hydrocolloids, 24 
are used in traditional medicine, and 25 are used in agriculture.[6,7] From the world’s farmed 
seaweed production perspective, Laminaria, Eucheuma/Kappaphycus, Gracilaria, Undaria and 
Porphyra are the five leading genera, which represent around 93% of the total output.[2] The 
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culture of seaweeds is increasingly recognized for its biological, agricultural, nutritional, medicinal 
values, and ecosystem services. In fact, global seaweed production has been boosted by the 
increasing demand from different industries over the past two decades. As an earlier report 
from FAO[4] suggested, the international algae production volume reached 12 million tonnes in 
2000, including aquaculture and capture fisheries. While according to FAO’s latest state of world 
fisher and aquaculture,[2] this number has tripled and climbed to 36 million tonnes in 2020, with 
98% contributed by seaweed aquaculture. Except for the spikes in demand, recent significant 
progress in aquaculture technologies, especially algal cultivation, made this dramatic increase 
possible.[8] There is a range of factors that affect seaweed growth and production. These include 
biotic factors such as seed size, genetic material and disease infection, and abiotic factors such as 
sunlight, seawater temperature, oxygen level, nutrients, sedimentation, salinity and acidity level.[9] 

Therefore, seaweed production varies from place to place. Notably, China, South Korea and 
Indonesia are the three largest seaweed-producing countries, contributing 77.32, 6.55 and 5.96% 
to this 16.5-billion-USD seaweed market.[2,10] Among these seaweeds, most are used in the food 
industry sector for direct consumption or as functional food ingredients and polysaccharide 
additives.[4,11] The non-food industry uses some of them as hydrocolloid products in pharmaceu-
ticals, cosmetics and nutraceuticals, or raw materials for health supplement making,[6,12] but only 
a tiny proportion as bioplastics, biofuels, animal feed ingredients/additives, fertilizers, and other 
industrial products.[7,13]

Indeed, the multiple applications of seaweeds benefit from their abundance of functional ingre-
dients and bioactive compounds.[14] From a nutritional point of view, seaweeds are an excellent 
resource of saccharides, proteins, phenolic compounds, unsaturated fatty acids, vitamins and 
minerals.[14–17] The nutrient compositions of seaweeds vary by not only their species, age, size, 
reproductive status and surrounding ecology but also the seawater pH, depth, temperature, salinity, 
nutrient enrichment, oxygen content, ultraviolet radiation, light intensity exposure and the intensity of 
herbivory.[6,16,18] In general, on a dry weight (DW) basis, saccharide content, the largest constituent, 
varies between 237 and 557 g kg−1 DW.[19] Even though the ash content varies between 118 and 419  
g kg−1 DW, making it the second largest constituent, the ash content contained in seaweed biomass has 
been considered unsuitable for biorefining.[19] The relative protein, polyphenol, and lipid contents are 
generally low in all species, which account for up to 470 g kg−1 DW of Palmaria palmata 
(Rhodophyta),[20] 61 g kg−1 DW of Alaria esculenta,[21] and 57 g kg−1 DW of Spatoglossum macro-
dontum (Phaeophyceae),[22] respectively. These bioactive constituents in marine macroalgae have 
been proven to possess numerous beneficial properties, such as antioxidant, antimicrobial,[23] anti- 
inflammatory, anti-arthritic,[24] and antidiabetic activities.[25]

As a large constitution of seaweeds, polysaccharides have attracted today’s scientists’ intense 
research interests. Due to their complex chemical structure and diversity of functional groups, 
seaweed-derived polysaccharides display various physicochemical properties,[26] exhibit an extensive 
array of biological activities,[27] and can interact with numerous chemical compounds, lipids, cellular 
proteins and microbiota.[28] Therefore, seaweed-derived polysaccharides are commonly believed to be 
promising biopolymers with a wide range of applications. For illustration, Zhang et al.’s[29] recent 
study found the sulphated polysaccharides extracted from Undaria pinnatifida (Phaeophyceae) can 
modulate the gut microbiota, thereby inhibiting weight gain and lipid metabolism, which could 
become a potential solution to high-fat diet-induced obesity. The functional properties of seaweed 
polysaccharides are mainly contributed by their complex polymeric structures, such as glycosidic 
linkages, chain conformation, molecular weight,[30] degree of sulphation, percentage of uronic acid, 
and monosaccharide composition.[27] Therefore, it is essential and necessary to understand the 
chemistry of seaweed polysaccharides to investigate further the linkage between their structural 
features and the relevant bioactivities. Besides, the variation in extraction methods is another affecting 
factor on the presentence of bioactivities of seaweed-derived polysaccharides.[27] Although seaweeds 
and seaweed-derived polysaccharides have been assigned promising bioactivities and applications, the 
triggered food safety issue has raised grave concerns for their consumers. Pogozhykh et al.’s[31] 
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experiment results indicated that the oral intake of edible carrageenan could deteriorate the gut 
inflammation manifested by both systemic and tissue effects. Therefore, this study aims to compre-
hensively review the current and prospective applications of seaweeds and seaweed-derived polysac-
charides from nutritional and bioactive perspectives, with further emphasis on the effects of 
polysaccharide structural features on their expression of biological activities.

Nutritional values of seaweeds

Blue Transformation, a far-sighted vision proposed by FAO[32] in 2022, aims to secure and maximize 
the contribution of aquatic food systems to nutrition, food security and affordable healthy diets by 
following sustainable approaches. This vision is compatible with United Nations (UN) Sustainable 
Development Goals (SDGs).[33] As illustrated in Fig. 1, seaweeds have an excellent nutritional profile 
with high macro- and micro-nutrients.[16] Meanwhile, seaweed aquaculture accounts for over half of 
the worldwide mariculture production and has sustained an average of 6.2% annual growth in the past 
two decades.[2,52] Considering these nutrients are associated with a variety of bioactivities and 
nutritional values, seaweeds have a vast potential to make a constructive contribution to people’s 
health, food security, and components of affordable healthy diets.

Carbohydrates

Carbohydrates are essential macro-nutrients mainly responsible for energy supply to maintain bodily 
functions and support physical activities. Seaweeds are an excellent source of acquiring carbohydrates. 
As the latest SR Legacy data released by the U.S. department of agriculture[53] indicated, the carbohy-
drate content of edible seaweeds is about 81% on a DW basis. Specifically, in Table 1, the carbohydrate 
contents of red, green and brown seaweeds are within the ranges 8.3–68.2%, 4–79.9% and 12.8–81% of 
their DW, respectively. Depending on the complexity and length of molecules, carbohydrates can be 
classified as monosaccharides, disaccharides, oligosaccharides, and polysaccharides.[108] Regarding the 
monosaccharides, mannose, glucose, fructose, galactose, fucose, xylose, and arabinose can be com-
monly identified in seaweed hydrolysates.[109] Moreover, recent bioactive findings on disaccharides 
and oligosaccharides have attracted intense research interest. For instance, Calvo et al.’s[110] study 
found κ-carrabiose exhibited high cytotoxic responses against LM2 tumoral cells, suggesting a vast 
potential for this red seaweed-derived disaccharide become a promising antitumor agent. Besides, 
Yang et al.[25] found out that the oligosaccharides from Sargassum confusum (Phaeophyceae) can 
regulate JNK-IRS1/PI3K signalling pathways and stimulate insulin secretion, thereby boosting glucose 
tolerance. Whereas Padam et al.’s[111] experiment affirmed the extraordinary prebiotic activity of 
oligosaccharides from Eucheuma denticulatum (Rhodophyta) by showing their abilities to restrain five 
different probiotics. Polysaccharides (~50% and up to 76% on a DW basis) are the main contributor to 
seaweeds’ considerably high carbohydrate content.[112] The significant polysaccharides discovered in 
red seaweeds are carrageenans and agars, whereas fucoidans, alginates and laminarins are the poly-
saccharides mainly distributed in brown seaweeds.[113] Besides, ulvans are unique polysaccharides that 
can be extracted from the cell walls of the genus Ulva (green seaweeds).[114] As eco-friendly and 
sustainable polymers, seaweed-derived polysaccharides have been subjected to multidisciplinary 
research fields due to their diverse bioactivities and unique physiochemical properties.[113] The 
promising applications and limitations of seaweed-derived polysaccharides will be focused on and 
critically discussed based on their structural features and bioactive properties.

Proteins

Proteins are large biomolecules consisting of one or more long chains of amino acid residues.[115] 

Proteins play an indispensable role in the human body. In general terms, proteins can help build and 
repair human body tissues, facilitate metabolic reactions, and coordinate numerous bodily 
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functions.[115] As Table 1 indicates, the protein contents of green, brown and red seaweeds are within 
the ranges 0.4–32.1%, 3.1–42.1% and 3.5–47% of their DW, respectively. What is noteworthy is that 
some seaweed species can be considered excellent protein-acquiring sources, such as Fucus vesiculosus 
(Phaeophyceae) (up to 42.1% DW) and Neopyropia tenera (formerly Porphyra tenera) (Rhodophyta) 
(up to 47% DW). This application potential has been further supported by a recent study conducted by 
Healy et al.[116] about the seaweed protein and amino acid content. It stated that the essential amino 
acid, methionine, contained in Alaria esculenta, Laminaria digitata and Saccharina latissima 
(Phaeophyceae) were three times higher than in soy. Similar opinion has been posed in Machado 
et al.’s[117] research, which indicated Porphyra spp. protein content was even higher than some 
common protein-rich foods like fish, eggs, soybeans and cereals. At the same time, their study also 
revealed three abundant amino acids (aspartic acid, glutamic acid, and alanine) in seaweed proteins 
were highly associated with the umami flavour of seaweeds, which explored the possibility of 

Table 1. Macronutrient contents of seaweeds (% DW).

Species Carbohydrate Dietary Fibre Protein Lipid References

Chlorophyta (Green Seaweeds)
Caulerpa lentillifera 4* − 72.9 17.5–37.2 0.4* − 19.4 0.5–14 [54–57]

C. racemosa 32.1–71.7 64.9** 11.4–20.4 1.1–4.5 [6,58–60]

Codium fragile 43.5–50.5 5.1 4.3–17.3 0.7 – 15** [6,61,62]

C. galeatum - 5.26–5.31 12.9–15.6 3.5–5.1 [63]

C. isthmocladum 16.7–35.6 1.1* − 22.1 3.5–5.1 0.5 [64,65]

Ulva compressa 14.5 - 79.9** 33.7–41 15.7 - 32.1** 1–1.7 [66,67]

U. intestinalis 35.5–57 4.2 9–10.5 2.9 [19,67–69]

U. lactuca 34.7–76.8 53.1–55 9.3–17.1 0.2* − 3.6 [19,68,70,71]

Phaeophyta (Brown Seaweeds)
Ascophyllum nodosum 31.7–59 42.6 5.9–8.5 2–2.65 [19,72,73]

Colpomenia sinuosa 32.1–40.4 20.1 9.2–10.8 1.5–4.35 [68,74]

Cystophora polycystidea 55 6–6.1 5.1–6.6 5.7–9.2 [63,75]

Dictyopteris jolyana 81** 65.8 12.5 - [64]

Durvillaea potatorum - 3–4.3 3.1* − 5.1 0.4–0.7 [63]

Ecklonia radiata 65.4 12.7–15.8 6.4–8.5 1.1–2.2 [63,76,77]

Eisenia bicyclis 60.6 10 – 75** 7.5 0.1* [6]

Fucus serratus 12.8* − 28.7 40.4–52.3 7.1 4.4 – 11.5** [19,78]

F. vesiculosus 26.6–34.53 45–59 7.1 – 42.1** 1.47–1.74 [19,79,80]

Hormosira banksii 57.6–68.23 4.4–22 3.1* − 8.8 0.7–3.81 [63,77]

Laminaria digitata 21.7–57 60.5 6.6–26.8 0.77–1.9 [19,72,81–83]

Saccharina latissima 40–55.7 27.8 6.1–8.1 1.6–2.3 [19,84,85]

Sargassum fusiforme 26 3.7 3.2 0.7 [63,75]

S. ilicifolium 26–32.9 - 8.9 2 [68,75]

Spatoglossum schroederi 40.1–59.3 4.28–59.2 5.21–21.5 3.1 [64,86]

Undaria pinnatifida 55.9 2.9* 12.5–15.7 2.2 [63,76]

Rhodophyta (Red Seaweeds)
Ahnfeltia plicata 30.2–59.1 - 20.1–31.1 1.1 [19,87]

Botryocladia occidentalis 31.4 25 10.3 - [64]

Ceramium virgatum 35.2 - 15.8 9 – 12** [19,88]

Chondrus crispus 52.6 - 10.3–12.4 0.4* − 5.8 [19,89,90]

Delesseria sanguinea 25.9 - 68.2** 5.45 9.44–21.8 <1 [19,91,92]

Dilsea carnosa 41.8–47.7 - 15.2–22.8 0.6–2.1 [19,83]

Furcellaria lumbricalis 25.6–55.4 - 3.5* − 27.9 0.4* − 4.3 [19,90,93]

Gracilaria changii 41.1–42 63.9 - 65.6** 11.3–13.9 <1.1 [94,95]

G. corticata 8.3* − 43 - 19.3–22.8 1.3–7.1 [68,96,97]

G. domingensis 47.9 45.9 6.2–16.8 1.2–1.4 [64,98]

Halymenia brasiliana 58.1 46.8 8.2 - [64]

Hypnea valentiae 31.8 - 9.3–16.5 2.8–6.8 [68,99]

Laurencia filiformis - 14.4–15.1 11.1–18.3 4.9–6.4 [63,98]

Palmaria palmata 38–47 - 10.9–12.7 1.2–2.5 [84,100]

Porphyra tenera 36.6–37 3.3* − 32 36.6 – 47** 3.1 [63]

P. umbilicalis 21.4–25 2.6–44.3 5.1–21.7 1.1 [101–103]

P. yezoensis 43.8–46.2 27.2–34.9 37.8–40 1.5–2.6 [104,105]

Rhodomela confervoides 34–47.6 - 12.5–25.5 0.9 [19,106,107]

* Lowest content identified in the seaweed group; ** Highest content identified in the seaweed group.
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extracting seaweed protein for flavour enhancer purposes. Furthermore, seaweed proteins contain all 
amino acids essential for the human body.[16,117] Specifically, alanine, arginine, glycine, aspartic, and 
glutamic acid are the standard amino acids identified in proteins extracted from different seaweed 
species, but less of cystine, lysine and tryptophan.[16] Significantly, the total essential amino acid 
contents of seaweeds are sufficient for the dietary requirements as per FAO and WHO standards.[118]

Lipids

As summarized in Table 1, the lipid contents of brown, red and green seaweeds are within the ranges 
0.1–11.5%, 0.4–12% and 0.2–15% of their DW, respectively. Meanwhile, many of these lipid contents 
are made up of polyunsaturated fatty acids (PUFAs), which are usually in the form of omega-6 (n-6) 
and omega-3 (n-3) lipids.[119] Investigated by recent studies, 20:4 n-6 arachidonic acid (ARA), 18:2 n-6 
linoleic acid (LNA), 22:6 n-3 docosahexaenoic acid (DHA), 20:5 n-3 eicosapentaenoic acid (EPA), and 
18:3 n-3 ɑ-linolenic acid (ALA) were identified in seaweed lipids.[15,63,120] Omega-6 (n-6) and omega-3 
(n-3) fatty acids are essential for the human diet.[119] However, the omega-3:omega-6 ratio will 
significantly affect the balance of ensuing eicosanoids.[119] As a result, the unbalanced ratio will 
lower vitamin E concentration and increase lipid peroxidation.[121] Therefore, omega-3 and omega- 
6 fatty acids should be consumed in a balanced ratio, ideally from 1:3 to 1:5.[119] In today’s human diet, 
most PUFA-rich foods, such as legumes, seeds, cereals, and terrestrial animal products, contain more 
omega-6 fatty acids.[63] Therefore, it is necessary to increase the intake of an alternative food rich in 
n-3 PUFAs to fill the vacancy of omega-3 fatty acids and balance the omega-3:omega-6 ratio. While 
seaweeds can meet this demand due to their low n-3:n-6 PUFA ratio.[120] Proven by previous studies, 
the DHA, ARA and EPA contained in seaweeds are highlighted for their potential to benefit brain 
health, modulate inflammatory diseases, and prevent cardiovascular diseases.[63,119,120]

Vitamins

Vitamins are essential micronutrients for organisms to maintain life and good health.[122] Basically, 
vitamins can be classified into two groups by their solubilities, including water-soluble vitamins and 
fat-soluble vitamins.[122] Referring to Fig. 1, water-soluble vitamins, including vitamin B complex and 
vitamin C, and fat-soluble vitamins, including vitamin A, vitamin D, vitamin E and vitamin K, were 
identified in seaweeds. Even though various types of vitamins were identified in seaweeds, referring to 
Table 2, seaweeds cannot be considered a good source for acquiring vitamins B5, B6, B8, B9 and E.[6,119] 

While what is noteworthy is that there were abundant vitamin B12 contents discovered in many 
species, such as Pylaiella littoralis, Fucus vesiculosus (Phaeophyceae) and Ulva lactuca 
(Chlorophyta).[123,127] Identifying vitamin B12 in seaweeds was regarded as a breakthrough because 
nature vitamin B12 was only found in animal-based foods previously but is essential for brain functions 
of the human body.[123] Uchida et al.’s[128] study indicated the average B12 content in Neopyropia 
yezoensis (formerly Pyropia yezoensis) (Rhodophyta) samples was 14 μg/100 g DW, which was much 
higher than that contained in anchovy. Undoubtedly, this great discovery has broadened today’s 
vegetarians’ non-meat food choices to acquire vitamin B12 and have a balanced intake of vitamins.

Minerals

Minerals are essential micronutrients necessary for the living body to maintain cell functions and 
metabolism.[16] Seaweeds are an abundant source of acquiring minerals due to their marine habitat, 
which gives seaweed the possibility to absorb a diversity of minerals.[119,129] The mineral content of 
seaweeds is up to 30% of their DW.[6] Referring to Table 3, seaweed minerals, including sodium (Na), 
potassium (K), phosphorous (P), magnesium (Mg), calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), 
manganese (Mn) and iodine (I) were identified in previous studies.[6,51] Among these elements, it was 
found that the Na, Ca, K, Mg and Cu contents in seaweeds presented higher levels than that in 
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terrestrial foods.[119] Bayomy[131] found that every 100 g of fresh Ulva lactuca contained about 2200  
mg Ca. As a reference, eating eight grams of Ulva lactuca can provide 260 mg Ca, which is about 37% 
of the reference nutrient intake (RNI) of calcium for an adult man. In contrast, the same portion of 
cheddar cheese can only provide 5% of the RNI.[119] Regarding sodium and potassium, it was 
estimated that the Na concentration ranged from 0.5% in Ulva lactuca (as Ulva fasciata) 
(Chlorophyta) to 15.8% in Dermonema virens (Rhodophyta), and the K concentration ranged from 
0.2% in Hypnea spinella (Rhodophyta) to 24.7% in Dictyota dichotoma (Phaeophyceae).[51] The 
relatively higher concentration of potassium is reasonable. This is because the accumulation of 
potassium salts can help seaweeds maintain metabolic activities and Na/K balance, essential for 

Table 2. Vitamin contents of seaweeds (mg/100 g DW).

Species
Vit. A

Vit. B Complex Vit. C Vit. D Vit. E Vit. K References
B1 B2 B3 B5 B6 B8 B9 B12

Chlorophyta (Green Seaweeds)
Caulerpa lentillifera - 0.05 0.02 1.09 - - - - - 1 - 2.22 - [6]

Codium fragile 0.527 0.223 0.558 - - - - - - <0.22 - - - [6]

Ulva lactuca 0.017 <0.02 0.533 - - - - - 0.024 <0.24 - - - [6,123,123]

U. pertusa - - - - - - - - - - - - - [6]

U. rigida 0.958 0.47 0.199 <0.5 1.7 <0.1 0.012 6 - 9.42 - 19.70 - [6,16]

Phaeophyta (Brown Seaweeds)
Fucus vesiculosus 0.307 0.02 0.035 - - - - - - 14.12 - - - [6]

Himanthalia 
elongata

0.079 0.02 0.02 - - - - - - 28.56 - - - [6]

Laminaria digitata - 1.25 0.138 61.2 - 6.41 6.41 0.005 - 35.5 - 3.43 - [6]

L. ochroleuca 0.041 0.058 0.212 - - - - - - 0.356 - - - [6]

Saccharina japonica 0.481 0.2 0.85 1.58 - 0.09 - - - - - - - [6]

S. latissima 0.04 0.05 0.21 - - - - 0.0003 - 0.35 - 1.6 - [6]

Sargassum muticum - - - - - - - - - - 0.09 - - [124]

Undaria pinnatifida 0.22 0.3 1.4 2.56 - 0.18 - 0.0036 5.29 <0.05 2.5 - [6,124]

Rhodophyta (Red Seaweeds)
Gracilaria changii - - - - - - - - 0.0002 28.5 - - - [6,125]

Palmaria palmata 1.59 1.56 1.91 1.89 - 8.99 - 0.009 - 34.5 - 13.9 - [6]

Phorphyra 
umbilicalis

3.65 0.144 0.36 - - - - 0.029 - 4.214 - - - [6]

P. yezoensis - 0.129 0.382 11 - - - 0.052 - - - - 0.0114 [6,126]

Table 3. Mineral contents of seaweeds (mg/100 g DW).

Species Na K P Ca Mg Fe Zn Mn Cu I References

Chlorophyta (Green Seaweeds)
Caulerpa lentillifera 8917 1142 1030 1874 1650 21.4 3.5 7.9 2.2 - [6,51]

C. racemosa 2574 318 29.71 1852 1610 81 7 4.91 0.8 - [6,51]

Ulva lactuca - 245 140 840 465 66 0.9 - 0.3 1.6 [6,16,51,119]

U. rigida 1595 1561 210 524 2094 283 0.6 1.6 0.5 - [6,51]

Phaeophyta (Brown Seaweeds)
Fucus vesiculosus 2450 4322 315 938 994 11 3.71 5.5 <0.5 14.5 [6,51]

Himanthalia elongate 4100 8250 240 720 435 59 - - - 14.7 [6,51,119]

Laminaria digitata 3818 11579 - 1005 659 9 1.77 <0.5 <0.5 - [6,51,119]

Saccharina japonica 3260 5951 300 910 757 43 1.63 0.65 0.4 690 [6,51]

S. latissimi 2620 4330 165 810 715 - - - - 15.9 [6]

Sargassum fusiforme - - - 1860 687 89 1.35 - - 43.6 [6,51]

Undaria pinnatifida 7000 6810 450 1380 680 30 0.944 0.332 0.185 30 [6,51,119]

Rhodophyta (Red Seaweeds)
Chondrus crispus 4270 3184 135 1120 732 17 7.14 1.32 <0.5 24.5 [6,119]

Gracilaria changii 5465 3417 - 402 565 5 4.35 - - - [6,51]

Palmaria palmata 2500 9000 235 1200 610 50 2.86 1.14 0.4 100 [6,51,130]

Phorphyra umbilicalis 940 2030 235 330 370 23 0.7 - 0.1 17.3 [6,51,119]

P. tenera 3627 3500 - 390 565 11 3 3 <0.63 1.7 [6,51]

P. yezoensis 570 2400 - 440 650 13 10 2 1.47 - [6]
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seaweeds to control hypertension and live in a high-pressure environment.[51,132] Simultaneously, it 
highlighted the potential of seaweeds becoming the raw materials for extracting edible salts.[7,51] 

Besides, iodine is one of the essential nutrients in growth patterns and metabolic regulations.[6] 

According to Andersen et al.’s study,[133] the bioavailabilities of iodine in edible seaweeds are 4.6 mg 
and 2.1 mg per 45 g of Ascophyllum nodosum (Phaeophyceae) and Chondrus crispus, which means 
a mere 1.5 or 3 mg of each corresponding edible seaweed will meet the recommended daily dietary 
iodine intake amount. Therefore, seaweeds can be considered as indispensable dietary iodine intake 
sources.

Current and prospective applications of seaweeds

There is an enormous biorefinery potential in marine macroalgae. Contributed by their nutritional 
and biochemical values, seaweeds have been subjected to diverse applications among a broad range of 
industries. As Fig. 2 indicates, the majority of seaweeds are used in food (43.77%), hydrocolloid 
(18.10%), plant & soil nutrition (11.57%), personal care (7.86%), bioplastics (5.34%), feed (3.86%) and 
nutraceutical (1.93%) industries. While the rest of the utilizations include biorefinery, dyeing, phar-
maceutical, cardboard making, wastewater treatment, construction, carbon sequestration, energy, 
textile, and biosorption areas which are all less than 1.5%.[134] From a sustainable perspective, seaweed 
aquaculture is imperative to meet UN SDGs.[52] Specifically, seaweed cultivation can not only directly 
benefit Zero Hunger (SDG2), Good Health and Well-Being (SDG3), Affordable and Clean Energy 
(SDG7), Climate Action (SDG13) and Life Below Water (SDG14), but also ulteriorly contribute to 
other nine SDGs.[33,52] 

Food security

Seaweeds have been traditionally consumed for food purposes mainly in eastern Asian 
countries but are vastly underutilized in the western world. Statistically, the seaweed intake 
per capita of the Japanese population was 5.5 g DW d−1, which was commonly believed as the 
highest.[135] Benefiting from their micro- and macro-nutritional elements, seaweeds can be 
considered and further popularized as nutritional components of the human diet. Duarte 

Figure 2. Current application directions of seaweeds. Raw data generated from phyconomy seaweed Database,[134] analysed by 
origin Pro® 2023, and visualized by BioRender.
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et al.[52] believed that one of the feasible strategies to relieve the growing food supply stress 
induced by the climbing global population size is increasing the seaweed consumption of the 
worldwide population to half of the Japanese seaweed intake per capita. This might indeed 
contribute positively to the Zero Hunger goal; however, their view relied too heavily on 
quantitative analysis of the food demands from the growing population but ignored the 
seaweed production capacity and capacity growth rate. This is because even though the goal 
desires only half of the per capita Japanese intake, it requires about three times of current 
production by 2050,[52] which needs a 7.41% annual growth in seaweed production from now 
on. In comparison, seaweed production has only sustained an average of 6.2% yearly growth 
for the past two decades. However, to a certain extent, involving seaweeds in the human diet 
can relieve the boosted stress of demand for land crops and ulteriorly contribute positively to 
worldwide food security.

Moreover, seaweeds can help with global food security issues by promoting meat production yield. 
Alagan et al.[136] found that the diet containing the combination of 5% Azolla (aquatic plant) and 3% 
Ulva lactuca (Chlorophyta) significantly increased the 60-day chicken body weight gain from 568.7 g to 
816.4 g and decreased the feed conversion ratio from 4.76 to 3.39. Therefore, the feeding diet supple-
mented with a specific dose of seaweed not only increased the meat production yield of chicken but also 
boosted the feed use efficiency. This finding can be further supported by Mohammadigheisar et al.’s[1] 

study on broiler chicken fed. As their results suggested, the diets with adding 5–10 g/kg seaweed blend 
consisting of an equal proportion of two brown, one green and two red seaweeds significantly improved 
the chicken growth performance and breast yield. A similar effect was also observed on hens. Nhlane 
et al.[137] proved that adding green seaweed (Ulva spp.) meal within the ranges of 2–3% to hens 
commercial grower diet will significantly promote the feed intake amount and overall body weight 
increase. In fact, this seaweed function can be enhanced after extraction. Ruiz et al.’s[138] study illustrated 
a proportion of 5 grams of seaweed extract per kilogram of pig feed not only boosted the slaughter 
weight from 90.97 kg to 92.38 kg with less fattening feed intake but also improved the gut health of 
nursery pigs by inhibiting the E. coli and promoting Lactobacillus sp. growth.

Intriguingly, liquid seaweed extracts (LSEs) can be used as bio-stimulants to enhance land crop growth, 
which can further assist with globally growing food demands. Compared to modern fertilizers, LSEs 
represent a sustainable tool for increasing crop production yield due to their non-toxic, biodegradable and 
environmental-friendly features.[139] According to Renaut et al.’s study,[140] the addition of 250 mL 286-fold 
diluted Ascophyllum nodosum extract in pure hen manure every two weeks significantly increased the fruit 
number of tomatoes and fruit fresh weight of peppers. Similar effects were also observed on grain crops. 
Rengasamy et al.[141] believed that the eckol extracted from Ecklonia maxima will play an indispensable role 
in enhancing agricultural productivity. This is because they found the culture solution containing eckol 
promoted mung bean (at 10−5 M) and maize (at 10−6 M) seedling growths regarding their root length, 
seminal root growth, and seedling weight. Another recent study can further support their findings. 
Rathinapriya et al.[142] illustrated that the foliar spray treatment of 20 + 20% (v/v) LSEs consisting of 
Padina boergesenii (Phaeophyceae) and Gracilaria edulis (Rhodophyta) extracts would synergistically 
stimulate plant growth, crop quality and yield of foxtail millet. In terms of oil crops, 400-fold diluted 
LSE prepared with Sargassum spp. powder increased leaf chlorophyll content, photosynthesis, dry matter 
accumulation, main stem height, and lateral branch length of peanut plants.[143] Meanwhile, Tursun[144] 

proved that applying LSE with a dose of 2 mL/L would significantly enhance the crop yield, protein content, 
essential oil components, and oil yield of coriander plants. Hence, there is a far-reaching significance in 
utilizing seaweed as an effective and sustainable fertilizer.

Health and well-beings

Seaweeds are rich in numerous essential nutrients and bioactive compounds which are beneficial for 
human health. Recently, Murakami et al.[145] found the diet supplemented with 6% Sargassum horneri 
ameliorated the high-fat diet-induced obesity by modulating the related metabolic disorders and 
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suppressed the development of diabetes and hepatic steatosis by inhibiting the pancreatic lipase activity 
and lowering the intestinal lipid absorption in mice. Moreover, consuming seaweed has been proven to 
be a protective factor in preventing breast cancer. Teas et al.’s[146] study revealed the diet with 5 g day−1 of 
Undaria sp. resulted in a 50% reduction in urinary human urokinase-type plasminogen activator 
receptor concentrations, which is a critical point that could further explain the relatively lower post-
menopausal breast cancer incidence in Japan than the rest of the world. Besides breast cancer, the 
biocompatible gold nanoparticles (AuNPs) biogenically synthesised from Champia parvula 
(Rhodophyta) has therapeutic effects on lung cancer. Viswanathan et al.[147] indicated that the AuNPs 
exhibited excellent free radical scavenging ability and high cytotoxic effects against lung cancer cells. 
Furthermore, a recent study has revealed the relationship between seaweed intake and the remission of 
depressive symptoms. Guo et al.’s[148] 3-year investigation pointed out that a higher intake (>2 g/1000 
kcal day−1) of edible seaweeds was highly associated with a significant decrease in depressive symptom 
incidences. Regarding animal health, the addition of seaweeds to animal feed can modulate the gut 
microflora of poultry and livestock and enhance their immune responses. Shimazu et al.[149] reported 
that the addition of 1% Undaria pinnatifida powder had positive immunomodulatory effects on pigs by 
boosting the percentage of natural killer (NK) cells (CD3−, CD4− and CD8+) in their peripheral blood. 
Instead of promoting the NK cell levels, the dietary supplementation of 2% brown and 2.5% red seaweed 
meals can boost the serum immunoglobulin (IgG and IgM) concentrations, thereby activating the 
immune responses of broiler chickens[150] and crossbred claves,[151] respectively. Besides directly con-
tributing to human and animal health, applying LSEs can enhance the treated crops’ nutritional profile 
and benefit crop consumers with improved nutrition. Taking the beans (Phaseolus vulgaris L.) as an 
example, Ozaktan and Doymaz[152] found that the LSE treatment with a 2500 mL/ha dosage had 
effectively improved the calcium and zinc contents and reduced the cooking time of beans.

Ecosystem services

Seaweeds have crucial ecosystem service functions. This is because, referring to Fig. 3, they can synthesise 
organic carbons throughout photosynthesis by using inorganic carbons, which will significantly increase 
the oceanic carbon sink capacity and mitigate worldwide climate change.[157] Statistically, the global 
seaweed communities were believed to be able to assimilate about 1.5 petagrams annually, which is roughly 
equal to 10% of global car emissions.[155] Besides, seaweeds work as an “ocean filter” and play an 
indispensable role in coastal water quality improvement. Taking China as an example, Zheng et al.’s[153] 

work estimated that aquaculture seaweeds had removed 9,592 t of phosphorus and 75,563 t of nitrogen 
(Fig. 3), sequestrated 539,555 t of carbon and absorbed 5809 t of iodine from coastal waters, which had 
significantly mitigated the severe eutrophication problems faced by China. Regarding UN SDG, seaweeds 
have been praised for their incredible contribution to Life Below Water by enriching biodiversity through 
new biotope formation and habitat support services.[156] Burkepile et al.’s[154] work further highlighted the 
role of marine algal in feeding the herbivorous fishes on coral reefs and accordingly improving the species 
richness on the biologic food chain and forming new biocenosis (Fig. 3). Furthermore, the harmful effects 
of methane emission from ruminant animals were first emphasized by Mathison et al. in 1998.[158] What 
they had been worried about was further confirmed by Tenzin et al.’s recent study.[159] They illustrated that 
the gas produced by ruminant enteric fermentation accounted for about 16% of the global methane 
emission. In fact, adding seaweeds to ruminant animal feed can substantially lessen the formation of this 
greenhouse gas.[156,160] Kinley et al.[161] found the Asparagopsis taxiformis (Rhodophyta) mixed in the high- 
grain total mixed ration at 0.2% resulted in a 98% decrease in enteric CH4 emissions and a 1700% increase 
in H2 production of sheep and cattle. More importantly, their study provided a sustainable option to 
produce carbon-neutral red meat without negatively impacting its eating quality.
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Bioenergy

Seaweeds are promised to become a source of third-generation gaseous biofuels in the form of 
biomethane. People consider seaweeds a sustainable energy source since they neither occupy the 
agricultural land nor interfere with food production. Allen et al.[162] assessed the biomethane 
potential of ten seaweed species. They illustrated that the methane yields varied in species and 
ranged from 13.5–34.5 m2 CH4 t−1 on a wet weight basis, which predicted the gross energy yield 
generated by seaweeds might be up to 700 GJ ha−1 yr−1. At the same time, the gross energy 
yields of Ulva lactuca (Chlorophyta) (186 GJ ha−1 yr−1) and Saccharina latissima (Phaeophyceae) 
(365 GJ ha−1 yr−1)were highlighted due to their considerably higher yields than the first- 
generation liquid biofuels, such as palm oil biodiesel (120 GJ ha−1 yr−1). However, their 
assumptions relied too heavily on the quantitative analysis of the energy yield and productivity 
but ignored commercial feasibility. Soleymani and Rosentrater argued that,[163] on the one hand, 
the optimized seaweed-derived bioethanol fuel price was estimated to be 0.93 USD L−1 which 
has almost doubled the commercially available ethanol price. On the other hand, meeting the 
0.07 USD kWh−1 budget for seaweed-derived bioelectricity required 3.7 million tonnes (DW) of 
seaweeds, of which fresh weight is about half to one over a third of current global seaweed 
production. Therefore, they believed the economical production and commercialisation of sea-
weed-derived bioenergy was currently impossible. In fact, Lin et al.’s[164] recent study developed 
a feasible solution to Soleymani and Rosentrater’s worries. They found the hydrothermal pre- 
treatment (140°C) not only enhanced the CH4 yield by around 23%, but also boosted the energy 
conversion efficiency to almost 73% and optimised the process energy efficiency to about 57%. 
This optimization of efficiency has primarily increased the feasibility of seaweed-derived bioe-
nergy. Intriguingly, besides fuel energy, seaweeds can contribute to offshore wind energy 

Figure 3. Ecosystem services of seaweeds.[153–156] drawn by BioRender.
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production indirectly. This is because the seaweed farms can be co-located with the fish and 
offshore wind farms.[156] Consequently, this new concept of multiple-use of sea space by 
combining offshore wind turbines and seaweed farms will optimize the untapped space to 
capture carbon,[165] and increase societal licenses for offshore wind power station 
development.[166]

Challenges and limitations

Even though seaweeds have been praised for their bioaccessibilities of diverse nutritional 
elements and bioactive compounds, which are highly associated with an intense array of 
bioactivities and health benefits, the digestibility and bioavailability of these bioaccessible com-
pounds contained in seaweeds have been vigorously challenged in recent years by many studies 
and become a debatable research topic. Taking seaweed protein as an example, Sun et al.[167] 

argued that the anti-nutritional substances contained in seaweeds, like tannins and phytic acid, 
could form a combination complex with seaweed proteins which would significantly reduce 
protein solubility, thereby inhibiting their digestion and absorption. The bioavailability of sea-
weed proteins could also be prevented by the insoluble fibre contents contained in seaweed and 
hampered by the entrapped nature of cellular matrix proteins. This view was consistent with 
Vasconcelos et al.’s[168] study discovering that the amount of undigested protein was positively 
associated with insoluble fibre content in samples. Meanwhile, they indicated that the strong cell 
structure composed of insoluble fibre would result in a low rate of gastric disintegration which 
would be directly associated with the low digestibility of proteins. Their explanation can be 
further supported by Demarco et al.’s findings.[169] As discovered, the protein digestibility of 
Undaria pinnatifida (Phaeophyceae) was 85%, whereas that of Gracilariopsis longissima 
(Rhodophyta) was only up to 30%. The main reason for this dramatic difference was whether 
there was a rigid cell wall. They illustrated that the wooden cell wall consisting of ceramides and 
silicates was the hurdle to disrupting cells and accessing the digestible proteins.

Although consuming seaweeds has been promised various health benefits, the triggered food safety 
issue has raised grave concerns for their consumers. Silva Junior et al.[170] presented that excessive 
heavy metal contents in commercial edible seaweeds could take a toll on human health. As assessed, 
the As and I contents in the kombu sample were 38,373 µg/kg and 1,461 mg/kg, and the Cd content in 
the nori sample was 1,590 µg/kg, which exceeded the As, I and Cd permitted values 85%, 4% and 39%, 
respectively. Even though washing and boiling have been provided as dietary strategies to reduce the 
poisoning risk, the potential heavy metal contamination of seaweeds should be paid more attention 
and reported to food safety authorities to ensure the edible seaweed quality, distribution and market-
ing. The same issue has been reported in the Italian market as well. As Panebianco et al.’s results 
suggested,[171] almost one over a fifth of edible seaweed samples from the market was out of the Cd 
limit proposed by the CEVA algae technology and innovation centre (France). This toxic heavy metal 
contamination has been found even worse in Oman Sea water and is believed to be caused by sewage 
outfall-induced pollution. Shahri et al. stated that,[172] to prevent human health from toxic heavy 
metals, seaweeds acquired from Oman Sea water should be prohibited for food purposes.

Chemistry of seaweed-derived polysaccharides

Polysaccharides are long-chain polymeric carbohydrates comprised of monosaccharides units 
that are connected by glycosidic linkages. As discovered, the considerably high carbohydrate 
contents in seaweeds are mainly contributed by their high content of polysaccharides which are 
promised with an intense array of bioactivities.[16] In fact, the functional properties of seaweed 
polysaccharides are mainly contributed by their complex structural features, such as glycosidic 
linkages, chain conformation, and molecular weight. As an illustration, Saravana et al.[173] found 
the subcritical water treatment could depolymerize the fucoidan extracted from Undaria 
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pinnatifida and form low-molecular-weight fucoidan. What is noteworthy is that the fucoidan 
with a decrease in molecular weight showed an increase in antidiabetic, antioxidant, antic-
oagulant, and antimicrobial activities. Therefore, it is essential and necessary to understand the 
chemistry of polysaccharides to further understand and investigate the linkage between their 
structural features and relevant bioactivities.

Brown seaweed polysaccharides

Brown seaweeds are the second largest group of marine macroalgae after red seaweeds. What is 
distinct is brown seaweeds are rich in photosynthetic pigments, particularly chlorophyll c and 
fucoxanthin, which is also the reason for their derived green-brown colour.[174] The significant 
polysaccharides in brown algae cell walls are alginates, fucoidans, and laminarins.[175]

Alginates
Alginates are the main polysaccharide component in brown seaweed intercellular matrix and cell 
walls.[175] Generally, the alginate contents of brown seaweeds range from 17 to 47%, with the highest 
content recorded in July from young blades.[176] In brief, alginates are linear polysaccharides consist-
ing of (1→4)-linked α-L-guluronic acid (G) and β-D-mannuronic acid (M) units with an anionic 
polymeric structure.[177] These two conformational isomer residues are connected through (1→4)- 
glycosidic linkages.[113] Therefore, in terms of the structural blocks, alginic acids may compose of three 
patterns, including homo-polymeric sections of consecutive G blocks, homo-polymeric sections of 
consecutive M blocks, or hetero-polymeric sections of randomly connected G and M residues usually 
with a 1:1 (Gs:Ms) ratio.[113] The M/G ratio can be affected by various factors, such as species, harvest 
time, growth condition, harvest location, and extraction processes of the algae.[178] For instance, the 
M/G ratio of alginates extracted from the old stipes of Laminaria hyperborea was around 0.4, whereas 
the M/G ratio of alginates isolated from Saccharina japonica ranged from 0.77 and up to 2.76.[179]

Different tissues of the kelps show diverse levels of flexibility and rigidity due to the variances of 
block compositions and M/G ratio.[177] This is because β-D-mannuronic acid units are present in a4C1 
chair conformation in the M blocks, whereas α-L-guluronic acid units are present in the 1C4 
conformation in the G blocks.[179] Therefore, stronger hydrogen bonds and a more rigid structure 
are formed in the G blocks.[175] As a result, alginates rich in α-L-guluronic acid units have a higher 
water solubility than those rich in β-D-mannuronic acid units. Besides, since the α-L-guluronic acid 
residues can interact with Ca2+ and form an “egg-box” junction expressing a hydrogel texture.[175,179] 

Consequently, the gel rigidity shows a decreasing order: gel formed by homo-polymeric G blocks > gel 
formed by homo-polymeric M blocks > gel formed by hetero-polymeric MG blocks.[179] Together, 
alginates with a lower M/G ratio show higher gel strength, while alginates with a higher M/G ratio 
display greater flexibility.[180] At the same time, this finding suggests that the M/G ratio can decide the 
properties of alginate and further direct the application of alginate. Different external factors can affect 
the M/G ratio of alginate. The formations of C-5 monomers, including D-mannuronic and L-guluronic 
acids, are highly related to the alginate biosynthesis pathway, which is controlled by the enzyme 
mannuronan C-5 epimerase (MC5E).[177] Referring to Fig. 4, the MC5E identified in the cell proto-
plasts of Laminaria digitata could convert the D-mannuronic acid residues into L-guluronic acid 
residues and assist with the formation of algae cell walls.[181,182]

Fucoidans
Fucoidans are a type of fucose-containing sulphated polysaccharides which have been identified in 
many brown seaweed species.[183] Basically, fucoidans consist of fucose and sulphate ester groups, 
along with additional sugar constituents, such as glucose, mannose, galactose, xylose, acetyl groups 
and uronic acids.[184] As one of the anionic polysaccharides, fucoidans are one of brown seaweeds’ 
primary cell wall components and are not found in terrestrial plants.[177] It was illustrated that 
fucoidans could assist with seaweeds staying moist in low-tide conditions and increase their 
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desiccation tolerance.[113] The concentrations of fucoidans vary among reproduction periods, seasons, 
algal species, tissue positions and environmental factors. Still, they are not highly correlated with 
seawater salinity, temperature, oxygen level, and biogenic elements.[177] The fucoidan contents of 
brown seaweeds usually range from 10 to 20%, and the highest concentration reported so far was 
46.6% in Laminaria digitata.[113,185]

Even though more than a century has passed since the first discovery of fucoidan, its chemical 
structure still has not been ultimately determined. This is reasonable since brown seaweed 
synthesises highly branched polysaccharides, which proportions and forms differ in dependence 
on the classified taxonomic position.[177,184] For example, it has been illustrated that the backbone 
structure of fucoidan presented in Chorda filum differed from that shown in Fucus 
vesiculosus.[186,187] However, in terms of the positions of inter-glycosidic linkages, there is still 
a certain similarity in the backbone structures of fucoidan molecules. Generally, fucoidans com-
pose of α-L-fucopyranose.[184] The α-L-fucose residues are usually sulphated at C-2 and C-4 
positions, also at the C-3 position, but rarely.[184,187] Therefore, the backbone structures of 
fucoidans can be summarized as two main structures, including a linear backbone consisting of 
α-(1→3)-L-fucose residues and a backbone consisting of alternating (1→3)-linked and (1→4)- 
linked α-L-fucose residues. For instance, the fucoidan extracted from Chorda filum was investigated 
to have consisted of linear chains built up by α-(1→3)-L-fucose residues, whereas the backbone 
structure of fucoidan extracted from Hormophysa cuneiformis was composed of alternating (1→3)- 
linked and (1→4)-linked fucose residues.[184,188] The fucoidan biosynthesis pathway was first 
reported in Ectocarpus siliculosus.[189] Referring to Fig. 4, it involves a de novo pathway catalysed 
by GDP-fucose synthetase (GFS) and GDP-mannose 4,6-dehydratase (GM46D) and a salvage 
pathway with the assistance of GDP-fucose pyrophosphorylase (GFPP) and fucokinase (FK).[177,189]

Laminarins
Laminarins are one of the significant storage carbohydrates of brown algae with low molecular 
weight.[175] Although the laminarin content is associated with numerous factors, such as species, 

Figure 4. Proposed biosynthesis pathways of seaweed polysaccharides.[177] MPI, mannose-6-phosphate isomerase; GPI, glucose- 
6-phosphate isomerase; PMM, phosphomannomutase; PGM, phosphoglucomutase; MPG, mannose-1-phosphate guanylyltransfer-
ase; UGP, UTP-glucose-1-phosphate uridylyltransferase; GME, GDP-mannose-3′,5′-epimerase; GALT, galactose-1-phosphate uridylyl-
transferase; GalT, galactosyltransferase; CST, carbohydrate sulfotransferase; GC5E, glucuronyl C5-epimerase; GluT, 
glucuronyltransferase; RhaT, α-1,4-rhamnosyltransferase; MC5E, mannuronate C5-epimerase; GT, glycosyltransferase; GFS, GDP- 
fucose synthetase; GFPP, GDP-fucose pyrophosphorylase; FK, fucokinase; FST, fucosyltransferase; GMD, GDP-mannose dehydrogen-
ase; RHM, rhamnose synthase; UGD, UDP-D-glucose dehydrogenase; GM46D, GDP-mannose 4,6-dehydrogenase.
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harvest time and habitat of seaweeds, the highest level is up to 35% of DW.[190] In general, laminarin 
can be commonly found in Saccharina spp. and Laminaria spp., whereas it represents a minor content 
level in Fucus spp., Undaria spp. and Ascophyllum spp.[175] It is worth mentioning that the molecular 
weight (MW) of laminarin is around five kDa which is much lower than most of the other seaweed 
polysaccharides.[190] In fact, the molecular weight highly depends on the degree of polymerization.[191] 

This is because, regarding the polymeric structure, laminarin consists of a main polysaccharide chain 
formed by (1→3)-linked β-D-glucopyranose residues with variable degrees of β-(1→6)-intrachain 
links and 6-O-branching.[192] There are two main types of polymeric chains, G-chain and M-chain. In 
detail, the M-chain structure has D-mannitol at the reducing end of the chain, while no D-mannitol is 
presented at the reducing end of a G-chain.[175] For instance, it was reported that the MW of laminarin 
extracted from Laminaria hyperborea was around 5.7 ~ 6.2 kDa, which is higher than the normal MW 
range.[192] This might be because of its higher level of polymerization. Besides, it was found that the 
solubility of laminarin was related to its level of ramification, and highly branded laminarin can 
dissolve in cold water.[193]

Red seaweed polysaccharides

Among all the eukaryotic algae, red seaweeds are believed to be the phylogenetically oldest 
division.[113] Thus far, approximately 6500 red algal species have been identified, making them the 
most diversified taxonomical group.[118] As a common characteristic, red seaweeds contain galactan as 
the main structural building block of their intercellular matrix and cell walls.[194,195] Nowadays, 
a diversity of polysaccharides has been identified in red algae, such as carrageenans, agars, porphyrins, 
xylans, and floridean starch.[113,196] Among these identified polysaccharides, carrageenan, sulphated 
galactans and agars have been considered the significant and unique polysaccharides that can be 
derived from red algae.[197]

Carrageenans
Carrageenans are marine hydrocolloids and red algae’s main structural building component.[198] 

Commercially, carrageenans are usually extracted from Eucheuma denticulatum and Kappaphycus 
alvarezii.[177] The linear chains of carrageenans are composed of repeating di-saccharide units of 3,6-anhy-
dro-galactose and D-galactose, linked by alternating 4-α-D-galactose and 3-β-D-galactose, and modified by 
substitution with methyl, ester sulphate, or pyruvate, which contains 15–40% sulphate ester groups 
depending on carrageenan types.[196,198] Based on the structural composition and sulphate content, 
carrageenans can be divided into three families: the beta (β) family, including beta (β), gamma (γ), 
omega (ω) and psi (ψ) carrageenans; the kappa (κ) family, including kappa (κ), mu (μ), iota (ι) and nu 
(ν) carrageenans; and the lambda (λ) family, including lambda (λ), alpha (α), delta (δ), theta (θ) and xi (ξ) 
carrageenans.[113,196] The κ-carrageenans mainly from Kappaphycus alvarezii and ι-carrageenans mainly 
from Eucheuma denticulatum are two major commercial carrageenans with distinct gelatinization 
properties.[199] The ι-carrageenans form soft gels, whereas the κ-carrageenans produce brittle gels.[200] 

When fully transformed, the gametophyte generation of these two commercial species contains only one 
primary carrageenan type (>75%), either ι-carrageenans or κ-carrageenans.[199] Whereas in some other 
species, such as Mastocarpus stellatus[201] and Chondrus crispus,[202] carrageenans are generally presented as 
hybrid structures instead of pure forms.[113] For instance, many seaweed species contain carrageenans with 
intermediate rheological properties due to different ratios of ι-carrageenans and κ-carrageenans.[199] These 
types of carrageenans are called κ/ι-hybrid carrageenans. Except for κ/ι-hybrid polymers, natural carragee-
nans appear as ν/ι-hybrid polymers, μ/κ-hybrid polymers and so on.[196] Therefore, the structural sequences 
of transformed (κ, ι) gelling and precursor (μ, ν) nongelling units in the carrageenan polymer chain can 
essentially decide the bioactivities and physicochemical properties of the carrageenan chain.[199] In fact, the 
relative amount of gelling and nongelling units contained in the hybrid polymer sequence can be affected 
by the carrageenan extraction procedure. Azevedo et al.’s[203] previous study indicated that the high- 
temperature alkaline pre-treatment on seaweeds can convert the comprised μ- and ν-carrageenans to κ- 
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and ι-carrageenans, respectively. However, research on carrageenan biosynthesis is minimal. As Fig. 4 
illustrates, galactose sulphurylases are the only identified enzymes on the carrageenan synthesis 
pathway.[204] Moreover, the genes encoding carrageenan-synthesis-relevant enzymes, including carbohy-
drate sulphotransferase (CST), glycoside hydrolase (GH16), glycosyltransferase (GT), and galactose-6-sul-
phurylase were previously identified in the genome dataset of Chondrus crispus.[205]

Agars
Agars have been commonly exploited due to their excellent hydrocolloid properties. Globally, the industry 
use agar is usually extracted from Gelidium spp., Gracilaria spp., and Pterocladiella capillacea.[206] Agars are 
hydrocolloids mainly consisting of agarose and agaropectin. In terms of their chemical structure, agars are 
linear seaweed polysaccharides built up of alternating α-(1→3)-D-galactopyranose and β-(1→4)-linked 3,6- 
anhydro-L-galactopyranose residues with intermittent sulphate groups at the C-6 position.[196,206] The 
hydrocolloid properties of agars are highly associated with their polymeric structures. For instance, α- 
(1→4)-linked 3,6-anhydro-D-galactopyranose residues may also appear on the polymer chain, enhancing 
the hydrocolloid properties of agars.[196] Based on the backbone structure of agars, together with carra-
geenans, they are classified as sulphated galactans. Furthermore, the anionic charges of agar polymers will 
be altered depending on their sulphation degree.[207] As a result, it can form more neutral agarose, or 
agaropectin with a higher sulphation degree.[196] Due to the presence of α-(1→4)-linked 3,6-anhydro-D- 
galactopyranose residues, agarose gel shows a higher viscosity.[206,207] Whereas agaropectin has been 
characterized by the presence of more elevated pyruvate and acetate substitutions, resulting in lower 
water solubility.[196,207] Similar to carrageenans, research on the biosynthesis pathway of agars is still 
limited. As Fig. 4 suggested, the biosynthetic pathway proposed by previous studies started from fruc-
tose-6-phosphates (F6Ps), then they were catalysed to either GDP-L-galactose by GDP-mannose-3,5-epi-
merase (GME) or UDP-D-galactose by galactose-1-phosphate uridylyltransferase (GALT) to form agar 
precursor units.[208,209]

Green seaweed polysaccharides

As previously discussed, green seaweeds contain high levels of fibres, proteins, and bioactive compounds. It 
is true that the polysaccharide contents in green seaweeds are relatively lower than the other seaweeds.[196] 

For example, Farias et al.[210] indicated that the total polysaccharide content accounted for about 5% DW of 
Codium isthmocladum. Notably, ulvans are the distinct sulphated polysaccharides that are exclusively 
contained in green seaweed Ulva genus[114] and exhibit prominent antioxidant activities.[211]

Ulvans
The soluble dietary fibres in Ulva species account for up to 40% DW of their biomass, with a majority 
of ulvans and minor compositions of xylo-glycans and glucuronans.[212] The pioneering works 
indicated that ulvans had a distinct heterogeneous composition with repeated disaccharide sequences 
such as xylose, sulphated rhamnose, and uronic acids (iduronic or glucuronic acids).[213] The most 
frequently repeated disaccharides in the ulvans were characterized to comprise two different types of 
aldobiorunic acids, which are designated as type A (A3s) and type B (B3s).[212] The A3s repeats 
[→4)-β-D-glucuronic acid-(1→4)-α-L-rhamnose-3-sulfate-(1→], whereas B3s repeats [→4)-β-L- 
iduronic acid-(1→4)-α-L-rhamnose-3-sulfate-(1→].[184,212] The sulphated rhamnose residues mainly 
occupy the C-3 position or both C-1 and C-3 positions; however, sulphated xylose residues might be 
present in the place of uronic acids.[184,196,212] Therefore, the repeating disaccharide sequences of 
ulvans are called type A U3s and type B U2,3s.[212,213]

Bioactivities of seaweed-derived polysaccharides and their derivatives

Polysaccharides are versatile biopolymers that can be derived from many natural resources, especially 
seaweeds. Most notably, sulphated polysaccharides are the main bioactive polymers abundantly 
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distributed in various seaweed species.[214] Due to their complex chemical structures and diversity of 
functional groups, seaweed sulphated polysaccharides (SSPs) can interact with multiple textures, 
chemical compounds, lipids, cellular proteins, and microbiota.[215–217] Benefitting from these inter-
active effects, SSPs have possessed an extensive array of bioactivities, such as antioxidant, antimicro-
bial, anticarcinogenic, immune-enhancing, and anti-inflammatory activities.[218–222]

Antioxidant activities

Many previous studies have demonstrated that algal polysaccharides are vital antioxidants and in-vitro 
free radical scavengers to prevent living organisms from oxidative damage.[223,224] In general, the 
antioxidant activities of polysaccharides are investigated regarding the steps taking place in a radical 
substitution reaction, including blockage of the initiation, such as total antioxidant capacity (TAC), 
reducing power activity (RPA), and DPPH/ABTS free radical scavenging ability; branching and 
propagation, such as iron/copper chelation ability; and termination, such as superoxide/hydroxyl 
radical scavenging capacity.[225] The TAC, RPA, DPPH and ABTS assays are mainly used to determine 
the ability to neutralize the free radicals by donating the hydrogen or electrons to reactive oxygen 
species (ROS), thereby interrupting the initiation phase of the free-radical chain reaction (Fig. 5).[230] 

As an example, Rodrigues-Souza et al.[225] indicated that the TAC of fucan and galactan extracted from 
Codium isthmocladum was 26.2 mg/g ascorbic acid and 11.01 mg/g ascorbic acid, respectively. Even 
though the TAC and RPA assays had a similar antioxidant mechanism, unlike the TAC, their reducing 
power was hard to detect. A relatively lower RPA had also been found Arunkumar et al.’s study.[226] As 
they discovered, the highest RPA of sulphated polysaccharides among five edible seaweed species was 
0.4 mg/mL for the Padina pavonica, which was much lower than that of the ascorbic acid standard. As 
an optimization, the ferric-reducing power of polysaccharides could be largely improved by fermenta-
tion. As Lee et al. illustrated,[231] after fermentation with alginate and laminarin, the RPA of the culture 
medium was around four and two times higher than the control group, respectively. Besides, accord-
ing to Tian et al.,[227] the polysaccharide fraction extracted from Sargassum carpophyllum with an 
average of 125 kDa average MW showed excellent concentration-dependent DPPH and ABTS radicals 

Figure 5. Proposed antioxidant mechanisms of seaweed-derived polysaccharides.[192,218,226–229] drawn by BioRender.
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scavenging abilities, which were about 65% and 91% at 10 mg/mL concentration, respectively. 
Furthermore, seaweed-derived polysaccharides have also been identified with great antioxidant 
activities at the propagation and branching phase of the radical substitution reaction. As Fig. 5 
indicates, the ferrous ion chelating ability determines the ability of the compounds donating an 
electron to reduce the TPTZ – Fe (III) complex to the TPTZ – Fe (II).[192] For instance, the 
polysaccharide fraction extracted from Gracilaria caudata showed an outstanding metal chelating 
activity at 4 mg/mL (69.8%).[228] Regarding the termination step of the radical substitution reaction, 
fucoidan (1 mg/mL) extracted from Sargassum fusiforme (formerly Hizikia fusiformis) (Phaeophyceae) 
and polysaccharides (20 mg/mL) from Sargassum carpophyllum with an average 125 kDa average MW 
scavenged 32.98%[229] and 73.80%[227] hydroxyl radicals, respectively. Besides ROS, lipid peroxidation 
(LPO) is another type of oxidative stress in human and animal cells, which is believed to be highly 
associated with the causes of many malignant diseases, such as lung cancer.[232] In fact, superoxide free 
radicals are the primary oxidative stress in the human body, which can damage the cells through 
LPO.[227] Notably, SSPs refined from Sargassum fusiforme (100 μg/mL) and Sargassum carpophyllum 
(12 mg/mL) displayed remarkable dose-dependent superoxide radical scavenging activities by 
73.56%[229] and 71.30%,[227] respectively. In summary, seaweed-derived polysaccharides have excellent 
antioxidant capacities that could protect cells against damage caused by a wide range of free radicals. 
Meanwhile, the presentence of these antioxidant activities could further contribute to the expression of 
other bioactivities of seaweed-derived polysaccharides, such as anti-inflammation and anticancer.

Antimicrobial activities

In recent years, many studies have demonstrated the excellent antimicrobial activities of seaweed 
polysaccharides against plentiful human bacterial pathogens,[233] foodborne fungi,[234] and a broad 
spectrum of viruses.[235] Jun et al.[233] indicated that the fucoidans extracted from Fucus vesiculosus 
had inhibited not only the growth of two Gram-positive bacterial strains but also suppressed their 
biofilm formation. As discovered, the extracted fucoidans inhibited the growth of Staphylococcus 
aureus and Listeria monocytogenes at 500 µg/mL and 250 µg/mL concentration, respectively. Although 
they had even suppressed the biofilm formation of Enterococcus faecalis over 90% at a 1000 µg/mL 
concentration in contrast to the control group, the fucoidans extracted from Fucus vesiculosus did not 
express any inhibitory activities to the Gram-negative bacteria. Whereas alginates had been observed 
to have solid inhibitory activities against Gram-negative bacteria. Arafa et al.[236] found the hydrogel 
formed by alginates possessed a 69.85% inhabitation rate against Agrobacterium tumefaciens at a 3.90  
µg/mL concentration. Meanwhile, its inhibitory activity against Bacillus cereus (Gram-positive) was 
even higher, reaching 100% at a 1.95 µg/mL concentration. Besides, seaweed-derived polysaccharides 
showed notable antifungal activities. Fayoumy et al.[234] had previously examined the antifungal 
activities of ulvans against three foodborne fungicidal strains. As their results suggested, the 10 mM 
and 15 mM of ulvans extracted from Ulva lactuca had significantly restrained the growth of Aspergillus 
flavus by 91% and Rhizopus stolonifera by 89%, accordingly. The carrageenan nanoparticle encapsula-
tions also enhanced the phytopathogenic and buccal fungi inhibitory activities of commercial fungi-
cides. Kumar et al.[237] showed the fungicide-loaded chitosan-carrageenan nanoparticles at 1 mg/mL 
concentration not only exhibited the same fungi radial growth inhibition (100%) against Septoria 
lycopersici and Sclerotinia sclerotiorum as the commercial fungicide mancozeb, but also displayed less 
toxic and better cell viability than the mancozeb. Their finding was consistent with Özkahraman et al.’ 
study.[238] As indicated, the triamcinolone acetonide loaded κ-carrageenans/pectin patches performed 
more vigorous antifungal activities against Aspergillus flavus and Aspergillus fumigatus with no cell 
cytotoxicity. Furthermore, many previous studies have examined the antiviral activities of seaweed- 
derived polysaccharides. The international pandemic, coronavirus disease (COVID-19), has caused 
a worldwide health threat due to its rapid spread. Fucoidan treatment has been found out as an 
effective potential therapy or complementary treatment to the medical prescription for COVID-19- 
recovered patients suffering long-term sequelae. As Díaz-Resendiz et al. investigated,[239] the fucoidan 
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treatment (20 μg/mL) had significantly restored and increased the mitochondrial membrane potential 
(Δψm) by an average of 10% in peripheral blood mononuclear cells (PBMCs) from SARS-CoV-2 
recovered female patients in contrast to the control group. Meanwhile, their follow-up study suggested 
that the fucoidan treatment had no toxicity to human PBMCs, which further supported the feasibility 
of this seaweed-polysaccharide treatment.[240] Except for the SARS-CoV-2 virus, sulphated polysac-
charides extracted from seaweeds, such as fucoidan and carrageenan, also showed antiviral activity 
against HIV infections. As Harb & Chow discovered,[241] the practical anti-HIV activities of seaweed- 
derived polysaccharides were shown as their IC50 values of inhibiting the HIV infection process were 
relatively low. The HIV inhibition mechanism of these polymers has been further investigated by 
Sanniyasi et al.[242] They found the maximum inhibitory activities of fucoidans extracted from 
Turbinaria decurrens and Dictyota bartayresiana (Phaeophyceae) were 92% (IC50 = 131.7 ng/mL) 
and 89% (IC50 = 57.6 ng/mL), respectively. Specifically, as Fig. 6 illustrates, fucoidans could bind 
with the HIV particle and hamper the viral infection at an early stage. The exact inhibition mechanism 
had been identified in the antiviral activities of other SSPs. Fucoidans extracted from Monostroma 
nitidum (Chlorophyta) and Nizamuddinia zanardinii (Phaeophyceae) had proven to be able to 
restrain the infection of IFN-γ–inducible enterovirus[246] and herpes simplex virus[247] by binding 
virus particles and entering into Vero cells. Altogether, the remarkable antimicrobial activities of 
seaweed-derived polysaccharides have been confirmed by a series of research studies and bioactivity 
assays. These constructive findings further supported the rationality and feasibility of food and 
medicine applications of seaweed-derived polysaccharides.

Anticarcinogenic and immune modulation activities

Seaweed-derived polysaccharides have attracted significant research interest due to their therapeutic 
effects on cancers.[248] Specifically, many previously conducted in vitro studies have found they 
showed the tumour cells’ inhibitory activities by enhancing the immune function of cancer patients 
or suppressing tumour cell metastasis.[249] Benefiting from their sulphated functional groups, SSPs like 

Figure 6. Proposed antiviral mechanisms of fucoidans.[239,240,243–245] drawn by BioRender.
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fucoidans can prevent tumour cell growth by inhibiting free radical generation and reducing tumour 
chemotherapy drug resistance.[250] Referring to the anticancer assays conducted by Alboofetileh 
et al.,[251] fucoidans extracted from Nizamuddinia zanardinii with 400 µg/mL concentration inhibited 
the 67.46% and 55.94% growth of HeLa (cervical cancer) and Hep-G2 (hepatocellular carcinoma) cell 
lines. Meanwhile, their study proposed the potential anticancer mechanism by further investigating 
the effects of fucoidans on RAW264.7 cell proliferation and nitric oxide production. As discovered, 
fucoidans extracted by enzymatic-assisted method had significantly activated the mitogen-activated 
protein kinases (MAPKs), thereby stimulating the RAW264.7 murine macrophage cells which are 
mainly responsible for the innate immune response to malignant tumour cells. The observed sig-
nificant increase in NO assisted to confirm this immunostimulatory process. Inhibitory activities of 
Hep-G2 and HeLa cell growth had also been reported on other SSPs. In detail, Chen et al.’s[252] 

investigation showed that 250 µg/mL SSPs from the green microalga Tribonema sp. inhibited up to 
66.8% growth of Hep-G2 cells by upregulating tumour necrosis factor α (TNF-α), interleukin 6 (IL-6) 
and interleukin 10 (IL-10). Whereas Digala et al.’s[253] study found the SSPs (800 µg/mL) from 
Sargassum polycystum had significantly induced the apoptosis of HeLa cells and decreased almost 
80% of the HeLa cell viability. Except for cervical cancer and hepatocellular carcinoma cells, SSPs were 
also cytotoxic to prostate cancer cells. Pham et al.[254] illustrated that the sulphated galactans extracted 
from Neopyropia yezoensis (formerly Pyropia yezoensis) (Rhodophyta) could induce the modulation of 
the intracellular reactive oxygen species production to regulate the PI3K/AKT/mTOR signalling 
pathway, thereby inhibiting up to 73% and 80% of PC-3 and DU145 cell growths at same 750 µg/ 
mL concentration. Besides, seaweed-derived polysaccharides could protect patients from radiother-
apy-induced immune cell and blood cell damage. Referring to the in-vivo study based on a rat model 
conducted by Rhee and Lee,[255] the fucoidan-treated rats (100 mg/kg) showed not only strong 
resistance to the thrombocytes and leucocytes damage induced by irradiation but also significantly 
less hypoplasia of bone marrows in contrast to the control group. Their groundbreaking findings 
could further support that SSPs could be considered a promising therapy or complementary treatment 
for patients having hematopoietic dysfunction induced by long-term chemotherapy or radiotherapy. 
Notably, the anticarcinogenic activities of seaweed-derived polysaccharides are highly associated with 
their immune activation capacities. Besides macrophage cells, SSPs can also modulate the immune 
system by stimulating T cells, B cells, and natural killer (NK) cells. Zhu et al.[256] investigated the NK 
cells’ stimulative capacities of laminarins from Saccharina japonica (formerly Laminaria japonica) 
(Phaeophyceae) in the immunosuppressed mouse. As a result, the extracted laminarin (1000 mg/mL) 
significantly enhanced the IL-12, TNF-α and NK cell levels in the serum, thereby potentiating the 
damaged immune system. Their findings were consistent with another recent study. As An et al. 
discovered,[257] treatment (100 mg/kg) with fucoidans extracted from Saccharina japonica not only 
elicited T cells, IFN-γ, and NK cell cytotoxic mediator production, but also stimulated the antic-
arcinogenic efficacy of anti-programmed Death-Ligand 1 antibody against lung carcinoma. In sum-
mary, on the one hand, seaweed-derived polysaccharides can directly suppress cancer cell metastasis. 
On the other hand, they can also work as immune stimulatory compounds to promote the production 
or anticancer efficacies of immune checkpoint inhibitors.

Anti-inflammatory activities

Many recent studies have demonstrated the significant effects made by seaweed-derived polysacchar-
ides in different inflammatory pathology models, showing such as the reduction of pro-inflammatory 
cytokines, cell migration, oxidative stress, and criteria of tissue injury.[258] As an illustration, according 
to Cui et al.,[259] sulphated polysaccharides derived from Gelidium pacificum (Rhodophyta) had 
markedly inhibited the mRNA and protein expression levels of tumour necrosis factor receptor- 
associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88) and Toll-like receptor 4 
(TLR4) in lipopolysaccharide (LPS)-stimulated cells. Specifically, the overexpression of TRAF6 not 
only enhanced the inflammatory responses by triggering T and B cell activation,[260] but also 
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exacerbated the tumour invasion and metastasis.[261] Whereas MyD88 and TLR44 were responsible 
for releasing pro-inflammatory factors induced by immune danger signals,[262] and inflammatory 
cytokines production via the NF-κB signalling pathway,[263] respectively. The anti-inflammatory 
effects of SSPs had been further supported by an in-vivo zebrafish model conducted by Wang et al. 
As they investigated,[217] the survival rate of the zebrafish embryo treated with 100 μg/mL SSPs from 
Codium fragile (Chlorophyta) had significantly increased to 73.33% in contrast to the non-treatment 
group (56.67%). Meanwhile, this SSPs treatment also dramatically decreased the ROS levels from 
295.22% to 185.58% and the NO production from 220.45% to 133.51% in LPS-induced zebrafish 
compared to the control group (100%). Additionally, protein denaturation[264] and free radicles[265] 

had been highly correlated with the occurrences of inflammatory responses, which could potentially 
trigger a diversity of inflammatory diseases, such as arthritis. Obluchinskaya et al.’s[266] recent study 
found the fucoidan fraction extracted from Fucus vesiculosus showed prominent free radical scaven-
ging activity (IC50 = 0.05 mg/mL) and against protein denaturation ability (IC50 = 0.20 mg/mL). In 
general, many polysaccharides derived from marine macroalgae, especially SSPs, had possessed 
excellent anti-inflammatory activities in recently conducted studies, which could further instruct the 
application direction of seaweed-derived polysaccharides as promising anti-inflammatory agents.

Effects of chemical compositions and structural features of seaweed-derived polysaccharides 
on the presentence of their triggered bioactivities

As previously discussed, seaweed-derived polysaccharides have exhibited a diversity of biological activ-
ities. In fact, these shown bioactivities could be seriously affected by their chemical compositions and 
polymeric structure features, such as MW, sulphation degree, variances in glycosidic branching, and 
types of sugar compositions.[113,223] The significant effects on the expression of bioactivities triggered by 
the differences in MW have attracted today’s researchers’ attention. For instance, Tian et al.[227] found 
the scavenging ratio of SSPs with 151 kDa and 125 kDa MW on DPPH, OH, O2- radicals was 46.7%, 
46.7%, 62.8%, 87.3% and 66.6%, 73.8%, 71.3%, 91.1%, respectively. Obviously, SSPs with lower MW 
showed more potent radicle scavenging abilities. Besides, MW differences could also affect the reducing 
power of seaweed-derived polysaccharides. As Saravana et al. investigated,[173] there was a significant 
increase in the ferric-reducing power of low-MW fucoidans induced by subcritical water treatment. 
Rodrigues-Souza et al. stated that,[225] the reducing power of compounds was mainly contributed by the 
number of reducing ends. Meanwhile, Qi et al.[267] illustrated the reducing end number of polysacchar-
ides was negatively correlated with their MW by showing low-MW ulvans from Ulva australis (formerly 
Ulva pertusa) (Chlorophyta) degraded from 151.7 kDa to 28.2 kDa had more reducing ends and more 
substantial reducing power. Besides antioxidant activities, the MW change of polysaccharides resulted by 
the heat treatment could also dramatically affect their antimicrobial activities. According to Jun et al.,[233] 

the MW of fucoidans from Fucus vesiculosus after heat treatment (121°C, 15 min) dropped from 62.08 
kDa to 13.88 kDa, but the resulted low-MW fucoidans (125 µg/mL) significantly restrained both the 
biofilm formation and planktonic cell growth. However, the low MW seems to be a disaster for the 
immunomodulatory activities of polysaccharides. Qi and Kim[268] demonstrated that the polysaccharides 
derived from Chloroidium ellipsoideum (formerly Chlorella ellipsoidea) (Chlorophyta) with higher MW 
induced higher nitric oxide production from murine macrophage J774A.1 cells and showed more vital 
immunomodulatory activities. Based on these results, it is apparent that thermal condition is one of the 
critical factors affecting the MW of extracted polysaccharides, thereby influencing the strength of 
seaweed polysaccharide-triggered bioactivities. As investigated, the thermal treatment involved in heat- 
assisted extraction (HAE)[269,270] and temperature increase induced by microwave-assisted extraction 
(MAE)[271] could be highly possible to cause the degradation of the seaweed-derived polysaccharides in 
the extraction process.

Besides MW, the sulphation degree of SSPs was another determining factor that had been shown to 
be highly related to the expression of bioactivities. For example, Makoto et al.[272] found that the 
removal of sulphate residues eliminated the bacteriostatic effect of ι-carrageenan, which suggested the 
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antimicrobial impact of polysaccharides was highly associated with the sulphate residues. Regarding 
the antioxidant activities, Bhadja et al.[273] illustrated that the polysaccharide fraction extracted from 
Bryopsis plumosa (Chlorophyta) with the highest sulphate content (11.4%) showed the strongest 
DPPH and O2- radical scavenging abilities (IC50 = 1.7 mg/mL, IC50 = 9.2 mg/mL, respectively). This 
result suggested that the antioxidant capabilities of seaweed-derived polysaccharides were positively 
correlated with the sulphate contents. Meanwhile, their study also indicated the SSPs with higher 
sulphate contents had a higher capacity to repair oxalate-induced damaged human kidney proximal 
tubular epithelial cells by showing SSPs with 5.5% and 21.7% sulphate contents accordingly increased 
the cell viabilities of damaged cells to 87.9% and 94.3% in contrast to the control group (62.3%). 
Moreover, the in vitro assay performed on LPS-stimulated inflammation in RAW264.7 macrophages 
conducted by Cui et al. further confirmed the vital role played by the sulphation degree of SSPs in anti- 
inflammatory activities. As they discovered, compared to non-sulphated polysaccharides, SSPs 
extracted from Gelidium pacificum had higher sulphation degrees and markedly suppressed the 
TNF-α production and IL-6 secretion, thereby regulating the inflammatory responses.[259,274] Based 
on recent studies, ultrasound-assisted extraction (UAE) and MAE methods could essentially retain the 
sulphate contents of SSPs. For instance, the sulphate content of SSP extracted from Saccharina 
japonica was up to 13.26% by using the UAE method[275] and that obtained from Nizamuddinia 
zanardinii was up to 27.50% via the MAE method.[247]

Besides sulphate contents, the other polymeric constitutions of seaweed-derived polysaccharides 
could also severely affect the expression of bioactivities. Taking alginate as an example, Hu et al.[276] 

found the alginate consisting of guluronic acids displayed less potent antibacterial activity against 
Escherichia coli, Salmonella paratyphi B, Bacillus subtilis and Staphylococcus aureus than that com-
posed of mannuronic acids. Meanwhile, Ale et al.’s investigation could also prove the effects of 
monosaccharide constituents and their linkage pattern on the bioactivities. As they discovered,[277] 

the fucoidans extracted from Sargassum sp. had significantly inhibited the proliferation of melanoma 
B16 cells in contrast to that acquired from Fucus vesiculosus. The difference in cancer cell inhibitory 
activities could be explained by their monosaccharide constituent differences. This is because, 
although both extracted fucoidans had similar sulphate contents, the Sargassum sp. fucoidans mainly 
consisted of glucuronic acids, whereas Fucus vesiculosus fucoidans contained more fucoses. In fact, the 
influences of the polymeric constitution would be amplified among different polysaccharides due to 
their significantly different monosaccharide constituents and linkage patterns. As an illustration, it 
was found that alginate-derived oligosaccharides displayed intense hydroxyl radical scavenging 
activity but performed low activities in assays of scavenge superoxide radicals and hardly any iron 
chelating activity.[223,226,278] Whereas fucoidan-derived oligosaccharides showed excellent iron chelat-
ing activity but hardly scavenged superoxide radicals.[223,278]

Conclusion

Benefiting from a diversity of macro- and micro-nutrients and their triggered bioactivities, seaweeds 
have a vast potential to become part of human health diets. From a sustainable perspective, seaweeds 
can directly profit the achievement of UN SDGs in terms of food security, health and well-being, 
ecosystem protection and bioenergy development. Even though the consumption of seaweed has been 
promised a variety of health benefits, the triggered food safety issue has raised a grave concern for 
today’s consumers. Meanwhile, future research can also focus on seaweed fermentation, capsulation 
and processing methods to improve the biodigestibility and bioavailability of the containing nutrients. 
Besides, this review has demonstrated the remarkable bioactivities of seaweed-derived polysacchar-
ides, such as antimicrobial, antitumour, anti-inflammatory and immune-enhancing activities, which 
can be attributed to the polymeric structure features and chemical compositions like MW, degree of 
sulphation and monosaccharide compositions. Due to these physiochemical attributes can be remark-
edly affected by extraction methods and conditions, in future studies, the structure-bioactivity 
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relationship can be further investigated to modify these bioactive polymers and improve their 
bioactivities and application potential.
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